1
|
Valle C, Grillo G, Calcio Gaudino E, Ponsetto P, Mazzoli R, Bonavita G, Vitale P, Pessione E, Garcia-Moruno E, Costantini A, Cravotto G, Tabasso S. Grape Stalks Valorization towards Circular Economy: A Cascade Biorefinery Strategy. CHEMSUSCHEM 2025; 18:e202402536. [PMID: 39924442 DOI: 10.1002/cssc.202402536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Lignocellulosic biomasses have the potential to generate by-products with biological activity (i. e., polyphenols) as well as biopolymers (i. e., cellulose, hemicellulose, pectins, lignin). The wine industry is one of the pillars of Italian agri-food sector. Nevertheless, large quantities of by-products such as grape stems are produced, which are usually disposed of at a cost, and therefore represent an attractive negative-cost feedstock for biorefinery. In this work, a sequential protocol for biomass valorization is proposed, characterized by a multidisciplinary strategy using enabling technologies and subcritical water as a green solvent, where physical/chemical treatments synergistically interact with biological treatments. The first phase involved the sequential fractionation of grape stalks, obtaining several product streams rich in polyphenols, hemicellulose, pectin (13.15 % of cumulative yield on biomass), lignin and cellulose. A membrane treatment was employed to recycle materials within the process. Finally, the cellulose-rich residue was exploited as a fermentation substrate for the last step, producing up to 5.8 g/L of lactic acid by harnessing suitably engineered Clostridium thermocellum strains. The polyphenolic fraction successfully inhibited the growth of Brettanomyces bruxellensis and Acetobacter pasteurianus, microorganisms responsible for major wine off-flavors. Globally, this study represents a proof-of-concept of a second-generation biorefining process based on locally available waste biomass.
Collapse
Affiliation(s)
- Carlotta Valle
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Emanuela Calcio Gaudino
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Paola Ponsetto
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Giulia Bonavita
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Pietro Vitale
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Emilia Garcia-Moruno
- Research Centre for Viticulture and Enology CREA-VE, Council of Agricultural Research and Economics, Via Pietro Micca 35, 14100, Asti, Italy
| | - Antonella Costantini
- Research Centre for Viticulture and Enology CREA-VE, Council of Agricultural Research and Economics, Via Pietro Micca 35, 14100, Asti, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|
2
|
Le Y, Zhang M, Wu P, Wang H, Ni J. Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing. ENGINEERING MICROBIOLOGY 2024; 4:100174. [PMID: 39628591 PMCID: PMC11610967 DOI: 10.1016/j.engmic.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024]
Abstract
The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation. This paper reviews recent developments in the conversion of lignocellulose to biofuel using thermophile-based CBP. First, advances in thermostable enzyme and thermophilic lignocellulolytic microorganism discovery and development for lignocellulosic biorefinery use are outlined. Then, several thermophilic CBP candidates and thermophilic microbes engineered to drive CBP of lignocellulose are reviewed. CRISPR/Cas-based genome editing tools developed for thermophiles are also highlighted. The potential applications of the Design-Build-Test-Learn (DBTL) synthetic biology strategy for designing and constructing thermophilic CBP hosts are also discussed in detail. Overall, this review illustrates how to develop highly sophisticated thermophilic CBP hosts for use in lignocellulosic biorefinery applications.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengqi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Pengju Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huilei Wang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
3
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
4
|
Takayesu A, Mahoney BJ, Goring AK, Jessup T, Ogorzalek Loo RR, Loo JA, Clubb RT. Insight into the autoproteolysis mechanism of the RsgI9 anti-σ factor from Clostridium thermocellum. Proteins 2024; 92:946-958. [PMID: 38597224 PMCID: PMC11222046 DOI: 10.1002/prot.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/β/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.
Collapse
Affiliation(s)
- Allen Takayesu
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Brendan J. Mahoney
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Tobie Jessup
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Mazzoli R, Pescarolo S, Gilli G, Gilardi G, Valetti F. Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnol Adv 2024; 73:108379. [PMID: 38754796 DOI: 10.1016/j.biotechadv.2024.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Simone Pescarolo
- Biology applied to the environment, Laboratories of microbiology and ecotoxicology, Ecobioqual, Environment Park. Via Livorno 60, 10144 Torino, Italy
| | - Giorgio Gilli
- Department of Sciences of Public Health and Pediatrics, School of Medicine, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Gianfranco Gilardi
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Francesca Valetti
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
6
|
Chou KJ, Croft T, Hebdon SD, Magnusson LR, Xiong W, Reyes LH, Chen X, Miller EJ, Riley DM, Dupuis S, Laramore KA, Keller LM, Winkelman D, Maness PC. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose. Metab Eng 2024; 83:193-205. [PMID: 38631458 DOI: 10.1016/j.ymben.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different β-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the β-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.
Collapse
Affiliation(s)
- Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA.
| | - Trevor Croft
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lauren R Magnusson
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Luis H Reyes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA; Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Xiaowen Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Emily J Miller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Danielle M Riley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Sunnyjoy Dupuis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Kathrin A Laramore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lisa M Keller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Dirk Winkelman
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| |
Collapse
|
7
|
Seo H, Castro G, Trinh CT. Engineering a Synthetic Escherichia coli Coculture for Compartmentalized de novo Biosynthesis of Isobutyl Butyrate from Mixed Sugars. ACS Synth Biol 2024; 13:259-268. [PMID: 38091519 PMCID: PMC10804408 DOI: 10.1021/acssynbio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
Short-chain esters are versatile chemicals that can be used as flavors, fragrances, solvents, and fuels. The de novo ester biosynthesis consists of diverging and converging pathway submodules, which is challenging to engineer to achieve optimal metabolic fluxes and selective product synthesis. Compartmentalizing the pathway submodules into specialist cells that facilitate pathway modularization and labor division is a promising solution. Here, we engineered a synthetic Escherichia coli coculture with the compartmentalized sugar utilization and ester biosynthesis pathways to produce isobutyl butyrate from a mixture of glucose and xylose. To compartmentalize the sugar-utilizing pathway submodules, we engineered a xylose-utilizing E. coli specialist that selectively consumes xylose over glucose and bypasses carbon catabolite repression (CCR) while leveraging the native CCR machinery to activate a glucose-utilizing E. coli specialist. We found that the compartmentalization of sugar catabolism enabled simultaneous co-utilization of glucose and xylose by a coculture of the two E. coli specialists, improving the stability of the coculture population. Next, we modularized the isobutyl butyrate pathway into the isobutanol, butyl-CoA, and ester condensation submodules, where we distributed the isobutanol submodule to the glucose-utilizing specialist and the other submodules to the xylose-utilizing specialist. Upon compartmentalization of the isobutyl butyrate pathway submodules into these sugar-utilizing specialist cells, a robust synthetic coculture was engineered to selectively produce isobutyl butyrate, reduce the biosynthesis of unwanted ester byproducts, and improve the production titer as compared to the monoculture.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department
of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
of Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Gillian Castro
- Department
of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Cong T. Trinh
- Department
of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
of Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|