1
|
Zhang H, Liang Y, Wu J, Hua Q, Wan X, Renneckar S. Carboxylated xylan nanoparticles prepared by sequential periodate-chlorite oxidation and their application as a highly effective bio-based adsorbent. Int J Biol Macromol 2025; 308:142423. [PMID: 40127799 DOI: 10.1016/j.ijbiomac.2025.142423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/10/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Xylan is one of the main biomass components and is considered to have the potential for environmental remediation due to its renewability, biodegradability, and biocompatibility. In this study, xylan extracted from esparto pulp was prepared as xylan nanoparticles (XNPs), which were subsequently modified to carboxylated xylan nanoparticles (CXNPs) through sequential periodate-chlorite oxidation. Characterization of CXNPs demonstrated that the modified CXNPs possessed a core-shell structure, with dicarboxylic acid xylan as the shell and xylan hydrate crystals as the core. The adsorption study revealed the CXNPs with carboxyl groups on the surface exhibited a high adsorption capacity to methylene blue (MB) at 919.6 mg/g. The adsorption mechanism analysis indicated that the adsorption process was controlled by electrostatic interactionsThese results provide a promising modification approach for the development of xylan-based adsorbent materials that can assist in environmental remediation.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xue Wan
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
2
|
Lopez MR, Ferreira GMD, Torres Duarte Figueiredo M, Dias Ferreira GM, Franca JR, da Silva Penido E, Ribeiro Soares J, Longuinhos Monteiro Lobato R, Barbosa Mageste A. Mechanisms of Phenol Adsorption on Banana Leaves and Coffee Husk Biochars. ACS OMEGA 2025; 10:15989-16005. [PMID: 40321555 PMCID: PMC12044448 DOI: 10.1021/acsomega.4c07665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
In this study, biochars were produced from banana leaves (BB) and coffee husk (BC) for phenol adsorption. The biochars were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, textural analysis, point of zero charge measurement, and determination of surface acidic and basic groups. For both biochars, a higher pyrolysis temperature led to losses of oxygenated groups as well as increases of graphitic structures and greater basic character. For biochars produced at 400 °C, phenol adsorption kinetics was best described by the pseudo-second-order model. Chemisorption involving π-π interactions was identified as the main adsorption mechanism. For biochars produced at 500 °C, a smaller pore size resulted in limited adsorption by intraparticle diffusion. The Freundlich model provided the best fit to the isotherm data due to the high surface heterogeneity. Moreover, the results also suggested the formation of multilayers or pore filling as adsorption mechanisms for the obtained biochars. The maximum adsorption capacity values (q e) were 13.8 and 21.2 mg g-1 for phenol adsorption on BB400 and BB500, and 17.3 and 19.1 mg g-1 for BC400 and BC500, respectively. The results showed that the agroindustrial residues are suitable for phenol adsorption in aqueous solutions.
Collapse
Affiliation(s)
- Melany
Alejandra Ruiz Lopez
- Laboratory
of Physical Chemistry and Environmental Chemistry, Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - Guilherme Max Dias Ferreira
- Department
of Chemistry, Institute of Natural Sciences, Federal University of Lavras, Campus Universitário, Lavras, PO Box 3037, Minas Gerais 37200-000, Brazil
| | - Matheus Torres Duarte Figueiredo
- Laboratory
of Physical Chemistry and Environmental Chemistry, Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - Gabriel Max Dias Ferreira
- Laboratory
of Physical Chemistry and Environmental Chemistry, Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - José Romão Franca
- Department
of Physics, Federal University of Lavras, Campus Universitário, Lavras, Minas Gerais 37200-000, Brazil
| | - Evanise da Silva Penido
- Department
of Chemistry, Institute of Natural Sciences, Federal University of Lavras, Campus Universitário, Lavras, PO Box 3037, Minas Gerais 37200-000, Brazil
| | - Jenaina Ribeiro Soares
- Department
of Physics, Federal University of Lavras, Campus Universitário, Lavras, Minas Gerais 37200-000, Brazil
| | | | - Aparecida Barbosa Mageste
- Laboratory
of Physical Chemistry and Environmental Chemistry, Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| |
Collapse
|
3
|
Wei Z, Ni W, Mele G, Lü XF, Wang W, Jiang ZY. Recyclable magnetic composites prepared by a novel reverse encapsulation reaction to increase benzene rings reactive sites for enhanced removal of 3,4-diaminotoluene: Theoretical prediction with experimental statistics. ENVIRONMENTAL RESEARCH 2025; 271:121140. [PMID: 39956421 DOI: 10.1016/j.envres.2025.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
The widespread distribution of organic amine reagent in the aquatic environment has severely constrained ecological health, and mitigating its potential environmental hazards is imperative. Herein, the recyclable magnetic composite (Fe3O4-3-Amino-Tereph-acid) with abundant homogenous reaction sites and excellent removal efficacy (34.72 mg/g) towards 3,4-diaminotoluene (UENE) contaminant was fabricated via the reverse direction layer-by-layer reaction. This reaction method greatly solved the difficulty of the newly introduced reaction sites being limited by the traditional grafting reactions methods. The effectiveness of the reverse direction layer-by-layer reaction was proved via multiple characterization techniques. More importantly, the necessity of the reverse direction layer-by-layer reaction, the occupation preference of reaction active sites and the removal pathway of contaminant molecules in complex removal reaction systems were studied from the DFT calculations prediction perspectives. Furthermore, the environmental behaviours of Fe3O4-3-Amino-Tereph-acid towards UENE in different environmental systems were comprehensively studied, contributing to comprehending the capturing process existing in liquid-solid phases. Overall, multiple driving forces, microscopic and macroscopic forces were mutually involved in the complex chemisorption reaction. The possible environmental application prospects of Fe3O4-3-Amino-Tereph-acid were discussed via the Requirement-Difficulty-Methodology-Extend framework. This work proposed a feasible strategy to massively increase the reactive active sites on the surface of magnetic composite, which could greatly facilitate its environmental applications, especially in eliminating organic amine contaminants fields, and theoretical prediction deeply assessed the underlying microscopic bonding modes and mechanisms in environmental systems.
Collapse
Affiliation(s)
- Zhengwen Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, PR China; Department of Engineering for Innovation, University of Salento, Lecce, 73100, Italy.
| | - Wankui Ni
- College of Geological Engineering and Geomatics, Chang'an University, Xi'an, Shanxi, 710054, PR China
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Lecce, 73100, Italy
| | - Xiang-Fei Lü
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, PR China
| | - Wei Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, PR China
| | - Zhen-Yi Jiang
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi, 710054, PR China
| |
Collapse
|
4
|
Zhang X, Yang X, Xie F, Chen X, Zhang Y, Zhang Q. Magnetic Biochar Prepared with Rosa roxburghii Residue as Adsorbents for Congo Red Removal. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1306. [PMID: 40141589 PMCID: PMC11943761 DOI: 10.3390/ma18061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
In this work, magnetic biochars (MBCs) were produced with the chemical coprecipitation method. The resulting materials were dried at 50 °C for 12 h and characterized via SEM-EDS, XRD, FT-IR, BET, TGA, and VSM techniques to evaluate their efficacy in removing Congo red (CR). The effects of solution pH, CR concentration, MBC1:1 mass, and a variety of ions on the adsorption performance were systematically examined. According to the experimental results, for 200 mL of 50 mg/L CR, the highest adsorption capacity of 20 mg MBC1:1 was 172.88 mg/g in a 2 h period at pH 7. Additionally, the pseudo-second-order (PSO) model-based kinetic analysis exhibited that the process of adsorption adhered to this model. Furthermore, the interaction between MBC1:1 and CR was best described by Langmuir multilayer adsorption, according to isotherm analysis. All of these theoretical and practical findings point to the great potential of MBC1:1 as adsorbents for the applications of wastewater treatment.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| | - Xueqin Yang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Feiran Xie
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Xianglan Chen
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Yutao Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| | - Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| |
Collapse
|
5
|
Elhamdy WA. Environmental sustainable ZrO 2 -phosphorous Biochar nano composite derived from sugarcane bagasse and their adsorption behavior of antidepressant drugs. BMC Chem 2025; 19:68. [PMID: 40087700 PMCID: PMC11909959 DOI: 10.1186/s13065-025-01430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
Phosphorous biochar was synthesized from sugarcane bagasse (SB) by applying a 2:1 weight ratio of H3PO4 to OP and pyrolyzing it at 600 °C under nitrogen. Sugarcane bagasse was selected for its affordability and environmental benefits as a carbon support. Following this, a zirconium-loaded PC nanocomposite (ZrP400) was developed by impregnating zirconium hydroxide in concentrations 5-30% onto the mesoporous phosphorous biochar, which was then thermally treated at 400ºC. Analytical techniques showed that the ZrP400 adsorbents had a high surface area (1697-2434 m²/g) and considerable porosity. The effectiveness of these adsorbents in removing the hazardous tricyclic antidepressant amitriptyline (AMT) from water was tested. At a pH of 6.52, the neutral adsorbent provided various chemical functional groups that facilitated the binding of amitriptyline. With 20 mg of adsorbent at 35ºC, the capacity for amitriptyline adsorption reached up to 585 mg/g. Adsorption equilibrium was reached within 120 min over a concentration range of 10 to 300 mg/L. Kinetic and equilibrium data showed that the adsorption was well described by the pseudo-second-order and Freundlich isotherm models, indicating that chemisorption was the primary mechanism, with physisorption also contributing significantly to amitriptyline removal. The spent adsorbent could be effectively regenerated using ethanol. Additionally, the process's sustainability was assessed using GAPI and AGREE metrics, which confirmed its environmental friendliness, practicality, and sustainability.
Collapse
Affiliation(s)
- Walaa A Elhamdy
- Chemistry Department, Faculty of Science, Sohag University, P.O. Box 82524, Sohag, Egypt.
| |
Collapse
|
6
|
Wang Y, Zhang H, Li Y, Yu H, Sun D, Yang Y, Zhang R, Yu L, Ma F, Aftab MN, Peng L, Wang Y. Effective xylan integration for remodeling biochar uniformity and porosity to enhance chemical elimination and CO 2 adsorption. Int J Biol Macromol 2025; 291:138865. [PMID: 39694357 DOI: 10.1016/j.ijbiomac.2024.138865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Although plant evolution has offered diverse biomass resources, the production of high-quality biochar from desirable lignocelluloses remains unexplored. In this study, distinct lignocellulose substrates derived from eight representative plant species were employed to prepare biochar samples under three different temperature treatments. Correlation analysis showed that only hemicellulose was a consistently positive factor of lignocellulose substrates to account for the dye-adsorption capacities of diverse biochar samples. Furthermore, we integrated exo-xylan, a major hemicellulose in higher plants, into lignin-disassociated lignocelluloses to produce the desirable biochar with a uniform and symmetrical structure, resulting in a 5.2-fold increase in surface area (51 to 317 m2/g) and a 5.0-fold increase in total pore volume (0.02 to 0.11 cm3/g micropore, 0.02 to 0.12 cm3/g mesopore). This consequently improved the adsorption capacities of the remodeled biochar, with an increase of 26 % for dual-industry dyes, 90 % for 1579 organic compounds, and 14 % for CO2. Based on the fluorescence observation of xylan-cellulose co-localization and physical-chemical characterization of the remodeled biochar, a novel hypothetical model was proposed to explain how xylan plays an integral role in desired biochar production, providing insights into effective lignocellulose reconstruction and efficient thermochemical catalysis as an integrative strategy to maximize biochar adsorption capacity.
Collapse
Affiliation(s)
- Yongtai Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Huiyi Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yunong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dan Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yujing Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Ran Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Govt. College University, Lahore 54000, Pakistan
| | - Liangcai Peng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yanting Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
7
|
Wang M, Yuan X, Zhu C, Lu H, Han J, Ji R, Cheng H, Xue J, Zhou D. Sequential carbonization of pig manure biogas residue into engineered biochar for diethyl phthalate removal toward environmental sustainability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:45-53. [PMID: 39265431 DOI: 10.1016/j.wasman.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Manure biogas residue has attracted increasing attention in waste recycling but faces substantial challenges because of its low carbon content, high ash content, and high heavy metal content. A novel sequential carbonization approach was proposed for recycling biogas residue; this approach consisted of pre-pyrolysis, activation with Ca(OH)2, and then activation with KOH. Pig manure-derived biogas residue was upcycled into engineered biochar (EB) with a high yield (26 %) and showed excellent performance in removing a typical plasticizer, diethyl phthalate (DEP). The proportion of carbon content greatly increased from 18 % (biogas residue) to 67 % (EB); however, the ash content decreased from 50 % (biogas residue) to 24 % (EB). The concentration of heavy metals decreased, and Zn had the largest decrease from 713 mg kg-1 to 61 mg kg-1 (p < 0.001). The sorption of DEP onto EB was rapid and reached equilibrium within 20 h. The developed specific surface area of EB was 1247 m2/g and provided abundant sorption sites for DEP; additionally, the sorption quantity reached 309 mg/g. The sorption capacity was dominated by surface adsorption. The oxygen-containing functional groups, graphene structure, porous structure, and hydrophobicity of EB contributed to the pore filling, hydrogen bonding, π-π stacking, and partitioning processes. Furthermore, the EB showed excellent practical application potential and great cycling stability. A sequential carbonization strategy was proposed to upcycle manure biogas residue into the EB for DEP removal; moreover, this strategy can aid in the attainment of environmental sustainability, including sustainable waste management and environmental pollution mitigation.
Collapse
Affiliation(s)
- Min Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Changyin Zhu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Haiying Lu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongting Ji
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Hu Cheng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Patil P, Jeppu G, Vallabha MS, Girish CR. Enhanced adsorption of phenolic compounds using biomass-derived high surface area activated carbon: Isotherms, kinetics and thermodynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67442-67460. [PMID: 38578594 PMCID: PMC11685270 DOI: 10.1007/s11356-024-32971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
The progress of industrial and agricultural pursuits, along with the release of inadequately treated effluents especially phenolic pollutant, has amplified the pollution load on environment. These organic compounds pose considerable challenges in both drinking water and wastewater systems, given their toxicity, demanding high oxygen and limited biodegradability. Thus, developing an eco-friendly, low-cost and highly efficient adsorbent to treat the organic pollutants has become an important task. The present investigation highlights development of a novel adsorbent (CFPAC) by activation of Cassia fistula pod shell for the purpose of removing phenol and 2,4-dichlorophnenol (2,4-DCP). The significant operational factors (dosage, pH, concentration, temperature, speed) were also investigated. The factors such as pH = 2 and T = 20°C were found to be significant at 1.6 g/L and 0.6 g/L dosage for phenol and 2,4-DCP respectively. Batch experiments were further conducted to study isotherms, kinetic and thermodynamics studies for the removal of phenol and 2,4-DCP. The activated carbon was characterised as mesoporous (specific surface area 1146 m2/g, pore volume = 0.8628 cc/g), amorphous and pHPZC = 6.4. At optimum conditions, the maximum sorption capacity for phenol and 2,4-DCP were 183.79 mg/g and 374.4 mg/g respectively. The adsorption isotherm was better conformed to Redlich Peterson isotherm (phenol) and Langmuir isotherm (2,4-DCP). The kinetic study obeyed pseudo-second-order type behaviour for both the pollutants with R2 > 0.999. The thermodynamic studies and the value of isosteric heat of adsorption for both the pollutants suggested that the adsorption reaction was dominated by physical adsorption (ΔHx < 80 kJ/mol). Further, the whole process was feasible, exothermic and spontaneous in nature. The overall studies suggested that the activated carbon synthesised from Cassia fistula pods can be a promising adsorbent for phenolic compounds.
Collapse
Affiliation(s)
- Praveengouda Patil
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Gautham Jeppu
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | | | - Chikmagalur Raju Girish
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
9
|
Liu R, Ji W, Min J, Wen P, Li Y, Hu J, Yin L, He G. Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms. Molecules 2024; 29:5426. [PMID: 39598815 PMCID: PMC11597820 DOI: 10.3390/molecules29225426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The search for efficient, environmentally friendly adsorbents is critical for purifying dye wastewater. In this study, we produced a first-of-its-kind effective biomimetic amorphous calcium carbonate (BACC) using bacterial processes and evaluated its capacity to adsorb a hazardous organic cationic dye-methylene blue (MB). BACC can adsorb a maximum of 494.86 mg/g of MB, and this excellent adsorption performance was maintained during different solution temperature (10-55 °C) and broad pH (3-12) conditions. The favorable adsorption characteristics of BACC can be attributable to its hydrophobic property, porosity, electronegativity, and perfect dispersity in aqueous solution. During adsorption, MB can form Cl-Ca, S-O, N-Ca, and H-bonds on the surface of BACC. Since BACC has excellent resistance to adsorption interference in different water bodies and in real dye wastewater, and can also be effectively recycled six times, our study is an important step forward in dye wastewater treatment applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Genhe He
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Sciences, Jinggangshan University, Ji’an 343009, China; (R.L.); (W.J.); (J.M.); (P.W.); (Y.L.); (J.H.); (L.Y.)
| |
Collapse
|
10
|
Shi TT, Yang B, Hu WG, Gao GJ, Jiang XY, Yu JG. Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater. Molecules 2024; 29:4772. [PMID: 39407700 PMCID: PMC11478232 DOI: 10.3390/molecules29194772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Due to it containing cellulose, hemicellulose, and lignin with abundant specific functional groups which could interact with organic dyes, garlic peel (GP) might be used as an efficient biosorbent. The aim of this study is to evaluate the adsorption performances of GP-based bio-adsorbents and obtain optimum preparation conditions. METHODS GP-based bio-adsorbents were prepared by thermal pyrolysis under different temperatures (150-400 °C). The morphologies, chemical states, and surface functional groups of the adsorbents were analyzed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Batch experiments were conducted to investigate the adsorption of methylene blue (MB) under various conditions, including contact time, contact temperature, initial dye concentration, and initial pH value. The equilibrium adsorption data were fitted to different kinetic and isothermal models, and the adsorption thermodynamics were also calculated. Significant Findings: The physicochemical properties of the GP-based bio-adsorbents were primarily dominated by the pyrolysis temperature, because their morphologies and surface functional groups of GP-based bio-adsorbents significantly varied with the changes in pyrolysis temperature. The adsorption capacity of GP materials for MB decreased as the pyrolysis temperature increased. At an initial concentration of 50.00 mg L-1, GP150 possessed a higher adsorption capacity of 167.74 mg g-1 toward MB. The possible adsorbate-adsorbent interactions, including electrostatic attraction, hydrogen bonding, and π-π stacking, were recognized. After 10 consecutive adsorption-desorption cycles, GP150 maintained a high removal rate (88%) for MB, demonstrating its excellent adsorption performance, good reusability, and potential application in the treatment of MB-contaminated water.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China (B.Y.); (W.-G.H.)
| |
Collapse
|
11
|
Nakro V, Lotha TN, Ao K, Ao I, Ritse V, Rudithongru L, Pongener C, Aier M, Sinha D, Jamir L. Recent advances in applications of animal biowaste-based activated carbon as biosorbents of water pollutants: a mini-review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:974. [PMID: 39312095 DOI: 10.1007/s10661-024-13123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Advances in green engineering and technology have revealed a number of environmentally acceptable alternatives for water purification. In line with this, recent advances in biosorption of pollutants from aqueous solutions using animal biowaste-based activated carbon (AC) are reported herein. Apart from the fish scale-derived AC which is extensively documented, animal bones, among the rest others, have been studied most widely, followed by hair and feathers. Out of the various target water pollutants, removal of heavy metals has been mostly studied. Majority of the reports showed the Freundlich isotherm and pseudo second order as the best fit. Few investigations on the thermodynamics of the adsorption studies and reports on the Gibbs free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) have also been discussed in this report. It has been concluded that while plant-based AC has gained wide interest, the same is not true for the animal-based counterpart albeit the latter's potential for high sorption efficiency as seen in the present report.
Collapse
Affiliation(s)
- Vevosa Nakro
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Tsenbeni N Lotha
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Ketiyala Ao
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Imkongyanger Ao
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Vimha Ritse
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Lemzila Rudithongru
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Chubaakum Pongener
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Merangmenla Aier
- Department of Chemistry, National Institute of Technology Nagaland, Chumoukedima, 797103, Nagaland, India
| | - Dipak Sinha
- Department of Chemistry, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Latonglila Jamir
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India.
| |
Collapse
|
12
|
Zhao X, Wang J, Zhu G, Zhang S, Wei C, Liu C, Cao L, Zhao S, Zhang S. Efficient removal of high concentration dyes from water by functionalized in-situ N-doped porous biochar derived from waste antibiotic fermentation residue. CHEMOSPHERE 2024; 364:143215. [PMID: 39214407 DOI: 10.1016/j.chemosphere.2024.143215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Using biochar for dye wastewater treatment is attracting interest due to its excellent adsorption properties and low costs. In this work, a novel biochar derived from oxytetracycline fermentation residue (functionalized OFR biochar, FOBC) was investigated as a efficient adsorbent for typical dyes removal. At 25 °C, the maximum adsorption capacity calculated by Langmuir model of FOBC-3-600 for methylene blue (MB), malachite green (MG), and methyl orange (MO) reached 643.97, 617.89, and 521.03 mg/g, respectively. The kinetics and isotherm model fitting showed that the chemisorption and physisorption both occurred during the adsorption process. Dyes were efficiently adsorbed through pore filling, electrostatic attraction, π-π interactions, and surface complexation. And the cycling experiment and environmental risk assessment indicated that the FOBC-3-600 had excellent recyclability and utilization safety. Overall, this study provides a practical method to simultaneously treat the dyeing wastewater and utilize the antibiotic fermentation residue.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Guokai Zhu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenlin Wei
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China; Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, 450018, China.
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, 450018, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
13
|
Lee EJ, Lee JW. Synergistic effect of adsorption and photolysis on methylene blue removal by magnetic biochar derived from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 407:131124. [PMID: 39025370 DOI: 10.1016/j.biortech.2024.131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
In this study, magnetic biochar was synthesized by doping Fe3O4 onto the biochar surface followed by analysis of its properties. The efficiency of methylene blue (MB) removal through the combined processes of adsorption and photolysis was assessed. The presence of Fe3O4 on the biochar surface was confirmed using Raman spectroscopy and X-ray photoelectron spectroscopy. The magnetic biochar, after MB adsorption, showed a magnetism of 39.50 emu/g leading to a 97.07 % recovery rate. The specific surface area of biochar was higher (380.68 m2/g) than that of magnetic biochar (234.46 m2/g), and the maximum adsorption capacity of MB was higher in the biochar (0.03 mg/g) than that in magnetic biochar (0.02 mg/g) under the optimal conditions for MB adsorption. The MB adsorption experiments using biochar or magnetic biochar were optimally conducted under 10-20 mg/L MB concentration, 1 g biochar dosage, pH 12, 200 rpm rotation speed, 25 °C temperature, and 30 min duration. Under dark conditions, biochar had a higher MB removal rate, at 83.91 %, compared to magnetic biochar, at 78.30 %. Under visible light (λ > 425 nm), magnetic biochar effectively removed MB within 10 min, highlighting the synergistic effect of adsorption and photolysis. MB is physically and chemically adsorbed by the monolayer on the surface of EB and EMB according to adsorption behavior.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Department of Wood Science and Engineering, Chonnam National University, Gwangju, Korea
| | - Jae-Won Lee
- Department of Wood Science and Engineering, Chonnam National University, Gwangju, Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Korea.
| |
Collapse
|
14
|
Zhao X, Zhu G, Liu J, Wang J, Zhang S, Wei C, Cao L, Zhao S, Zhang S. Efficient Removal of Tetracycline from Water by One-Step Pyrolytic Porous Biochar Derived from Antibiotic Fermentation Residue. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1377. [PMID: 39269039 PMCID: PMC11397281 DOI: 10.3390/nano14171377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The disposal and treatment of antibiotic residues is a recognized challenge due to the huge production, high moisture content, high processing costs, and residual antibiotics, which caused environmental pollution. Antibiotic residues contained valuable components and could be recycled. Using a one-step controllable pyrolysis technique in a tubular furnace, biochar (OSOBs) was produced without the preliminary carbonization step, which was innovative and time- and cost-saving compared to traditional methods. The main aim of this study was to explore the adsorption and removal efficiency of tetracycline (TC) in water using porous biochar prepared from oxytetracycline fermentation residues in one step. A series of characterizations were conducted on the prepared biochar materials, and the effects of biochar dosage, initial tetracycline concentration, reaction time, and reaction temperature on the adsorption capacity were studied. The experimental results showed that at 298 K, the maximum adsorption capacity of OSOB-3-700 calculated by the Langmuir model reached 1096.871 mg/g. The adsorption kinetics fitting results indicated that the adsorption of tetracycline on biochar was more consistent with the pseudo-second-order kinetic model, which was a chemical adsorption. The adsorption isotherm fitting results showed that the Langmuir model better described the adsorption process of tetracycline on biochar, indicating that tetracycline was adsorbed in a monolayer on specific homogeneous active sites through chemical adsorption, consistent with the kinetic conclusions. The adsorption process occurred on the surface of the biochar containing rich active sites, and the chemical actions such as electron exchange promoted the adsorption process.
Collapse
Affiliation(s)
- Xinyu Zhao
- Miami College, Henan University, Kaifeng 475004, China
| | - Guokai Zhu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jiangtao Liu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou 450018, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Saawarn B, Mahanty B, Hait S. Adsorptive removal of perfluorooctanoic acid from aqueous matrices using peanut husk-derived magnetic biochar: Statistical and artificial intelligence approaches, kinetics, isotherm, and thermodynamics. CHEMOSPHERE 2024; 360:142397. [PMID: 38782130 DOI: 10.1016/j.chemosphere.2024.142397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl3-treated peanut husk at different temperatures (300, 600, and 900 °C). Preliminary experiments demonstrated that MBC600 exhibited superior performance, with its characterization confirming the presence of γ-Fe2O3. However, efficient PFOA removal from water matrices depends on determining the optimum combination of inputs in the treatment approaches. Therefore, optimization and predictive modeling of the PFOA adsorption were investigated using the response surface methodology (RSM) and the artificial intelligence (AI) models, respectively. The central composite design (CCD) of RSM was employed as the design matrix. Further, three AI models, viz. artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were selected to predict PFOA adsorption. The RSM-CCD model applied to optimize three input process parameters, namely, adsorbent dose (100-400 mg/L), pH (3-10), and contact time (20-60 min), showed a statistically significant (p < 0.05) effect on PFOA removal. Maximum PFOA removal of about 98.3% was attained at the optimized conditions: adsorbent dose: 400 mg/L, pH: 3.4, and contact time: 60 min. Non-linear analysis showed PFOA adsorption was best fitted by pseudo-second-order kinetics (R2 = 0.9997). PFOA adsorption followed Freundlich isotherm (R2 = 0.9951) with a maximum adsorption capacity of ∼307 mg/g. Thermodynamics and spectroscopic analyses revealed that PFOA adsorption is a spontaneous, exothermic, and physical phenomenon, with electrostatic interaction, hydrophobic interaction, and hydrogen bonding governing the process. A comparative analysis of the statistical and AI models for PFOA adsorption demonstrated high R2 (>0.99) for RSM-CCD, ANN, and ANFIS. This research demonstrates the applicability of the statistical and AI models for efficient prediction of PFOA adsorption from water matrices using MBC (MBC600).
Collapse
Affiliation(s)
- Bhavini Saawarn
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| |
Collapse
|
16
|
Zhao Z, Li P, Zhang M, Feng W, Tang H, Zhang Z. Unlocking the potential of Chinese herbal medicine residue-derived biochar as an efficient adsorbent for high-performance tetracycline removal. ENVIRONMENTAL RESEARCH 2024; 252:118425. [PMID: 38325789 DOI: 10.1016/j.envres.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.
Collapse
Affiliation(s)
- Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Wang C, Feng X, Tian Y, Huang X, Shang S, Liu H, Song Z, Zhang H. Facile synthesis of lignin-based Fe-MOF for fast adsorption of methyl orange. ENVIRONMENTAL RESEARCH 2024; 251:118651. [PMID: 38479718 DOI: 10.1016/j.envres.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
To rapidly remove dyes from wastewater, iron-based metal-organic frameworks modified with phenolated lignin (NH2-MIL@L) were prepared by a one-step hydrothermal method. Analyses of the chemical structure and adsorption mechanism of the NH2-MIL@L proved the successful introduction of lignin and the enhancement of its adsorption sites. Compared with NH2-MIL-101-Fe without phenolated lignin, the modification with lignin increased the methyl orange (MO) adsorption rate of NH2-MIL@L. For the best adsorbent, NH2-MIL@L4, the MO adsorption efficiency in MO solution reached 95.09% within 5 min. NH2-MIL@L4 reached adsorption equilibrium within 90 min, exhibiting an MO adsorption capacity of 195.31 mg/g. The process followed pseudo-second-order kinetics and the Dubinin-Radushkevich model. MO adsorption efficiency of NH2-MIL@L4 was maintained at 89.87% after six adsorption-desorption cycles. In mixed solutions of MO and methylene blue (MB), NH2-MIL@L4 achieved an MO adsorption of 94.02% at 5 min and reached MO adsorption equilibrium within 15 min with an MO adsorption capacity of 438.6 mg/g, while the MB adsorption equilibrium was established at 90 min with an MB adsorption rate and capacity of 95.60% and 481.34 mg/g, respectively. NH2-MIL@L4 sustained its excellent adsorption efficiency after six adsorption-desorption cycles (91.2% for MO and 93.4% for MB). The process of MO adsorption by NH2-MIL@L4 followed the Temkin model and pseudo-second-order kinetics, while MB adsorption followed the Dubinin-Radushkevich model and pseudo-second-order kinetics. Electrostatic interactions, π-π interactions, hydrogen bonding, and synergistic interactions affected the MO adsorption process of NH2-MIL@L4.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Yabing Tian
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| |
Collapse
|
18
|
Zhang W, Zhang Y, Zhao M, Wang S, Fan X, Zhou N, Fan S. Preparation of mesoporous biogas residue biochar via a self-template strategy for efficient removal of ciprofloxacin: Effect of pyrolysis temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121140. [PMID: 38754190 DOI: 10.1016/j.jenvman.2024.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Biochar preparation and application is an anticipated pathway for the resource utilization of biogas residue. In this study, biochars were prepared by the pyrolysis of biogas residue from food waste anaerobic digestion (named as BRBCs) under various pyrolysis temperatures (300, 500, 700, and 900 °C), and the effect of pyrolysis temperatures on the physicochemical characteristics of BRBCs was examined. The adsorption performance toward ciprofloxacin (CIP), a typical antibiotic in waterbodies, was also investigated. The results showed that pyrolysis temperature significantly changed the physicochemical properties of BRBCs. In addition, the minerals in the biogas residue, especially SiO2, were rearranged to form a mesoporous structure in biochar through a self-template strategy (without activator). BRBC prepared at 900 °C exhibited a high specific surface area and pore volume, well-developed mesopore structure, and more carbon structure defects, and exhibited the largest CIP adsorption capacity with 70.29 mg g-1, which was ascribed to the combined interaction of pore diffusion, π-π interactions, hydrogen bonding, complexation, and electrostatic forces. Furthermore, the adsorption of CIP by BRBC900 was well described by two-compartment kinetic and Langmuir isotherm models. BRBC900 showed good adsorption performance toward CIP at pH 7-9. The adsorption of CIP by BRBC is a spontaneous, exothermic, entropy-increasing process. Moreover, BRBC also presented a good recycling potential. Therefore, the preparation of mesoporous biochar based on a self-template strategy not only provides an option for the resource utilization of biogas residue but also offers a new option for the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yushan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Manquan Zhao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xinru Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Na Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
19
|
Yang J, Long Q, Zhu Y, Lin C, Xu X, Pan B, Shi W, Guo Y, Deng J, Yao Q, Wang Z. Multifunctional self-assembled adsorption microspheres based on waste bamboo shoot shells for multi-pollutant water purification. ENVIRONMENTAL RESEARCH 2024; 249:118452. [PMID: 38360169 DOI: 10.1016/j.envres.2024.118452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
In this study, multilayer self-assembled multifunctional bamboo shoot shell biochar microspheres (BSSBM) were prepared, in which bamboo shoot shell biochar was used as the carrier, titanium dioxide as the intermediate medium, and chitosan as the adhesion layer. The adsorption behavior of BSSBM on heavy metals Ag(I) and Pd(II), antibiotics, and dye wastewater was systematically analyzed. BSSBM shows a wide range of adsorption capacity. BSSBM is a promising candidate for the purification of real polluted water, not only for metal ions, but also for Tetracycline (TC) and Methylene Blue (MB). The maximum adsorption amounts of BSSBM on Pd(II), Ag(I), TC and MB were 417.3 mg/g, 222.5 mg/g, 97.2 mg/g and 42.9 mg/g, respectively.The adsorption of BSSBM on Pd(II), MB and TC conformed to the quasi-first kinetic model, and the adsorption on Ag(I) conformed to the quasi-second kinetic model. BSSBM showed remarkable selective adsorption capacity for Ag(I) and Pd(II) in a multi-ion coexistence system. BSSBM not only realized the high value-added utilization of waste, but also had the advantages of low cost, renewable and selective adsorption. BSSBM demonstrated its potential as a new generation of multifunctional adsorbent, contributing to the recovery of rare/precious metals and the treatment of multi-polluted water.
Collapse
Affiliation(s)
- Jie Yang
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Qianxin Long
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Yan Zhu
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Cheng Lin
- Centre for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Xiaoxi Xu
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Baiyang Pan
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Wenya Shi
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yuyang Guo
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Jianqiu Deng
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Qingrong Yao
- Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education & Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zhongmin Wang
- Guangxi Academy of Sciences, Nanning, 530000, PR China
| |
Collapse
|
20
|
Li P, Zhao Z, Zhang M, Su H, Zhao T, Feng W, Zhang Z. Exploring the Potential of Biochar Derived from Chinese Herbal Medicine Residue for Efficient Removal of Norfloxacin. Molecules 2024; 29:2063. [PMID: 38731553 PMCID: PMC11085230 DOI: 10.3390/molecules29092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.
Collapse
Affiliation(s)
- Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Hang Su
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ting Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Liu X, Wei L, Jiang J, He C, Sun X, Song H. New insights into the effect of pyrolysis temperature on the spectroscopy properties of dissolved organic matter in manure-based biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18527-18539. [PMID: 38347358 DOI: 10.1007/s11356-024-32240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Dissolved organic matter (DOM) derived from biochar takes a crucial role in transport and bioavailability toward contaminants; hence, it is undeniable that a thorough analysis of its properties is important. So far, the effect of pyrolysis temperature on the functional groups, components, and evolutionary sequence of manure-based biochar DOM has not been adequately investigated. Here, DOM was released from two typical livestock manures (cow and pig) at five pyrolysis temperatures (300 ~ 700°C), and it was explored in depth with the aid of moving window 2D correlation spectroscopy (MW-2D-COS) and heterogeneous 2D correlation spectroscopy (hetero-2D-COS). The results demonstrated that the concentration, aromaticity, and hydrophobicity of DOM were greater at high temperatures, and more DOM was liberated from cow manure-based biochar at identical temperature. Protein-like compounds dominated at high temperatures. The pyrolysis temperatures of final configuration transformation points of the fulvic acid-like component and the aromatic ring C=C in DOM were 400°C and 500°C, respectively. Moreover, Fourier transform infrared spectroscopy combined with two-dimensional correlation analysis indicated that the functional group evolution of DOM depends on the pyrolysis temperature and feedstock type. The study provides a new perspective on manure management and environmental applications of biochar.
Collapse
Affiliation(s)
- Xinran Liu
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi Southstreet, Shenbei New District, Shenyang, 110122, China
| | - Lihong Wei
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi Southstreet, Shenbei New District, Shenyang, 110122, China.
| | - Jinyuan Jiang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, No. 8 An Wai Da Yang Fang, Chaoyang District, Beijing, 100012, China
| | - Changjun He
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, No. 8 An Wai Da Yang Fang, Chaoyang District, Beijing, 100012, China
| | - Xun Sun
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi Southstreet, Shenbei New District, Shenyang, 110122, China
| | - Haoyang Song
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, No. 8 An Wai Da Yang Fang, Chaoyang District, Beijing, 100012, China
| |
Collapse
|
22
|
Jian N, Dai Y, Liu H, Wu N, Liu LE, Wu D, Wu Y. Simple, fast and eco-friendly micro-solid phase extraction based on thiol and ionic liquid bi-functional nanofibers membrane for the determination of sulfonamides in environmental water. Anal Chim Acta 2024; 1288:342163. [PMID: 38220295 DOI: 10.1016/j.aca.2023.342163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Sulfonamides (SAs) are a class of synthetic antibacterial agents that are diffusely used in the medical industry and animal husbandry. Their prevalence in the influents and effluents of water treatment plants, as well as in rivers and groundwater, has provoked worldwide concern. Monitoring SAs in environmental water is of great significance for public health. However, most of the available detection techniques for SAs are cumbersome and time-consuming. With the increasing number of actual samples, simple, fast and environmentally friendly analytical methods are always in demand. RESULTS Herein, we describe a highly efficient micro-solid phase extraction (μ-SPE) sample preparation technique based on a novel thiol and ionic liquid bi-functional nanofibers membrane (IL-SH-PAN NFsM) for multi-residue detection of sulfonamides (SAs) in water samples. By the synergistic effect of -SH and -IL, the as-prepared IL-SH-PAN NFsM demonstrated high adsorption capacity and excellent selectivity for SAs. The water samples can be directly used for μ-SPE without pH and ionic strength adjustment, and the eluent can be directly collected for HPLC-MS/MS analysis. Compared with other methods reported in the literature, this method required much shorter extraction time (2 min for a batch), much less amount of adsorbent (4.0 mg) and organic solvent (0.5 mL), while providing much higher sensitivity (1.4-3.9 ng L-1), and fine recoveries (88.8%-117.7%) with relative standard deviations less than 4.26%. SIGNIFICANCE AND NOVELTY A bi-functional nanofibers membrane was prepared for efficient extraction of SAs. The adsorbent exhibited superior adsorption performance and excellent selectivity. The underlying interaction mechanisms derived from -SH and -IL were proposed, which provide a new idea for preparing versatile adsorbents. Rapid, efficient and sensitive detection of SAs in water was achieved. The novel sample preparation technique can be expected as an efficient method for routine trace SAs residue monitoring in various water samples.
Collapse
Affiliation(s)
- Ningge Jian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Dai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hongli Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Niu Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Di Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
23
|
Yu H, Zhang Y, Wang L, Tuo Y, Yan S, Ma J, Zhang X, Shen Y, Guo H, Han L. Experimental and DFT insights into the adsorption mechanism of methylene blue by alkali-modified corn straw biochar. RSC Adv 2024; 14:1854-1865. [PMID: 38192323 PMCID: PMC10773387 DOI: 10.1039/d3ra05964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
As an efficient and cost-effective adsorbent, biochar has been widely used in the adsorption and removal of dyes. In this study, a simple NaOH-modified biochar with the pyrolysis temperature of 300 °C (NaCBC300) was synthesized, characterized, and investigated for the adsorption performances and mechanisms of methylene blue (MB). NaCBC300 exhibited excellent MB adsorption performance with maximum removal efficiency and adsorption capacity of 99.98% and 290.71 mg g-1, which were three and four times higher than biochar without modification, respectively. This might be attributed to the increased content of -OH and the formation of irregular flakes after NaOH modification. The Freundlich isotherm suggested multilayer adsorption between NaCBC300 and MB. Spectroscopic characterizations demonstrated that multiple mechanisms including π-π interaction, H-bonding, and pore-filling were involved in the adsorption. According to density functional theory (DFT) calculations, electrostatic interaction between NaCBC300 and MB was verified. The highest possibility of the attraction between NaCBC300 and MB was between -COOH in NaCBC300 and R-N(CH3)2 in MB. This work improved our understanding of the mechanism for MB adsorption by modified biochar and provided practical and theoretical guidance for adsorbent preparation with high adsorption ability for dyes.
Collapse
Affiliation(s)
- Huali Yu
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yulu Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lianfeng Wang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Ya Tuo
- Environmental Development Center of the Ministry of Ecology and Environment Beijing 100006 China
| | - Song Yan
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Junling Ma
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Xue Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yu Shen
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Haiyan Guo
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lei Han
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| |
Collapse
|
24
|
Zhou Y, Zhang X, Deng J, Li C, Sun K, Luo X, Yuan S. Adsorption and mechanism study for phenol removal by 10% CO 2 activated bio-char after acid or alkali pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119317. [PMID: 37857218 DOI: 10.1016/j.jenvman.2023.119317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
The development of an efficient bio-char used to remove phenol from wastewater holds great importance for environmental protection. In this work, wheat straw bio-char (BC) was acid-washed by HF and activated at 900 °C with 10% CO2 to obtain bio-char (B-Ⅲ-0.1D900). Adsorption experiments revealed that B-Ⅲ-0.1D900 achieved a remarkable phenol removal efficiency of 90% within 40 min. Despite its relatively low specific surface area of 492.60 m2/g, it exhibited a high maximum adsorption capacity of 471.16 mg/g. Furthermore, B-Ⅲ-0.1D900 demonstrated a good regeneration capacity for at least three cycles (90.71%, 87.54%, 84.36%). It has been discovered that HF washing, which removes AAEM and exposes unsaturated functional groups, constitutes one of the essential prerequisites for enhancing CO2 activation efficiency at high temperatures. After 10% CO2 activation, the mesoporous structure exhibited substantial development, facilitating enhanced phenol infiltration into the pores when compared to untreated BC. The increased branching of the bio-char culminated in a more complete aromatic system, which enhances the π-π forces between the bio-char and the phenol. The presence of tertiary alcohol structure enhances the hydrogen bonding forces, thereby promoting intermolecular multilayer adsorption of phenol. With the combination of various forces, B-Ⅲ-0.1D900 has a good removal capacity for phenol. This work provides valuable insights into the adsorption of organic pollutants using activated bio-char.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaoguo Zhang
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Jin Deng
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Chun Li
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Keyuan Sun
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaodong Luo
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Shenfu Yuan
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China.
| |
Collapse
|
25
|
Dong K, Jiang Y, Zhang Y, Qin Z, Mo L. Tannic acid-assisted fabrication of antibacterial sodium alginate-based gel beads for the multifunctional adsorption of heavy metal ions and dyes. Int J Biol Macromol 2023; 252:126249. [PMID: 37562481 DOI: 10.1016/j.ijbiomac.2023.126249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The existence of heavy metals and dyes seriously affects the ecological environment and human safety. Antibacterial adsorption materials with the broad-spectrum removal of multiple pollutants are urgently required for water remediation. Herein, a sustainable and antibacterial sodium alginate (SA) gel bead adsorbent with honeycomb cellular architecture is developed by the biomimetic deposition polyphenolic tannic acid (TA) induced grafting diethylenetriamine (DETA) under mild conditions for efficient removal of Cr(VI) and dyes. Taking advantage of the catechol surface chemistry, TA occurring rapid polymerization with DETA monomers not only enhances the water resistance and thermal stability of the gel bead, but also introduces abundant polyphenolic functional groups and active adsorption sites. The multifunctional gel bead showed outstanding antibacterial activity against S. aureus (sterilization rates: 83.8 %) and E. coli (sterilization rates: 99.5 %). The maximum adsorption capacity of gel bead for Cr(VI) was 163.9 mg/g. Moreover, the removal efficiency of the gel bead for dyes of Safranine T and Rhodamine B was 89.5 % (maximum adsorption capacity: 537 mg/g) and 76.7 % (maximum adsorption capacity: 460.2 mg/g), respectively, indicating its excellent broad-spectrum adsorption performance for multiple pollutants. Therefore, TA-assisted fabrication of SA-based gel bead with excellent antibacterial property is a promising multifunctional adsorption material for practical water remediation.
Collapse
Affiliation(s)
- Kaiqiang Dong
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Yanling Jiang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Yidan Zhang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Zhiyong Qin
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Liuting Mo
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| |
Collapse
|
26
|
Liu R, Zhang J, Fu H, Yin L, Song Y, He G. A comparative study of methylene blue adsorption and removal mechanisms by calcium carbonate from different sources. BIORESOURCE TECHNOLOGY 2023; 387:129603. [PMID: 37544533 DOI: 10.1016/j.biortech.2023.129603] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Efficient removal of organic dye pollution from contaminated water is a concern in the absorbent applications. In this study, a green biogenic calcium carbonate (BCC) absorbent was fabricated using Bacillus licheniformis for the removal of methylene blue (MB) from water. This was found to have superior adsorption capacity compared with abiotic calcium carbonate (ACC) and operate within a broad pH range from 3 to 9. MB adsorption on BCC was physical and exothermic. The hydrophobic features, rough nanoporous microstructure, and organic-inorganic mesoporous structure of the BCC may all be responsible for its favorable adsorption mass transfer. The adsorption energy of BCC had a more negative value than that of ACC, indicating a stronger MB interaction with BCC with a lower energy barrier. Hydrogen bonding and electrostatic attraction were involved in the adsorption process. Overall, the findings established a theoretical foundation for the application of BCC in remediation of MB-contaminated water.
Collapse
Affiliation(s)
- Renlu Liu
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Jialiang Zhang
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Haiyun Fu
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Li Yin
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Yongsheng Song
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China.
| | - Genhe He
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
27
|
Wang C, Feng X, Shang S, Liu H, Song Z, Zhang H. Adsorption of methyl orange from aqueous solution with lignin-modified metal-organic frameworks: Selective adsorption and high adsorption capacity. BIORESOURCE TECHNOLOGY 2023; 388:129781. [PMID: 37730139 DOI: 10.1016/j.biortech.2023.129781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The lignin-based metal-organic framework (UIO-g-NL) was prepared by a Schiff base reaction of aminated lignin and the zirconium cluster-based MOF (UIO-66-NH2) as an adsorbent of methyl orange (MO). The results showed that UIO-g-NL maintained the original crystal structure and aminated lignin was successfully introduced after functionalization. UIO-g-NL selectively adsorbed MO from a mixed solution 50 mg/L MO and 50 mg/L methylene blue (MB), with an adsorption efficiency of nearly 100%. In a mixed solution 250 mg/L MB and 250 mg/L MO, UIO-g-NL adsorbed both dyes with 1120.70 mg/g for MB and 961.54 mg/g for MO. Hydrogen bonding, π-π and NH-π interactions, and electrostatic attraction contribute to the MO adsorption by UIO-g-NL. In the MO/MB mixture, MO adsorption by UIO-g-NL follows the pseudo-second-order kinetic and Freundlich isotherm models, which is an endothermic, spontaneous, and feasible adsorption process. Furthermore, the MO adsorption efficiency of UIO-g-NL remained high (>90%) after six re-use cycles.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| |
Collapse
|
28
|
Pei T, Shi F, Hou D, Yang F, Lu Y, Liu C, Lin X, Lu Y, Zheng Z, Zheng Y. Enhanced adsorption of phenol from aqueous solution by KOH combined Fe-Zn bimetallic oxide co-pyrolysis biochar: Fabrication, performance, and mechanism. BIORESOURCE TECHNOLOGY 2023; 388:129746. [PMID: 37689119 DOI: 10.1016/j.biortech.2023.129746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
In this study, impregnation combined with KOH activation with different mixing methods was used to prepare magnetic biochar. The effects of synthetic method on biochar physicochemical properties and adsorption performance were explored. The results showed that treatment of a Fe-Zn oxide with KOH activation provided excellent adsorption properties with adsorption capacity of 458.90 mg/g due to well-developed microporous structure and rich-in O-containing functional groups as well as exposed oxidizing functional groups (Fe2O3 and FeOOH). Langmuir-Freundlich and pseudo-second-order models accurately fit phenol adsorption. Neutral conditions (pH = 6) and lower ionic strengths were beneficial to phenol removal. Additionally, the predominant adsorption processes were physisorption and chemisorption. Correlation analyses and characterization data confirmed that pore filling, π-π interactions and surface complexation were the dominant driving forces for phenol adsorption. This research provides an environmentally friendly method for utilizing agricultural wastes for the removal of a variety of pollutions from aquatic environment.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Yanling Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
29
|
Qu J, Du Z, Lei Y, Li M, Peng W, Wang M, Liu J, Hu Q, Wang L, Wang Y, Zhang Y. Microwave-assisted one-pot preparation of magnetic cactus-derived hydrochar for efficient removal of lead(Ⅱ) and phenol from water: Performance and mechanism exploration. BIORESOURCE TECHNOLOGY 2023; 388:129789. [PMID: 37741577 DOI: 10.1016/j.biortech.2023.129789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
A novel magnetic hydrochar derived from cactus cladode (MW-MHC) was successfully synthesized through one-pot microwave-assisted process for efficiently removing lead(Pb)(Ⅱ) and phenol. From batch adsorption experiments, MW-MHC possessed the highest uptake amounts for Pb(Ⅱ) and phenol of 139.34 and 175.32 mg/g within 20 and 60 min, respectively. Moreover, the removal of Pb(Ⅱ) and phenol by MW-MHC remained essentially stable under the interference of different co-existing cations, presenting the excellent adaptability of MW-MHC. After three cycles of regeneration experiments, MW-MHC still had preferable adsorption performance and could be easily recycled, indicating its excellent reusability. Significantly, the uptake mechanisms of Pb(Ⅱ) on MW-MHC were regarded as chemical complexation, pore filling, precipitation, and electrostatic attraction. Meanwhile, the phenol uptake might be dominated by π-π interaction and hydrogen bonding. The above consequences revealed that MW-MHC with high removal performance was a promising adsorbent for remediating wastewater containing heavy metals and organics.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yue Lei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Man Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Wang C, Xing C, Feng X, Shang S, Liu H, Song Z, Zhang H. Lignin-modified metal-organic framework as an effective adsorbent for the removal of methyl orange. Int J Biol Macromol 2023; 250:126092. [PMID: 37541462 DOI: 10.1016/j.ijbiomac.2023.126092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Herein, lignin-modified metal-organic frameworks (NH2-UIO@L) are prepared using a one-step synthesis as sorbents for the removal of organic dyes from water. The introduction of lignin improved the adsorption sites. NH2-UIO@L2 adsorption of MO conforms to Langmuir model, and the adsorption capacity of NH2-UIO@L2 on MO was 214.13 mg·L-1 with an adsorption efficiency up to 99.28 %, which was significantly higher than values for other adsorbents. Due to hydrogen bonds, π-π interactions and electrostatic interactions, MO was effectively removed by NH2-UIO@L2 and its adsorption efficiency is maintained at 90.55 % after six cycles. The adsorption kinetics showed that the NH2-UIO@L2 adsorption of MO was chemical adsorption and controlled by intraparticle diffusion and external mass transfer. Further, the adsorption performance of NH2-UIO@L2 on MO and MB in mixed MO/MB solution was investigated. The adsorption capacity of NH2-UIO@L2 in mixed MO/MB solution was 207.04 mg·L-1 for MO and 243.31 mg·L-1 for MB; the adsorption of NH2-UIO@L2 on MO followed the Dubinin-Radushkevich and pseudo-second-order models, and the adsorption on MB followed the Temkin and pseudo-second-order models. Hydrogen bonds, π-π interactions, and pore filling are all implicated in the removal of MO and MB. In particular, the electrostatic attraction between MB and MO improves the adsorption efficiency of NH2-UIO@L2 on MB. NH2-UIO@L2 has good reusability, maintaining an adsorption efficiency of 97.66 % for MO and up to 99.15 % for MB after six cycles. Its simple preparation and superior adsorption suggest that NH2-UIO@L2 has considerable potential to remove organic dyes from wastewater.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu Province, China
| | - Chen Xing
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu Province, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu Province, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu Province, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu Province, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
31
|
Chen Y, Huang SA, Yu K, Guo JZ, Wang YX, Li B. Adsorption of lead ions and methylene blue on acrylate-modified hydrochars. BIORESOURCE TECHNOLOGY 2023; 379:129067. [PMID: 37080438 DOI: 10.1016/j.biortech.2023.129067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Hydrochars are promising sorbents for wastewater treatment. Herein, two acrylate-modified hydrochars (AMHC1 and AMHC2) were obtained by grafting acrylic acid on the surface of two hydrochars (MHC1 and MHC2 hydrothermally carbonized in water and acidic medium respectively) with free radical polymerization. Characterizations show that MHC2 is more prone to free radical polymerization than MHC1 does, and has higher carboxylate content after modification. The adsorption amounts of AMHC2 over methylene blue (MB) and Pb(II) are much higher than those of AMHC1. Pseudo-second-order kinetic and Langmuir isotherm equations well fit the Pb(II) and MB sorption data of AMHC2. The Pb(II) adsorptive mechanism is mainly inner-surface complexation accompanied by ion exchange and cation-π interaction. MB adsorption involves ion exchange, electrostatic interaction, H-bonding and π-π interaction. Hence, the one-step modification method of free radical polymerization under alkaline condition has great potential for preparing carboxylate-modified hydrochars to adsorb cationic pollutants.
Collapse
Affiliation(s)
- Yan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Shen-Ao Huang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Kun Yu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yu-Xuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
32
|
Pei T, Shi F, Liu C, Lu Y, Lin X, Hou D, Yang S, Li J, Zheng Z, Zheng Y. Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K 2FeO 4 and CaCO 3 for phenol removal: Governing factors and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121871. [PMID: 37225081 DOI: 10.1016/j.envpol.2023.121871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Shunxiong Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Jirong Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen, 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
33
|
Tao D, Tian C, Zhou Y, Pei L, Zhang F. Effective removal of brilliant green with magnetic barium phosphate composites: factor analysis and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50364-50375. [PMID: 36795211 DOI: 10.1007/s11356-023-25819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023]
Abstract
In this work, magnetic barium phosphate (FBP) composites with different content of commercial Fe3O4 nanoparticles were easily prepared by a one-step hydrothermal method. FBP composites with a magnetic content of 3% (FBP3) were studied as the example for the removal of an organic pollutant (Brilliant Green, BG) from the synthetic medium. The adsorption study was executed under the variation of different experimental conditions, such as solution pH (5 ~ 11), dosage (0.02 ~ 0.20 g), temperature (293 ~ 323 K), and the contact time (0 ~ 60 min) on the removal of BG. For comparison purposes, the one-factor-at-a-time (OFAT) approach and Doehlert matrix (DM) were both employed to investigate the factor impacts involved. FBP3 showed a high adsorption capacity of 1419.3 ± 10.0 mg/g for at 25 °C and pH = 6.31. The kinetics study revealed the pseudo-second-order kinetic model as the best-fitted model, and the thermodynamic data fit well with the Langmuir model. The possible adsorption mechanisms involved are the electrostatic interaction and/or hydrogen bonding of PO43-…N+/C-H and HSO4-…Ba2+ between FBP3 and BG. Furthermore, FBP3 showed good easy reusability and high capacities for BG removal. Our results provide new insights for developing low-cost, efficient, and reusable adsorbent to remove BG from industrial wastewater.
Collapse
Affiliation(s)
- Dan Tao
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengxuan Tian
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxin Zhou
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Luyao Pei
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Zhang
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Sun XN, Yu K, He JH, Chen Y, Guo JZ, Li B. Multiple roles of ferric chloride in preparing efficient magnetic hydrochar for sorption of methylene blue from water solutions. BIORESOURCE TECHNOLOGY 2023; 373:128715. [PMID: 36754236 DOI: 10.1016/j.biortech.2023.128715] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Highly efficient and cheap magnetic materials have application prospects in wastewater treatment. Herein, Fe3O4-loaded hydrochar (HC-Fe3O4) was obtained from hydrothermal carbonization (HTC) of bamboo with FeCl3 and then added with FeCl3 to form a magnetic sorbent via simple precipitation. The HC-Fe3O4 was characterized with various instruments. The characterizations show FeCl3 plays at least two roles as a catalyst and an oxidant in HTC. The specific surface area of hydrochar enlarged from 39.9731 to 60.9887 m2·g-1 after the addition of FeCl3 during HTC, which showed FeCl3 acted as a catalyst in HTC. XRD indicated Fe3O4 was formed by the structure of HC-Fe3O4, which indicated Fe(III) was reduced to Fe(II) during HTC. Sorption of methylene blue (MB) onto HC-Fe3O4 was better fitted by the Langmuir isotherm and pseudo-second-order kinetic models. Sorption is a spontaneous thermodynamic endothermic process and HC-Fe3O4 is easily separated by an applied magnetic field and reused.
Collapse
Affiliation(s)
- Xiao-Na Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Kun Yu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jiong-Hua He
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
35
|
Zhang D, Tian W, Chu M, Zhao J, Zou M, Jiang J. B-doped graphitic carbon nitride as a capacitive deionization electrode material for the removal of sulfate from mine wastewater. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
36
|
Li M, Mu J, Liu Y, Wang H, Wang Y, Song H. Removal of phenol by lignin-based activated carbon as an efficient adsorbent for adsorption of phenolic wastewater. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
37
|
Bao T, Jing Y, Wang H, Shan R, Wang N. Using Waste Tire-Derived Particles to Remove Benzene and n-Hexane by Dynamic and Static Adsorption. ACS OMEGA 2023; 8:4899-4905. [PMID: 36777605 PMCID: PMC9909788 DOI: 10.1021/acsomega.2c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Scrap tire rubber particles were used and evaluated to adsorb some gaseous volatile organic compounds (VOCs), such as benzene and n-hexane. The results present that the adsorption capacities were 0.18 and 0.072 mg/g for n-hexane and benzene, respectively, in the static adsorption mode; the effective adsorption may be attributed to the carbon black of the tire. The adsorption process is in accordance with the Freundlich isothermal model and Lagergren pseudo-first-order kinetic equation. Correspondingly, the adsorption process is multilayer adsorption analyzed by the intramolecular diffusion model. In the dynamic adsorption mode, the maximum adsorption efficiencies of n-hexane and benzene were 80.7 and 81%, respectively, at flow velocities of 0.1 L/min n-hexane and 0.2 L/min benzene.
Collapse
Affiliation(s)
- Tonghui Bao
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, P.R.
China
| | - Yuming Jing
- School
of Environment Science and Engineering, Shandong University, Qingdao266237, P.R. China
- Shandong
Huankeyuan Environmental Engineering Co., Ltd, Jinan250013, P.R.
China
| | - Hongbo Wang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, P.R.
China
- Resources
and Environment Innovation Institute, Shandong
Jianzhu University, Jinan250101, P.R. China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, P.R. China
| | - Ning Wang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, P.R.
China
- Resources
and Environment Innovation Institute, Shandong
Jianzhu University, Jinan250101, P.R. China
| |
Collapse
|
38
|
Zheng Z, Liu W, Zhou Q, Li J, Zeb A, Wang Q, Lian Y, Shi R, Wang J. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130372. [PMID: 36444066 DOI: 10.1016/j.jhazmat.2022.130372] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.
Collapse
Affiliation(s)
- Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianlin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
39
|
Chu KH, Hashim MA, Bashiri H, Debord J, Harel M, Bollinger JC. The Flory–Huggins Isotherm and Water Contaminant Adsorption: Debunking Some Modeling Fallacies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Khim Hoong Chu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Hadis Bashiri
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan8731753153, Iran
| | - Jean Debord
- Service de Pharmacologie-Toxicologie, Hôpital Dupuytren, 87042Limoges, France
| | - Michel Harel
- Laboratoire Vie-Santé UR 24 134, Faculté de Médecine, Université de Limoges, 87025Limoges, France
- Institut de Mathématiques de Toulouse, UMR CNRS 5219, 31062Toulouse, France
| | - Jean-Claude Bollinger
- Laboratoire E2Lim, Faculté des Sciences & Techniques, Université de Limoges, 87060Limoges, France
| |
Collapse
|
40
|
Pan T, Liu H, Jiang M, Li J, Liu W, Jiao Q, Zhang T. New insights into the adsorption behavior of thiacloprid at the microfibers/water interface: Role of humic acid. CHEMOSPHERE 2023; 311:136938. [PMID: 36280118 DOI: 10.1016/j.chemosphere.2022.136938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter regulates the interaction between microplastics (MPs) and organic pollutants. Here, this paper investigated the effect and mechanism of humic acid (HA) on the adsorption behavior of thiacloprid at two microfibers (MFs)/water interface, and compared the differences in the performance of MFs and pure MPs. The results showed that 10 mg L-1 HA decreased the adsorption capacity and the partition coefficient KD of thiacloprid on MFs and pure MPs. Spectral analysis showed that HA could form hydrogen bonds and van der Waals forces with both MPs and thiacloprid, ultimately affecting the adsorption behavior of thiacloprid at MPs/water interface via competitive adsorption and bridging effect. Furthermore, two-dimensional correlation spectroscopy demonstrated that thiacloprid was preferentially adsorbed onto MPs compared with HA. Finally, density functional theory calculation demonstrated that phenolic-OH, -COOH, and alcoholic-OH played critical roles in competing adsorption and bridging effect. This study offers a theoretical foundation for a better comprehension of the adsorption behavior of organic pollutants at the MPs/water interface.
Collapse
Affiliation(s)
- Ting Pan
- Centre for Resource and Environmental Research, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hang Liu
- Centre for Resource and Environmental Research, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Mengyun Jiang
- Centre for Resource and Environmental Research, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jie Li
- Centre for Resource and Environmental Research, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weiyi Liu
- Centre for Resource and Environmental Research, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qingxin Jiao
- Centre for Resource and Environmental Research, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tingting Zhang
- Centre for Resource and Environmental Research, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
41
|
Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater. Carbohydr Polym 2023; 300:120268. [DOI: 10.1016/j.carbpol.2022.120268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
42
|
Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents - A review. CHEMOSPHERE 2023; 312:137319. [PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
Collapse
Affiliation(s)
- Sengani Manimegalai
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Rampuram, Chennai, 600087, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Malaysia; Department of Bioinformatics, Saveetha School of Engineering, (Saveetha Institute of Medical and Technical Sciences) SIMATS, Chennai, 602 105, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
43
|
Fang N, Luo Y, Jiang J, Lu Z, Hou Z, Zhao X, Wang X, Tang T, Zhang C, Lu Z. Adsorption of flupyradifurone onto soils: kinetics, isotherms, and influencing factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2465-2474. [PMID: 36445190 DOI: 10.1039/d2em00372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The study of the adsorption properties of pesticides in soil is essential to assessing the risk of their pollution of nearby aquatic environments. To reveal the adsorption mechanisms of flupyradifurone (FPO) on soil, batch experiments in five different soils were carried out in this study. The adsorption kinetics and isotherms of FPO in five soils were well fitted by using several models (R2 = 0.922-0.998). It was found that both physical and chemical adsorption were included in the adsorption process of FPO in soils; the monolayer adsorption of FPO occurred with a non-uniform energy distribution on the soil surface, and the internal particle diffusion was not the only rate-controlling step. The adsorption coefficients calculated by using the Langmuir (KL) and Freundlich (KF) models were 0.0158-0.0982 and 1.053-9.798, respectively. In addition, the main factors affecting the adsorption of FPO in soil were investigated by stepwise regression fitted with the adsorption coefficient (Kd) and the soil properties. It was found that the organic carbon content was the main factor (R2 = 0.857, p < 0.05). Therefore, the organic carbon adsorption coefficients (Koc) were calculated. The results (1.0532-5.6529) indicated that FPO has a low affinity and high mobility in the soils, and may cause water environment pollution around the soil. Therefore, FPO should be used cautiously in paddy fields. These research findings were important for elucidating the sorption behaviour and transport of FPO in soil.
Collapse
Affiliation(s)
- Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of A gro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of A gro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of A gro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhou Lu
- Laboratory of Quality & Safety Risk Assessment for Ginseng and Antler Products, Jilin Agricultural University, Changchun 130118, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of A gro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of A gro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of A gro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of A gro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
44
|
Hua T, Li D, Li X, Lin J, Niu J, Cheng J, Zhou X, Hu Y. Synthesis of mesoporous-structured MIL-68(Al)/MCM-41-NH 2 for methyl orange adsorption: Optimization and Selectivity. ENVIRONMENTAL RESEARCH 2022; 215:114433. [PMID: 36167114 DOI: 10.1016/j.envres.2022.114433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Here, we report a novel amino-modified mesoporous-structured aluminum-based metal-organic framework adsorbent, MIL-68(Al)/MCM-41-NH2, for dye sewage treatment. The introduction of molecular sieves overcomes the inherent defects of microporous MOFs in contaminant transfer and provides more active sites to enhance adsorption efficiency. Compared with using organic amino ligands directly, this strategy is ten times cheaper. The composite was well characterized and analyzed in terms of morphology, structure and chemical composition. Batch experiments were carried out to study the influences of essential factors on the process, such as pH and temperature. In addition, their interactions and the optimum conditions were examined using response surface methodology (RSM). The adsorption kinetics, isotherms and thermodynamics were systematically elucidated. In detail, the adsorption process conforms to pseudo-second-order kinetics and follows the Sips and Freundlich isothermal models. Moreover, the maximum adsorption capacity Qs of methyl orange (MO) was 477 mg g-1. It could be concluded that the process was spontaneous, exothermic, and entropy-reducing. Several binary dye systems have been designed for selective adsorption research. Our material has an affinity for anionic pigments. The adsorption mechanisms were discussed in depth. The electrostatic interaction might be the dominant effect. Meanwhile, hydrogen bonding, π-π stacking, and pore filling might be important driving forces. The excellent thermal stability and recyclability of the adsorbent are readily noticed. After five reuse cycles, the composite still possesses a removal efficiency of 90% for MO. Overall, the efficient and low-cost composite can be regarded as a promising adsorbent for the selective adsorption of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Dongmei Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoman Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jialiang Lin
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jiliang Niu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Xinhui Zhou
- South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
45
|
Wang S, Wang H, Wang S, Fu L, Zhang L. Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: Synthesis and adsorption characteristics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Mishra P, Singh K, Pandey G. A Comparative Study of Phenol Removal by
Pisum‐sativum
Peels Biochars Derived at Different Pyrolysis Temperatures: Isotherm, Kinetic and Thermodynamic Modelling. ChemistrySelect 2022. [DOI: 10.1002/slct.202202856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prashant Mishra
- Department of Chemistry Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar Raebareli Road Lucknow 226025
| | - Kaman Singh
- Department of Chemistry Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar Raebareli Road Lucknow 226025
| | - Gajanan Pandey
- Department of Chemistry Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar Raebareli Road Lucknow 226025
| |
Collapse
|
47
|
Zhang T, Xiao S, Fan K, He H, Qin Z. Preparation and adsorption properties of green cellulose-based composite aerogel with selective adsorption of methylene blue. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Lignite-Based N-Doped Porous Carbon as an Efficient Adsorbent for Phenol Adsorption. Processes (Basel) 2022. [DOI: 10.3390/pr10091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The treatment of phenolic-containing wastewater has received increased attention in recent years. In this study, the N-doped porous carbons were prepared from lignite with tripolycyanamide as the N source, and their phenol adsorption behaviors were investigated. Results clearly showed that the addition of tripolycyanamide largely improved the surface area, micropore volume, N content and thus the phenol adsorption capacity of lignite-based carbons. The N-doped sample prepared at 700 °C showed a surface area of 1630 m2/g and a phenol adsorption capacity as high as 182.4 mg/g at 20 °C, which were 2.0 and 1.6 times that of the lignite-based carbon without N-doping. Pseudo-second order and Freundlich adsorption isotherm models could better explain the phenol adsorption behaviors over lignite-based N-doped porous carbon. Theoretical calculations demonstrated that phenol adsorption energies over graphitic-N (−72 kJ/mol) and pyrrolic-N (−74 kJ/mol) groups were slightly lower than that over the N-free graphite layer (−71 kJ/mol), supporting that these N-containing groups contribute to enhance the phenol adsorption capacity. The adsorption mechanism of phenol over porous carbon might be interpreted by the π–π dispersion interactions between aromatic-ring and carbon planes, which could be enhanced by N-doping through increasing π electron densities in the carbon plane.
Collapse
|
49
|
Wang R, Lu M, Wang J. Co-Utilization of Sewage Sludge and Rice Husk in Ceramsite Preparation with Selective Adsorption Capacity to Pb. MATERIALS 2022; 15:ma15124310. [PMID: 35744368 PMCID: PMC9230551 DOI: 10.3390/ma15124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023]
Abstract
Realizing the green recycling of sludge is an important link to effectively solve the problem of sludge disposal. In this paper, sewage sludge (SS) and rice husk (RH) were utilized as raw materials in preparing novel ceramsite (SRC) for the treatment of lead-containing wastewater, and its adsorption mechanism was explored. The results showed that the optimal preparation conditions were 40% RH + 60% SS mixture, a sintering temperature of 1190 °C, and a sintering time of 20 min. The basic properties of SRC met Chinese artificial ceramsite filter material standards for water treatment (CJ/T 299-2008). Under optimum adsorption conditions (pH = 6, 1 g/L SRC dosage, 20 mg/L Pb(NO)3 concentration, 18 h), the removal rate of Pb2+ reached 94.7%, and the equilibrium adsorption capacity was 18.94 mg/g. The adsorption process was more consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model, indicating that the adsorption process was dominated by chemisorption. Thermodynamic parameters (ΔH0 > 0, ΔG0 < 0, ΔS0 > 0) indicated that the adsorption reaction was spontaneous and endothermic. The possible adsorption mechanisms are as follows: (1) SRC is rich in layered mesoporous structure, which provides sufficient reaction sites for Pb adsorption; (2) the sintered lawsonite and muscovite can strongly attract Pb and then form a new phase (Pb10[Si2O7]3(OH)2); (3) Pb2+ can bond with the Si−O- bond in aluminosilicates, and the introduction of Pb elevates the degree of polymerization of aluminosilicates in turn, indicating that the adsorption process is stable.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
| | - Meng Lu
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China;
| | - Junxing Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
- Correspondence: ; Tel.: +86-137-0718-2138
| |
Collapse
|