1
|
Yu M, Gao Y, Liu Y, Wang Z, Zhang Y, Li Y, Fan L, Li X. Substrate Specificity of Adenine-Cu-PO 4 Nanozyme: Ascorbic Acid Oxidation and Selective Cytotoxicity. Chemistry 2025; 31:e202403568. [PMID: 39777753 DOI: 10.1002/chem.202403568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Though nanozymes are becoming promising alternatives to natural enzymes due to their superior properties, constructing nanozyme with high specificity is still a great challenge. Herein, with Cu2+ as an active site and adenine as a ligand, Adenine-Cu-PO4 is synthesized in phosphate-buffered saline. As an oxidase mimic, Adenine-Cu-PO4 could selectively catalyze oxidation of ascorbic acid (AA) to dehydroascorbic acid, but not universal substrates (3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,4-dichlorophenol (2,4-DP)), small biomolecules (dopamine, glutathione, glucose, galactose), other vitamins (vitamin A acid, vitamin B1, vitamin K1) and even dithiothreitol (a common interference of AA). Such the specific AA catalytic oxidation is revealed that Adenine-Cu-PO4 selectively binds with AA through hydrogen bonds, accompanied with catalyzing AA oxidation, and concurrently O2 transferring to H2O2 via O2⋅-, further to H2O via ⋅OH. Based on the produced reactive oxygen species, with AA as a pro-oxidant, Adenine-Cu-PO4 nanozyme efficiently triggers severe intratumor oxidative stress to induce tumor cell death. This work opens a new avenue to design intrinsic nanozymes with high specificity, and also presents a promising application in the field of AA oxidation induced cancer therapy.
Collapse
Affiliation(s)
- Mincong Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuanbo Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yichen Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhuo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key, Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Jia D, Yang T, Wang K, Wang H, Wang E, Chou KC, Hou X. Ti 3C 2T x Coated with TiO 2 Nanosheets for the Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Molecules 2024; 29:2915. [PMID: 38930980 PMCID: PMC11206739 DOI: 10.3390/molecules29122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Two-dimensional MXenes have become an important material for electrochemical sensing of biomolecules due to their excellent electric properties, large surface area and hydrophilicity. However, the simultaneous detection of multiple biomolecules using MXene-based electrodes is still a challenge. Here, a simple solvothermal process was used to synthesis the Ti3C2Tx coated with TiO2 nanosheets (Ti3C2Tx@TiO2 NSs). The surface modification of TiO2 NSs on Ti3C2Tx can effectively reduce the self-accumulation of Ti3C2Tx and improve stability. Glassy carbon electrode was modified by Ti3C2Tx@TiO2 NSs (Ti3C2Tx@TiO2 NSs/GCE) and was able simultaneously to detect dopamine (DA), ascorbic acid (AA) and uric acid (UA). Under concentrations ranging from 200 to 1000 μM, 40 to 300 μM and 50 to 400 μM, the limit of detection (LOD) is 2.91 μM, 0.19 μM and 0.25 μM for AA, DA and UA, respectively. Furthermore, Ti3C2Tx@TiO2 NSs/GCE demonstrated remarkable stability and reliable reproducibility for the detection of AA/DA/UA.
Collapse
Affiliation(s)
- Dengzhou Jia
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Yang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Kang Wang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Enhui Wang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Kuo-Chih Chou
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinmei Hou
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Rapid industrial scale synthesis of robust carbon nanotube network electrodes for electroanalysis. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020; 142:11717-11733. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal-organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or O, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM-200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM-200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aileen M Eagleton
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Claudia G Durbin
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
|
6
|
Ashoka N, Swamy BK, Jayadevappa H, Sharma S. Simultaneous electroanalysis of dopamine, paracetamol and folic acid using TiO2-WO3 nanoparticle modified carbon paste electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Anojčić J, Guzsvány V, Kónya Z, Mikov M. Rapid, trace-level direct cathodic voltammetric determination of dopamine by oxidized multiwalled carbon nanotube–modified carbon paste electrode in selected samples of pharmaceutical importance. IONICS 2019; 25:6093-6106. [DOI: 10.1007/s11581-019-03156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
|
8
|
Shahzad F, Iqbal A, Zaidi SA, Hwang SW, Koo CM. Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Liu HY, Qiao Z, Mao XX, Zha JC, Yin J. Phenylboronic Acid-Dopamine Dynamic Covalent Bond Involved Dual-Responsive Polymeric Complex: Construction and Anticancer Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11850-11858. [PMID: 31423793 DOI: 10.1021/acs.langmuir.9b02194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In cancer treatment, prolonging the retention time of therapeutic agents in tumor tissues is a key point in enhancing the therapeutic efficacy. However, drug delivery by intravenous injection is always subjected to a "CAPIR" cascade, including circulation, accumulation, penetration, internalization, and release. Intratumoral administration has gradually emerged as an ideal alternative approach for nanomedicine because of its independence of blood constituents and minimal systemic toxicities. In this contribution, based on the dynamically reversible interaction between boronic acid (BA) and dopamine (DA), a thermo- and pH-responsive polymeric complex is rationally obtained by facile mixing of phenylboronic acid (PBA)- and tetraphenylethene (TPE)-modified poly(N-isopropylacrylamide)-b-poly(phenyl isocyanide)s block copolymers, PNIPAM-b-P(PBAPI-co-TPEPI), and tetra(ethylene glycol) methyl ether acrylate (OEGA)- and DA-containing hydrophilic P(DA-co-OEGA) copolymers. The resultant complex exhibited temperature- and pH-dependent size change as well as sustained nile red (NR) release profiles in a mimic tumor environment. Moreover, thanks to the opposite optical behavior of TPE and NR molecules, the complex could be served as a fluorescence ratiometric cell imaging agent, avoiding the interference of background fluorescence and improving correlated resolution. After encapsulation of camptothecin (anticancer drug), the efficient killing on HeLa cells was achieved in vitro, and the structural integrity of the complex endowed its extended retention time in tumor tissues. Considering these advantages, the reversible covalent interaction between PBA and diols can be used as an efficient driving force to form dynamic drug-delivery vectors, which are promising to be an effective nanoplatform for injectable medical treatments.
Collapse
Affiliation(s)
- Huan-Ying Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre , Hefei 230009 , P. R. China
| | - Zhu Qiao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre , Hefei 230009 , P. R. China
| | - Xiao-Xu Mao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre , Hefei 230009 , P. R. China
| | - Jie-Cheng Zha
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre , Hefei 230009 , P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre , Hefei 230009 , P. R. China
| |
Collapse
|
10
|
Fabrication of Au Nanoparticle-Decorated MoS2 Nanoslices as Efficient Electrocatalysts for Electrochemical Detection of Dopamine. Catalysts 2019. [DOI: 10.3390/catal9080653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herein, MoS2 nanoslices were simply prepared by using ultrasonic treatment, and were further decorated with Au nanoparticles (AuNPs) through an electrodeposition process to obtain the MoS2/Au nanocomposites. The obtained nanocomposites display synergetic electrocatalytic effect for the oxidation of dopamine due to the large surface area and two-dimensional structure of the MoS2 nanoslices, combining with the high catalytic activity and good conductivity of AuNPs. An electrochemical sensor was constructed based on MoS2/Au-modified carbon paste electrode, for sensitive and quantitative determination of dopamine. The prepared electrochemical sensor proves excellent analytical performances: very high sensitivity, wide linear ranges (0.5–300 μM), and low detection limit (76 nM). Moreover, the dopamine sensor also displays high selectivity, good reproducibility and stability, and can be used in real sample analysis. The method of fabricating high-efficiency electrocatalysts and electrochemical sensors proposed in this study provides a good reference for developing more functionalized nanocomposites and for extending practical applications.
Collapse
|
11
|
Xie F, Zhou Y, Liang X, Zhou Z, Luo J, Liu S, Ma J. Permselectivity of Electrodeposited Polydopamine/Graphene Composite for Voltammetric Determination of Dopamine. ELECTROANAL 2019. [DOI: 10.1002/elan.201900062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fang Xie
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Materials ScienceEast China University of technology Nangchang 330013 China
| | - Yueming Zhou
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Materials ScienceEast China University of technology Nangchang 330013 China
| | - Xizhen Liang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Materials ScienceEast China University of technology Nangchang 330013 China
| | - Zhiping Zhou
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Materials ScienceEast China University of technology Nangchang 330013 China
| | - Jianqiang Luo
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Materials ScienceEast China University of technology Nangchang 330013 China
| | - Shujuan Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Materials ScienceEast China University of technology Nangchang 330013 China
| | - Jianguo Ma
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Materials ScienceEast China University of technology Nangchang 330013 China
| |
Collapse
|
12
|
Zou J, Yuan MM, Huang ZN, Chen XQ, Jiang XY, Jiao FP, Zhou N, Zhou Z, Yu JG. Highly-sensitive and selective determination of bisphenol A in milk samples based on self-assembled graphene nanoplatelets-multiwalled carbon nanotube-chitosan nanostructure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109848. [PMID: 31349437 DOI: 10.1016/j.msec.2019.109848] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
Graphene nanoplatelets (GNPs), multiwalled carbon nanotube (MWCNTs) and chitosan (CS) were self-assembled by a facile one-step hydrothermal reaction to obtain novel MWCNTs-CS enfolded GNPs (GNPs-MWCNTs-CS) composite. Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), UV-visible (UV-vis) absorption spectroscopy and zeta potential analysis were employed to characterize the morphology, surface composition, interaction, surface charge and stability of the GNPs-MWCNTs-CS composite. The electrochemical behaviors of GNPs-MWCNTs-CS composite modified glassy carbon electrode (GNPs-MWCNTs-CS/GCE) were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The GNPs-MWCNTs-CS/GCE was used for fast and high sensitive determination of bisphenol A (BPA) by differential pulse voltammetry (DPV). Under the optimum conditions, the calibration curve obtained is linear for the current versus the BPA concentration in the range 0.1-100 μM with a detection limit of 0.05 nM (signal-to-noise ratio of 3, S/N = 3). The between-sensor reproducibility was 1.29% (n = 6) for 0.04 mM BPA. The proposed GNPs-MWCNTs-CS/GCE based sensor showed high resistance to interference, good repeatability and excellent reproducibility. Trace BPA in milk samples could also be reliably determined.
Collapse
Affiliation(s)
- Jiao Zou
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Meng-Meng Yuan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Zhao-Ning Huang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Fei-Peng Jiao
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Nan Zhou
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
13
|
Sakthivel R, Kubendhiran S, Chen SM, Kumar JV. Rational design and facile synthesis of binary metal sulfides VS 2-SnS 2 hybrid with functionalized multiwalled carbon nanotube for the selective detection of neurotransmitter dopamine. Anal Chim Acta 2019; 1071:98-108. [PMID: 31128761 DOI: 10.1016/j.aca.2019.04.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
In this work, we report a sensitive and selective electrochemical sensor for the detection of dopamine (DA) neurotransmitter based on VS2-SnS2/f-MWCNT hybrids. Herein, the binary metal sulfide (VS2-SnS2) was synthesized via single step hydrothermal route and hybrids with f-MWCNT via the ultrasonication process. The as-prepared VS2-SnS2/f-MWCNT hybrids were characterized through the FESEM, EDX and elemental mapping, TEM, XPS, Raman and XRD techniques. The electrochemical performance and catalytic activity of the modified electrodes were probed using electrochemical impedance spectra (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Interestingly, DPV results exhibits an appreciable linear range from 0.025 to 1017 μM and LOD of 0.008 μM. The selectivity study was performed to prove the high selectivity of the VS2-SnS2/f-MWCNT hybrids modified electrode. Furthermore, the practical applicability of the DA sensor was scrutinized in human serum sample and rat brain sample.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | | | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC.
| | - Jeyaraj Vinoth Kumar
- Department of Chemistry, VHNSN College, Virudhunagar, 626001, Tamil Nadu, India; Department of Chemistry, Nanomaterials Laboratory, IRC, Kalasalingam Academy of Research and Education, Krishnankoil, 626 126, Tamil Nadu, India
| |
Collapse
|
14
|
Anancia Grace A, Divya KP, Dharuman V, Hahn JH. Single step sol-gel synthesized Mn2O3-TiO2 decorated graphene for the rapid and selective ultra sensitive electrochemical sensing of dopamine. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Viet NX, Kishimoto S, Ohno Y. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6389-6395. [PMID: 30672689 DOI: 10.1021/acsami.8b19252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical sensors based on carbon nanotubes (CNTs) have great potential for use in wearable or implantable biomedical sensor applications because of their excellent mechanical flexibility and biocompatibility. However, the main challenge associated with CNT-based sensors is their uniform and reproducible fabrication on the flexible plastic film. Here, we introduce and demonstrate a highly reliable technique to fabricate flexible CNT microelectrodes on a plastic film. The technique involves a process whereby the CNT film is formed by the dry transfer process based on the floating-catalyst chemical vapor deposition. An oxide protection layer, which is used to cover the CNT thin film during the fabrication process, minimizes contamination of the surface. The fabricated flexible CNT microelectrodes show almost ideal electrochemical characteristics for microelectrodes with the average value of the quartile potentials, Δ E = | E3/4 - E1/4|, being 60.4 ± 2.9 mV for the 28 electrodes, while the ideal value of Δ E = 56.4 mV. The CNT microelectrodes also showed enhanced resistance to surface fouling during dopamine oxidation in comparison to carbon fiber and gold microelectrodes; the degradation of the oxidation current after 10 consecutive cycles were 1.8, 8.3, and 13.9% for CNT, carbon fiber, and gold microelectrodes, respectively. The high-sensitivity detection of dopamine is also demonstrated with differential-pulse voltammetry, with a resulting limit of detection of ∼50 nM. The reliability, uniformity, and sensitivity of the present CNT microelectrodes provide a platform for flexible electrochemical sensors.
Collapse
|
16
|
Bala K, Sharma D, Gupta N. Carbon-Nanotube-Based Materials for Electrochemical Sensing of the Neurotransmitter Dopamine. ChemElectroChem 2018. [DOI: 10.1002/celc.201801319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kanchan Bala
- Department: Chemistry; Institution: Sri Guru Granth Sahib World University Fatehgarh Sahib; 140407 Punjab India
| | - Deepika Sharma
- Department: Chemistry; Institution: Shoolini University, Solan; Post Box No.9, Head Post Office Solan-173229 H.P. India
| | - Neeraj Gupta
- Department: Chemistry; Institution: Shoolini University, Solan; Post Box No.9, Head Post Office Solan-173229 H.P. India
| |
Collapse
|
17
|
|
18
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
19
|
Ahmed I, Haque A, Bhattacharyya S, Patra P, Plaisier JR, Perissinotto F, Bal JK. Vitamin C/Stearic Acid Hybrid Monolayer Adsorption at Air-Water and Air-Solid Interfaces. ACS OMEGA 2018; 3:15789-15798. [PMID: 31458229 PMCID: PMC6644023 DOI: 10.1021/acsomega.8b02235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 05/10/2023]
Abstract
Because of the antioxidant activity of vitamin C (Vit C) polar heads, they can be used as a protective agent for fatty acids. Hence, the study on the growth of Vit C/stearic acid (SA) mixed binary films at air-water interface (known as Langmuir monolayer) and air-solid interface (known as Langmuir-Blodgett films) is of paramount interest. Although Vit C is situated at subsurface beneath SA molecules and interacts via hydrogen bonding between the hydroxyl groups of Vit C and SA, several Vit C molecules may infiltrate within SA two-dimensional matrix at the air-water interface. The increased mole fraction of Vit C (0.125-0.5) and the reduction of temperature (from 22 to 10 °C) of the subphase water result in an increase in the amount of adsorbed Vit C at the air-water interface. The surface pressure (π)-area (A) isotherms illustrate that such inclusion of Vit C provokes a spreading out of Vit C/SA binary monolayers, which leads to an alteration of different physicochemical parameters such as elasticity, Gibbs free energy of mixing, enthalpy, entropy, interaction energy parameter, and activity coefficient. However, being polar in nature, the transfer of pure Vit C on substrates gets affected. It can be transferred onto substrate by mixing suitably with SA as confirmed by infrared spectra. Their structures, extracted X-ray reflectivity, and atomic force microscopy (topography and phase imaging) are found to be strongly dependent on the nature of the substrate (hydrophilic and hydrophobic).
Collapse
Affiliation(s)
- Ikbal Ahmed
- Centre for Research
in Nanoscience and Nanotechnology, University
of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake, Kolkata 700098, India
| | - Anamul Haque
- Centre for Research
in Nanoscience and Nanotechnology, University
of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake, Kolkata 700098, India
| | - Shreya Bhattacharyya
- Centre for Research
in Nanoscience and Nanotechnology, University
of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake, Kolkata 700098, India
| | - Prasun Patra
- Amity Institute of Biotechnology, Amity
University, Kolkata 700135, India
| | - Jasper R. Plaisier
- Elettra—Sincrotrone
Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Fabio Perissinotto
- Elettra—Sincrotrone
Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Jayanta Kumar Bal
- Centre for Research
in Nanoscience and Nanotechnology, University
of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake, Kolkata 700098, India
- Department of Physics, Abhedananda Mahavidyalaya, University of Burdwan, Sainthia, Birbhum 731234, West Bengal, India
- E-mail:
| |
Collapse
|
20
|
Hei Y, Li X, Zhou X, Liu J, Hassan M, Zhang S, Yang Y, Bo X, Wang HL, Zhou M. Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Anal Chim Acta 2018; 1029:15-23. [PMID: 29907285 DOI: 10.1016/j.aca.2018.05.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
In this work, the three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures (3D-NNCsHAs) with high density of defective sites, high surface area and pluralities of pore size distributions was prepared through the pyrolysis of sea-tangle (Laminaria japonica), an inexpensive, eco-friendly and abundant precursor. Benefitting from their structural uniqueness, a selective and sensitive ascorbic acid (AA) sensor based on 3D-NNCsHAs was developed. Compared to the glassy carbon electrode (GCE) and the carbon nanotubes modified GCE (CNTs/GCE), the 3D-NNCsHAs modified GCE (3D-NNCsHAs/GCE) presents higher performance towards the electrocatalysis and detection of AA, such as lower detection limit (1 μM), wider linear range (10-4410 μM) and lower electrooxidation peak potential (-0.02 V vs. Ag/AgCl). In addition, 3D-NNCsHAs/GCE also exhibits high anti-interference and anti-fouling abilities for AA detection. Particularly, the fabricated 3D-NNCsHAs/GCE is able to determine AA in real samples and the results acquired are satisfactory. Therefore, the 3D-NNCsHAs can be considered as a kind of novel electrode nanomaterial for the fabrication of selective and sensitive AA sensor for the extensive practical applications ranging from food analysis, to pharmaceutical industry and clinical test.
Collapse
Affiliation(s)
- Yashuang Hei
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Xiqian Li
- Obstetrics & Gynecology, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Xiao Zhou
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, 130062, PR China
| | - Jingju Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Mehboob Hassan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Siyi Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Yu Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| | - Hsing-Lin Wang
- Department of Materials Science & Engineering, Southern University of Science & Technology, Shenzhen, Guangdong Province 518055, PR China.
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| |
Collapse
|
21
|
Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples. Biosens Bioelectron 2018; 118:129-136. [DOI: 10.1016/j.bios.2018.07.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023]
|
22
|
Zhong D, Liao X, Liu Y, Zhong N, Xu Y. Quick start-up and performance of microbial fuel cell enhanced with a polydiallyldimethylammonium chloride modified carbon felt anode. Biosens Bioelectron 2018; 119:70-78. [PMID: 30103156 DOI: 10.1016/j.bios.2018.07.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022]
Abstract
It is of significant importance to simultaneously shorten the start-up time and enhance the electricity generation performance for practical application of microbial fuel cell (MFC). In this paper, the polydiallyldimethylammonium chloride (PDDA) modified carbon felt (PDDA-CF) electrode was prepared and used as the anode of PDDA-MFC. The anode significantly enhanced the start-up speed and electricity generation and dye wastewater degradation performances of the PDDA-MFC. The start-up time of PDDA-MFC is only 9 h, which is only 7.5% that of the unmodified carbon felt anode MFC (CF-MFC). The charge transfer resistance, the maximum output voltage and the maximum output power density of PDDA-MFC were 9.7 Ω, 741 mV and 537.8 mW m-2 respectively, which were 70.3% lower than, 1.7 times and 3.3 times greater than those of CF-MFC respectively. In addition, the color and chemical oxygen demand (COD) removal rates of Reactive Brilliant Red X-3B for PDDA-MFC reached 95.94% and 64.24% at 24 h respectively, which were 41.5% and 51.2% higher than those of CF-MFC respectively. Due to the electrostatic attraction of PDDA, the adhesion and metabolic mass transfer rate of exoelectrogens are accelerated, thus the PDDA-CF electrode has excellent electrochemical properties and bio-affinity. This paper provides a new idea to enhance the start-up speed and performance of MFC simultaneously.
Collapse
Affiliation(s)
- Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xinrong Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqi Liu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Nianbing Zhong
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
23
|
Kang K, Cho Y, Yu KJ. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems. MICROMACHINES 2018; 9:E263. [PMID: 30424196 PMCID: PMC6187536 DOI: 10.3390/mi9060263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
Recent progress in fabricating flexible electronics has been significantly developed because of the increased interest in flexible electronics, which can be applied to enormous fields, not only conventional in electronic devices, but also in bio/eco-electronic devices. Flexible electronics can be applied to a wide range of fields, such as flexible displays, flexible power storages, flexible solar cells, wearable electronics, and healthcare monitoring devices. Recently, flexible electronics have been attached to the skin and have even been implanted into the human body for monitoring biosignals and for treatment purposes. To improve the electrical and mechanical properties of flexible electronics, nanoscale fabrications using novel nanomaterials are required. Advancements in nanoscale fabrication methods allow the construction of active materials that can be combined with ultrathin soft substrates to form flexible electronics with high performances and reliability. In this review, a wide range of flexible electronic applications via nanoscale fabrication methods, classified as either top-down or bottom-up approaches, including conventional photolithography, soft lithography, nanoimprint lithography, growth, assembly, and chemical vapor deposition (CVD), are introduced, with specific fabrication processes and results. Here, our aim is to introduce recent progress on the various fabrication methods for flexible electronics, based on novel nanomaterials, using application examples of fundamental device components for electronics and applications in healthcare systems.
Collapse
Affiliation(s)
- Kyowon Kang
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Younguk Cho
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Ki Jun Yu
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
24
|
Qin H, Zhu Z, Ji W, Zhang M. Carbon Nanotube Paper-based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate. ELECTROANAL 2018. [DOI: 10.1002/elan.201700689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hancheng Qin
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Ziyu Zhu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Wenliang Ji
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Meining Zhang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
25
|
Lee CS, Yu SH, Kim TH. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 8:E17. [PMID: 29301209 PMCID: PMC5791104 DOI: 10.3390/nano8010017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
Abstract
Here, we introduce the preparation of the hybrid nanocomposite-modified electrode consisting of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) using the one-step electrochemical method, allowing for the simultaneous and individual detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). RGO/AuNPs nanocomposite was formed on a glassy carbon electrode by the co-reduction of GO and Au3+ using the potentiodynamic method. The RGO/AuNPs nanocomposite-modified electrode was produced by subjecting a mixed solution of GO and Au3+ to cyclic sweeping from -1.5 V to 0.8 V (vs. Ag/AgCl) at a scan rate 10 mV/s for 3 cycles. The modified electrode was characterized by scanning electron microscopy, Raman spectroscopy, contact angle measurement, electrochemical impedance spectroscopy, and cyclic voltammetry. Voltammetry results confirm that the RGO/AuNPs nanocomposite-modified electrode has high catalytic activity and good resolution for the detection of DA, AA, and UA. The RGO/AuNPs nanocomposite-modified electrode exhibits stable amperometric responses for DA, AA, and UA, respectively, and its detection limits were estimated to be 0.14, 9.5, and 25 μM. The modified electrode shows high selectivity towards the determination of DA, AA, or UA in the presence of potentially active bioelements. In addition, the resulting sensor exhibits many advantages such as fast amperometric response, excellent operational stability, and appropriate practicality.
Collapse
Affiliation(s)
- Chang-Seuk Lee
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea.
| | - Su Hwan Yu
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea.
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea.
| |
Collapse
|
26
|
Yi X, Wu Y, Tan G, Yu P, Zhou L, Zhou Z, Chen J, Wang Z, Pang J, Ning C. Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor. Sci Rep 2017; 7:7941. [PMID: 28801614 PMCID: PMC5554298 DOI: 10.1038/s41598-017-07909-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Traced dopamine (DA) detection is critical for the early diagnosis and prevention of some diseases such as Parkinson's, Alzheimer and schizophrenia. In this research, a novel self-supporting three dimensional (3D) bicontinuous nanoporous electrochemical biosensor was developed for the detection of dopamine by Differential Pulse Voltammetry (DPV). This biosensor was fabricated by electrodepositing palladium nanoparticles (Pd) onto self-supporting nanoporous gold (NPG) wire. Because of the synergistic effects of the excellent catalytic activity of Pd and novel structure of NPG wire, the palladium nanoparticles decorated NPG (Pd/NPG) biosensor possess tremendous superiority in the detection of DA. The Pd/NPG wire biosensor exhibited high sensitivity of 1.19 μA μΜ-1, broad detection range of 1-220 μM and low detection limit up to 1 μM. Besides, the proposed dopamine biosensor possessed good stability, reproducibility, reusability and selectivity. The response currents of detection in the fetal bovine serum were also close to the standard solutions. Therefore the Pd/NPG wire biosensor is promising to been used in clinic.
Collapse
Affiliation(s)
- Xin Yi
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yuxuan Wu
- Department of Electronic Communication & Software Engineering, Nanfang College of Sun Yat-sen University, Guangzhou, China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Peng Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Lei Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zhengnan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Junqi Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jinshan Pang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Roychoudhury A, Prateek A, Chauhan N, Kumar DS, Basu S, Jha SK. Tyrosinase-Conjugated Prussian Blue-Modified Nickel Oxide Nanoparticles-Based Interface for Selective Detection of Dopamine. ChemistrySelect 2017. [DOI: 10.1002/slct.201701304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Appan Roychoudhury
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi, Hauz Khas; New Delhi 110016 India
- Department of Biomedical Engineering; All India Institute of Medical Sciences; New Delhi 110029 India
| | - Arneish Prateek
- Department of Chemical Engineering; Indian Institute of Technology Delhi, Hauz Khas; New Delhi 110016 India
| | - Neha Chauhan
- Bio-Nano Electronics Research Centre; Toyo University, Kawagoe; Saitama 350-8585 Japan
| | - D. S. Kumar
- Bio-Nano Electronics Research Centre; Toyo University, Kawagoe; Saitama 350-8585 Japan
| | - Suddhasatwa Basu
- Department of Chemical Engineering; Indian Institute of Technology Delhi, Hauz Khas; New Delhi 110016 India
| | - Sandeep K. Jha
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi, Hauz Khas; New Delhi 110016 India
- Department of Biomedical Engineering; All India Institute of Medical Sciences; New Delhi 110029 India
| |
Collapse
|
28
|
Clark J, Chen Y, Hinder S, Silva SRP. Highly Sensitive Dopamine Detection Using a Bespoke Functionalised Carbon Nanotube Microelectrode Array. ELECTROANAL 2017. [DOI: 10.1002/elan.201700248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- James Clark
- Advanced Technology Institute; University of Surrey; Guildford, Surrey GU2 7XH United Kingdom
| | - Ying Chen
- Department of Biochemistry & Physiology; University of Surrey; Guildford, Surrey GU2 7XH United Kingdom
- Present address: Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park; Denmark Hill; London SE5 8AF United Kingdom
| | - Steven Hinder
- Department of Mechanical Engineering Sciences; University of Surrey; Guildford, Surrey GU2 7XH U.K
| | - S. Ravi P. Silva
- Advanced Technology Institute; University of Surrey; Guildford, Surrey GU2 7XH United Kingdom
| |
Collapse
|
29
|
Recent progress in electrochemical sensing of cardiac troponin by using nanomaterial-induced signal amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2219-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Saeki D, Matsuyama H. Ultrathin and ordered stacking of silica nanoparticles via spin-assisted layer-by-layer assembly under dehydrated conditions for the fabrication of ultrafiltration membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.09.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Hao Y, Feng S, Liu Y, Xu J, Ma Y, Wang J. Electrochemical Sensor based on Indium Tin Oxide Glass Modified with Poly(Ethyleneimine)/Phosphomolybdic Acid Composite Multilayers. ELECTROANAL 2017. [DOI: 10.1002/elan.201600672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanjun Hao
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
- School of Life Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Shun Feng
- School of Life Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Yumei Liu
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| | - Jie Xu
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| | - Yuhua Ma
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| | - Jide Wang
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| |
Collapse
|
32
|
A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine. Talanta 2017; 162:80-89. [DOI: 10.1016/j.talanta.2016.10.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/19/2016] [Accepted: 10/02/2016] [Indexed: 11/19/2022]
|
33
|
Wu F, Yu P, Mao L. Self-powered electrochemical systems as neurochemical sensors: toward self-triggered in vivo analysis of brain chemistry. Chem Soc Rev 2017; 46:2692-2704. [DOI: 10.1039/c7cs00148g] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review highlights recent development of self-powered electrochemical systems for in vivo neurochemical sensing.
Collapse
Affiliation(s)
- Fei Wu
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Ping Yu
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
34
|
Ghanbari K, Moloudi M. Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal Biochem 2016; 512:91-102. [DOI: 10.1016/j.ab.2016.08.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023]
|
35
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
36
|
Cheng H, Xiao T, Wang D, Hao J, Yu P, Mao L. Simultaneous in vivo ascorbate and electrophysiological recordings in rat brain following ischemia/reperfusion. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Joshi A, Chavan SN, Mandal D, Nagaiah TC. Ionic Liquid and Nitrogen Doped Carbon Nanotubes Composite Material for Sensitive and Selective Detection of Dopamine. ELECTROANAL 2016. [DOI: 10.1002/elan.201600257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anju Joshi
- Department of Chemistry; Indian Institute of Technology Ropar, Rupnagar; Punjab 140 001 India
| | - Santosh N. Chavan
- Department of Chemistry; Indian Institute of Technology Ropar, Rupnagar; Punjab 140 001 India
| | - Debaprasad Mandal
- Department of Chemistry; Indian Institute of Technology Ropar, Rupnagar; Punjab 140 001 India
| | - Tharamani C. Nagaiah
- Department of Chemistry; Indian Institute of Technology Ropar, Rupnagar; Punjab 140 001 India
| |
Collapse
|
38
|
Roychoudhury A, Basu S, Jha SK. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens Bioelectron 2016; 84:72-81. [DOI: 10.1016/j.bios.2015.11.061] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
|
39
|
Facile synthesis of Au-graphene nanocomposite for the selective determination of dopamine. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Hostert L, Alvarenga GD, Marchesi LF, Soares AL, Vidotti M. One-Pot sono electrodeposition of poly(pyrrole)/Prussian blue nanocomposites: Effects of the ultrasound amplitude in the electrode interface and electrocatalytical properties. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
A highly sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid based on ultra-small Ni nanoparticles. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Biswas S, Das R, Basu M, Bandyopadhyay R, Pramanik P. Synthesis of carbon nanoparticle embedded graphene for sensitive and selective determination of dopamine and ascorbic acid in biological fluids. RSC Adv 2016. [DOI: 10.1039/c6ra16774h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have prepared carbon nanoparticle embedded graphene (CNEG) by carbonizing a ternary composite of GO/melamine-formaldehyde resin/Zn(OAc)2.
Collapse
Affiliation(s)
- Sudip Biswas
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Rashmita Das
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Malini Basu
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Rajib Bandyopadhyay
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Panchanan Pramanik
- Department of Chemistry and Nanoscience
- GLA University
- Mathura – 281 406
- India
| |
Collapse
|
43
|
Zhang Y, Kim DY. Electrochemical Treatment of Glassy Carbon for Label-Free Detection of DNA Bases and Neurotransmitters. ELECTROANAL 2015. [DOI: 10.1002/elan.201500228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Qin WW, Wang SP, Li J, Peng TH, Xu Y, Wang K, Shi JY, Fan CH, Li D. Visualizing dopamine released from living cells using a nanoplasmonic probe. NANOSCALE 2015; 7:15070-15074. [PMID: 26348717 DOI: 10.1039/c5nr04433b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca(2+) influx, and the influx of Ca(2+) is through ATP-activated channels instead of the voltage-gated Ca(2+) channel (VGC).
Collapse
Affiliation(s)
- W W Qin
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Romeiro FC, Marinho JZ, Lemos SC, de Moura AP, Freire PG, da Silva LF, Longo E, Munoz RA, Lima RC. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties. J SOLID STATE CHEM 2015. [DOI: 10.1016/j.jssc.2015.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Miyazaki CM, Pereira TP, Mascagni DBT, de Moraes ML, Ferreira M. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:310-5. [PMID: 26478315 DOI: 10.1016/j.msec.2015.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 08/22/2015] [Indexed: 12/15/2022]
Abstract
In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm(-2))/(mmol L(-1)) and a detection limit of 0.33 mmol L(-1).
Collapse
Affiliation(s)
| | | | | | | | - Marystela Ferreira
- Universidade Federal de São Carlos, UFSCar, CCTS, Sorocaba, São Paulo, Brazil.
| |
Collapse
|
47
|
Zhou M, Guo S. Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. ChemCatChem 2015. [DOI: 10.1002/cctc.201500198] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Soltani N, Tavakkoli N, Ahmadi N, Davar F. Simultaneous determination of acetaminophen, dopamine and ascorbic acid using a PbS nanoparticles Schiff base-modified carbon paste electrode. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Parvin MH. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid, at a Graphene Paste Electrode Modified with Functionalized Graphene Sheets. ELECTROANAL 2015. [DOI: 10.1002/elan.201400702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array. SENSORS 2015; 15:1008-21. [PMID: 25580900 PMCID: PMC4327061 DOI: 10.3390/s150101008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022]
Abstract
It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at −80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10−6 M to 2 × 10−4 M for DA (r = 0.996) and in the range of 1 × 10−5 M to 3 × 10−4 M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10−4 M AA, the linear responses were obtained in the range of 1 × 10−5 M to 3 × 10−4 M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments.
Collapse
|