1
|
Zhang H, Xie L, Gao H, Pan H. Application of pre-amplification-based CRISPR-Cas nanostructured biosensors for bacterial detection. Nanomedicine (Lond) 2025; 20:903-915. [PMID: 40052226 PMCID: PMC11988256 DOI: 10.1080/17435889.2025.2476384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Bacterial infections are one of the primary triggers of global disease outbreaks. Traditional detection methods, such as bacterial culture and PCR, while reliable, are limited by their time-consuming procedures and operational complexity. In recent years, the CRISPR-Cas system has demonstrated significant potential in gene editing and diagnostics due to its high specificity and precision, offering innovative solutions for bacterial detection. By integrating pre-amplification techniques, the CRISPR-Cas system has substantially enhanced detection sensitivity, particularly excelling in detecting low-concentration target bacteria. This review summarizes the principles and application examples of CRISPR-Cas-based fluorescence, electrochemical, lateral flow, and colorimetric nanostructured biosensors developed over the past three years, categorizing them according to their recognition methods (e.g. bacterial genomes, aptamers, antibodies). It systematically explores the broad application prospects of these sensors in medical diagnostics, environmental monitoring, and food safety assessment. Additionally, this review discusses future research directions and potential development prospects, providing new insights and technical support for the rapid diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Xie
- Foreign Language School, Shanghai Dianji University, Shanghai, China
| | - Hongmin Gao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Jia H, Wang B, Wang M, Shu R, Liu S, Li Y, Sun J, Wang J. "Integrated Stacked" Design "Nanobullet" for High Photothermal Conversion in Dual-Mode Lateral Flow Immunoassay. Anal Chem 2025; 97:6268-6276. [PMID: 40067851 DOI: 10.1021/acs.analchem.5c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium), a prevalent foodborne bacterium, necessitates creating sensitive and rapid detection methods for food safety, with lateral flow immunoassays (LFIAs) using nanomaterials as signal tracers being particularly effective. Enhancements in performance and sensitivity are not restricted to the material alone, we propose an "integrated stacked" concept, which combines amorphous active sites, hollow morphology for enhanced reflection, and symmetric structure for strong absorption resonance. This approach leads to significant photothermal enhancement (η = 60.66%) and is supported by finite element analysis (|E|max2 = 3100). A hollow "nanobullet" (RuTe2) was created, featuring a vivid colorimetric signal enhancing the detection range, a large specific surface area (≈6:1) for improved antibody binding, and excellent photothermal properties facilitating dual-mode transduction. After 5 min of binding, the detection limits of RuTe2-LFIA for S. typhimurium after 12 min were 2398.83 cfu mL-1 (colorimetric) and 977.23 cfu mL-1 (photothermal), which were 36.14 and 88.72 times lower than the values of AuNPs-LFIA (86696.19 cfu mL-1). The superior performance of RuTe2-LFIA suggests potential advancements in photothermal materials for point-of-care testing.
Collapse
Affiliation(s)
- Huilin Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meilin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Wang Y, Dong H, Yu H, Yuan S, Kawasaki H, Guo Y, Yao W. Single-Port Fluorescence Immunoassay for Concurrent Quantification of Live and Dead Bacteria: A Strategy Based on Extracellular Nucleases and DNase I. Molecules 2025; 30:1374. [PMID: 40142149 PMCID: PMC11944870 DOI: 10.3390/molecules30061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Bacteria are the primary culprits of global foodborne diseases, making bacterial detection one of the most critical aspects of food safety. The quantification of viable and dead bacteria is typically achieved through distinct methodologies, such as culture-based methods and molecular biological techniques. These approaches often have non-overlapping requirements in terms of sample pre-treatment and detection equipment. However, in this presented work, bacterial extracellular nucleases and DNase I were utilized to achieve the simultaneous quantification of both live and dead bacteria in a single well of a microplate. The detection limits of the method for live and dead bacteria are estimated to be 7.13 × 105 CFU/mL and 3.54 × 105 CFU/mL, respectively. In the application of detecting bacteria in pickled pork stewed bamboo shoot soup, the detection limit for live bacteria can be reduced to as low as 102 CFU/mL within 24 h after enrichment cultivation.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Han Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Guo M, Yi Z, Li H, Liu Y, Ding L, Babailov SP, Xiong C, Huang G, Zhang J. NMR Immunosensor Based on a Targeted Gadolinium Nanoprobe for Detecting Salmonella in Milk. Anal Chem 2024; 96:11334-11342. [PMID: 38943569 DOI: 10.1021/acs.analchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.
Collapse
Affiliation(s)
- Mengdi Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Huo Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Liping Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Sergey P Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Avenue Lavrentyev 3, Novosibirsk 630090, Russian Federation
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | | |
Collapse
|
5
|
Li J, Tang Y, Bai Y, Zhang Z, Zhang S, Chen T, Zhao F, Guo Z. A pomegranate seed-structured nanozyme-based colorimetric immunoassay for highly sensitive and specific biosensing of Staphylococcus aureus. Analyst 2024; 149:563-570. [PMID: 38099463 DOI: 10.1039/d3an01621h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus (S. aureus) infections are a serious threat to human health. The development of rapid and sensitive detection methods for pathogenic bacteria is crucial for accurate drug administration. In this research, by combining the advantages of enzyme-linked immunosorbent assay (ELISA), we synthesized nanozymes with high catalytic performance, namely pomegranate seed-structured bimetallic gold-platinum nanomaterials (Ps-PtAu NPs), which can catalyze a colorless TMB substrate into oxidized TMB (oxTMB) with blue color to achieve colorimetric analysis of S. aureus. Under the optimal conditions, the proposed biosensor could quantitatively detect S. aureus at levels ranging from 1.0 × 101 to 1.0 × 106 CFU mL-1 with a limit of detection (LOD) of 3.9 CFU mL-1. Then, an integrated color picker APP on a smartphone enables on-site point-of-care testing (POCT) of S. aureus with LOD as low as 1 CFU mL-1. Meanwhile, the proposed biosensor is successfully applied to the detection of S. aureus in clinical samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jinghui Li
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Yipeng Tang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Yunpeng Bai
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Zhejun Zhang
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Shaopeng Zhang
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Tongyun Chen
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Feng Zhao
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Zhigang Guo
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
- Tianjin Cardiovascular Diseases Institute, Tianjin, 300222, China
| |
Collapse
|
6
|
Wang C, Zhang Y, Liu S, Yin Y, Fan GC, Shen Y, Han H, Wang W. Allosteric probe-triggered isothermal amplification to activate CRISPR/Cas12a for sensitive electrochemiluminescence detection of Salmonella. Food Chem 2023; 425:136382. [PMID: 37276664 DOI: 10.1016/j.foodchem.2023.136382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
We report an electrochemiluminescence (ECL) sensor for Salmonella detection based on allosteric probe as a bio-recognition element and CRISPR/Cas12a as a signal amplification strategy. In the presence of Salmonella, the structure switching occurs on allosteric probes, resulting in their hybridization with primers to trigger isothermal amplification. Salmonella is then released to initiate the next reaction cycle accompanying by generating a large amount of dsDNA, which are subsequently recognized by CRISPR-gRNA for activating the trans-cleavage activity of Cas12a. Furthermore, the activated Cas12a can indiscriminately cut the ssDNA which is bound to the electrode, enabling the release of the ECL emitter porphyrinic Zr metal - organic framework (MOF, PCN-224) and exhibiting a decreased ECL signal accordingly. The linear range is 50 CFU·mL-1-5 × 106 CFU·mL-1 and the detection limit is calculated to be 37 CFU·mL-1. This method sensitively detects Salmonella in different types of real samples, indicating it is a promising strategy for Salmonella detection.
Collapse
Affiliation(s)
- Chunyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yutian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yashi Yin
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Sheng A, Yang J, Tang L, Niu L, Cheng L, Zeng Y, Chen X, Zhang J, Li G. Hydrazone chemistry-mediated CRISPR/Cas12a system for bacterial analysis. Nucleic Acids Res 2022; 50:10562-10570. [PMID: 36156138 PMCID: PMC9561268 DOI: 10.1093/nar/gkac809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, a hydrazone chemistry-mediated clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) system has been proposed for the fist time and constructed. In our system, hydrazone chemistry is designed and employed to accelerate the formation of a whole activation strand by taking advantage of the proximity effect induced by complementary base pairing, thus activating the CRISPR/Cas12a system quickly and efficiently. Moreover, the introduction of hydrazone chemistry can improve the specificity of the CRISPR/Cas12a system, allowing it to effectively distinguish single-base mismatches. The established system has been further applied to analyze Pseudomonas aeruginosa by specific recognition of the probe strand with a characteristic fragment in 16S rDNA to release the hydrazine group-modified activation strand. The method shows a wide linear range from 3.8 × 102 colony-forming units (CFU)/ml to 3.8 × 106 CFU/ml, with the lowest detection limit of 24 CFU/ml. Therefore, the introduction of hydrazone chemistry may also broaden the application of the CRISPR/Cas12a system.
Collapse
Affiliation(s)
- Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.,Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Jingyi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Longfei Tang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lili Niu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liangfen Cheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yujing Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Xu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
8
|
Lu Z, Liu W, Cai Y, Zhao T, Cui M, Zhang H, Du S. Salmonella typhimurium strip based on the photothermal effect and catalytic color overlap of PB@Au nanocomposite. Food Chem 2022; 385:132649. [PMID: 35278735 DOI: 10.1016/j.foodchem.2022.132649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
This work reports a sensitive and accurate multimode detection method to detect Salmonella typhimurium using inherent color, photothermal and catalytic properties of Prussian blue@gold nanoparticles (PB@Au). The inherent color of PB@Au can realize direct visual detection while the temperature increase (ΔT) of it can realize sensitive and quantitative photothermal detection. Moreover, catalytic coloration detection is applied to further amplify detection signal. The risk limit, prevention and control of Salmonella typhimurium can be more intuitively displayed through catalytic color overlap degree between PB@Au and catalytic product. The sensitivity of method is improved through photothermal and catalytic coloration detection (101 CFU·mL-1) compared with direct visual detection (102 CFU·mL-1). The multimode detection improves the accuracy of method, and exhibits good repeatability, acceptable selectivity and stability. This method is also successfully applied in real samples, displaying its good practical applicability.
Collapse
Affiliation(s)
- Zhang Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Wenxiu Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yun Cai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Tao Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mengqi Cui
- Zibo Institute for Food and Drug Control, Zibo 255000, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
9
|
Xu J, Zhang X, Yan C, Qin P, Yao L, Wang Q, Chen W. Trigging Isothermal Circular Amplification-Based Tuning of Rigorous Fluorescence Quenching into Complete Restoration on a Multivalent Aptamer Probe Enables Ultrasensitive Detection of Salmonella. Anal Chem 2021; 94:1357-1364. [PMID: 34963277 DOI: 10.1021/acs.analchem.1c04638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detection of pathogenic bacteria is of vital significance for combating and preventing infectious diseases. In this work, we developed a multivalent aptamer probe (Multi-VAP)-based trigging isothermal circular amplification (TICA) for rapidly and ultrasensitively detecting Salmonella. In this sensing system, the fluorescence of Multi-VAP was strongly quenched via the dual effect of FRET. Introduction of Salmonella to the system forced the configuration change of Multi-VAP, leading to the occurrence of a TICA responsible for tuning all of the fluorescence-quenched Multi-VAP into a complete restoration state. This prominent feature allows the reasonable combination of a strong background restraint and great target signal amplification into one sensing system, which in turn benefits the improvement of the signal-to-noise ratio to ensure that the system has an ultrahigh sensitivity. Combined with the employment of an aptamer to ensure that it has excellent specificity, the Salmonella can be quantitatively and qualitatively analyzed even from human serum. The total processing merely requires sample addition and incubation. The turnaround time of the complete analysis from "sample-to-result" was within 30 min. With the method to decrease the time to detect and simplify the process to operate, the assay was successfully used as a sensing platform for specific detection of as few as 9 CFU/mL Salmonella.
Collapse
Affiliation(s)
- Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinlei Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Yan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P. R. China
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qi Wang
- Key Laboratory of Embryo Development and Reproductive Regulation, Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
10
|
Yue X, Sun J, Yang T, Dong Q, Li T, Ding S, Liang X, Feng K, Gao X, Yang M, Huang G, Zhang J. Rapid detection of Salmonella in milk by a nuclear magnetic resonance biosensor based on the streptavidin-biotin system and O-carboxymethyl chitosan target gadolinium probe. J Dairy Sci 2021; 104:11486-11498. [PMID: 34454766 DOI: 10.3168/jds.2021-20716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Rapid and sensitive detection of foodborne pathogens is of great importance for food safety. Here, a set of nuclear magnetic resonance (NMR) biosensors based on a O-carboxymethyl chitosan target gadolinium (Gd) probe was developed to quickly detect Salmonella in milk by combining NMR technology and bioimmunotechnology with membrane filtration technology. First, O-carboxymethyl chitosan (O-CMC) was biotinylated to prepare biotinylated O-carboxymethyl chitosan (biotin-O-CMC) through amide reaction, and biotinylated magnetic complexes (biotin-O-CMC-Gd) were obtained by using O-CMC, which has strong chelating adsorption on Gd. The target probe was obtained by combining biotin-O-CMC-Gd with the biotinylated antibody (biotin-antibody) via streptavidin (SA) by introducing the SA-biotin system. Then, Salmonella was captured by the target probe through antigen-antibody interaction. Finally, NMR was used to measure the longitudinal relaxation time (T1) of the filtrate collected by membrane filtration. This NMR biosensor with good specificity and high efficiency can detect Salmonella with the sensitivity of 1.8 × 103 cfu/mL within 2 h; in addition, it can realize the detection of complex samples because of its strong anti-interference capability and may open up a new method for rapid detection of Salmonella, which has a great application potential.
Collapse
Affiliation(s)
- Xianglin Yue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Junru Sun
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Tan Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiuling Dong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shuangyan Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuehua Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Kaiwen Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Surface-enhanced Raman spectroscopy for comparison of serum samples of typhoid and tuberculosis patients of different stages. Photodiagnosis Photodyn Ther 2021; 35:102426. [PMID: 34217869 DOI: 10.1016/j.pdpdt.2021.102426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) is a reliable tool for the identification and differentiation of two different human pathological conditions sharing the same symptomology, typhoid and tuberculosis (TB). OBJECTIVES To explore the potential of surface-enhanced Raman spectroscopy for differentiation of two different diseases showing the same symptoms and analysis by principal component analysis (PCA) and partial least square discriminate analysis (PLS-DA). METHODS Serum samples of clinically diagnosed typhoid and tuberculosis infected individuals were analyzed and differentiated by SERS using silver nanoparticles (Ag NPs) as a SERS substrate. For this purpose, the collected serum samples were analyzed under the SERS instrument and unique SERS spectra of typhoid and tuberculosis were compared showing notable spectral differences in protein, lipid and carbohydrates features. Different stages of the diseased class of typhoid (Early acute and late acute stage) and tuberculosis (Pulmonary and extra-pulmonary stage) were compared with each other and with healthy human serum samples, which were significantly separated. Moreover, SERS data was analyzed using multivariate data analysis techniques including principal component analysis (PCA) and partial least square discriminate analysis (PLS-DA) and differences were so prominent to observe. RESULTS SERS Spectral data of typhoid and tuberculosis showed clear differences and were significantly separated using PCA. SERS spectral data of both stages of typhoid and tuberculosis were separated according to 1st principle component. Moreover, by analyzing data using partial least square discriminate analysis, differentiation of two disease classes were considered more valid with a 100% value of sensitivity, specificity and accuracy. CONCLUSION SERS can be employed for identification and comparison of two different human pathological conditions sharing same symptomology.
Collapse
|
12
|
Tahira M, Nawaz H, Majeed MI, Rashid N, Tabbasum S, Abubakar M, Ahmad S, Akbar S, Bashir S, Kashif M, Ali S, Hyat H. Surface-enhanced Raman spectroscopy analysis of serum samples of typhoid patients of different stages. Photodiagnosis Photodyn Ther 2021; 34:102329. [PMID: 33965602 DOI: 10.1016/j.pdpdt.2021.102329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) of body fluids is considered a quick, simple and easy to use method for the diagnosis of disease. OBJECTIVES To evaluate rapid, reliable, and non-destructive SERS-based diagnostic tool with multivariate data analysis including principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) for classification of different stages of typhoid on the basis of characteristic SERS spectral features. METHODS SERS has been used for analysis of serum samples of different stages of typhoid including early acute stage and late acute stage in comparison with healthy samples, in order to investigate capability of this technique for diagnosis of typhoid. SERS spectral features associated with the biochemical changes taking place during the development of the typhoid fever were analyzed and identified. RESULTS The value of area under the receiver operating characteristics (AUROC) for early acute stage versus healthy is 0.87 and that for healthy versus late acute stage is 0.52. PLS-DA classifier model gives values of 100 % for accuracy, sensitivity and specificity, respectively for the SERS spectral data sets of healthy versus early acute stage. Moreover, this classifier model gives values of 91 %, 89 % and 97 % for accuracy, sensitivity and specificity, respectively for the SERS spectral data sets of healthy versus late acute stage. CONCLUSIONS Based on preliminary work it is concluded that SERS has potential to diagnose various stages of typhoid fever including early acute and late acute stage in comparison with healthy samples.
Collapse
Affiliation(s)
- Maimoona Tahira
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad Campus, Faisalabad, Pakistan
| | - Shaheera Tabbasum
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Saba Akbar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Saba Bashir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hamza Hyat
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
13
|
Sheng A, Wang P, Yang J, Tang L, Chen F, Zhang J. MXene Coupled with CRISPR-Cas12a for Analysis of Endotoxin and Bacteria. Anal Chem 2021; 93:4676-4681. [DOI: 10.1021/acs.analchem.1c00371] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anzhi Sheng
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Pei Wang
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jingyi Yang
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Longfei Tang
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Feng Chen
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Juan Zhang
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
14
|
Du S, Lu Z, Gao L, Ge Y, Xu X, Zhang H. Salmonella typhimurium detector based on the intrinsic peroxidase-like activity and photothermal effect of MoS 2. Mikrochim Acta 2020; 187:627. [PMID: 33095328 DOI: 10.1007/s00604-020-04600-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/10/2020] [Indexed: 01/23/2023]
Abstract
A multimode dot-filtration immunoassay (MDFIA) was established for rapid and accurate detection of the target (Salmonella typhimurium), which was based on the intrinsic color, peroxidase-like activity and photothermal effect of molybdenum disulfide (MoS2). Obviously, multimode detection can improve detection accuracy compared to the direct visual detection in test strips. A thermal imaging camera was used as detector to record the temperature change (ΔT) of MoS2 and establish the standard curve of ΔT and the concentration of Salmonella typhimurium to realize quantitative determination. The main parameters that affect the analytical performance of MDFIA were optimized. Under the optimal experimental conditions, the limit of detection (LOD) of photothermal detection reached 102 CFU mL-1 and was one order of magnitude lower than the limit of direct visual detection and catalytic color development detection (103 CFU mL-1). The accuracy and analytical sensitivity were enhanced by intrinsic peroxidase-like activity and the huge photothermal effect of MoS2. Moreover, this method exhibited high selectivity, good repeatability, and acceptable stability and the entire process was simple to be accomplished in 30 min, which generally meets the need of rapid detection. The successful implementation in real samples with the recovery being between 99.5 and 119.2% showed that it could be used as a promising quality control strategy for detection of other foodborne pathogens. The peroxidase-like activity and excellent photothermal effect of MoS2 was used to develop a multimode dot-filtration immunoassay for rapid detection of Salmonella typhimurium.
Collapse
Affiliation(s)
- Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Zhang Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Luxiang Gao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yuanyuan Ge
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiaoyu Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
15
|
Li Z, Liu Y, Chen X, Cao H, Shen H, Mou L, Deng X, Jiang X, Cong Y. Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio. Biosens Bioelectron 2020; 166:112444. [PMID: 32758910 DOI: 10.1016/j.bios.2020.112444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
How to balance the sensitivity and signal-to-noise ratio of immunosensor remains many challenges during various diseases diagnosis. Here we develop a new microfluidic immunosensor based on surface-modified mesoporous nanofibers, and simultaneously realize an ultra-sensitivity and high signal-to-noise ratio for the detection of multiple biomarkers. In the current study, we fabricated titanium dioxide (TiO2)-based mesoporous electrospinning nanofibers, and modified nanofiber surface with both octadecylphosphonic acid (OPA) and poly(ethylene oxide)-poly(propylene oxide) triblock copolymer (PEO-PPO-PEO). Such nanofibers as solid substrate are covered on microfluidic channels. The porosity of our nanofibers dramatically increased the adsorption capability of antibodies, realizing an ultra sensitivity of biomarker detection. PEO-PPO-PEO modification can significantly block non-specific absorptions, obtaining a satisfied signal-to-noise ratio. For the detection of HIV p24 and interleukin 5 (IL-5), our immunosensor increased 6.41 and 6.93 fold in sensitivity and improved 504.66% and 512.80% in signal-to-noise ratio, in compared with gold standard immunoassay (ELISA) used in the clinic. Our immunosensor also broaden the linear range for the detection of HIV p24 (0.86-800 pg/ml) and IL-5 (0.70-800 pg/ml), in compared with ELISA which is 5.54-500 pg/ml for HIV p24 and 4.84-500 pg/ml for IL-5. Our work provided a guideline for the construction of advanced point-of-care immunosensor with an ultra-sensitivity and high signal-to-noise ratio for disease diagnosis.
Collapse
Affiliation(s)
- Zulan Li
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650000, China.
| | - Xingming Chen
- Laboratory Department of PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Hongyan Cao
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Haiying Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Lei Mou
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Xinli Deng
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yulong Cong
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
16
|
Cao H, Liu Y, Sun H, Li Z, Gao Y, Deng X, Shao Y, Cong Y, Jiang X. Increasing the Assembly Efficacy of Peptidic β-Sheets for a Highly-Sensitive HIV Detection. Anal Chem 2020; 92:11089-11094. [PMID: 32602727 DOI: 10.1021/acs.analchem.0c00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our recent publication illustrates the critical role of phenylalanine-mediated aromatic-aromatic interactions in determining the assembly of peptidic β-sheets. However, the effect of phenylalanine number on regulating the assembly efficacy of peptidic β-sheets remains poorly understood. We herein evaluate the assembly efficacy of β-sheets of a series of oligopeptides which contain 0, 1, 2, or 3 phenylalanine in their molecular backbones. In our assembly system, two phenylalanine (2F) is the minimum number for driving the assembly of β-sheets of oligopeptides. Oligopeptides with three phenylalanine (3F) show significantly increased assembly efficacy of β-sheets compared to that with 2F. These results suggest a positive correlation between the phenylalanine number and assembly efficacy of β-sheets. By improving the assembly efficacy of β-sheets, we further develop a highly sensitive HIV analytical system in which the specific binding of β-sheets with Congo Red induces enhanced fluorescence. For HIV p24 detection, the 3F-based analytical system (0.61 pg/mL) shows a significantly lower limit of detection (LOD) than the 2F-based analytical system (2.44 pg/mL), both of which are more sensitive than commercial ELISA (5 pg/mL) used in the clinic. This work not only illustrates the effect of phenylalanine number on regulating the assembly efficacy of β-sheets but also provides a guideline for the construction of a highly sensitive analytical system of disease diagnosis.
Collapse
Affiliation(s)
- Hongyan Cao
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 65000, P. R. China
| | - Hongyan Sun
- Beijing Engineering Research Center for Bionanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Zulan Li
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.,Beijing Engineering Research Center for Bionanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Yuan Gao
- Beijing Engineering Research Center for Bionanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Xinli Deng
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100190, China
| | - Yulong Cong
- PLA Medical College and Clinical Laboratory of Second Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China.,Beijing Engineering Research Center for Bionanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| |
Collapse
|
17
|
Alhaj-Qasem DM, Al-Hatamleh MAI, Irekeola AA, Khalid MF, Mohamud R, Ismail A, Mustafa FH. Laboratory Diagnosis of Paratyphoid Fever: Opportunity of Surface Plasmon Resonance. Diagnostics (Basel) 2020; 10:diagnostics10070438. [PMID: 32605310 PMCID: PMC7400347 DOI: 10.3390/diagnostics10070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Paratyphoid fever is caused by the bacterium Salmonellaenterica serovar Paratyphi (A, B and C), and contributes significantly to global disease burden. One of the major challenges in the diagnosis of paratyphoid fever is the lack of a proper gold standard. Given the absence of a licensed vaccine against S. Paratyphi, this diagnostic gap leads to inappropriate antibiotics use, thus, enhancing antimicrobial resistance. In addition, the symptoms of paratyphoid overlap with other infections, including the closely related typhoid fever. Since the development and utilization of a standard, sensitive, and accurate diagnostic method is essential in controlling any disease, this review discusses a new promising approach to aid the diagnosis of paratyphoid fever. This advocated approach is based on the use of surface plasmon resonance (SPR) biosensor and DNA probes to detect specific nucleic acid sequences of S. Paratyphi. We believe that this SPR-based genoassay can be a potent alternative to the current conventional diagnostic methods, and could become a rapid diagnostic tool for paratyphoid fever.
Collapse
Affiliation(s)
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.F.K.); (A.I.)
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.A.I.A.-H.); (R.M.)
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.F.K.); (A.I.)
| | - Fatin Hamimi Mustafa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.F.K.); (A.I.)
- Correspondence: ; Tel.: +60-9767-2432
| |
Collapse
|
18
|
Rapid Detection for Salmonella typhimurium by Conventional Resistive Temperature Sensor Based on Photothermal Effect of Carboxylated Graphene Oxide. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01793-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Wonsawat W, Limvongjaroen S, Supromma S, Panphut W, Ruecha N, Ratnarathorn N, Dungchai W. A paper-based conductive immunosensor for the determination of Salmonella Typhimurium. Analyst 2020; 145:4637-4645. [PMID: 32458837 DOI: 10.1039/d0an00515k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report for the first time a highly sensitive and rapid quantitative method for the detection of Salmonella Typhimurium (S. Typhimurium) using a conductive immunosensor on a paper-based device (PAD). S. Typhimurium monoclonal antibodies (MA) were first immobilized on a paper-based device and then captured by S. Typhimurium. After an immunoreaction on the device, the polyclonal antibody-colloidal gold conjugate (PA-AuNPs) was dropped to bind with S. Typhimurium. After a complete sandwich reaction, a dark red color appeared on the paper-based device, which can be observed by the naked eye for a rapid screening test. The electrical conductivity of PA-AuNPs between the screen-printed electrodes on the paper-based device was also measured for an accurate quantitative analysis. The electrical conductivity correlated well with the concentration of S. Typhimurium, which was controlled by the amount of S. Typhimurium attached to the polyclonal antibody-colloidal gold conjugate. The device showed a linear correlation for the concentration of the S. Typhimurium in the range of 10-108 CFU mL-1 in a logarithmic plot, with an R2 value of 0.9882 and a limit of detection (LOD) as low as 10 CFU mL-1. This simple, highly sensitive, and rapid method for the S. Typhimurium detection was successfully performed within 30 min, and it can be developed into small portable measuring devices in order to facilitate preliminary screening tests.
Collapse
Affiliation(s)
- Wanida Wonsawat
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University 1 U-thong, Nok Street, Wachira, Dusit, Bangkok 10300, Thailand
| | | | | | | | | | | | | |
Collapse
|
20
|
Integrated Electrochemical Biosensors for Detection of Waterborne Pathogens in Low-Resource Settings. BIOSENSORS-BASEL 2020; 10:bios10040036. [PMID: 32294961 PMCID: PMC7236604 DOI: 10.3390/bios10040036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
More than 783 million people worldwide are currently without access to clean and safe water. Approximately 1 in 5 cases of mortality due to waterborne diseases involve children, and over 1.5 million cases of waterborne disease occur every year. In the developing world, this makes waterborne diseases the second highest cause of mortality. Such cases of waterborne disease are thought to be caused by poor sanitation, water infrastructure, public knowledge, and lack of suitable water monitoring systems. Conventional laboratory-based techniques are inadequate for effective on-site water quality monitoring purposes. This is due to their need for excessive equipment, operational complexity, lack of affordability, and long sample collection to data analysis times. In this review, we discuss the conventional techniques used in modern-day water quality testing. We discuss the future challenges of water quality testing in the developing world and how conventional techniques fall short of these challenges. Finally, we discuss the development of electrochemical biosensors and current research on the integration of these devices with microfluidic components to develop truly integrated, portable, simple to use and cost-effective devices for use by local environmental agencies, NGOs, and local communities in low-resource settings.
Collapse
|
21
|
Lin L, Zheng Q, Lin J, Yuk HG, Guo L. Immuno- and nucleic acid-based current technique for Salmonella detection in food. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03423-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Guo Y, Zhao C, Liu Y, Nie H, Guo X, Song X, Xu K, Li J, Wang J. A novel fluorescence method for the rapid and effective detection of Listeria monocytogenes using aptamer-conjugated magnetic nanoparticles and aggregation-induced emission dots. Analyst 2020; 145:3857-3863. [DOI: 10.1039/d0an00397b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sensitive and specific detection of L. monocytogenes through immunomagnetic separation and fluorescence response produced by recognition of IgG-coated TPE-OH@BSA nanoparticles.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Chao Zhao
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Yushen Liu
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Heran Nie
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Xiaoxiao Guo
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Xiuling Song
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Kun Xu
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Juan Li
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Juan Wang
- School of Public Health
- Jilin University
- Changchun
- PR China
| |
Collapse
|
23
|
Lee MJ, Lee ES, Kim TH, Jeon JW, Kim Y, Oh BK. Detection of thioredoxin-1 using ultra-sensitive ELISA with enzyme-encapsulated human serum albumin nanoparticle. NANO CONVERGENCE 2019; 6:37. [PMID: 31814041 PMCID: PMC6900377 DOI: 10.1186/s40580-019-0210-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Many methods for early diagnosis of the disease use biomarker tests, which measure indicators of biological state in body fluids or blood. However, a limitation of these methods is their low sensitivity to biomarkers. In this study, human serum albumin (HSA) based nanoparticles capable of encapsulating excess horseradish peroxidase (HRP) are synthesized and applied to the development of enzyme-linked immunosorbent assay (ELISA) kit with ultra-high sensitivity. The size of the nanoparticles and the amount of encapsulated enzyme are controlled by varying the synthesis conditions of pH and protein concentration, and the surface of the nanoparticles is modified with protein A (proA) to immobilize antibodies to the nanoparticles by self-assembly. Using the synthesized nanoparticles, the biomarker of breast cancer, thioredoxin-1, can be measured in the range of 10 fM to 100 pM by direct sandwich ELISA, which is 105 times more sensitive than conventional methods.
Collapse
Affiliation(s)
- Myeong-Jun Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04170, South Korea
| | - Eun-Sol Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04170, South Korea
| | - Tae-Hwan Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04170, South Korea
| | - Ju-Won Jeon
- Department of Applied Chemistry, Kookmin University, Seoungbuk-Gu, Seoul, 02707, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Byung-Keun Oh
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04170, South Korea.
| |
Collapse
|
24
|
Du S, Wang Y, Liu Z, Xu Z, Zhang H. A portable immune-thermometer assay based on the photothermal effect of graphene oxides for the rapid detection of Salmonella typhimurium. Biosens Bioelectron 2019; 144:111670. [DOI: 10.1016/j.bios.2019.111670] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 01/06/2023]
|
25
|
Kumar S, Nehra M, Mehta J, Dilbaghi N, Marrazza G, Kaushik A. Point-of-Care Strategies for Detection of Waterborne Pathogens. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4476. [PMID: 31623064 PMCID: PMC6833035 DOI: 10.3390/s19204476] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022]
Abstract
Waterborne diseases that originated due to pathogen microorganisms are emerging as a serious global health concern. Therefore, rapid, accurate, and specific detection of these microorganisms (i.e., bacteria, viruses, protozoa, and parasitic pathogens) in water resources has become a requirement of water quality assessment. Significant research has been conducted to develop rapid, efficient, scalable, and affordable sensing techniques to detect biological contaminants. State-of-the-art technology-assisted smart sensors have improved features (high sensitivity and very low detection limit) and can perform in a real-time manner. However, there is still a need to promote this area of research, keeping global aspects and demand in mind. Keeping this view, this article was designed carefully and critically to explore sensing technologies developed for the detection of biological contaminants. Advancements using paper-based assays, microfluidic platforms, and lateral flow devices are discussed in this report. The emerging recent trends, mainly point-of-care (POC) technologies, of water safety analysis are also discussed here, along with challenges and future prospective applications of these smart sensing technologies for water health diagnostics.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Jyotsana Mehta
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Ajeet Kaushik
- Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805-8531, USA.
| |
Collapse
|
26
|
Cheeveewattanagul N, Tien TT, Rijiravanich P, Surareungchai W, Somasundrum M. Photostable methylene blue-loaded silica particles used as label for immunosorbent assay of Salmonella Typhimurium. Biotechnol Appl Biochem 2019; 66:842-849. [PMID: 31228877 DOI: 10.1002/bab.1796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
Abstract
Salmonella Typhimurium is a major cause of food poisoning. To solve the limitations of the routine enzyme linked immunosorbent assay such as laborious assay procedure, lack of long-term enzyme stability, and insufficient sensitivity, we provided a non-enzymatic colorimetric immunosorbent assay platform to overcome these problems. The highly photostable redox dye particles was constructed by silica particles (diameter = 598 ± 14.4 nm) loaded with methylene blue (Si-MB) and applied to be a label for immunoassay of S. Typhimurium. The sandwich assay format involved incubation of an analyte in a microplate wells modified with monoclonal anti-Salmonella, followed by exposure to a polyclonal anti-Salmonella/Si-MB bioconjugate and then measurement of absorbance at 598 nm. The platform had an assay time of 20 min, could detect heat-killed Salmonella with a limit of detection of 48 CFU mL-1 , and gave good recoveries in milk. The labels could be stored at 4 °C for 70 days without any deterioration.
Collapse
Affiliation(s)
- Nopchulee Cheeveewattanagul
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien Campus, Bangkok, Thailand
| | - Tran Thanh Tien
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien Campus, Bangkok, Thailand.,Department of Veterinary Biosciences, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Patsamon Rijiravanich
- Biosciences and System Biology Team, Biochemical Engineering and System Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at KMUTT, Bangkhuntien Campus, Bangkok, Thailand
| | - Werasak Surareungchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien Campus, Bangkok, Thailand.,Nanoscience and Nanotechnology Graduate Program, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien Campus, Bangkok, Thailand
| | - Mithran Somasundrum
- Biosciences and System Biology Team, Biochemical Engineering and System Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at KMUTT, Bangkhuntien Campus, Bangkok, Thailand
| |
Collapse
|
27
|
Jia M, Liu Z, Wu C, Zhang Z, Ma L, Lu X, Mao Y, Zhang H. Detection of Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium based on cell elongation induced by beta-lactam antibiotics. Analyst 2019; 144:4505-4512. [PMID: 31225571 DOI: 10.1039/c9an00569b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pathogenic bacteria such as Shiga toxigenic Escherichia coli and Salmonella can cause severe food-borne diseases. Rapid and sensitive detection of these foodborne pathogens is essential to ensure food safety. In this study, a novel method based on cell elongation induced by beta-lactam antibiotics for direct microscopic counting of Gram-negative bacteria was established. Combined with the sample preparation steps of membrane filtration and magnetic separation, the detection of E. coli O157:H7 and Salmonella enterica serotype Typhimurium was achieved by direct optical microscopic counting of the number of elongated bacteria. The limit of detection of E. coli O157:H7 and S. typhimurium could reach 20 CFU mL-1. The recovery tests for E. coli O157:H7 and S. typhimurium in water and milk samples showed acceptable recovery values between 93.6% and 106.2%. This method is sensitive, cost effective, and rapid (<2 h) and shows great potential for the detection of Gram-negative pathogens in various environmental and food samples.
Collapse
Affiliation(s)
- Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Zhaochen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Chuanchen Wu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Zhen Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Yifei Mao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
28
|
Zou D, Jin L, Wu B, Hu L, Chen X, Huang G, Zhang J. Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor based on nuclear magnetic resonance. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Zhang X, Jiang X, Hao Z, Qu K. Advances in online methods for monitoring microbial growth. Biosens Bioelectron 2018; 126:433-447. [PMID: 30472440 DOI: 10.1016/j.bios.2018.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/16/2018] [Indexed: 12/24/2022]
Abstract
Understanding the characteristics of microbial growth is of great significance to many fields including in scientific research, the food industry, health care, and agriculture. Many methods have been established to characterize the process of microbial growth. Online and automated methods, in which sample transfer is avoided, are popular because they can facilitate the development of simple, safe, and effective growth monitoring. This review focuses on advances in online monitoring methods over the last decade (2008-2018). We specifically focus on optic- and electrochemistry-based techniques, either through contact measurements or contactless measurement. Strengths and weaknesses of each set of methods are described and we also speculate on forthcoming trends in the field.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xiaoyu Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihui Hao
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agriculture University, 700, Changcheng Rd, Chengyang District, Qingdao 266109, China.
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
30
|
Du M, Li J, Zhao R, Yang Y, Wang Y, Ma K, Cheng X, Wan Y, Wu X. Effective pre-treatment technique based on immune-magnetic separation for rapid detection of trace levels of Salmonella in milk. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Srinivasan S, Ranganathan V, DeRosa MC, Murari BM. Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium. Anal Biochem 2018; 559:17-23. [PMID: 30081031 DOI: 10.1016/j.ab.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
We report two label-free fluorescent aptasensor methods for the detection of S. typhimurium. In the first method, we have used a ''turn off'' approach in which the aptamer is first intercalated with SYBR Green I (SG), leading to a greatly enhanced fluorescence signal. The addition of S. typhimurium (approximately 1530-96938 CFU/mL), which specifically binds with its aptamer and releases SG, leads to a linear decrease in fluorescence intensity. The lowest detection limit achieved with this approach was in the range of 733 CFU/mL. In the second method, a ''turn on'' approach was designed for S. typhimurium through the Förster resonance energy transfer (FRET) between Rhodamine B (RB) and gold nanoparticles (AuNPs). When the aptamer and AuNPs were mixed with RB, the fluorescence of RB was significantly quenched via FRET. The aptamer adsorbs to the AuNP surface to protect them from salt-induced aggregation, which leads to the fluorescence quenching of RB in presence of AuNPs. Upon the addition of S. typhimurium, S. typhimurium specifically binds with its aptamer and loses the capability to stabilize AuNPs. Thus, the salt easily induces the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched RB. S. typhimurium concentrations ranging from 1530 to 96938 CFU/mL with the detection limit of 464 CFU/mL was achieved with this methodology. Given these data, some insights into the molecular interactions between the aptamer and the bacterial target are provided. These aptasensor methods also may be adapted for the detection of a wide variety of targets.
Collapse
Affiliation(s)
- Sathya Srinivasan
- Department of Biotechnology, School of Bioscience and Technology, VIT University, Vellore, 632 104, TN, India; Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Velu Ranganathan
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Bhaskar Mohan Murari
- Department of Biotechnology, School of Bioscience and Technology, VIT University, Vellore, 632 104, TN, India; Department of Sensor and Biomedical Technology, School of Electronics Engineering, VIT University, Vellore, 632 104, TN, India.
| |
Collapse
|
32
|
Rapid Detection Device for Salmonella typhi in Milk, Juice, Water and Calf Serum. Indian J Microbiol 2018; 58:381-392. [PMID: 30013283 DOI: 10.1007/s12088-018-0730-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022] Open
Abstract
A limit of detection of 200 CFU/mL of Salmonella typhi spiked in various sample matrices were achieved in 30 min. The sample matrices were raw/unprocessed milk, commercially available milk, juice from packed bottles, fresh juice from carts, potable water, turbid water and calf serum. The complete protocol comprised of three steps: (a) cell lysis (b) nucleic acid amplification and (c) an in situ optical detection. The cell lysis was carried out using a simple heating based protocol, while the loop-mediated isothermal amplification of DNA was carried out by an in-house designed and fabricated system. The developed system consists of an aluminum block fitted with two cartridge heaters along with a thermocouple. The system was coupled to a light source and spectrometer for a simultaneous in situ detection. Primers specific for STY2879 gene were used to amplify the nucleic acid sequence, isolated from S. typhi cells. The protocol involves 15 min of cell lysis and DNA isolation followed by 15 min for isothermal amplification and simultaneous detection. No cross-reactivity of the primers were observed at 106 CFU/mL of Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Salmonella paratyphi A, Pseudomonas aeruginosa, Bacillus cereus, Lysteria monocytogenes, Clostridium botulinum, Staphylococcus aureus and Salmonella havana. In addition, the system was able to detect S. typhi of 200 CFU/mL in a concoction of 106 CFU/mL of E. coli, 106 CFU/mL of V. cholerae, and 106 CFU/mL of hepatocyte-derived cellular carcinoma HUH7 cells. The proposed rapid diagnostic system shows a promising future in the field of food and medical diagnostics.
Collapse
|
33
|
Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [PMID: 29528198 DOI: 10.1002/wnan.1512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid detection and identification of pathogenic microorganisms is fundamental to minimizing the spread of infectious disease, and informing clinicians on patient treatment strategies. This need has led to the development of enhanced biosensors that utilize state of the art nanomaterials and nanotechnology, and represent the next generation of diagnostics. A primer on nanoscale biorecognition elements such as, nucleic acids, antibodies, and their synthetic analogs (molecular imprinted polymers), will be presented first. Next the application of various nanotechnologies for biosensor transduction will be discussed, along with the inherent nanoscale phenomenon that leads to their improved performance and capabilities in biosensor systems. A future outlook on characterization and quality assurance, nanotoxicity, and nanomaterial integration into lab-on-a-chip systems will provide the closing thoughts. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Alex J Sposito
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Aditya Kurdekar
- Laboratories for Nanoscience and Nanotechnology Research, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
34
|
Jeong A, Lim H. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium. Talanta 2018; 178:916-921. [DOI: 10.1016/j.talanta.2017.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
|
35
|
Pereira JM, Leme LM, Perdoncini MRFG, Valderrama P, Março PH. Fast Discrimination of Milk Contaminated with Salmonella sp. Via Near-Infrared Spectroscopy. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1090-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography. Anal Bioanal Chem 2017; 409:4709-4718. [DOI: 10.1007/s00216-017-0415-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
|
37
|
An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli. Biomed Microdevices 2017; 19:34. [DOI: 10.1007/s10544-017-0167-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Ma X, Song L, Xia Y, Jiang C, Wang Z. A Novel Colorimetric Detection of S. typhimurium Based on Fe3O4 Magnetic Nanoparticles and Gold Nanoparticles. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0819-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Development of biohybrid immuno-selective membranes for target antigen recognition. Biosens Bioelectron 2017; 92:54-60. [PMID: 28187299 DOI: 10.1016/j.bios.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 02/01/2023]
Abstract
Membranes are gaining increasing interest in solid-phase analytical assay and biosensors applications, in particular as functional surface for bioreceptors immobilization and stabilization as well as for the concentration of target molecules in microsystems. In this work, regenerated cellulose immuno-affinity membranes were developed and they were used for the selective capture of interleukin-6 (IL-6) as targeted antigen. Protein G was covalently linked on the membrane surface and it was successfully used for the oriented site-specific antibody immobilization. The antibody binding capacity of the protein G-coupled membrane was evaluated. The specific anti IL-6 antibody was immobilized and a quantitative analysis of the amount of IL-6 captured by the immuno-affinity membrane was performed. The immobilization procedure was optimized to eliminate the non-specific binding of antigen on the membrane surface. Additionally, the interaction between anti IL-6 antibody and protein G was stabilized by chemical cross-linking with glutaraldehyde and the capture ability of immuno-affinity membranes, with and without the cross-linker, was compared. The maximum binding capacity of the protein G-coupled membrane was 43.8µg/cm2 and the binding efficiency was 88%. The immuno-affinity membranes showed a high IL-6 capture efficiency at very low antigen concentration, up to a maximum of 91%, the amount of captured IL-6 increased linearly as increasing the initial concentration. The cross-linked surface retained the antigen binding capacity demonstrating its robustness in being reused, without antibody leakage or reduction in antibody binding capacity. The overall results demonstrated the possibility of a reliable application of the immuno-affinity membrane developed for biosensors and bioassays also in multiple use.
Collapse
|
40
|
Ma X, Song L, Zhou N, Xia Y, Wang Z. A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int J Food Microbiol 2016; 245:1-5. [PMID: 28107686 DOI: 10.1016/j.ijfoodmicro.2016.12.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 01/18/2023]
Abstract
A simple, fast and convenient colorimetric aptasensor was fabricated for the detection of Salmonella typhimurium (S. typhimurium) which was based on the color change effect of gold nanoparticles (GNPs). S. typhimurium is one of the most common causes of food-associated disease. Aptamers with specific recognition toward S. typhimurium was modified to the surface of prepared GNPs. They play a role for the protection of GNPs from aggregation toward high concentrations of NaCl. With the addition of S. typhimurium, aptamers preferably combined to S. typhimurium and the protection effect was broken. With more S. typhimurium, more aptamers detached from GNPs. In such a situation, the exposed GNPs would aggregated to some extent with the addition of NaCl. The color changed from red, purple to blue which could be characterized by UV-Vis spectrophotometer. The absorbance spectra of GNPs redshifted constantly and the intensity ratio of A700/A521 changed regularly. This could be calculated for the basis of quantitative detection of S. typhimurium from 102cfu/mL to 107cfu/mL. The obtained linear correlation equation was y=0.1946x-0.2800 (R2=0.9939) with a detection limit as low as 56cfu/mL. This method is simple and rapid, results in high sensitivity and specificity, and can be used to detect actual samples.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, PR China
| | - Liangjing Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Nixin Zhou
- Department of Health Management and Basic Education, Jiangsu Jiankang Vocational College, Nanjing 211800, PR China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
41
|
Wang Y, Liu Y, Deng X, Cong Y, Jiang X. Peptidic β-sheet binding with Congo Red allows both reduction of error variance and signal amplification for immunoassays. Biosens Bioelectron 2016; 86:211-218. [DOI: 10.1016/j.bios.2016.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
|
42
|
Ondera TJ, Hamme AT. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens. Analyst 2016; 140:7902-11. [PMID: 26469636 DOI: 10.1039/c5an00497g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A rapid, sensitive and quantitative immunoassay for the targeted detection and decontamination of E. coli based on Fe3O4 magnetic nanoparticles (MNPs) and plasmonic popcorn-shaped gold nanostructure attached single-walled carbon nanotubes (AuNP@SWCNT) is presented. The MNPs were synthesized as the support for a monoclonal antibody (mAb@MNP). E. coli (49979) was captured and rapidly preconcentrated from the sample with the mAb@MNP, followed by binding with Raman-tagged concanavalin A-AuNP@SWCNTs (Con A-AuNP@SWCNTs) as detector nanoprobes. A Raman tag 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) generated a Raman signal upon 670 nm laser excitation enabling the detection and quantification of E. coli concentration with a limit of detection of 10(2) CFU mL(-1) and a linear logarithmic response range of 1.0 × 10(2) to 1.0 × 10(7) CFU mL(-1). The mAb@MNP could remove more than 98% of E. coli (initial concentration of 1.3 × 10(4) CFU mL(-1)) from water. The potential of the immunoassay to detect E. coli bacteria in real water samples was investigated and the results were compared with the experimental results from the classical count method. There was no statistically significant difference between the two methods (p > 0.05). Furthermore, the MNP/AuNP@SWCNT hybrid system exhibits an enhanced photothermal killing effect. The sandwich-like immunoassay possesses potential for rapid bioanalysis and the simultaneous biosensing of multiple pathogenic agents.
Collapse
Affiliation(s)
- Thomas J Ondera
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA.
| | - Ashton T Hamme
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA.
| |
Collapse
|
43
|
Yang S, Ouyang H, Su X, Gao H, Kong W, Wang M, Shu Q, Fu Z. Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Biosens Bioelectron 2016; 78:174-180. [DOI: 10.1016/j.bios.2015.11.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 01/14/2023]
|
44
|
Jia F, Duan N, Wu S, Dai R, Wang Z, Li X. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1649-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Si Y, Grazon C, Clavier G, Rieger J, Audibert JF, Sclavi B, Méallet-Renault R. Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications. Biosens Bioelectron 2015; 75:320-7. [PMID: 26334591 DOI: 10.1016/j.bios.2015.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
Rapid detection of bacterial growth is an important issue in the food industry and for medical research. Here we present a novel kind of pH-sensitive fluorescent nanoparticles (FANPs) that can be used for the rapid and accurate real-time detection of Escherichia coli growth. These organic particles are designed to be non-toxic and highly water-soluble. Here we show that the coupling of pH sensitive fluoresceinamine to the nanoparticles results in an increased sensitivity to changes in pH within a physiologically relevant range that can be used to monitor the presence of live bacteria. In addition, these FANPs do not influence bacterial growth and are stable over several hours in a complex medium and in the presence of bacteria. The use of these FANPs allows for continuous monitoring of bacterial growth via real-time detection over long time scales in small volumes and can thus be used for the screening of a large number of samples for high-throughput applications such as screening for the presence of antibiotic resistant strains.
Collapse
Affiliation(s)
- Yang Si
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France; LBPA, CNRS UMR 8113, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Chloé Grazon
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Gilles Clavier
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Jutta Rieger
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France
| | | | - Bianca Sclavi
- LBPA, CNRS UMR 8113, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France.
| | | |
Collapse
|
46
|
Guo PL, Tang M, Hong SL, Yu X, Pang DW, Zhang ZL. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosens Bioelectron 2015. [PMID: 26201979 DOI: 10.1016/j.bios.2015.07.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Foodborne illnesses have always been a serious problem that threats public health, so it is necessary to develop a method that can detect the pathogens rapidly and sensitively. In this study, we designed a magnetic controlled microfluidic device which integrated the dynamic magnetophoretic separation and stationary magnetic trap together for sensitive and selective detection of Salmonella typhimurium (S. typhimurium). Coupled with immunomagnetic nanospheres (IMNs), this device could separate and enrich the target pathogens and realize the sensitive detection of target pathogens on chip. Based on the principle of sandwich immunoassays, the trapped target pathogens identified by streptavidin modified QDs (SA-QDs) were detected under an inverted fluorescence microscopy. A linear range was exhibited at the concentration from 1.0×10(4) to 1.0×10(6) colony-forming units/mL (CFU/mL), the limit of detection (LOD) was as low as 5.4×10(3) CFU/mL in milk (considering the sample volume, the absolute detection limit corresponded to 540C FU). Compared with the device with stationary magnetic trap alone, the integrated device enhanced anti-interference ability and increased detection sensitivity through dynamic magnetophoretic separation, and made the detection in complex samples more accurate. In addition, it had excellent specificity and good reproducibility. The developed system provides a rapid, sensitive and accurate approach to detect pathogens in practice samples.
Collapse
Affiliation(s)
- Pei-Lin Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shao-Li Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xu Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
47
|
Molaeirad A, Asl AL, khayati M, Alijanianzadeh M. Assay of bacteriorhodopsin stability on polycarbonate surface by using of FTIR-ATR: a model of disk-based bioassays. J Bioenerg Biomembr 2015; 47:355-60. [DOI: 10.1007/s10863-015-9616-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022]
|
48
|
van den Hurk R, Evoy S. A Review of Membrane-Based Biosensors for Pathogen Detection. SENSORS 2015; 15:14045-78. [PMID: 26083229 PMCID: PMC4507637 DOI: 10.3390/s150614045] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 01/14/2023]
Abstract
Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized.
Collapse
Affiliation(s)
- Remko van den Hurk
- Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, AB T6G 2V4, Canada.
| | - Stephane Evoy
- Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, AB T6G 2V4, Canada.
| |
Collapse
|
49
|
VanDelinder V, Wheeler DR, Small LJ, Brumbach MT, Spoerke ED, Henderson I, Bachand GD. Simple, benign, aqueous-based amination of polycarbonate surfaces. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5643-5649. [PMID: 25695347 DOI: 10.1021/am508797h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polycarbonate is a desirable material for many applications due to its favorable mechanical and optical properties. Here, we report a simple, safe, environmentally friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate. We characterize the efficacy of the surface amination using X-ray photo spectroscopy, Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and contact angle measurements. Furthermore, we demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including antifouling coatings and oriented membrane proteins.
Collapse
Affiliation(s)
- Virginia VanDelinder
- †Center for Integrated Nanotechnologies, Sandia National Laboratories, PO Box 5800, MS 1303, Albuquerque, New Mexico 87111, United States
| | - David R Wheeler
- ‡Biosensors and Nanomaterials, Sandia National Laboratories, PO Box 5800, MS 1141, Albuquerque, New Mexico 87111, United States
| | - Leo J Small
- §Electronic, Optical, and Nano Materials, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, New Mexico 87111, United States
| | - Michael T Brumbach
- ∥Materials Characterization and Performance, Sandia National Laboratories, PO Box 5800, MS 0886, Albuquerque, New Mexico 87111, United States
| | - Erik D Spoerke
- §Electronic, Optical, and Nano Materials, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, New Mexico 87111, United States
| | - Ian Henderson
- †Center for Integrated Nanotechnologies, Sandia National Laboratories, PO Box 5800, MS 1303, Albuquerque, New Mexico 87111, United States
| | - George D Bachand
- †Center for Integrated Nanotechnologies, Sandia National Laboratories, PO Box 5800, MS 1303, Albuquerque, New Mexico 87111, United States
| |
Collapse
|
50
|
A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples. SENSORS 2015; 15:5281-92. [PMID: 25746094 PMCID: PMC4435159 DOI: 10.3390/s150305281] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
Murine monoclonal antibodies to target Salmonella typhimurium flagellin and lipopolysaccharide (LPS) were prepared and characterized. For the immunological detection of S. typhimurium, different pairs of monoclonal antibodies (MAbs) were tested in a sandwich enzyme linked immunosorbent assay (ELISA) format. After comparison, a sandwich ELISA and immunochromatographic strip based on LPS MAbs was established to detect S. typhimurium. The determination limits of the immunochromatographic strip in phosphate-buffered saline (PBS) containing 0.1% Tween 20 (PBST) and pure milk sample were found to be 1.25 × 105 colony-forming units (cfu)/mL and 1.25 × 106 cfu/mL S. typhimurium, respectively. Results can be obtained with the naked eye in 10 min. Cross-reactivity was observed with Salmonella paratyphi B, but not S. paratyphi A or Salmonella enteritidis. The LPS MAbs based immunochromatographic strip is rapid and convenient to detect S. typhimurium in milk samples.
Collapse
|