1
|
Habli Z, Zantout A, Al-Haj N, Saab R, El-Sabban M, Khraiche ML. Single-Cell Fluidic Force Spectroscopy Reveals Dynamic Mechanical Fingerprints of Malignancy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50147-50159. [PMID: 39105773 PMCID: PMC11440459 DOI: 10.1021/acsami.4c06335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The interplay between cancer cell physical characteristics and metastatic potential highlights the significance of cancer cell mechanobiology. Using fluidic-based single-cell force spectroscopy (SCFS), quartz crystal microbalance with dissipation (QCM-D), and a model of cells with a spectrum of metastatic potential, we track the progression of biomechanics across the metastatic states by measuring cell-substrate and cell-to-cell adhesion forces, cell spring constant, cell height, and cell viscoelasticity. Compared to highly metastatic cells, cells in the lower spectrum of metastatic ability are found to be systematically stiffer, less viscoelastic, and larger. These mechanical transformations in cells within a cluster correlate with cells' metastatic potential but are significantly absent in single cells. Additionally, the response to chemotherapy is found to be highly dependent on cell viscoelastic properties in terms of both response time and magnitude. Shifts in cell softness and elasticity might serve as mechanoadaptive mechanisms during cancer cell metastasis, contributing to our understanding of metastasis and the effectiveness of potential therapeutic interventions.
Collapse
Affiliation(s)
- Zeina Habli
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ahmad Zantout
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Al-Haj
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Raya Saab
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Massoud L Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
2
|
Rogala A, Zaytseva-Zotova D, Oreja E, Barrantes A, Tiainen H. Combining QCM-D with live-cell imaging reveals the impact of serum proteins on the dynamics of fibroblast adhesion on tannic acid-functionalised surfaces. Biomater Sci 2024; 12:3345-3359. [PMID: 38767599 DOI: 10.1039/d4bm00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Nanocoatings based on plant polyphenols have been recently suggested as a potent strategy for modification of implant surfaces for enhancing host cell attachment and reducing bacterial colonisation. In this study we aimed to investigate how serum proteins impact the early adhesion dynamics of human gingival fibroblasts onto titanium surfaces coated with tannic acid (TA). Silicate-TA nanocoatings were formed on titanium and pre-conditioned in medium supplemented with 0, 0.1, 1 or 10% FBS for 1 hour. Dynamics of fibroblasts adhesion was studied using quartz crystal microbalance with dissipation (QCM-D). Time-lapse imaging was employed to assess cell area and motility, while immunofluorescence microscopy was used to examine cell morphology and focal adhesion formation. Our results showed that in serum-free medium, fibroblasts demonstrated enhanced and faster adhesion to TA coatings compared to uncoated titanium. Increasing the serum concentration reduced cell adhesion to nanocoatings, resulting in nearly complete inhibition at 10% FBS. This inhibition was not observed for uncoated titanium at 10% FBS, although cell adhesion was delayed and progressed slower compared to serum-free conditions. In addition, 1% FBS dramatically reduced cell adhesion on uncoated titanium. We revealed a positive relationship between changes in dissipation and changes in cell spreading area, and a negative relationship between dissipation and cell motility. In conclusion, our study demonstrated that serum decreases fibroblasts interaction with surfaces coated with TA in a concentration dependent manner. This suggests that controlling serum concentration can be used to regulate or potentially prevent fibroblasts adhesion onto TA-coated titanium surfaces.
Collapse
Affiliation(s)
- Agnes Rogala
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Daria Zaytseva-Zotova
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Enrique Oreja
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Alejandro Barrantes
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
3
|
Arnold F, Muzzio N, Patnaik SS, Finol EA, Romero G. Pentagalloyl Glucose-Laden Poly(lactide- co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25771-25782. [PMID: 34030437 DOI: 10.1021/acsami.1c05344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The suppression of abdominal aortic aneurysm (AAA) growth by nonsurgical therapy is currently not an option, and AAA is considered an irreversible destructive disease. The formation and development of AAA is associated with the progressive deterioration of the aortic wall. Infiltrated macrophages and resident vascular smooth muscle cells oversecrete matrix metalloproteinases (MMPs), which cause the loss of crucial aortic extracellular matrix (ECM) components, thus weakening the aortic wall. Stabilization of the aortic ECM could enable the development of novel therapeutic options for preventing and reducing AAA progression. In the present work, we studied the biochemical and biomechanical interactions of pentagalloyl glucose (PGG) on mouse C2C12 myoblast cells. PGG is a naturally occurring ECM-stabilizing polyphenolic compound that has been studied in various applications, including vascular health, with promising results. With its known limitations of systemic administration, we also studied the administration of PGG when encapsulated within poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). Treatment with collagenase and elastase enzymes was used to mimic a pathway of degenerative effects seen in the pathogenesis of human AAA. PGG and PLGA(PGG) NPs were added to enzyme-treated cells in either a suppressive or preventative scenario. Biomolecular interactions were analyzed through cell viability, cell adhesion, reactive oxygen species (ROS) production, and MMP-2 and MMP-9 secretion. Biomechanical properties were studied through atomic force microscopy and quartz crystal microbalance with dissipation. Our results suggest that PGG or PLGA(PGG) NPs caused minor to no cytotoxic effects on the C2C12 cells. Both PGG and PLGA(PGG) NPs showed reduction in ROS and MMP-2 secretion if administered after enzymatic ECM degradation. A quantitative comparison of Young's moduli showed a significant recovery in the elastic properties of the cells treated with PGG or PLGA(PGG) NPs after enzymatic ECM degradation. This work provides preliminary support for the use of a pharmacological therapy for AAA treatment.
Collapse
Affiliation(s)
- Frances Arnold
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sourav S Patnaik
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ender A Finol
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
4
|
Yongabi D, Khorshid M, Gennaro A, Jooken S, Duwé S, Deschaume O, Losada-Pérez P, Dedecker P, Bartic C, Wübbenhorst M, Wagner P. QCM-D Study of Time-Resolved Cell Adhesion and Detachment: Effect of Surface Free Energy on Eukaryotes and Prokaryotes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18258-18272. [PMID: 32223273 DOI: 10.1021/acsami.0c00353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-material interactions are crucial for many biomedical applications, including medical implants, tissue engineering, and biosensors. For implants, while the adhesion of eukaryotic host cells is desirable, bacterial adhesion often leads to infections. Surface free energy (SFE) is an important parameter that controls short- and long-term eukaryotic and prokaryotic cell adhesion. Understanding its effect at a fundamental level is essential for designing materials that minimize bacterial adhesion. Most cell adhesion studies for implants have focused on correlating surface wettability with mammalian cell adhesion and are restricted to short-term time scales. In this work, we used quartz crystal microbalance with dissipation monitoring (QCM-D) and electrical impedance analysis to characterize the adhesion and detachment of S. cerevisiae and E. coli, serving as model eukaryotic and prokaryotic cells within extended time scales. Measurements were performed on surfaces displaying different surface energies (Au, SiO2, and silanized SiO2). Our results demonstrate that tuning the surface free energy of materials is a useful strategy for selectively promoting eukaryotic cell adhesion and preventing bacterial adhesion. Specifically, we show that under flow and steady-state conditions and within time scales up to ∼10 h, a high SFE, especially its polar component, enhances S. cerevisiae adhesion and hinders E. coli adhesion. In the long term, however, both cells tend to detach, but less detachment occurs on surfaces with a high dispersive SFE contribution. The conclusions on S. cerevisiae are also valid for a second eukaryotic cell type, being the human embryonic kidney (HEK) cells on which we performed the same analysis for comparison. Furthermore, each cell adhesion phase is associated with unique cytoskeletal viscoelastic states, which are cell-type-specific and surface free energy-dependent and provide insights into the underlying adhesion mechanisms.
Collapse
Affiliation(s)
- Derick Yongabi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Alessia Gennaro
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Stijn Jooken
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Sam Duwé
- Department of Chemistry, Laboratory for Nanobiology, KU Leuven, Celestinenlaan 200 G, B-3001, Leuven, Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics Group, Université Libre de Bruxelles (ULB), Campus La Plaine, CP223, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Peter Dedecker
- Department of Chemistry, Laboratory for Nanobiology, KU Leuven, Celestinenlaan 200 G, B-3001, Leuven, Belgium
| | - Carmen Bartic
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Michael Wübbenhorst
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Zeng Y, Zhou J, Wang X, Cai Z, Shao Y. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real time sensing of cell-substrate interactions. Biosens Bioelectron 2019; 145:111717. [PMID: 31561092 DOI: 10.1016/j.bios.2019.111717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/12/2023]
Abstract
This paper, for the first time, presents a wavelength-scanning surface plasmon resonance microscope (WS-SPRM) as a label-free biosensor capable of measuring cell-substrate interaction. The approach utilized a liquid crystal tunable filter (LCTF) as a fast and flexible wavelength-scanning device that can implement a wavelength-scanning and SPR imaging cycle within 1 s. The system was verified by monitoring the dynamics of cellular processes including cell detachment and electroporation of individual cells. It was found that the WS-SPRM presented better performance than the intensity-based SPRM (I-SPRM) in the imaging of cell adhesion. The results also indicated that the WS-SPRM exhibited a larger dynamic range in monitoring cell electroporation than that of I-SPRM. In summary, the developed WS-SPRM in this study provides a promising technique for real-time monitoring of cell-substrate interaction.
Collapse
Affiliation(s)
- Youjun Zeng
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zhou
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Xueliang Wang
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Zhiwen Cai
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Yonghong Shao
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Chen JY, Pan Y, Collins TJ, Penn LS, Xi N, Xi J. Examining the feasibility of a "top-down" approach to enhancing the keratinocyte-implant adhesion. Exp Cell Res 2019; 376:105-113. [PMID: 30772381 DOI: 10.1016/j.yexcr.2019.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022]
Abstract
The adhesion of human epidermal keratinocytes to the implant surface is one of the most critical steps during the patient's recovery from implantation of transcutaneous prosthesis. To improve the success rate of transcutaneous prosthetic implants, we explored a new "top-down" approach to promoting this dynamic adhering process through modulation of upstream cell signaling pathways. To examine the feasibility of this novel approach, we first established an in vitro platform that is capable of providing a non-invasive, real-time, quantitative characterization of the keratinocyte-implant interaction. This platform is based on the dissipation monitoring function of the quartz crystal microbalance with dissipation monitoring (QCM-D) in conjunction with the open-module setup of the QCM-D. We then employed this platform to assess the effects of various pathways-specific modulators on the adhering process of keratinocytes. We demonstrated that this "top-down" approach is as effective in enhancing the adhesion of keratinocytes as the conventional "bottom-up" approach that relies on modifying the substrate surface with the adhesion protein such as fibronectin. We envision that this new "top-down" approach combined with the QCM-D-based in vitro platform will help facilitate the future development of new therapies for enhancing osseointegration and promoting wound healing.
Collapse
Affiliation(s)
- Jennifer Y Chen
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Yue Pan
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Tucker J Collins
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Lynn S Penn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Jun Xi
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
7
|
Peptide-functionalized supported lipid bilayers to construct cell membrane mimicking interfaces. Colloids Surf B Biointerfaces 2018; 176:18-26. [PMID: 30590345 DOI: 10.1016/j.colsurfb.2018.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/22/2018] [Accepted: 12/18/2018] [Indexed: 11/22/2022]
Abstract
Supported lipid bilayers (SLB) functionalized with bioactive molecules can be effectively used to study the interaction of cells with different molecules for fundamental research or to develop biosynthetic systems for various biomedical applications. In this study, RGD and Osteocalcin mimetic (OSN) peptides were used as model molecules for functionalization of otherwise passive SLBs to evaluate cell-surface interactions via real-time monitoring in quartz crystal microbalance with dissipation. Similar platforms were also used in cell culture environment. It was seen that low density of mobile RGD peptides on SLB platforms preserved their biological activity and promoted cell adhesion more efficiently than high number of immobile, physisorbed peptides. Even though nonspecific protein and cell attachment was promoted, cells did not spread well on OSN-coated control surfaces. The stability of SLBs produced with different lipids were evaluated in various medium conditions. Enrichment with different lipids increased the stability of SLB to pure PC bilayer.
Collapse
|
8
|
Esfahani AM, Zhao W, Chen JY, Huang C, Xi N, Xi J, Yang R. On the Measurement of Energy Dissipation of Adhered Cells with the Quartz Microbalance with Dissipation Monitoring. Anal Chem 2018; 90:10340-10349. [PMID: 30088414 PMCID: PMC6669898 DOI: 10.1021/acs.analchem.8b02153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We previously reported the finding of a linear correlation between the change of energy dissipation (Δ D) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the Δ D-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid trapped between the QCM-D sensor and the basal membrane of the cell layer, and the intracellular viscous damping through the viscous slip between the cytoplasm and stress fibers as well as among stress fibers themselves. Our modeling study shows that the interfacial viscous damping by the trapped liquid is the primary process for energy dissipation during the early stage of the cell adhesion, whereas the dynamic restructuring of cell-ECM bonds becomes more prevalent during the later stage of the cell adhesion. Our modeling study also establishes a positive linear correlation between the Δ D-response and the level of cell adhesion quantified with the number of cell-ECM bonds, which corroborates our previous experimental finding. This correlation with a wide well-defined linear dynamic range provides a much needed theoretical validation of the dissipation monitoring function of the QCM-D as a powerful quantitative analytical tool for cell study.
Collapse
Affiliation(s)
- Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 48824, United States
| | - Weiwei Zhao
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 48824, United States
| | - Jennifer Y. Chen
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Changjin Huang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, HK, China
| | - Jun Xi
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 48824, United States
| |
Collapse
|
9
|
Jiang T, Liu J, Ouyang Y, Wu H, Zheng L, Zhao J, Zhang X. Intra-hydrogel culture prevents transformation of mesenchymal stem cells induced by monolayer expansion. Biomater Sci 2018; 6:1168-1176. [PMID: 29564424 DOI: 10.1039/c8bm00007g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, we report that the intra-hydrogel culture system mitigates the transformation of mesenchymal stem cells (MSCs) induced by two-dimensional (2D) expansion. MSCs expanded in monolayer culture prior to encapsulation in collagen hydrogels (group eMSCs-CH) featured impaired stemness in chondrogenesis, comparing with the freshly isolated bone marrow mononuclear cells seeded directly in collagen hydrogels (group fMSCs-CH). The molecular mechanism of the in vitro expansion-triggered damage to MSCs was detected through genome-wide microarray analysis. Results indicated that pathways such as proteoglycans in cancer and pathways in cancer expansion were highly enriched in eMSCs-CH. And multiple up-regulated oncoma-associated genes were verified in eMSCs-CH compared with fMSCs-CH, indicating that expansion in vitro triggered cellular transformation was associated with signaling pathways related to tumorigenicity. Besides, focal adhesion (FA) and mitogen-activated protein kinase (MAPK) signaling pathways were also involved in in vitro expansion, indicating restructuring of the cell architecture. Thus, monolayer expansion in vitro may contribute to vulnerability of MSCs through the regulation of FA and MAPK. This study indicates that intra-hydrogel culture can mitigate the monolayer expansion induced transformation of MSCs and maintain the uniformity of the stem cells, which is a viable in vitro culture system for stem cell therapy.
Collapse
Affiliation(s)
- Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China. and Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China and Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Junting Liu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Center for Animal Experiment, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, 530021, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China. and Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China and Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China. and Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China and Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
10
|
Wan F, Nylander T, Klodzinska SN, Foged C, Yang M, Baldursdottir SG, M Nielsen H. Lipid Shell-Enveloped Polymeric Nanoparticles with High Integrity of Lipid Shells Improve Mucus Penetration and Interaction with Cystic Fibrosis-Related Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10678-10687. [PMID: 29473725 DOI: 10.1021/acsami.7b19762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle (NP) mediated drug delivery into viscous biomatrices, e.g., mucus and bacterial biofilms, is challenging. Lipid shell-enveloped polymeric NPs (Lipid@NPs), composed of a polymeric NP core coated with a lipid shell, represent a promising alternative to the current delivery systems. Here, we describe the facile methods to prepare Lipid@NPs with high integrity of lipid shells and demonstrate the potential of Lipid@NPs in an effective mucus penetration and interaction with cystic fibrosis-related bacterial biofilms. Lipid shell-enveloped polystyrene NPs with high integrity of lipid shells ( cLipid@PSNPs) were prepared by using an electrostatically mediated layer-by-layer approach, where the model polystyrene NPs (PSNPs) were first modified with positively charged poly-l-lysine (PLL) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), followed by subsequent fusion with zwitterionic, PEGylated small unilamellar vesicles (SUVs). The interaction of the PSNPs with SUVs was significantly enhanced by modifying the PSNPs with PLL and DOTAP, which eventually resulted in the formation of cLipid@PSNPs, i.e., Lipid@PLL-PSNPs and Lipid@DOTAP-PSNPs. Improved mucus-penetrating property of cLipid@PSNPs was demonstrated by quartz crystal microbalance with dissipation monitoring measurements. Furthermore, fluorescence resonance energy transfer measurements showed that the interaction of the cLipid@PSNPs with bacterial biofilms was significantly promoted. In conclusion, we prepared cLipid@PSNPs via an electrostatically mediated layer-by-layer approach. Our results suggest that the integrity of the lipid envelopes is crucial for enabling the diffusion of Lipid@PSNPs into the mucus layer and promoting the interaction of Lipid@PSNPs with a bacterial biofilm.
Collapse
Affiliation(s)
- Feng Wan
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Tommy Nylander
- Department of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Sylvia Natalie Klodzinska
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Camilla Foged
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Mingshi Yang
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Stefania G Baldursdottir
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Hanne M Nielsen
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| |
Collapse
|
11
|
Quartz crystal microbalance with dissipation as a biosensing platform to evaluate cell–surface interactions of osteoblast cells. Biointerphases 2018; 13:011001. [DOI: 10.1116/1.5000752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Chen JY, Penn LS, Xi J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens Bioelectron 2018; 99:593-602. [DOI: 10.1016/j.bios.2017.08.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
13
|
Chronaki D, Stratiotis DI, Tsortos A, Anastasiadou E, Gizeli E. Screening between normal and cancer human thyroid cells through comparative adhesion studies using the Quartz Crystal Microbalance. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
14
|
|
15
|
Zhang S, Bai H, Pi J, Yang P, Cai J. Label-Free Quartz Crystal Microbalance with Dissipation Monitoring of Resveratrol Effect on Mechanical Changes and Folate Receptor Expression Levels of Living MCF-7 Cells: A Model for Screening of Drugs. Anal Chem 2015; 87:4797-805. [DOI: 10.1021/acs.analchem.5b00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shaolian Zhang
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Haihua Bai
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Jiang Pi
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Peihui Yang
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Jiye Cai
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| |
Collapse
|
16
|
Fang Y. Combining label-free cell phenotypic profiling with computational approaches for novel drug discovery. Expert Opin Drug Discov 2015; 10:331-343. [PMID: 25727255 DOI: 10.1517/17460441.2015.1020788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ye Fang
- Corning Inc., Biochemical Technologies, Science and Technology Division, Corning, NY 14831, USA
| |
Collapse
|
17
|
Nowacki L, Follet J, Vayssade M, Vigneron P, Rotellini L, Cambay F, Egles C, Rossi C. Real-time QCM-D monitoring of cancer cell death early events in a dynamic context. Biosens Bioelectron 2014; 64:469-76. [PMID: 25286354 DOI: 10.1016/j.bios.2014.09.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
Since a few years, the acoustic sensing of whole cell is the focus of increasing interest for monitoring the cytoskeletal cellular response to morphological modulators. We aimed at illustrating the potentialities of the quartz crystal microbalance with dissipation (QCM-D) technique for the real-time detection of the earliest morphological changes that occur at the cell-substrate interface during programmed cell death. Human breast cancer cells (MCF-7) grown on serum protein-coated gold sensors were placed in dynamic conditions under a continuous medium flow. The mass and viscoelasticity changes of the cells were tracked by monitoring the frequency and dissipation shifts during the first 4h of cell exposure to staurosporine, a well-known apoptosis inducer. We have identified a QCM-D signature characteristic of morphological modifications and cell detachment from the sensing surface that are related to the pro-apoptotic treatment. In particular, for low staurosporine doses below 1 µM, we showed that recording the dissipation shift allows to detect an early cell response which is undetectable after the same duration by the classical analytical techniques in cell biology. Furthermore, this sensing method allows quantifying the efficiency of the drug effect in less than 4h without requiring labeling and without interfering in the system, thus preventing any loss of information. In the actual context of targeted cancer therapy development, we believe that these results bring new insights in favor of the use of the non invasive QCM-D technique for quickly probing the cancer cell sensitivity to death inducer drugs.
Collapse
Affiliation(s)
- Laetitia Nowacki
- FRE CNRS 3580, Génie Enzymatique et Cellulaire, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France; UMR CNRS 7338, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France
| | - Julie Follet
- UMR CNRS 7338, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France
| | - Muriel Vayssade
- UMR CNRS 7338, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France
| | - Pascale Vigneron
- UMR CNRS 7338, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France
| | - Laura Rotellini
- UMR CNRS 7338, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France
| | - Florian Cambay
- UMR CNRS 7338, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France
| | - Christophe Egles
- UMR CNRS 7338, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France; Department of Oral and Maxillofacial Pathology, Tufts University, School of Dental Medicine, 1 Kneeland St, Boston, MA 02111, United States.
| | - Claire Rossi
- FRE CNRS 3580, Génie Enzymatique et Cellulaire, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne, France.
| |
Collapse
|
18
|
Kandel J, Lee HS, Sobolewski P, Tomczyk N, Composto RJ, Eckmann DM. Chemically grafted fibronectin for use in QCM-D cell studies. Biosens Bioelectron 2014; 58:249-257. [PMID: 24657645 PMCID: PMC3997653 DOI: 10.1016/j.bios.2014.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 01/12/2023]
Abstract
Traditionally, fibronectin has been used as a physisorbed surface coating (physFN) in cell culture experiments due to its critical role in cell adhesion. However, because the resulting layer is thick, unstable, and of unpredictable uniformity, this method of fibronectin deposition is unsuitable for some types of research, including quartz crystal microbalance (QCM) experiments involving cells. Here, we present a new method for chemical immobilization of fibronectin onto silicon oxide surfaces, including QCM crystals pre-coated with silicon oxide. We characterize these chemically coated fibronectin surfaces (chemFN) as well as physFN ones using spectroscopic ellipsometry (SE), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle measurements. A cell culture model demonstrates that cells on chemFN and physFN surfaces exhibit similar viability, structure, adhesion and metabolism. Finally, we perform QCM experiments using cells on both surfaces which demonstrate the superior suitability of chemFN coatings for QCM research, and provide real-time QCM-D data from cells subjected to an actin depolymerizing agent. Overall, our method of chemical immobilization of fibronectin yields great potential for furthering cellular experiments in which thin, stable and uniform coatings are desirable. As QCM research with cells has been rather limited in success thus far, we anticipate that this new technique will particularly benefit this experimental system by availing it to the much broader field of cell mechanics.
Collapse
Affiliation(s)
- Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hyun-Su Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Sobolewski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy Tomczyk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Bhirde AA, Chikkaveeraiah BV, Srivatsan A, Niu G, Jin AJ, Kapoor A, Wang Z, Patel S, Patel V, Gorbach AM, Leapman RD, Gutkind JS, Hight Walker AR, Chen X. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS NANO 2014; 8:4177-89. [PMID: 24708375 PMCID: PMC4046789 DOI: 10.1021/nn501223q] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Resistance to chemotherapy is the primary cause of treatment failure in over 90% of cancer patients in the clinic. Research in nanotechnology-based therapeutic alternatives has helped provide innovative and promising strategies to overcome multidrug resistance (MDR). By targeting CD44-overexpressing MDR cancer cells, we have developed in a single-step a self-assembled, self-targetable, therapeutic semiconducting single-walled carbon nanotube (sSWCNT) drug delivery system that can deliver chemotherapeutic agents to both drug-sensitive OVCAR8 and resistant OVCAR8/ADR cancer cells. The novel nanoformula with a cholanic acid-derivatized hyaluronic acid (CAHA) biopolymer wrapped around a sSWCNT and loaded with doxorubicin (DOX), CAHA-sSWCNT-DOX, is much more effective in killing drug-resistant cancer cells compared to the free DOX and phospholipid PEG (PL-PEG)-modified sSWCNT formula, PEG-sSWCNT-DOX. The CAHA-sSWCNT-DOX affects the viscoelastic property more than free DOX and PL-PEG-sSWCNT-DOX, which in turn allows more drug molecules to be internalized. Intravenous injection of CAHA-sSWCNT-DOX (12 mg/kg DOX equivalent) followed by 808 nm laser irradiation (1 W/cm(2), 90 s) led to complete tumor eradication in a subcutaneous OVCAR8/ADR drug-resistant xenograft model, while free DOX alone failed to delay tumor growth. Our newly developed CAHA-sSWCNT-DOX nanoformula, which delivers therapeutics and acts as a sensitizer to influence drug uptake and induce apoptosis with minimal resistance factor, provides a novel effective means of counteracting the phenomenon of multidrug resistance.
Collapse
Affiliation(s)
- Ashwinkumar A. Bhirde
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bhaskara V. Chikkaveeraiah
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Ankur Kapoor
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sachin Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander M. Gorbach
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Angela R. Hight Walker
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Address correspondence to (X. Chen)
| |
Collapse
|
20
|
Zhu X, Wang Z, Zhao A, Huang N, Chen H, Zhou S, Xie X. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 2014; 116:459-64. [DOI: 10.1016/j.colsurfb.2014.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/02/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022]
|
21
|
Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:961-969. [PMID: 24345218 DOI: 10.1021/es403247k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration and in NaCl, CaCl2, and MgCl2 as a function of ionic strength (IS). Under favorable conditions (PLL-coated positive surface), GO deposition rates increased with GO concentration, as expected from colloidal theory. Increased NaCl concentration resulted in a greater deposition attachment efficiency of GO on the silica surface, indicating that deposition of GO follows Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; GO deposition rates decreased at high IS, however, due to large aggregate formation. GO critical deposition concentration (CDC) on the silica surface is determined to be 40 mM NaCl which is higher than the reported CDC values of fullerenes and lower than carbon nanotubes. A similar trend is observed for MgCl2 which has a CDC value of 1.2 mM MgCl2. Only a minimal amount of GO (frequency shift <2 Hz) was deposited on the silica surface in CaCl2 due to the bridging ability of Ca(2+) ions with GO functional groups. Significant GO release from silica surface was observed after adding deionized water, indicating that GO deposition is reversible. The release rates of GO were at least 10-fold higher than the deposition rates under similar conditions indicating potential high release and mobility of GO in the environment. Under favorable conditions, a significant amount of GO was released which indicates potential multilayer GO deposition. However, a negligible amount of deposited GO was released in CaCl2 under favorable conditions due to the binding of GO layers with Ca(2+) ions. Release of GO was significantly dependent on salt type with an overall trend of NaCl > MgCl2 > CaCl2.
Collapse
Affiliation(s)
- Indranil Chowdhury
- National Research Council Research Associate , Athens, Georgia United States
| | | | | | | | | |
Collapse
|
22
|
Nilebäck E, Enochson L, Altgärde N, Schnabelrauch M, Lindahl A, Svedhem S, Kunze A. Acoustic monitoring of changes in well-defined hyaluronan layers exposed to chondrocytes. Analyst 2014; 139:5350-3. [DOI: 10.1039/c4an01393j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of human-derived chondrocytes and thin hyaluronan layers was studied using the quartz crystal microbalance with dissipation (QCM-D) technique combined with light microscopy.
Collapse
Affiliation(s)
- E. Nilebäck
- Dept. of Appl. Physics
- Chalmers University of Technology
- Göteborg, Sweden
- Biolin Scientific AB
- Västra Frölunda, Sweden
| | - L. Enochson
- Dept. of Clinical Chemistry and Transfusion Medicine
- Sahlgrenska Academy
- University of Gothenburg
- Göteborg, Sweden
| | - N. Altgärde
- Dept. of Appl. Physics
- Chalmers University of Technology
- Göteborg, Sweden
| | | | - A. Lindahl
- Dept. of Clinical Chemistry and Transfusion Medicine
- Sahlgrenska Academy
- University of Gothenburg
- Göteborg, Sweden
| | - S. Svedhem
- Dept. of Appl. Physics
- Chalmers University of Technology
- Göteborg, Sweden
| | - A. Kunze
- Dept. of Appl. Physics
- Chalmers University of Technology
- Göteborg, Sweden
- Inst. of Physical Chemistry
- Univerisity of Götttingen
| |
Collapse
|
23
|
Zaytseva N, Lynn JG, Wu Q, Mudaliar DJ, Sun H, Kuang PQ, Fang Y. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. SENSORS AND ACTUATORS. B, CHEMICAL 2013; 188:10.1016/j.snb.2013.08.012. [PMID: 24319319 PMCID: PMC3852437 DOI: 10.1016/j.snb.2013.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cell adhesion to extracellular matrix (ECM) is fundamental to many distinct aspects of cell biology, and has been an active topic for label-free biosensors. However, little attention has been paid to study the impact of receptor signaling on the cell adhesion process. We here report the development of resonant waveguide grating biosensor-enabled label-free and fluorescent approaches, and their use for investigating the adhesion of an engineered HEK-293 cell line stably expressing green fluorescent protein (GFP) tagged β2-adrenergic receptor (β2-AR) onto distinct surfaces under both ambient and physiological conditions. Results showed that cell adhesion is sensitive to both temperature and ECM coating, and distinct mechanisms govern the cell adhesion process under different conditions. The β2-AR agonists, but not its antagonists or partial agonists, were found to be capable of triggering signaling during the adhesion process, leading to an increase in the adhesion of the engineered cells onto fibronectin-coated biosensor surfaces. These results suggest that the dual approach presented is useful to investigate the mechanism of cell adhesion, and to identify drug molecules and receptor signaling that interfere with cell adhesion.
Collapse
Affiliation(s)
- Natalya Zaytseva
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Jeffery G. Lynn
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Qi Wu
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | | | | | - Patty Q. Kuang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| |
Collapse
|
24
|
Sun C. Preparation of solid surfaces for native chemical ligation in the quartz crystal microbalance. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chengjun Sun
- College of Materials and Textile Engineering; Jiaxing University; Jiaxing Zhejiang 314001 China
| |
Collapse
|
25
|
Wei XL, Zhang J, Zhao N. Acoustic sensing of the initial adhesion of chemokine-stimulated cancer cells. Colloids Surf B Biointerfaces 2013; 111:688-92. [PMID: 23911626 DOI: 10.1016/j.colsurfb.2013.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/11/2013] [Accepted: 07/03/2013] [Indexed: 11/26/2022]
Abstract
Chemokines together with their receptors play important roles in tumor metastasis. Intracellular signals stimulated by chemokines regulate the initial adhesion of cancer cells, which controls the subsequent cell spreading and migration. Until now, the nature of initial cell adhesion has been understood very poorly, since conventional assays are static and could not provide dynamic information. In order to address this issue, we adopt an acoustic sensor, quartz crystal microbalance (QCM), to monitor the attachment of chemokine-stimulated cancer cells in real-time. As a model, the chemokine CXCL12 was used to stimulate three human breast cancer cell lines expressing different levels of its receptor CXCR4, which triggers intracellular signaling pathways that activate integrins across cell membrane. Interaction between cellular integrins and adhesion molecules (CAMs) pre-coated on sensor surfaces were in situ monitored by QCM of which the frequency was sensitive to the mechanical connection of cells to the sensor surface. The ratio of frequency shift under stimulation to that without stimulation indicated the number and strength of integrin-CAM binding stimulated by the chemokine. The cell-surface binding was found to be enhanced by CXCL12, which depends on the CAM type and levels of chemokine and receptor, and was significantly inhibited by a blocker of the chemokine pathway. The binding of integrin with intercellular adhesion molecule was also found to be strong and in good correlated with the chemotactic indexes obtained by the classical Boyden chamber assay. This research suggests that acoustic sensing of initial cell adhesion could provide a dynamic insight into cell interfacial phenomena.
Collapse
Affiliation(s)
- Xiao-Lan Wei
- College of Environmental and Biological Engineering, Research Center of Pharmaceutical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Jing Zhang
- College of Environmental and Biological Engineering, Research Center of Pharmaceutical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, China
| | - Na Zhao
- College of Environmental and Biological Engineering, Research Center of Pharmaceutical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
26
|
Tymchenko N, Kunze A, Dahlenborg K, Svedhem S, Steel D. Acoustical sensing of cardiomyocyte cluster beating. Biochem Biophys Res Commun 2013; 435:520-5. [DOI: 10.1016/j.bbrc.2013.04.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/25/2013] [Indexed: 02/08/2023]
|
27
|
Seo JH, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N. Inducing Rapid Cellular Response on RGD-Binding Threaded Macromolecular Surfaces. J Am Chem Soc 2013; 135:5513-6. [DOI: 10.1021/ja400817q] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ji-Hun Seo
- Institute of Biomaterials
and
Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Sachiro Kakinoki
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Yuuki Inoue
- Department of Materials Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Nobuhiko Yui
- Institute of Biomaterials
and
Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| |
Collapse
|
28
|
Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 2013; 67:69-81. [PMID: 23340025 DOI: 10.1016/j.vascn.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Central to drug discovery and development is to comprehend the target(s), potency, efficacy and safety of drug molecules using pharmacological assays. Owing to their ability to provide a holistic view of drug actions in native cells, label-free biosensor-enabled cell phenotypic assays have been emerging as new generation phenotypic assays for drug discovery. Despite the benefits associated with wide pathway coverage, high sensitivity, high information content, non-invasiveness and real-time kinetics, label-free cell phenotypic assays are often viewed to be a blackbox in the era of target-centric drug discovery. METHODS This article first reviews the biochemical and biological complexity of drug-target interactions, and then discusses the key characteristics of label-free cell phenotypic assays and presents a five-step strategy to troubleshooting and deconvoluting the label-free cell phenotypic profiles of drugs. RESULTS Drug-target interactions are intrinsically complicated. Label-free cell phenotypic signatures of drugs mirror the innate complexity of drug-target interactions, and can be effectively deconvoluted using the five-step strategy. DISCUSSION The past decades have witnessed dramatic expansion of pharmacological assays ranging from molecular to phenotypic assays, which is coincident with the realization of the innate complexity of drug-target interactions. The clinical features of a drug are defined by how it operates at the system level and by its distinct polypharmacology, ontarget, phenotypic and network pharmacology. Approaches to examine the biochemical, cellular and molecular mechanisms of action of drugs are essential to increase the efficiency of drug discovery and development. Label-free cell phenotypic assays and the troubleshooting and deconvoluting approach presented here may hold great promise in drug discovery and development.
Collapse
|
29
|
Deng H, Wang C, Fang Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv 2013; 3:10370. [DOI: 10.1039/c3ra40426a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
|
30
|
Garcia MP, Shahid A, Chen JY, Xi J. Effects of the expression level of epidermal growth factor receptor on the ligand-induced restructuring of focal adhesions: a QCM-D study. Anal Bioanal Chem 2012. [DOI: 10.1007/s00216-012-6558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Evaluating Inhibition of the Epidermal Growth Factor (EGF)-Induced Response of Mutant MCF10A Cells with an Acoustic Sensor. BIOSENSORS-BASEL 2012; 2:448-64. [PMID: 25586035 PMCID: PMC4263556 DOI: 10.3390/bios2040448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/08/2012] [Accepted: 11/07/2012] [Indexed: 11/25/2022]
Abstract
Many cancer treatments rely on inhibition of epidermal growth factor (EGF)-induced cellular responses. Evaluating drug effects on such responses becomes critical to the development of new cancer therapeutics. In this report, we have employed a label-free acoustic sensor, the quartz crystal microbalance with dissipation monitoring (QCM-D), to track the EGF-induced response of mutant MCF10A cells under various inhibitory conditions. We have identified a complex cell de-adhesion process, which can be distinctly altered by inhibitors of signaling pathways and cytoskeleton formation in a dose-dependent manner. The dose dependencies of the inhibitors provide IC50 values which are in strong agreement with the values reported in the literature, demonstrating the sensitivity and reliability of the QCM-D as a screening tool. Using immunofluorescence imaging, we have also verified the quantitative relationship between the ΔD-response (change in energy dissipation factor) and the level of focal adhesions quantified with the areal density of immunostained vinculin under those inhibitory conditions. Such a correlation suggests that the dynamic restructuring of focal adhesions can be assessed based on the time-dependent change in ΔD-response. Overall, this report has shown that the QCM-D has the potential to become an effective sensing platform for screening therapeutic agents that target signaling and cytoskeletal proteins.
Collapse
|