1
|
Wang S, Jiang Z, Zhao L, Zhang K, Chen Z, Li S, Miao Y, Hu C, Wang Z. Combined semi-continuous feeding and stripping: Improving volatile fatty acid production and sulfate reduction in a two-phase anaerobic sulfate reduction system. ENVIRONMENTAL RESEARCH 2025; 276:121485. [PMID: 40147514 DOI: 10.1016/j.envres.2025.121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
This study developed a two-phase anaerobic sulfate reduction system with semi-continuous feeding, integrated with vapor stripping, to assess its treatment performance at varying chemical oxygen demand (COD)/SO42- ratios. At a COD/SO42- ratio of 2, the system achieved high removal efficiencies of 91.85 % for COD and 92.70 % for sulfate, respectively. Vapor stripping effectively maintained low free H2S concentrations, remaining below 50 mg/L in the first-phase reactor (Ra) and below 30 mg/L in the second-phase reactor (Rm). Additionally, the scouring effect of vapor stripping altered the functional group composition on the sludge surface, promoting the formation of sulfate-reducing granular sludge. Microbial analysis revealed a synchronized enrichment of Desulfovibrio and Enterococcus in Ra, as well as Methanosaeta and Enterococcus in Rm under a semi-continuous feeding regime combined with vapor stripping. Conductivity measurements and correlation analyses suggested that electroactive Methanosaeta and Enterococcus engaged in syntrophic metabolism via extracellular electron transfer, which was particularly beneficial for organic removal under low COD/SO42- ratio conditions. At a COD/SO42- ratio of 2, dissimilatory sulfate reduction (DSR) prevailed in Ra, whereas assimilatory sulfate reduction (ASR) dominated in Rm. This balance optimized sulfate removal efficiency while mitigating sulfide toxicity toward methanogens. Overall, this study presents a promising approach for the efficient treatment of high-sulfate organic wastewater with low COD/SO42- ratio.
Collapse
Affiliation(s)
- Sifang Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zerong Jiang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Linan Zhao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Kaoming Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ziyao Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Shilin Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, United States; Department of Marine and Environmental Sciences, Northeastern University, Boston, 02115, United States
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Zheng X, Zhao Z, Zhu Z, Wu Y, Long M, Chen Y. Harnessing conductive materials for sustainable food waste treatment: Comparative evaluation of biochar and magnetite in volatile fatty acid production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125887. [PMID: 40408857 DOI: 10.1016/j.jenvman.2025.125887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Anaerobic fermentation offers a sustainable and eco-friendly approach to converting food waste (FW) into high-value volatile fatty acids (VFAs). Although both carbon- and metal-based conductive materials can enhance VFAs yields during FW fermentation, a comprehensive comparison of these materials and their underlying mechanisms remains unexplored, limiting their practical selection and application. This study systematically investigated the differences between biochar and magnetite, which are representative carbon- and metal-based conductive materials, in promoting VFAs production during FW fermentation. The results indicated that VFAs yields increased by 106 % and 81.2 % in the presence of biochar and magnetite, respectively, compared to the control, with notable enhancements during critical fermentation stages, including solubilization, hydrolysis, and acidification. Microbial analysis demonstrated that biochar more effectively enriched electroactive bacteria with acid-forming functions (e.g., Clostridium was enriched 1.3-fold more than in the control) compared to magnetite. Additionally, biochar more efficiently upregulated metabolic pathways associated with VFAs biosynthesis, including pyruvate metabolism (e.g., aceE and pckA), acetate production (e.g., pta and acyP), and butyrate production (e.g., ptb and bok). Biochar also enhanced microbial adaptability to external environmental conditions through quorum sensing (e.g., luxS and lsrA) and two-component systems (e.g., phoA and atoA). The enhanced TCA cycle, which provides electrons and energy for VFAs production and environmental adaptability, was more pronounced with biochar, ultimately leading to increased overall VFAs production. This work provides a deeper understanding about the impact of conductive materials on anaerobic fermentation and offers valuable direction for optimizing FW treatment.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhengzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zizeng Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Key Laboratory of Urban Renewal and Spatial Optimization Technology, Shanghai, 200092, China.
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
3
|
Li XF, Zhang WS, Qi S, Zhao JF, Sun ZY, Tang YQ. Anaerobic Volatile Fatty Acid Production Performance and Microbial Community Characteristics from Solid Fraction of Alkali-Thermal Treated Waste-Activated Sludge: Focusing on the Effects of Different pH Conditions. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05244-x. [PMID: 40317442 DOI: 10.1007/s12010-025-05244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The waste-activated sludge (WAS) is rich in organic matter and various nutrients. Alkali-thermal hydrolysis of WAS can be employed to produce a liquid fertilizer with high plant-promoting nutrient content. However, the solid fraction (abbreviated as SF) generated from this process requires further treatment. Although there have been studies on the recovery of plant nutrients from WAS via alkali-thermal hydrolysis, researches on the safe treatment of the SF are limited. This study aims to explore the potential and the microbiological mechanisms on anaerobic volatile fatty acid (VFA) production from the SF under different pH conditions (i.e., 6, 7, 8, 9, and 10). The results showed that the VFA yield was highest at pH 6, reaching 4095.84 mg COD/L (i.e., 0.16 g-COD/g-volatile solids), followed by pH 10, 8, 7, and 9, with acetate being the main component (> 56%). Microbial community analysis revealed that members in phyla Firmicutes and Bacteroidota constituted the main acid-producing microbial community during the anaerobic fermentation of SF. Furthermore, different pH conditions influenced the yield and composition of VFAs by altering the structure and functions of microbial community. This research provides a new direction for the fully resourceful utilization of sludge by producing both liquid fertilizer and VFAs from WAS.
Collapse
Affiliation(s)
- Xiu-Fang Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wen-Shuai Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Sheng Qi
- Laiwu Taihe Biochemistry Co., Ltd, Jinan, 250022, Shandong, China
| | - Jun-Feng Zhao
- Laiwu Taihe Biochemistry Co., Ltd, Jinan, 250022, Shandong, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
4
|
Qiu F, Li W, Zhang Y, Li H, Chen X, Niu J, Li X, Sun B. Effect of Saccharomyces cerevisiae inoculation on the co-fermentation of Clostridium kluyveri and Clostridium tyrobutyricum: A strategy for controlling acidity and enhancing aroma in strong-flavor Baijiu. Int J Food Microbiol 2025; 435:111172. [PMID: 40139101 DOI: 10.1016/j.ijfoodmicro.2025.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/25/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Microbial synergistic fermentation plays a vital role in the intelligent brewing and industrial upgrading of the Chinese traditional Baijiu fermentation industry. In this study, a chain-elongating microbial assemblages consisting of Clostridium and varying proportions of S. cerevisiae was applied to a solid-state simulated fermentation system to validate its functionality during strong-flavor Baijiu fermentation. The addition of S. cerevisiae promoted the hydrolysis of fermented grains and reduced the acidity compared with Clostridium biofortification (Group CFE; P < 0.05). The most significant enhancement in volatile flavor substances was achieved by the addition of S. cerevisiae at a high proportion (Group SFB), where the yields of ethyl hexanoate, phenylethyl alcohol, and ethanol increased by 191.2 %, 109.8 %, and 59.7 %, respectively. The OPLS-DA model (R2X = 0.976, Q2 = 0.992) identified seven volatile flavor substances that effectively distinguished the different co-fermented grains (VIP > 1, P < 0.05). S. cerevisiae accelerated the enrichment of Lentilactobacillus, Lactiplantibacillus, Loigolactobacillus, and Clostridium_sensu_stricto_12. Metabolic pathway and correlation analysis revealed that S. cerevisiae provides endogenous ethanol to chain-elongating microorganisms, and this fungal-bacterial synergistic fermentation enhances the reverse β-oxidation pathway, ultimately contributing to the production of volatile flavor substances. Overall, the microbial assembly pattern of chain-elongating microbial assemblages will help achieve quality enhancement and intelligent control by increasing the production of flavor ethyl esters and ethanol for Baijiu solid-state fermentation system.
Collapse
Affiliation(s)
- Fanghang Qiu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ya Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Haideng Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jialiang Niu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Xu W, Wu L, Geng M, Zhou J, Bai S, Nguyen DV, Ma R, Wu D, Qian J. Biochar@MIL-88A(Fe) accelerates direct interspecies electron transfer and hydrogen transfer in waste activated sludge anaerobic digestion: Exploring electron transfer and biomolecular mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120810. [PMID: 39793869 DOI: 10.1016/j.envres.2025.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH4) production. After adding BM at 250 mg/g WAS VS, the accumulative CH4 production and maximum CH4 yield increased by 1.2 and 1.9 times, respectively, with CH₄ comprising 88% of the biogas. BM accelerated electron transfer through its unsaturated sites and surface functional groups, while also enhancing metabolic functions for facilitating enzymatic activities and converting organic substrates. The abundance of syntrophic bacteria and methanogen were higher after BM addition. BM-mediated DIET and IHT pathways effectively oxidized propionate and butyrate, promoting methane generation. Higher expression of key genes involved in methane production correlated with shifts in microbial structure and increased CH4 yield after BM dosage. The invention of BM may provide more solutions for addressing low energy recovery during AD.
Collapse
Affiliation(s)
- Weihang Xu
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mengqi Geng
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Junmei Zhou
- Sichuan Rongshi Environmental Protection Technology Co., Ltd, Chengdu, China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Duc Viet Nguyen
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Rui Ma
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Di Wu
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China.
| |
Collapse
|
6
|
Shi X, Yasuda S, Wang Z, Hu Y, Wu G, Lens P, Zhan X. Microbial transitions and degradation pathways driven by butyrate concentration in mesophilic and thermophilic anaerobic digestion under low hydrogen partial pressure. BIORESOURCE TECHNOLOGY 2025; 419:132012. [PMID: 39725359 DOI: 10.1016/j.biortech.2024.132012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Butyrate accumulation significantly affects the efficiency and stability of anaerobic digestion, while its specific impact on methane yield and butyrate degradation remains unclear. This study investigated how butyrate concentrations (2.0, 5.0, 10.0, and 20.0 g COD/L) affected methane production and butyrate degradation at 37 °C and 55 °C. Methane yield decreased when butyrate concentrations exceeded 10.0 g COD/L. Methanogenesis transitioned from the acetoclastic to the hydrogenotrophic pathway with butyrate concentration increasing at 37 °C, but this transition wasn't observed at 55 °C. Butyrate was fully degraded at butyrate concentrations of 2.0-20.0 g COD/L. Iso-butyrate production was observed at 37 °C, while it only occurred with 20 g COD/L butyrate at 55 °C. Metagenomic analysis identified distinct microbes responsible for butyrate degradation at each temperature, and revealed a novel iso-butyrate metabolic pathway. These insights significantly advance the comprehension of microbial and enzymatic mechanisms driving butyrate degradation and methane production.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Civil Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Shohei Yasuda
- Civil Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Zhongzhong Wang
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | - Yuansheng Hu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Ireland
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Piet Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601 DA Delft, the Netherlands
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland.
| |
Collapse
|
7
|
Huang Z, Zhou J, Zhong Y, Chang Y, Yin W, Zhao S, Yan Y, Zhang W, Gu Q, He H, Urynowicz M, Sabar MA, Medunić G, Liu FJ, Guo H, Jamal A, Ali MI, Haider R. Enhanced methane production from bloom algal biomass using hydrothermal and hydrothermal-alkaline pretreatment with anaerobic digestion. Sci Rep 2025; 15:6775. [PMID: 40000663 PMCID: PMC11861253 DOI: 10.1038/s41598-025-90105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Coalbeds have the potential as geobioreactors for producing renewable natural gas from biomass derived from photosynthesis. This brings about a number of benefits, including support for sustainable energy and the sequestration of carbon dioxide in coal. In this study, freshwater bloom algae were employed as the substrate to examine the influence of hydrothermal and hydrothermal-alkaline pretreatment on methane production using an inoculum from an anaerobic digester. The morphology and chemical structures of the biomass, as well as the volatile fatty acids (VFAs) in the liquid fraction of the post-treatment and gas production, were analyzed to understand their relationship with the efficacy of methane yields and changes in microorganisms. The results revealed that both hydrothermal and hydrothermal-alkaline pretreatment, under the right conditions, can lead to an increase in methane production. Particularly, a pretreatment condition of 0.2 mol/L NaOH at 150 °C for 30 min resulted in a significant increase in methane yield by up to 303.9%. The addition of NaOH facilitated the hydrothermal-alkaline pretreatment, effectively destroying the cell structure of the bloom algae, promoting the dissolution of intracellular sugars and other substances, and reducing the loss of VFAs caused by heating. Moreover, hydrothermal-alkaline pretreatment was found to support the growth of acetoclastic methanogens and enhance methane production by mitigating pH drops. Overall, the results of this study suggest that hydrothermal-alkaline pretreatment offers significant advantages in methane production compared to hydrothermal pretreatment. These findings have important implications for harnessing bloom algae as a viable source for generating renewable natural gas.
Collapse
Affiliation(s)
- Zaixing Huang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
- Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY, 82071, USA.
| | - Jingzhuo Zhou
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuxiang Zhong
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yajie Chang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Wanrong Yin
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shuzhong Zhao
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yi Yan
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Weiting Zhang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Qingfeng Gu
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Huan He
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Michael Urynowicz
- Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY, 82071, USA
| | - Muhammad Adnan Sabar
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gordana Medunić
- Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 95, Zagreb, 10000, Croatia
| | - Fang-Jing Liu
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Hongguang Guo
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44000, Pakistan
| | | | - Rizwan Haider
- Institute of Energy & Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
8
|
Liu C, Cao Q, Luo X, Yan S, Sun Q, Zheng Y, Zhen G. In-depth exploration of microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) for methanogenesis in treating protein wastewater at high organic loading rates. ENERGY CONVERSION AND MANAGEMENT 2025; 323:119152. [PMID: 39582929 PMCID: PMC11580529 DOI: 10.1016/j.enconman.2024.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
High concentrations of protein wastewater often reduce treatment efficiency due to ammonia inhibition and acid accumulation caused by its low carbon-to-nitrogen ratio (C/N) after digestion, as well as its complex structure. This study investigates the performance of a microbial electrolysis cell (MEC) driving a protein digestion system with gradually increasing organic loading rates (OLR) of bovine serum albumin, elucidating microbial changes and methanogenic metabolic pathways on bioelectrodes under high OLR "inhibited steady-state" (ISS) conditions. The results showed that the accumulation of ammonia nitrogen (AN) from protein hydrolysis under high OLR conditions disrupted microbial growth and caused cell death on the electrode surface, hindering the electron transfer rate. Toxic AN reduced protein hydrolysis, led to propionate accumulation, inhibiting the acetoclastic methanogenesis process and favoring the hydrogenotrophic pathway. As OLR increased from 6 to 11 gCOD/L, cumulative methane production increased significantly from 450.24 mL to 738.72 mL, while average methane yield and production rate decreased by 10.51% and 50.28%, from 375.20 mL/gCOD and 75.04 mL/(gCOD·d) to 335.78 mL/gCOD and 37.31 mL/(gCOD·d), respectively. Despite these declines, the system maintained an ISS. Moderate OLR increases can achieve an ISS, boosting protein waste treatment capacity, methane production, and net energy output (NEO), with an OLR of 6 gCOD/L being optimal for maximizing NEO per unit substrate. These findings provide theoretical insights into the methanogenesis pathway of high OLR proteins in MEC-AD systems and offer an effective method for treating high OLR protein wastewater in future practical applications.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
| | - Qi Cao
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Shenghan Yan
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Qiyuan Sun
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Yuyi Zheng
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Wang X, Ming X, Chen M, Han X, Li X, Zhang D. Effect of acidification pretreatment on two-phase anaerobic digestion of acidified food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:208-216. [PMID: 39357301 DOI: 10.1016/j.wasman.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Acidified food waste significantly disrupts anaerobic digestion, highlighting the need for effective solutions to mitigate its impact. This study presents a method that utilizes acidified sludge to pretreat acidified food waste, thereby significantly improving the efficiency of hydrolysis and acidogenesis. After acidification pretreatment, hydrolysis efficiency improved from 64.54 % to 96.51 %, while acidogenesis efficiency increased from 34.82 % to 49.95 %. Additionally, the concentration of short-chain fatty acids and hydrogen production in the acidification pretreatment group increased by 45.89 % and 48.67 %, respectively. The pretreatment group exhibited a biochemical methane potential of 512.84 ± 13.73 mL/(g volatile suspended solids), which was 35.77 % higher than that of the control group. Mechanism analysis revealed that the higher abundance of genes associated with lactate dehydrogenase in the acidified sludge facilitated the rapid degradation of lactic acid. Moreover, the abundant Clostridium butyricum in the acidified sludge promoted the targeted conversion of lactic acid and other organic matter into butyric acid within the food waste system. This efficient butyric acid fermentation improved the fermentation environment and provided abundant substrates for methane production. This study introduces a promising bio-based strategy to improve the anaerobic digestion efficiency of acidified food waste.
Collapse
Affiliation(s)
- Xudong Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xujia Ming
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengyu Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Han
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
10
|
Muñoz-Páez KM, Buitrón G, Vital-Jácome M. Predicting metabolic pathways and microbial interactions in dark fermentation systems treating real cheese whey effluents. BIORESOURCE TECHNOLOGY 2024; 413:131536. [PMID: 39326535 DOI: 10.1016/j.biortech.2024.131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Dark fermentation of agro-industrial effluents is a promising way for waste valorization. However, understanding the complex microbial dynamics and metabolic interactions within the microbial communities remains challenging. This study investigates the microbial communities involved in continuous hydrogen production from cheese whey and fermented cheese whey using functional profiling with PICRUSt2. The analysis reveals the primary roles of key microbial genera. Lactobacillus dominates carbohydrate consumption and lactate production, while Clostridium sensu stricto 12 and Caproiciproducens are engaged in a competitive dynamic for lactate utilization. Clostridium sensu stricto 12 drives hydrogen production via electron bifurcation reactions, whereas Caproiciproducens may utilize alternative energy conservation mechanisms. The interaction between these genera is influenced by substrate availability and process conditions. This study highlights the utility of functional profiling in elucidating microbial interactions and metabolic pathways in dark fermentation. The findings emphasize the importance of understanding microbial interactions to optimize biohydrogen production processes.
Collapse
Affiliation(s)
- Karla M Muñoz-Páez
- CONAHCYT - Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, México.
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, México.
| | - Miguel Vital-Jácome
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, México.
| |
Collapse
|
11
|
Amin FR, Khalid H, Wang J, Li Y, Ma L, Chen W, Duan Y, Zhai Y, Li D. High value-added chemical production through anaerobic codigestion of corn straw with a microbial consortium, cow manure and cow digestion solution. Anaerobe 2024; 89:102900. [PMID: 39154705 DOI: 10.1016/j.anaerobe.2024.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES This study investigated the codigestion of corn straw (CS) with cow manure (CM), cow digestion solution (CD), and a strain consortium (SC) for enhanced volatile fatty acid (VFA) production. The aims of this study were to develop a sustainable technique to increase VFA yields, examine how combining microbial reagents with CS affects VFA production by functional microorganisms, and assess the feasibility of improving microbial diversity through codigestion. METHODS Batch experiments evaluated VFA production dynamics and microbial community changes with different combinations of CS substrates with CM, CD, and SC. Analytical methods included measuring VFAs by GC, ammonia and chemical oxygen demand (COD) by standard methods and microbial community analysis by 16S rRNA gene sequencing. RESULTS Codigesting CS with the strain consortium yielded initial VFA concentrations ranging from 0.6 to 1.0 g/L, which were greater than those of the other combinations (0.05-0.3 g/L). Including CM, and CD further increased VFA production to 1.0-2.0 g/L, with the highest value of 2.0 g/L occurring when all four substrates were codigested. Significant ammonium reduction (194-241 mg/L to 29-37 mg/L) and COD reduction (3310-5250 mg/L to 730-1210 mg/L) were observed. Codigestion with CM and CD had greater Shannon diversity indices (3.19-3.24) than did codigestion with the other consortia (2.26). Bacillota dominated (96.5-99.6 %), with Clostridiales playing key roles in organic matter breakdown. CONCLUSIONS This study demonstrated the feasibility of improving VFA yields and harnessing microbial diversity through anaerobic codigestion of lignocellulosic and animal waste streams. Codigestion substantially enhanced VFA production, which was dominated by butyrate, reduced ammonium and COD, and enriched fiber-degrading and fermentative bacteria. These findings can help optimize codigestion for sustainable waste management and high-value chemical production.
Collapse
Affiliation(s)
- Farrukh Raza Amin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China; Department of Chemistry, COMSATS University Islamabad, Park Road, Tarlai Kalan, 45550, Islamabad, Pakistan
| | - Habiba Khalid
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China; Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yaxiang Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Longxue Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Wuxi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yu Duan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yida Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
12
|
Zhao L, Fan Y, Chen H. Natural flocculant chitosan inhibits short-chain fatty acid production in anaerobic fermentation of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 403:130892. [PMID: 38795922 DOI: 10.1016/j.biortech.2024.130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Chitosan (CTS) serves as an excellent natural flocculant in wastewater purification and sludge conditioning, but its potential impact on anaerobic fermentation of waste-activated sludge is unclear. The current study investigated the role of CTS in short-chain fatty acids (SCFAs) generation via sludge alkaline anaerobic fermentation. The results showed a drastic reduction in SCFA production with CTS, showing a maximum inhibition of 33 % at 6 mg/g of total suspended solids. CTS hindered sludge solubilization through flocculation, and acted as a humus precursor, promoting humus formation, and consequently reduced the amount of available substrates. Further, CTS promoted free ammonia production, posing a challenge to enzymes and cell viability. Additionally, CTS increased the population of Rikenellaceae sp. and weakened the dominance of hydrolyzing and acidifying bacteria. This study deepens the understanding of the potential impact of CTS on anaerobic fermentation and provides a theoretical basis for reducing the risk of polymeric flocculants.
Collapse
Affiliation(s)
- Lina Zhao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
13
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
14
|
Zhu X, Li P, Ju F. Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives. Eng Life Sci 2024; 24:2300216. [PMID: 38708413 PMCID: PMC11065332 DOI: 10.1002/elsc.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/26/2023] [Accepted: 10/05/2023] [Indexed: 05/07/2024] Open
Abstract
Biowaste fermentation is a promising technology for low-carbon print bioenergy and biochemical production. Although it is believed that the microbiome determines both the fermentation efficiency and the product profiles of biowastes, the explicit mechanisms of how microbial activity controls fermentation processes remained to be unexplored. The current study investigated the microbiome dynamics and fermentation product profiles of biowaste fermentation under different organic loads (5, 20, and 40 g-VS/L) and with additives that potentially modulate the fermentation process via methanogenesis inhibition (2-bromoethanesulfonate) or electron transfer promotion (i.e., reduced iron, magnetite iron, and activated carbon). The overall fermentation products yields were 440, 373 and 208 CH4-eq/g-VS for low-, medium- and high-load fermentation. For low- and medium-load fermentation, volatile fatty acids (VFAs) were first accumulated and were gradually converted to methane. For high-load fermentation, VFAs were the main fermentation products during the entire fermentation period, accounting for 62% of all products. 16S rRNA-based analyses showed that both 2-bromoethanesulfonate addition and increase of organic loads inhibited the activity of methanogens and promoted the activity of distinct VFA-producing bacterial microbiomes. Moreover, the addition of activated carbon promoted the activity of H2-producing Bacteroides, homoacetogenic Eubacteriaceae and methanogenic Methanosarcinaceae, whose activity dynamics during the fermentation led to changes in acetate and methane production. The current results unveiled mechanisms of microbiome activity dynamics shaping the biowaste fermentation product profiles and provided the fundamental basis for the development of microbiome-guided engineering approaches to modulate biowaste fermentation toward high-value product recovery.
Collapse
Affiliation(s)
- Xinyu Zhu
- Key Laboratory of Coastal Environment and Resources of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang ProvinceChina
- Environmental Microbiome and Biotechnology Laboratory, Center of Synthetic Biology and Integrated BioengineeringWestlake UniversityHangzhouZhejiang ProvinceChina
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang ProvinceChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Ping Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang ProvinceChina
- Environmental Microbiome and Biotechnology Laboratory, Center of Synthetic Biology and Integrated BioengineeringWestlake UniversityHangzhouZhejiang ProvinceChina
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang ProvinceChina
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang ProvinceChina
- Environmental Microbiome and Biotechnology Laboratory, Center of Synthetic Biology and Integrated BioengineeringWestlake UniversityHangzhouZhejiang ProvinceChina
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang ProvinceChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| |
Collapse
|
15
|
Kim D, Cha J, Lee C. Enhanced methane production with co-feeding spent coffee grounds using spare capacity of existing anaerobic food waste digesters. Sci Rep 2024; 14:4472. [PMID: 38396086 PMCID: PMC10891051 DOI: 10.1038/s41598-024-54610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
With increasing coffee consumption worldwide, the efficient and sustainable management of spent coffee grounds (SCG) has become increasingly challenging. This study investigated the anaerobic co-digestion of small amounts of SCG with food waste (FW) at increasing co-feeding ratios of 1:100-1:10 (volatile solids basis) to assess the possibility of SCG treatment using the spare capacity of existing anaerobic digesters. Co-feeding SCG increased methane production compared to FW mono-digestion in the tested range of co-feeding ratios without compromising process stability. Methane yield did not further increase when the SCG/FW ratio increased above 4%, and process failure occurred at a 1:10 co-feeding ratio without trace element supplementation. The enhanced methanogenic performance was attributed to increased protein removal efficiency, which was potentially related to the promotion of peptide hydrolysis. The overall results suggest that co-feeding appropriate small amounts of SCG to FW digesters can be a realistic sustainable option for SCG management.
Collapse
Affiliation(s)
- Danbee Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 25, Samso-Ro 270Beon-Gil, Buk-Gu, Gwangju, 61003, Republic of Korea
| | - Junho Cha
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
16
|
Zhang X, Huang T, Wu D. Enhanced anaerobic digestion of human feces by ferrous hydroxyl complex (FHC): Stress factors alleviation and microbial resistance improvement. CHEMOSPHERE 2024; 350:141041. [PMID: 38151064 DOI: 10.1016/j.chemosphere.2023.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Anaerobic digestion (AD) offers a reliable strategy for resource recovery from source-separated human feces (HF), but is limited by a disproportionate carbon/nitrogen (C/N) ratio. Ferrous hydroxyl complex (FHC) was first introduced into the HF-AD system to mediate methanogenesis. Mono-digestion of undiluted HF was inhibited by high levels of volatile fatty acids (VFAs), ammonia, and hydrogen sulfide (H2S). FHC addition at optimum dosage (500-1000 mg/L) increased the cumulative methane (CH4) yield by 22.7%, enhanced the peak value of daily CH4 production by 60.5%, and shortened the lag phase by 24.7%. H2S concentration in biogas was also greatly decreased by FHC via precipitation. FHC mainly facilitated the hydrolysis, acidification, and methanogenesis processes. The production and transformation of VFAs were optimized in the presence of FHC, thus relieving acid stress. FHC elevated the activities of alkaline protease, cellulase, and acetate kinase by 32.3%, 18.2%, and 30.3%, respectively. Microbial analysis revealed that hydrogenotrophic methanogens prevailed in mono-digestion at high HF loading but were weakened after FHC addition. FHC also enriched Methanosarcina, thereby expanding the methanogenesis pathway and improving the resistance to ammonia stress. This work would contribute to improving the methanogenic performance and resource utilization for HF anaerobic digestion.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Tao Huang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
17
|
Chen W, Zeng Y, Liu H, Sun D, Liu X, Xu H, Wu H, Qiu B, Dang Y. Granular activated carbon enhances volatile fatty acid production in the anaerobic fermentation of garden wastes. Front Bioeng Biotechnol 2023; 11:1330293. [PMID: 38146344 PMCID: PMC10749581 DOI: 10.3389/fbioe.2023.1330293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.
Collapse
Affiliation(s)
- Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
19
|
Llamas M, Greses S, Magdalena JA, González-Fernández C, Tomás-Pejó E. Microbial co-cultures for biochemicals production from lignocellulosic biomass: A review. BIORESOURCE TECHNOLOGY 2023; 386:129499. [PMID: 37460020 DOI: 10.1016/j.biortech.2023.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Global reliance on fossil oil should shift to cleaner alternatives to get a decarbonized society. One option to achieve this ambitious goal is the use of biochemicals produced from lignocellulosic biomass (LCB). The inherent low biodegradability of LCB and the inhibitory compounds that might be released during pretreatment are two main challenges for LCB valorization. At microbiological level, constraints are mostly linked to the need for axenic cultures and the preference for certain carbon sources (i.e., glucose). To cope with these issues, this review focuses on efficient LCB conversion via the sugar platform as well as an innovative carboxylate platform taking advantage of the co-cultivation of microorganisms. This review discusses novel trends in the use of microbial communities and co-cultures aiming at different bioproducts co-generation in single reactors as well as in sequential bioprocess combination. The outlook and further perspectives of these alternatives have been outlined for future successful development.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Jose Antonio Magdalena
- LBE, Univ Montpellier, INRAE, 102 avenue des Étangs, F-11100 Narbonne, France; Vicerrectorado de Investigación y Transferencia de la Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid 47011, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain.
| |
Collapse
|
20
|
Dong SY, Luo JC, Chen G, Tian S, Sun H, Xiao XZ, Zhu YC. Enhancement of volatile fatty acids production through anaerobic co-digestion of navel orange residue and waste activated sludge: Effect of pre-treatment and substrate proportions. Heliyon 2023; 9:e19777. [PMID: 37809971 PMCID: PMC10559115 DOI: 10.1016/j.heliyon.2023.e19777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, the co-digestion system with Navel orange residues (NOR) and Waste activated sludge (WAS) was established, by pre-treating the NOR and setting different volatile solids (VS) ratios of NOR to WAS to motivate the production of volatile fatty acids (VFA). The pre-treatment method (pH 7 and temperature 70 °C) promoted the release of dissolved organic matter, and the concentration of soluble chemical oxygen demand (SCOD) increased by 45.56% compared with the untreated group (pH 3 and temperature 20 °C). In the co-digestion system, the highest VFA yield (5716.69 mg/L) was obtained at VS ratio of 2. When the VS ratio was increased to 4, the imbalance in proportions of carbon and nitrogen affected VFA production, and the high concentration of essential oils (EO) present in the NOR inhibited the methane production; the cumulative yield of methane gas decreased by 24.10% compared with the yield obtained when the VS ratio was 2. Analysis of microbial community revealed that an increase in the number of VFA-producing microbial populations and the abundance of Methanobacteria resulted in the accumulation of acetic acid. This study demonstrated that co-digestion of NOR with WAS improve VFA production, thus realizing the utilization of solid wastes and reducing environmental pollution.
Collapse
Affiliation(s)
- Shan-Yan Dong
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
- Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and Control, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jin-Cai Luo
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Gang Chen
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shuai Tian
- School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Hong Sun
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Xiang-Zhe Xiao
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yi-Chun Zhu
- Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and Control, Jiangxi University of Science and Technology, Ganzhou, 341000, China
- Jiangxi provincial key laboratory of environmental geo-technology and engineering disaster Control, Ganzhou, 341000, China
| |
Collapse
|
21
|
Du Z, Yamasaki S, Oya T, Cai Y. Cellulase-lactic acid bacteria synergy action regulates silage fermentation of woody plant. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:125. [PMID: 37542284 PMCID: PMC10403842 DOI: 10.1186/s13068-023-02368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Feed shortage is an important factor limiting livestock production in the world. To effectively utilize natural woody plant resources, we used wilting and microbial additives to prepare an anaerobic fermentation feed of mulberry, and used PacBio single-molecule real-time (SMRT) sequencing technology to analyse the "enzyme-bacteria synergy" and fermentation mechanism. RESULTS The fresh branches and leaves of mulberry have high levels of moisture and nutrients, and also contain a diverse range of epiphytic microorganisms. After ensiling, the microbial diversity decreased markedly, and the dominant bacteria rapidly shifted from Gram-negative Proteobacteria to Gram-positive Firmicutes. Lactic acid bacteria (LAB) emerged as the dominant microbial population, resulting in increased in the proportion of the carbohydrate metabolism and decreased in the proportion of the amino acid and "global and overview map" (GOM) metabolism categories. The combination of cellulase and LAB exhibited a synergistic effect, through which cellulases such as glycanase, pectinase, and carboxymethyl cellulase decomposed cellulose and hemicellulose into sugars. LAB converted these sugars into lactic acid through the glycolytic pathway, thereby improving the microbial community structure, metabolism and fermentation quality of mulberry silage. The GOM, carbohydrate metabolism, and amino acid metabolism were the main microbial metabolic categories during ensiling. The presence of LAB had an important effect on the microbial community and metabolic pathways during silage fermentation. A "co-occurrence microbial network" formed with LAB, effectively inhibiting the growth of harmful microorganisms, and dominating the anaerobic fermentation process. CONCLUSIONS In summary, PacBio SMRT was used to accurately analyse the microbial network information and regulatory mechanism of anaerobic fermentation, which provided a scientific basis for the study of woody silage fermentation theory. This study reveals for the first time the main principle of the enzyme-bacteria synergy in a woody silage fermentation system, which provides technical support for the development and utilization of woody feed resources, and achieves sustainable livestock production.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Seishi Yamasaki
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Tetsuji Oya
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
22
|
Shitu A, Chen W, Tadda MA, Zhang Y, Ye Z, Liu D, Zhu S, Zhao J. Enhanced aquaculture wastewater treatment in a biofilm reactor filled with sponge/ferrous oxalate/biochar composite (Sponge-C 2FeO 4@NBC) biocarriers: Performance and mechanism. CHEMOSPHERE 2023; 330:138772. [PMID: 37098362 DOI: 10.1016/j.chemosphere.2023.138772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 04/22/2023] [Indexed: 05/14/2023]
Abstract
Fabricating low-cost and efficient biofilm carriers for moving bed biofilm reactors in wastewater treatment is crucial for achieving environmental sustainability. Herein, a novel sponge biocarrier doped with NaOH-loaded biochar and nano ferrous oxalate (sponge-C2FeO4@NBC) was prepared and evaluated for nitrogenous compounds removal from recirculating aquaculture systems (RAS) wastewater by stepwise increasing ammonium nitrogen (NH4+-N) loading rates. The prepared NBC, sponge-C2FeO4@NBC, and matured biofilms were characterized using SEM, FTIR, BET, and N2 adsorption-desorption techniques. The results reveal that the highest removal rates of NH4+-N reached 99.28 ± 1.3% was yielded by the bioreactor filled with sponge-C2FeO4@NBC, with no obvious nitrite (NO2--N) accumulation in the final phase. The reactor packed with sponge-C2FeO4@NBC biocarrier had the highest relative abundance of functional microorganisms responsible for nitrogen metabolism than in the control reactor, confirmed from 16S rRNA gene sequencing analysis. Our study provides new insights into the newly developed biocarriers for enhancing RAS biofilters treatment performance in keeping water quality within the acceptable level for the rearing of aquatic species.
Collapse
Affiliation(s)
- Abubakar Shitu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria.
| | - Wei Chen
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Musa Abubakar Tadda
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Yadong Zhang
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China.
| | - Jian Zhao
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Zhang TT, Zhao QB, Wu XQ, Xu C, Zheng YM, Yu SS. Enhancing sulfate reduction and hydrogen sulfide removal through gas stripping in the acidogenesis phase of a two-phase anaerobic process. BIORESOURCE TECHNOLOGY 2023:129381. [PMID: 37352992 DOI: 10.1016/j.biortech.2023.129381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
This study aims at evaluating two-phase and single-phase reactors for treating sulfate wastewater with low COD/SO42- ratios. Additionally, a new process of gas stripping in an acidogenesis phase is proposed to reduce hydrogen sulfide (H2S) inhibition and enhance biomethanation. The two-phase performed better than the single-phase in terms of COD removal, CH4 production and H2S resistance. After 30 days of stripping, the COD and sulfate degradation rates increased from 85.16% to 91.09% and from 49.39% to 63.07% in the two-phase, respectively. In contrast, without stripping, they were from 79.21% to 64.37% and from 50.26% to 53.15% in the single-phase, respectively. The microbial biodiversity was augmented via stripping, including norank_f__Spirochaetaceae, Petrimonas, Desulfurella and Blvii28_wastewater-sludge_group. Stripping operation enhanced the dissimilatory sulfate reduction, amino acid metabolism and possibly sulfate-dependent anaerobic ammonia oxidation (S-ANAMMOX). This study provides a promising strategy to improve sulfate reduction and reduce H2S inhibition under a low COD/SO42- ratio.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao-Qiong Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Kwon Y, Park J, Kim GB, Jo Y, Park S, Kim SH. High-rate anaerobic digestion of sewage sludge using anaerobic dynamic membrane bioreactor under various sludge composition and organic loading rates. BIORESOURCE TECHNOLOGY 2023:129275. [PMID: 37290708 DOI: 10.1016/j.biortech.2023.129275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
This study investigates the effects of sludge compositions and organic loading rates (OLRs) on stable biomethane production during sludge digestion. Batch digestion experiments evaluate the effects of alkaline-thermal pretreatment and waste activated sludge (WAS) fractions on the biochemical methane potential (BMP) of sludge. A lab-scale anaerobic dynamic membrane bioreactor (AnDMBR) is fed with a mixture of primary sludge and pretreated WAS. Monitoring of volatile fatty acid to total alkalinity (FOS/TAC) helps maintain operational stability. The highest average biomethane production rate of 0.7 L/L·d is achieved when the OLR, hydraulic retention time, WAS volume fraction, and FOS/TAC ratio are 5.0 g COD/L·d, 12 days, 0.75, and 0.32, respectively. This study finds functional redundancy in two pathways: hydrogenotrophic and acetolactic. An increase in OLR promotes bacterial and archaeal abundance and specific methanogenic activity. These results can be applied to the design and operation of sludge digestion for stable, high-rate biomethane recovery.
Collapse
Affiliation(s)
- Yeelyung Kwon
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yura Jo
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Soyoung Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
25
|
Zhou Z, Sun Y, Fu L, Zuo Y, Shao Y, Wang L, Zhou C, An Y. Unravelling roles of the intermediate settler in a microaerobic hydrolysis sludge in situ reduction process. BIORESOURCE TECHNOLOGY 2023:129228. [PMID: 37244312 DOI: 10.1016/j.biortech.2023.129228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
The roles of the intermediate settler in the sludge process reduction activated sludge process (SPRAS), and the influences of its hydraulic retention time (HRTST) on pollutant removal and sludge reduction were investigated. Prolonging HRTST from 3.0 to 4.5 and 6.0 h resulted in sludge reduction efficiencies increased from 46.8% to 61.5% and 62.7%. The sludge accumulation in the intermediate settler formed an anaerobic zone but inhibited methane production, and the alternating microaerobic and anaerobic environment in the sludge process reduction (SPR) module increased the microbial diversity and enriched the hydrolytic and fermentative bacteria. Prolonging HRTST accelerated dissolved organic matter release and elevated the degradation of refractory fraction, and improved the sludge properties of the SPRAS. Metagenomic analysis showed that the SPR module enhanced the glycolysis pathway and decoupling metabolism for sludge reduction. The results revealed that the intermediate settler plays dual roles in solid-liquid separation and sludge reduction metabolism.
Collapse
Affiliation(s)
- Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Li Fu
- Powerchina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
26
|
Hashemi S, Solli L, Lien KM, Lamb JJ, Horn SJ. Culture adaptation for enhanced biogas production from birch wood applying stable carbon isotope analysis to monitor changes in the microbial community. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:77. [PMID: 37149601 PMCID: PMC10163780 DOI: 10.1186/s13068-023-02328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Birch wood is a potential feedstock for biogas production in Northern Europe; however, the lignocellulosic matrix is recalcitrant preventing efficient conversion to methane. To improve digestibility, birch wood was thermally pre-treated using steam explosion at 220 °C for 10 min. The steam-exploded birch wood (SEBW) was co-digested with cow manure for a period of 120 days in continuously fed CSTRs where the microbial community adapted to the SEBW feedstock. Changes in the microbial community were tracked by stable carbon isotopes- and 16S r RNA analyses. The results showed that the adapted microbial culture could increase methane production up to 365 mL/g VS day, which is higher than previously reported methane production from pre-treated SEBW. This study also revealed that the microbial adaptation significantly increased the tolerance of the microbial community against the inhibitors furfural and HMF which were formed during pre-treatment of birch. The results of the microbial analysis indicated that the relative amount of cellulosic hydrolytic microorganisms (e.g. Actinobacteriota and Fibrobacterota) increased and replaced syntrophic acetate bacteria (e.g. Cloacimonadota, Dethiobacteraceae, and Syntrophomonadaceae) as a function of time. Moreover, the stable carbon isotope analysis indicated that the acetoclastic pathway became the main route for methane production after long-term adaptation. The shift in methane production pathway and change in microbial community shows that for anaerobic digestion of SEBW, the hydrolysis step is important. Although acetoclastic methanogens became dominant after 120 days, a potential route for methane production could also be a direct electron transfer among Sedimentibacter and methanogen archaea.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway.
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
| | - Kristian M Lien
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway
| | - Jacob J Lamb
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway
| | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| |
Collapse
|
27
|
Yang W, Cai C, Wang R, Dai X. Insights into the impact of quaternary ammonium disinfectant on sewage sludge anaerobic digestion: Dose-response, performance variation, and potential mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130341. [PMID: 36403443 DOI: 10.1016/j.jhazmat.2022.130341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Wide commercial applications of antimicrobial quaternary ammonium compounds (QACs) inevitably lead to the release into wastewater and enrichment in sewage sludge. This study evaluated the impacts of levels and structures of QACs on sewage sludge properties, microbial community, and methane production during anaerobic digestion. Methane production was stimulated or not affected at low QACs concentrations, but significantly inhibited at high QACs concentrations. Compared with benzyl and alkyltrimethyl QACs, dialkyl QACs showed least toxicity on digestion performance. Meanwhile, microbial community analysis indicated that shifts in bacterial communities mainly depended on QACs doses, but the archaeal communities were affected by both QACs doses and types. The dominant methanogenic pathway shifted from acetotrophic/methylotrophic methanogens to mixotrophic methanogens by low levels of benzyl and alkyltrimethyl QACs but not dialkyl QACs, and further to hydrogenotrophic methanogens at high QACs concentration. Mechanism exploration revealed that the presence of QACs promoted sludge solubilization by the integrated effects of cell lysis, electric neutralization, and hydrophobicity improvement, but inhibited methanogenesis due to the accumulation of volatile fatty acids and susceptibility of methanogens to QACs. These findings provided a reference for potential impacts of different QACs on sludge biological treatment, which had implications for the use and selection of QACs disinfectants.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
28
|
Saravanan A, Senthil Kumar P, Rangasamy G, Hariharan R, Hemavathy RV, Deepika PD, Anand K, Karthika S. Strategies for enhancing the efficacy of anaerobic digestion of food industry wastewater: An insight into bioreactor types, challenges, and future scope. CHEMOSPHERE 2023; 310:136856. [PMID: 36243094 DOI: 10.1016/j.chemosphere.2022.136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Food waste have become a growing concern worldwide with raising population and economic growth. Wastewater discharged from food industries contains many valuable and toxic components that have a negative impact on the ecological system. Large amounts of wastewater are discharged from the food industry, which necessitates the creation of effective technologies. Wastewater from the food industry can be seen as a rich source of energy and a primary source for generating valuable products. Waste disposal and resource recovery are sustainably valued by anaerobic digestion of wastewater from the food sector. The characteristics, composition, and nature of wastewater produced from various food sectors are elaborated upon in this review. An overview of the anaerobic digestion process for wastewater treatment in the food industry is included. Enhancement strategies for the anaerobic digestion process have been discussed in detail. In addition, various types of reactors utilized for performing anaerobic digestion is illustrated. Though anaerobic digestion process possesses advantages, the challenges and future scope are examined for improving the outcome.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - R Hariharan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P D Deepika
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - Krithika Anand
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karthika
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
29
|
Castro-Ramos JJ, Solís-Oba A, Solís-Oba M, Calderón-Vázquez CL, Higuera-Rubio JM, Castro-Rivera R. Effect of the initial pH on the anaerobic digestion process of dairy cattle manure. AMB Express 2022; 12:162. [PMID: 36576594 PMCID: PMC9797631 DOI: 10.1186/s13568-022-01486-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 12/29/2022] Open
Abstract
Anaerobic digestion (AD) has recently been studied to obtain products of greater interest than biogas, such as volatile fatty acids (VFAs) and phytoregulators. The effect of the initial pH of cow manure and the fermentation time of the AD on the microbial composition, VFAs, indole-3-acetic acid (IAA) and gibberellic acid (GA3) production was evaluated. The cow manure (7% solids) was adjusted to initial pH values of 5.5, 6.5, 7.5, and 8.5, and the AD products were analyzed every four days until day 20. The initial pH and the fermentation time had an important effect on the production of metabolites. During AD, only the hydrolytic and acidogenic stages were identified, and the bacteria found were from the phyla Firmicutes, Bacteroidetes, Actinobacteria, and Spirochaetes. The most abundant genera produced in the four AD were Caproiciproducens, Clostridium sensu stricto 1, Romboutsia, Paeniclostridium, Turicibacter, Peptostreptococcaceae, Ruminococcaceae and Fonticella. The highest amount of VFAs was obtained at pH 8.5, and the production of the acids was butyric > acetic > propionic. The maximum production of GA3 and IAA was at an initial pH of 6.5 on day 20 and a pH of 5.5 on day 4, respectively. There was a strong correlation (> 0.8) between the most abundant microorganisms and the production of VFAs and GA3. The anaerobic digestion of cow manure is a good alternative for the production of VFAs, GA3 and IAA.
Collapse
Affiliation(s)
- Job Jonathan Castro-Ramos
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| | - Aida Solís-Oba
- grid.7220.70000 0001 2157 0393Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico, Mexico
| | - Myrna Solís-Oba
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| | - Carlos Ligne Calderón-Vázquez
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81100 Guasave, Sinaloa Mexico
| | - Jesús Mireya Higuera-Rubio
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81100 Guasave, Sinaloa Mexico
| | - Rigoberto Castro-Rivera
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| |
Collapse
|
30
|
Wang Y, Huang Z, Zhao M, Miao H, Shi W, Ruan W. Enhanced chloride-free snow-melting agent generation from organic wastewater by integrating bioconversion and synthesis. BIORESOURCE TECHNOLOGY 2022; 366:128200. [PMID: 36309178 DOI: 10.1016/j.biortech.2022.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, a new process for producing chloride-free snow-melting agents (CSAs) was proposed. Organic wastewater was converted to total volatile fatty acids (TVFA) by anaerobic acidogenic fermentation. The experiments for acid generation showed that the maximum TVFA concentration of 45.9 g/L was obtained at an organic loading rate of 5 g chemical oxygen demand /(L·d), and the proportion of acetic acid reached 78.8 %. Forward osmosis was used for concentrating the TVFA solution. The obtained CSAs, after evaporation and crystallization, had a better ice-melting capacity and less corrosion on metal and concrete than NaCl and CaCl2. Additionally, the damage caused by CSAs to the germination of plant seeds was significantly lesser than that caused by chloride salts. This study proposed a feasible method for the high-value conversion of organic wastewater, providing a new direction for the reuse of organic wastewater.
Collapse
Affiliation(s)
- Yijie Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| |
Collapse
|
31
|
Shao Z, Chen H, Zhao Z, Yang Z, Qiu L, Guo X. Combined effects of liquid digestate recirculation and biochar on methane yield, enzyme activity, and microbial community during semi-continuous anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 364:128042. [PMID: 36182021 DOI: 10.1016/j.biortech.2022.128042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The combined effects of liquid digestate recirculation (LDR) and biochar on methanogenesis and microbial communities were studied in semi-continuous anaerobic reactors fed with wheat straw and swine manure. The tolerated organic loading rate (OLR) was expanded from 5 g- volatile solids (VS)∙L-1∙d-1 in the control to higher than 6 g-VS∙L-1∙d-1 in the LDR. At the OLR of 5.0 g-VS∙L-1∙d-1, average special methane yield in LDR with biochar was 0.234 L∙g-VS-1, which was 5.4 % higher than that of the LDR alone. Moreover, enzyme activity and microbial community analysis indicated that LDR with biochar enhanced the processes of hydrolysis and methanogenesis, and balanced the pathway between hydrogenotrophic and acetoclastic methanogenesis. The co-application of LDR and biochar synergistically enhanced the degradation pathways of substrates and the loading shock resistance of anaerobic digestion system. This study could offer strategies for developing sustainable applications of full and continuous LDR in industrial biogas projects.
Collapse
Affiliation(s)
- Zhijiang Shao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heyu Chen
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuangzhuang Zhao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaijun Yang
- Northwest A&F University, College of Natural Resources and Environment, Yangling, Shaanxi 712100, China
| | - Ling Qiu
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Guo
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Liczbiński P, Borowski S, Cieciura-Włoch W. Anaerobic co-digestion of kitchen waste with hyperthermophilically pretreated grass for biohydrogen and biomethane production. BIORESOURCE TECHNOLOGY 2022; 364:128053. [PMID: 36195216 DOI: 10.1016/j.biortech.2022.128053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion of kitchen waste with grass after hyperthermophilic pretreatment was performed in semi-continuously operated reactors. The greatest methane yield of 293 NmlCH4/gVS (volatile solids) was reported for the mixture of both substrates at 55 °C with a solids retention time of 30 d and the corresponding organic lading rate of 1.72 kgVS/m3/d. In contrast, pretreated grass subjected to thermophilic digestion produced only 131 NmlCH4/gVS. However, when mesophilic conditions were applied, the digestion process turned into dark fermentation, especially visible for the mixture. Metagenomic analysis revealed the dominance Ruminococcaceae, Atopobiaceae and Lactobacillaceae at a family level in mesophilic processes, whereas Petrotogaceae, Synergistaceae, Hungateiclostridiaceae, Planococcaceae and two methanogens Methanosarcinaceae and Methanothermobacteriaceae were the most frequent microbes of thermophilic digestion. Kitchen waste can successfully be co-digested with hyperthermophilically pretreated grass at high loading rates, however the digesters must be operated at thermophilic temperatures.
Collapse
Affiliation(s)
- Przemysław Liczbiński
- Department of Environmental Biotechnology, Łódź University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland.
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Łódź University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland.
| | - Weronika Cieciura-Włoch
- Department of Environmental Biotechnology, Łódź University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland.
| |
Collapse
|
33
|
Ma H, Wu W, Yu Z, Zhao J, Fu P, Xia C, Lam SS, Wang Q, Gao M. Medium-chain fatty acid production from Chinese liquor brewing yellow water by electro-fermentation: Division of fermentation process and segmented electrical stimulation. BIORESOURCE TECHNOLOGY 2022; 360:127510. [PMID: 35752258 DOI: 10.1016/j.biortech.2022.127510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Electro-fermentation (EF) has been proposed as a method to improve the yield of medium-chain fatty acid (MCFA). In this study, MCFA production from Chinese liquor wastewater (yellow water) was investigated and corresponding composite electron donors (lactate and ethanol in yellow water) were investigated by different electrical stimulation modes. The caproate yield under whole period electrical stimulation increased by 250.9% compared with open circuit. The oxidation-dominated and reduction-dominated periods of the fermentation process were divided, and the segmented electrical stimulation experiment showed the caproate yield under reduction-dominated EF system further increased by 288.5% compared with open circuit. The microbial diversity analysis demonstrated that Clostridium 12 might be enriched better by keeping open circuit during EDs consumption, meanwhile the bacteria with potential negative effects on CE were inhibited. The electrical stimulation mode of EF process was optimized and provided a new way to recycle organic wastewater.
Collapse
Affiliation(s)
- Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Wenyu Wu
- Department of Environmental Science and Engineering, University of Science and Technology Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ziqiang Yu
- Department of Environmental Science and Engineering, University of Science and Technology Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Penglu Fu
- Department of Environmental Science and Engineering, University of Science and Technology Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Su Shiung Lam
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
34
|
Li W, Liu Y, Wu B, Gu L, Deng R. Upgrade the high-load anaerobic digestion and relieve acid stress through the strategy of side-stream micro-aeration: biochemical performances, microbial response and intrinsic mechanisms. WATER RESEARCH 2022; 221:118850. [PMID: 35949076 DOI: 10.1016/j.watres.2022.118850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In high-load anaerobic digestion such as in kitchen waste, side-stream micro-aeration (SMA) shows excellent operational performance to direct micro-aeration (DMA). It immediately restores the acidification to stability. Methanogenic performance remained stable when organic load ratios (OLR) was further increased to 5.5 g VS/L. Enhanced enzyme activity, microbial aggregation, and proliferation of bacteria and archaea were observed in SMA. The results indicates that SMA enriched Methanosaeta (relative abundance exceeded 93%) and induced the change of the main methanogenic pathway to acetoclastic methanogenesis. Mechanisms was further explored by using metagenomic analysis, and the results show SMA avoids mass formation of ROS (reactive oxygen species) by cycling the aerated slurry, and retains benefits of trace O2 on material and energic metabolism, which poses great application potentials and deserves further investigation.
Collapse
Affiliation(s)
- Wen Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| |
Collapse
|
35
|
Technological and Energetic Aspects of Multi-Component Co-Digestion of the Beverage Industry Wastes and Municipal Sewage Sludge. ENERGIES 2022. [DOI: 10.3390/en15155395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study, the co-digestion effectiveness of the selected beverage wastes and municipal sewage sludge in two- and three-component mixtures was evaluated. Orange peels and orange pulp, as well as brewery spent grain were applied as co-substrates to sewage sludge at the following doses: 1.5 and 3.0 g of orange peels, 2.5 and 5 g of orange pulp, and 1.5 g brewery spent grain. Mono-digestion of sewage sludge was used as a control. The experiments were performed under mesophilic conditions in batch reactors. As compared to the control, only in the presence of the highest dose of pulp, brewery spent grain and sewage sludge was the increased methane production of 395 mL CH4 g−1 VS accompanying an additional energy profit of 82% observed. Moreover, in this case, the enhanced volatile solids removal and lower accumulation of p-cymene were found. These results were despite the increased limonene and phenol content in the feedstock, confirming a synergistic effect at the highest dose of pulp, brewery spent grain and sewage sludge.
Collapse
|
36
|
Ketsub N, Whatmore P, Abbasabadi M, Doherty WOS, Kaparaju P, O'Hara IM, Zhang Z. Effects of pretreatment methods on biomethane production kinetics and microbial community by solid state anaerobic digestion of sugarcane trash. BIORESOURCE TECHNOLOGY 2022; 352:127112. [PMID: 35381335 DOI: 10.1016/j.biortech.2022.127112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Solid state anaerobic digestion (SS-AD) of lignocellulose is effective in improving biomethane productivity but is limited by low biomass digestibility and lack of substrate-specific working microorganisms. In this study, the effects of different pretreatment methods on biomethane production by SS-AD of sugarcane trash were studied. The biomethane production, fitted to a modified Gompertz's model, predicted a maximum methane yield of 214.2 L/kg volatile solids (VS) and productivity of 6.9 L/kg VS/day from KOH-pretreated trash, respectively. Microbial community analysis showed that bacterial community was significantly associated with volatile acids and pretreatment types while archaeal community was significantly associated with methane yield. Microbial community dynamics was revealed in SS-AD. Main genera related to pretreatment method were identified and discussed. This study generated important information on SS-AD of lignocellulosic biomass pretreated by different methods, which is useful for developing bioaugmentation strategies to improve biomethane production by SS-AD.
Collapse
Affiliation(s)
- Napong Ketsub
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Paul Whatmore
- Bioinformatics Research Officer, Division of Research & Innovation, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Mahsa Abbasabadi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - William O S Doherty
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Prasad Kaparaju
- School of Engineering and Built Environment, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD 4000, Australia.
| |
Collapse
|