1
|
Huang J, Li X, Zhao J, Qu Y. Fed-Batch Strategy Achieves the Production of High Concentration Fermentable Sugar Solution and Cellulosic Ethanol from Pretreated Corn Stover and Corn Cob. Int J Mol Sci 2024; 25:12306. [PMID: 39596370 PMCID: PMC11594326 DOI: 10.3390/ijms252212306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The bioconversion of lignocellulosic biomass, which are abundant and renewable resources, into liquid fuels and bulk chemicals is a promising solution to the current challenges of resource scarcity, energy crisis, and carbon emissions. Considering the separation of some end-products, it is necessary to firstly obtain a high concentration separated fermentable sugar solution, and then conduct fermentation. For this purpose, in this study, using acid catalyzed steam explosion pretreated corn stover (ACSE-CS) and corn cob residues (CCR) as cellulosic substrate, respectively, the batch feeding strategies and enzymatic hydrolysis conditions were investigated to achieve the efficient enzymatic hydrolysis at high solid loading. It was shown that the fermentable sugar solutions of 161.2 g/L and 205 g/L were obtained, respectively, by fed-batch enzymatic hydrolysis of ACSE-CS under 30% of final solid loading with 10 FPU/g DM of crude cellulase, and of CCR at 27% of final solid loading with 8 FPU/g DM of crude cellulase, which have the potential to be directly applied to the large-scale fermentation process without the need for concentration, and the conversion of glucan in ACSE-CS and CCR reached 80.9% and 87.6%, respectively, at 72 h of enzymatic hydrolysis. This study also applied the fed-batch simultaneous saccharification and co-fermentation process to effectively convert the two cellulosic substrates into ethanol, and the ethanol concentrations in fermentation broth reached 46.1 g/L and 72.8 g/L for ACSE-CS and CCR, respectively, at 144 h of fermentation. This study provides a valuable reference for the establishment of "sugar platform" based on lignocellulosic biomass and the production of cellulosic ethanol.
Collapse
Affiliation(s)
| | | | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, China; (J.H.); (X.L.); (Y.Q.)
| | | |
Collapse
|
2
|
Sarker TR, Khatun ML, Ethen DZ, Ali MR, Islam MS, Chowdhury S, Rahman KS, Sayem NS, Akm RS. Recent evolution in thermochemical transformation of municipal solid wastes to alternate fuels. Heliyon 2024; 10:e37105. [PMID: 39296224 PMCID: PMC11408778 DOI: 10.1016/j.heliyon.2024.e37105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
The management of solid waste poses a worldwide obstacle in the pursuit of a sustainable society. This issue has intensified with the increase in waste production caused by rapid population expansion, industrialization, and urbanization. The continuously growing volume of municipal solid waste, particularly the substantial volume of organic waste, along with improper disposal practices, results in the release of greenhouse gases and other harmful airborne substances which simultaneously causes health risks and socioeconomic concerns. This article examines various waste-to-energy (energy production in the form of heat and electricity) concepts as well as waste-to-materials (various value-added materials including biofuel, biochemical, char, bio-oil, soil fertilizer, etc.) methods of converting municipal solid waste into environmentally friendly fuels, which appear to be economically feasible and attractive. It starts with a thorough analysis of the characteristics of municipal solid waste followed by the generation procedure. The study provides an overview of different thermochemical conversion methods including incineration, pyrolysis, co-pyrolysis, liquefaction, hydrothermal carbonization, gasification, combustion for transformation of municipal solid waste, and their recent advancement. The review comprehensively discussed the pros and cons of each method highlighting their strength, weakness, opportunities, and threats to transforming MSW. The current state of municipal solid waste management, including effective dumping and deviation, is comprehensively assessed, along with the prospects and challenges involved. Energy justice concepts and fuzzy logic tool is used to address the selection criteria for choosing the best waste treatment techniques. Moreover, several recommendations are offered to enhance the existing solid waste management system. This review could assist scholars, researchers, authorities, and stakeholders in making informed decisions regarding MSW management.
Collapse
Affiliation(s)
- Tumpa R Sarker
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Mst Lucky Khatun
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Dilshad Z Ethen
- Department of Agribusiness and Marketing, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Md Rostom Ali
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Md Shariful Islam
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Sagor Chowdhury
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Kazi Shakibur Rahman
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Nafis Sadique Sayem
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh
| | - Rahman Samsur Akm
- Mechanical Engineering, New York City College of Technology, City University of New York, 186 Jay St, Brooklyn, NY 11201, USA
| |
Collapse
|
3
|
Hernández-Romero IM, Niño-Caballero JC, González LT, Pérez-Rodríguez M, Flores-Tlacuahuac A, Montesinos-Castellanos A. Waste management optimization with NLP modeling and waste-to-energy in a circular economy. Sci Rep 2024; 14:19859. [PMID: 39191830 DOI: 10.1038/s41598-024-69321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
This work presents a methodology integrating Non-Linear Programming (NLP) for multi-objective and multi-period optimization, addressing sustainable waste management and energy conversion challenges. It integrates waste-to-energy (WtE) technologies such as Anaerobic Digestion (AD), Incineration (Inc), Gasification (Gsf), and Pyrolysis (Py), and considers thermochemical, technical, economic, and environmental considerations through rigorous non-linear functions. Using Mexico City as a case study, the model develops waste management strategies that balance environmental and economic aims, considering social impacts. A trade-off solution is proposed to address the conflict between objectives. The economical optimal solution generates 1.79M$ with 954 tons of CO2 emissions while the environmental one generates 0.91M$ and reduces emissions by 54%, where 40% is due to gasification technology. Moreover, the environmentally optimal solution, with incineration and gasification generates 9500 MWh/day and 5960 MWh/day, respectively, demonstrates the capacity of the model to support sustainable energy strategies. Finally, this work presents an adaptable framework for sustainable waste management decision-making.
Collapse
Affiliation(s)
- Ilse María Hernández-Romero
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| | - Javier Camilo Niño-Caballero
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Lucy T González
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
- Tecnologico de Monterrey, Centro del Agua, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Michael Pérez-Rodríguez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Antonio Flores-Tlacuahuac
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Alejandro Montesinos-Castellanos
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| |
Collapse
|
4
|
Duan Z, Wang Q, Wang T, Kong X, Zhu G, Qiu G, Yu H. Application of microbial agents in organic solid waste composting: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5647-5659. [PMID: 38318758 DOI: 10.1002/jsfa.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The rapid growth of organic solid waste has recently exacerbated environmental pollution problems, and its improper treatment has led to the loss of a large number of biomass resources. Here, we expound the advantages of microbial agents composting compared with conventional organic solid waste treatment technology, and review the important role of microbial agents composting in organic solid waste composting from the aspects of screening and identification, optimization of conditions, mechanism of action, combination with other technologies and ultra-high-temperature and ultra-low-temperature microbial composting. We discuss the value of microorganisms with different growth conditions in organic solid waste composting, and put forward a seasonal multi-temperature composite microbial composting technology. Provide new ideas for the all-round treatment of microbial agents in organic solid waste in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongxu Duan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiangfen Kong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guopeng Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guankai Qiu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Rotich IK, Chepkirui H, Musyimi PK. Renewable energy status and uptake in Kenya. ENERGY STRATEGY REVIEWS 2024; 54:101453. [DOI: 10.1016/j.esr.2024.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zhang Z, Chen Z, Zhang J, Liu Y, Chen L, Yang M, Osman AI, Farghali M, Liu E, Hassan D, Ihara I, Lu K, Rooney DW, Yap PS. Municipal solid waste management challenges in developing regions: A comprehensive review and future perspectives for Asia and Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172794. [PMID: 38677421 DOI: 10.1016/j.scitotenv.2024.172794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The rapid urbanization witnessed in developing countries in Asia and Africa has led to a substantial increase in municipal solid waste (MSW) generation. However, the corresponding disposal strategies, along with constraints in land resources and finances, compounded by unorganized public behaviour, have resulted in ineffective policy implementation and monitoring. This lack of systematic and targeted orientation, combined with blind mapping, has led to inefficient development in many areas. This review examines the key challenges of MSW management in developing countries in Asia and Africa from 2013 to 2023, drawing insights from 170 academic papers. Rather than solely focusing on recycling, the study proposes waste sorting at the source, optimization of landfill practices, thermal treatment measures, and strategies to capitalize on the value of waste as more pertinent solutions aligned with local realities. Barriers to optimizing management systems arise from socio-economic factors, infrastructural limitations, and cultural considerations. The review emphasizes the importance of integrating the study area into the circular economy framework, with a focus on enhancing citizen participation in solid waste reduction and promoting recycling initiatives, along with seeking economic assistance from international organizations.
Collapse
Affiliation(s)
- Zhechen Zhang
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jiawen Zhang
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yunfei Liu
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mingyu Yang
- School of Materials Science Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe 657-8501, Japan
| | - Engui Liu
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dalia Hassan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Ikko Ihara
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe 657-8501, Japan
| | - Kun Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Xuezheng Road #18, Qiantang District, Hangzhou, Zhejiang 310018, China
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
7
|
Al-Hazmi HE, Hassan GK, Kurniawan TA, Śniatała B, Joseph TM, Majtacz J, Piechota G, Li X, El-Gohary FA, Saeb MR, Mąkinia J. Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120414. [PMID: 38412730 DOI: 10.1016/j.jenvman.2024.120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt.
| | | | - Bogna Śniatała
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń, 87-100, Poland
| | - Xiang Li
- School of Environmental Science & Engineering, Donghua Univerisity, Dept Env. Room 4155, 2999 North Renmin Rd, Songjiang District, Shanghai, China
| | - Fatma A El-Gohary
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
8
|
Nasr M, Abdelkader A, El-Nahas S, Osman AI, Abdelhaleem A, El Nazer HA, Rooney DW, Halawy SA. Utilizing Undissolved Portion (UNP) of Cement Kiln Dust as a Versatile Multicomponent Catalyst for Bioethylene Production from Bioethanol: An Innovative Approach to Address the Energy Crisis. ACS OMEGA 2024; 9:1962-1976. [PMID: 38222655 PMCID: PMC10785308 DOI: 10.1021/acsomega.3c09043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
This study focuses on upcycling cement kiln dust (CKD) as an industrial waste by utilizing the undissolved portion (UNP) as a multicomponent catalyst for bioethylene production from bioethanol, offering an environmentally sustainable solution. To maximize UNP utilization, CKD was dissolved in nitric acid, followed by calcination at 500 °C for 3 h in an oxygen atmosphere. Various characterization techniques confirmed that UNP comprises five different compounds with nanocrystalline particles exhibiting an average crystal size of 47.53 nm. The UNP catalyst exhibited a promising bioethylene yield (77.1%) and selectivity (92%) at 400 °C, showcasing its effectiveness in converting bioethanol to bioethylene with outstanding properties. This exceptional performance can be attributed to its distinctive structural characteristics, including a high surface area and multiple-strength acidic sites that facilitate the reaction mechanism. Moreover, the UNP catalyst displayed remarkable stability and durability, positioning it as a strong candidate for industrial applications in bioethylene production. This research underscores the importance of waste reduction in the cement industry and offers a sustainable path toward a greener future.
Collapse
Affiliation(s)
- Mahmoud Nasr
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| | - Adel Abdelkader
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| | - Safaa El-Nahas
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| | - Ahmed I. Osman
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, U.K.
| | - Amal Abdelhaleem
- Environmental
Engineering Department, Egypt-Japan University
of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | | | - David W. Rooney
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, U.K.
| | - Samih A. Halawy
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| |
Collapse
|
9
|
Khan SAR, Umar M, Yu Z, Nawaz MT. A Recent Digitalization in Recycling Industry Attaining Ecological Sustainability: A Comprehensive Outlook and Future Trend. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103760-103775. [PMID: 37695483 DOI: 10.1007/s11356-023-29537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
The management of waste through dual way of recycling (i-e offline and online) is assumed to have a key role in attaining ecological sustainability and enabling circular practices. The research on online recycling is gaining evolution in recent age. Prior literature on the current research theme has failed to provide a comprehensive outlook and future trend. Therefore, the current research intends to elaborate the current research scenario linked with online recycling by critically scrutinizing the prior research over the last 41 years. A comprehensive analysis was conducted using the Scopus database, retrieving a total of 866 articles. These articles were selected to provide a conceptual overview and understanding of the fundamental research conducted in the field. By employing bibliometric analysis this research provides comprehensive detail about evolution, mapping of publications and prominent trends from the year 1981 to 2022 to understand the practices and future trends of online recycling research. The outcomes elucidated that there is exponential increase in research publications relating to online recycling over the last five years. The most influential producer of online recycling research are China, United Kingdom and United States. Chinese Universities has the highest number of publications among all the countries across globe. Moreover, the current research trend is focused on technology based circular economy, industrial ecology, bio-based waste management, dual channel recycling, municipal waste, waste from electrical and electronic equipment (WEEE), environmental impact and lifecycle assessment. Hence, the prominent research perspective and highlighted features could offer recommendation for upcoming studies to contribute in literature and help practitioners, policymakers and professionals move towards circular practices.
Collapse
Affiliation(s)
- Syed Abdul Rehman Khan
- Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Zigong, 644001, China.
- School of Management and Engineering, Xuzhou University of Technology, Xuzhou, China.
| | - Muhammad Umar
- Faculty of Business, Economics and Social Development, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Zhang Yu
- School of Economics and Management, Chang'an University, Xi'an, China
| | - Muhammad Tanveer Nawaz
- Department of Business Administration, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Naveenkumar R, Iyyappan J, Pravin R, Kadry S, Han J, Sindhu R, Awasthi MK, Rokhum SL, Baskar G. A strategic review on sustainable approaches in municipal solid waste management andenergy recovery: Role of artificial intelligence,economic stability andlife cycle assessment. BIORESOURCE TECHNOLOGY 2023; 379:129044. [PMID: 37044151 DOI: 10.1016/j.biortech.2023.129044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
The consumption of energy levels has increased in association with economic growth and concurrently increased the energy demand from renewable sources. The need under Sustainable Development Goals (SDG) intends to explore various technological advancements for the utilization of waste to energy. Municipal Solid Waste (MSW) has been reported as constructive feedstock to produce biofuels, biofuel carriers and biochemicals using energy-efficient technologies in risk freeways. The present review contemplates risk assessment and challenges in sorting and transportation of MSW and different aspects of conversion of MSW into energy are critically analysed. The circular bioeconomy of energy production strategies and management of waste are also analysed. The current scenario on MSW and its impacts on the environment are elucidated in conjunction with various policies and amendments equipped for the competent management of MSW in order to fabricate a sustained environment.
Collapse
Affiliation(s)
- Rajendiran Naveenkumar
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - Jayaraj Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602107, India
| | - Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway; Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates; Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Jeehoon Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India; Department of Applied Data Science, Noroff University College, Kristiansand, Norway.
| |
Collapse
|
11
|
Allende S, Brodie G, Jacob MV. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. ENVIRONMENTAL RESEARCH 2023; 226:115619. [PMID: 36906271 DOI: 10.1016/j.envres.2023.115619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The agricultural industry faces a permanent increase in waste generation, which is associated with the fast-growing population. Due to the environmental hazards, there is a paramount demand for generating electricity and value-added products from renewable sources. The selection of the conversion method is crucial to develop an eco-friendly, efficient and economically viable energy application. This manuscript investigates the influencing factors that affect the quality and yield of the biochar, bio-oil and biogas during the microwave pyrolysis process, evaluating the biomass nature and diverse combinations of operating conditions. The by-product yield depends on the intrinsic physicochemical properties of biomass. Feedstock with high lignin content is favourable for biochar production, and the breakdown of cellulose and hemicellulose leads to higher syngas formation. Biomass with high volatile matter concentration promotes the generation of bio-oil and biogas. The pyrolysis system's conditions of input power, microwave heating suspector, vacuum, reaction temperature, and the processing chamber geometry were influence factors for optimising the energy recovery. Increased input power and microwave susceptor addition lead to high heating rates, which were beneficial for biogas production, but the excess pyrolysis temperature induce a reduction of bio-oil yield.
Collapse
Affiliation(s)
- Scarlett Allende
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Graham Brodie
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
12
|
Amin N, Aslam M, Khan Z, Yasin M, Hossain S, Shahid MK, Inayat A, Samir A, Ahmad R, Murshed MN, Khurram MS, El Sayed ME, Ghauri M. Municipal solid waste treatment for bioenergy and resource production: Potential technologies, techno-economic-environmental aspects and implications of membrane-based recovery. CHEMOSPHERE 2023; 323:138196. [PMID: 36842558 DOI: 10.1016/j.chemosphere.2023.138196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
World estimated municipal solid waste generating at an alarming rate and its disposal is a severe concern of today's world. It is equivalent to 0.79 kg/d per person footprint and causing climate change; health hazards and other environmental issues which need attention on an urgent basis. Waste to energy (WTE) considers as an alternative renewable energy potential to recover energy from waste and reduce the global waste problems. WTE reduced the burden on fossil fuels for energy generation, waste volumes, environmental, and greenhouse gases emissions. This critical review aims to evaluate the source of solid waste generation and the possible routes of waste management such as biological landfill and thermal treatment (Incineration, pyrolysis, and gasification). Moreover, a comparative evaluation of different technologies was reviewed in terms of economic and environmental aspects along with their limitations and advantages. Critical literature revealed that gasification seemed to be the efficient route and environmentally sustainable. In addition, a framework for the gasification process, gasifier types, and selection of gasifiers for MSW was presented. The country-wise solutions recommendation was proposed for solid waste management with the least impact on the environment. Furthermore, key issues and potential perspectives that require urgent attention to facilitate global penetration are highlighted. Finally, practical implications of membrane and comparison membrane-based separation technology with other conventional technologies to recover bioenergy and resources were discussed. It is expected that this study will lead towards practical solution for future advancement in terms of economic and environmental concerns, and also provide economic feasibility and practical implications for global penetration.
Collapse
Affiliation(s)
- Naila Amin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan; Department of Chemical Engineering and Technology, University of Gujrat, Hafiz Hayat campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Zakir Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jessore, 7408, Bangladesh
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon, 34134, Republic of Korea
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Samir
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia; Center of Plasma Technology, Al-Azhar University, Cairo, Egypt
| | - Rizwan Ahmad
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences & Technology (PAF-IAST), Haripur, Pakistan
| | - Mohammad N Murshed
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | - Muhammad Shahzad Khurram
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Mohamed E El Sayed
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | - Moinuddin Ghauri
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
13
|
Gong M, Wang Y, Bao D, Jiang S, Chen H, Shang J, Wang X, Hnin Yu H, Zou G. Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling. BIORESOURCE TECHNOLOGY 2023; 376:128888. [PMID: 36925076 DOI: 10.1016/j.biortech.2023.128888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Low ambient temperature poses a challenge for rice straw-silage processing in cold climate regions, as cold limits enzyme and microbial activity in silages. Here, a novel cold-active cellobiohydrolase (VvCBHI-I) was isolated from Volvariella volvacea, which exhibited outstanding cellobiohydrolase activity at 10-30 °C. The crude cellulase complex in the VvCBHI-I-expressing transformant T1 retained 50% relative activity at 10 °C, while the wildtype Trichoderma reesei showed <5% of the activity. VvCBHI-I greatly improved the saccharification efficiency of the cellulase complex with pretreated rice straw as substrate at 10 °C. In rice straw silage, pH (<4.5) and lactic acid content (>4.6%) remained stable after 15-day ensiling with the cellulase complex from T1 and Lactobacillus plantarum. Moreover, the proportions of cellulose and hemicellulose decreased to 29.84% ± 0.15% and 21.25% ± 0.26% of the dried material. This demonstrates the crucial potential of mushroom-derived cold-active cellobiohydrolases in successful ensiling in cold regions.
Collapse
Affiliation(s)
- Ming Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Dapeng Bao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Shan Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Hongyu Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Junjun Shang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Hnin Hnin Yu
- Microbiology Laboratory, Botany Department, University of Mandalay, 73 & 41 Street, Maharaungmyay Township, Mandalay Division, Myanmar
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China.
| |
Collapse
|
14
|
Mohanty SS, Vyas S, Koul Y, Prajapati P, Varjani S, Chang JS, Bilal M, Moustakas K, Show PL, Vithanage M. Tricks and tracks in waste management with a special focus on municipal landfill leachate: Leads and obstacles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160377. [PMID: 36414054 DOI: 10.1016/j.scitotenv.2022.160377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Landfilling is the most widely used disposal method for municipal solid waste around the world. The main disadvantage of this strategy is formation of leachate, among other aspects. Landfill leachate contains highly toxic and bio-refractory substances that are detrimental to the environment and human health. Hence, the risk(s) of discharging potentially harmful landfill leachate into the environment need to be assessed and measured in order to make effective choices about landfill leachate management and treatment. In view of this, the present review aims to investigate (a) how landfill leachate is perceived as an emerging concern, and (b) the stakeholders' mid- to long-term policy priorities for implementing technological and integrative solutions to reduce the harmful effects of landfill leachate. Because traditional methods alone have been reported ineffective, and in response to emerging contaminants and stringent regulations, new effective and integrated leachate treatments have been developed. This study gives a forward-thinking of the accomplishments and challenges in landfill leachate treatment during the last decade. It also provides a comprehensive compilation of the formation and characterization of landfill leachate, the geo-environmental challenges that it raises, as well as the resource recovery and industrial linkage associated with it in order to provide an insight into its sustainable management.
Collapse
Affiliation(s)
- Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Yamini Koul
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Priya Prajapati
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, Unit of Environmental Science & Technology, 9 Heroon Polytechniou Street, Zographou Campus, 15780 Athens, Greece
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
15
|
Sarkar M, Seo YW. Biodegradable waste to renewable energy conversion under a sustainable energy supply chain management. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:6993-7019. [PMID: 37161138 DOI: 10.3934/mbe.2023302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective surveillance during smart cities' sustainable development allows their cleanliness to be maintained by reusing waste to produce renewable energy. This study quantifies the biodegradable waste generated in specific regions of several cities and presents ways to convert it into renewable energy. This energy can then be used to partially support regional energy demands. This study explores ways of reducing carbon emissions for biodegradable waste collection processes in regional centers, ultimately sending the biodegradable waste to the energy conversion center. The smart production system allows for the flexible production and autonomation of rates of conversion; green technology depends on each regional center's research management, which is a decision variable for reducing carbon emissions. The major contribution of this study is to consider an energy supply chain management with flexibility of energy conversion under the reduction of carbon emissions, which leads to a sustainable ESCM with the global maximum profit. This study uses mathematical modeling to decrease biodegradable waste with conversion of energy through a classical optimization technique. The solution to this mathematical model yielded significant results, providing insight into waste reduction, reduced carbon emissions and the conversion of biodegradable waste to energy. The model is examined using numerical experiments, and its conclusion supports the model with the fundamental assumptions. Results of sensitivity analysis provide insight into the reduction and re-utilization of wastes, carbon emission reduction, and the benefits of using renewable energy.
Collapse
Affiliation(s)
- Mitali Sarkar
- Department of Industrial and Management Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea
| | - Yong Won Seo
- Department of Business Administration, College of Business and Economics, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
16
|
Ebrahimian F, Denayer JFM, Mohammadi A, Khoshnevisan B, Karimi K. A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. BIORESOURCE TECHNOLOGY 2023; 368:128316. [PMID: 36375700 DOI: 10.1016/j.biortech.2022.128316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The organic fraction of municipal solid waste (OFMSW) is a widely-available promising feedstock for biofuel production. However, the presence of different inhibitors originating from fruit and food/beverage wastes as well as recalcitrant lignocellulosic fractions hampers its bioconversion. This necessitates a pretreatment to augment the biodigestibility and fermentability of OFMSW. Hence, this review aims to provide the in-vogue inhibitory compound removal and pretreatment techniques that have been employed for efficient OFMSW conversion into biofuels, i.e., hydrogen, biogas, ethanol, and butanol. The techniques are compared concerning their mode of action, chemical and energy consumption, inhibitor formation and removal, economic feasibility, and environmental sustainability. This critique also reviews the existing knowledge gap and future perspectives for efficient OFMSW valorization. The insights provided pave the way toward developing energy-resilient cities while addressing environmental crises related to generating OFMSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Denmark
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
17
|
Saravanan A, Kumar PS, Nhung TC, Ramesh B, Srinivasan S, Rangasamy G. A review on biological methodologies in municipal solid waste management and landfilling: Resource and energy recovery. CHEMOSPHERE 2022; 309:136630. [PMID: 36181855 DOI: 10.1016/j.chemosphere.2022.136630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization and urbanization growth combined with increased population has aggravated the issue of municipal solid waste generation. MSW has been accounted for contributing tremendously to the improvement of sustainable sources and safe environment. Biological processing of MSW followed by biogas and biomethane generation is one of the innumerable sustainable energy source choices. In the treatment of MSW, biological treatment has some attractive benefits such as reduced volume in the waste material, adjustment of the waste, economic aspects, obliteration of microorganisms in the waste material, and creation of biogas for energy use. In the anaerobic process the utilizable product is energy recovery. The current review discusses about the system for approaching conversion of MSW to energy and waste derived circular bioeconomy to address the zero waste society and sustainable development goals. Biological treatment process adopted with aerobic and anaerobic processes. In the aerobic process the utilizable product is compost. These techniques are used to convert MSW into a reasonable hotspot for resource and energy recovery that produces biogas, biofuel and bioelectricity and different results in without risk and harmless to the ecosystem. This review examines the suitability of biological treatment technologies for energy production, giving modern data about it. It likewise covers difficulties and points of view in this field of exploration.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Tran Cam Nhung
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Srinivasan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
18
|
Soni A, Das PK, Yusuf M, Kamyab H, Chelliapan S. Development of sand-plastic composites as floor tiles using silica sand and recycled thermoplastics: a sustainable approach for cleaner production. Sci Rep 2022; 12:18921. [PMID: 36344577 PMCID: PMC9640566 DOI: 10.1038/s41598-022-19635-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Strict environmental concerns, depleting natural recourses, and rising demand for building construction materials have promoted scientific research toward alternative building materials. This research supports the idea of sustainability and a circular economy via the utilization of waste to produce value-added products. The research explored the potential of waste plastics and silica sand for developing thermoplastic composite as floor tiles. The samples were characterized by water absorption, compressive strength, flexural strength, and sliding wear. The morphological analysis of the sand-plastic interfaces was covered under the umbrella of this study. The maximum compressive and flexural strength were found to be 46.20 N/mm2 and 6.24 N/mm2, respectively, with the minimum water absorption and sliding wear rate of 0.039% and 0.143 × 10-8 kg/m, respectively. The study suggests the workability of the developed floor tiles in non-traffic areas of public places. Thus, the study provides a green building material through recycling waste plastics for sustainable development.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura, 799046, India
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura, 799046, India
| | - Mohammad Yusuf
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Babu S, Singh Rathore S, Singh R, Kumar S, Singh VK, Yadav SK, Yadav V, Raj R, Yadav D, Shekhawat K, Ali Wani O. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. BIORESOURCE TECHNOLOGY 2022; 360:127566. [PMID: 35788385 DOI: 10.1016/j.biortech.2022.127566] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Globally agricultural production system generates a huge amount of solid waste. Improper agri-waste management causes environmental pollution which resulted in economic losses and human health-related problems. Hence, there is an urgent need to design and develop eco-friendly, cost-effective, and socially acceptable agri-waste management technologies. Agri-waste has high energy conversion efficiency as compared to fossil fuel-based energy generation materials. Agri-waste can potentially be exploited for the production of second-generation biofuels. However, composted agri-waste can be an alternative to energy-intensive chemical fertilizers in organic production systems. Furthermore, value-added agri-waste can be a potential feedstock for livestock and industrial products. But comprehensive information concerning agri-waste management is lacking in the literature. Therefore, the present study reviewed the latest advancements in efficient agri-waste management technologies. This latest review will help the researchers and policy planners to formulate environmentally robust residue management practices for achieving a green economy in the agricultural production sector.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Raghavendra Singh
- ICAR- Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024, India
| | - Sanjeev Kumar
- ICAR- Indian Institute of Farming Systems Research, Modipuram, Uttar Pradesh 250110, India
| | - Vinod K Singh
- ICAR- Central Research Institute on Dryland Agriculture, Hyderabad, Telangana 500 059, India
| | - S K Yadav
- ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226 002, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Rishi Raj
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Devideen Yadav
- ICAR-Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand 248 195, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Owais Ali Wani
- Division of Soil Science and Agricultural Chemistry, SKUAST- Kashmir, 193201, India
| |
Collapse
|
20
|
Hadiya V, Popat K, Vyas S, Varjani S, Vithanage M, Kumar Gupta V, Núñez Delgado A, Zhou Y, Loke Show P, Bilal M, Zhang Z, Sillanpää M, Sabyasachi Mohanty S, Patel Z. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. BIORESOURCE TECHNOLOGY 2022; 355:127303. [PMID: 35562022 DOI: 10.1016/j.biortech.2022.127303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In recent years, biomass has been reported to obtain a wide range of value-added products. Biochar can be obtained by heating biomass, which aids in carbon sinks, soil amendments, resource recovery, and water retention. Microwave technology stands out among various biomass heating technologies not only for its effectiveness in biomass pyrolysis for the production of biochar and biofuel but also for its speed, volumetrics, selectivity, and efficiency. The features of microwave-assisted biomass pyrolysis and biochar are briefly reviewed in this paper. An informative comparison has been drawn between microwave-assisted pyrolysis and conventional pyrolysis. It focuses mainly on technological and economic scenario of biochar production and environmental impacts of using biochar. This source of knowledge would aid in the exploration of new possibilities and scope for employing microwave-assisted pyrolysis technology to produce biochar.
Collapse
Affiliation(s)
- Vishal Hadiya
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009,Gujarat, India
| | - Kartik Popat
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar 382007, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, UK, Edinburgh EH9 3JG, United Kingdom; Centre for Safe and Improved Foods, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, UK, Edinburgh EH9 3JG, United Kingdom
| | - Avelino Núñez Delgado
- Department of Soil Science and Agricultura Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002 Lugo, Spain
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia University, 401 Evansdale Drive, Morgantown, WV 26506, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Zeel Patel
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009,Gujarat, India
| |
Collapse
|