1
|
Xu Z, He H, Nie R. A cucurbit[7]uril-mediated crosslinking-amplified microchannel resistance immunoassay via magnetic interception for point of care testing of insulin. Talanta 2025; 294:128211. [PMID: 40294465 DOI: 10.1016/j.talanta.2025.128211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Insulin is the only hormone that lowers blood glucose levels, the abnormal insulin secretion leads to various diseases such as diabetes. Herein, we present a cucurbit[7]uril (CB[7])-mediated crosslinking-amplified microchannel resistance immunoassay (MCRI) via magnetic interception for point of care (POC) testing of insulin in human serum samples. In the developed MCRI, the CB[7] coated gold magnetic nanoparticles (AuMNP@CB[7]) are used for extracting insulin from complex samples by host-guest interaction. The formed AuMNP@CB[7]-insulin plays a role of crosslinker to induce the aggregation of the antibody modified polystyrene microspheres (PS-Ab) through immune recognition. The aggregates are then trapped in a microchannel via magnetic interception, resulting in a decrease in the current intensity, which is quantitatively correlated with the insulin level. Benefiting from the CB[7]-mediated extraction, enrichment, and crosslinking amplification, a satisfactory analytical performance is obtained and the limit of detection (LOD) is as low as 0.35 pg/mL. Thus, the MCRI is appropriate for sensitive detection of insulin and can be extended to POC application by integrating the CB[7]-mediated amplification with the simple MCRI device.
Collapse
Affiliation(s)
- Zhongyi Xu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Huiyu He
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Rongbin Nie
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Yeh SH, Chang YJ, Hsieh CY. An Electrochemical Nickel-Cobalt (Ni-Co)/Graphene Oxide-Polyvinyl Alcohol (GO-PVA) Sensor for Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2025; 25:2050. [PMID: 40218564 PMCID: PMC11991119 DOI: 10.3390/s25072050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
This paper presents a non-enzymatic sensor for glucose detection in an environment where glucose and insulin coexist. The sensor is based on a three-electrode chip fabricated by etching the copper foil of a printed circuit board. The working electrode is coated with a graphene oxide-polyvinyl alcohol composite film, followed by the electroplating of a nickel-cobalt layer and an additional surface treatment using O2 plasma. The experimental results indicate that within a glucose concentration of 2 mM to 10 mM and an insulin concentration of 0.1 mM to 1 mM, the measured current exhibits a linear relationship with the concentration of glucose or insulin, regardless of whether cyclic voltammetry or linear sweep voltammetry is used. However, the detection limit for insulin is 0.01 mM, ensuring that glucose detection remains unaffected by insulin interference. In this sensor, nickel-cobalt serves as a catalyst for glucose and insulin detection, while the graphene oxide-polyvinyl alcohol composite enhances sensing performance.
Collapse
Affiliation(s)
| | - Yaw-Jen Chang
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 320314, Taiwan
| | | |
Collapse
|
3
|
Chen W, Huang L, Zhou B. Gold nanourchin on multiple-point dielectrode for glucose biosensing by current-potential measurement. Biotechnol Appl Biochem 2024; 71:1262-1271. [PMID: 38867452 DOI: 10.1002/bab.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Gestational diabetes (GD) is a condition characterized by elevated blood sugar levels during pregnancy. GD poses various health risks, such as serious birth injuries, the need for cesarean delivery, and the necessity of newborn care. Monitoring glucose levels is essential for ensuring safe delivery and reducing the risks to both the mother and fetus. Various sensors are readily available for monitoring glucose levels, and researchers are continually working to develop highly sensitive glucose sensors. This research aimed to develop a gold nanourchin (AuNU)-hybrid biosensor for quantifying glucose on a multi-point electrode sensor. Glucose oxidase (GOx) was attached to the AuNU and seeded on the sensing surface using an amine linker. The current-potential (1-2 V at 0.1 V sweep) was recorded for the GOx-glucose interaction, with a limit of detection of 560 μM and a regression coefficient (R2) of 0.9743 [y = 0.9106x - 0.9953] on the linear curve. The sensitivity was estimated to be 3.5 mAcm-2M-1. Furthermore, control experiments with galactose, sucrose, and fructose did not yield an increase in current-potential, confirming specific glucose detection. This experiment helps in monitoring glucose levels to manage conditions associated with GD.
Collapse
Affiliation(s)
- Wei Chen
- Department of Obstetrics (Guoxing), Haikou Hospital of The Maternal and Child Health, Haikou, Hainan Province, China
| | - Lili Huang
- Department of Obstetrics (Guoxing), Haikou Hospital of The Maternal and Child Health, Haikou, Hainan Province, China
| | - Bing Zhou
- Department of Obstetrics (Guoxing), Haikou Hospital of The Maternal and Child Health, Haikou, Hainan Province, China
| |
Collapse
|
4
|
Rossi F, Trakoolwilaiwan T, Gigli V, Tortolini C, Lenzi A, Isidori AM, Thanh NTK, Antiochia R. Progress in nanoparticle-based electrochemical biosensors for hormone detection. NANOSCALE 2024; 16:18134-18164. [PMID: 39254475 DOI: 10.1039/d4nr02075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hormones are chemical messengers that regulate a wide range of physiological processes including metabolism, development, growth, reproduction and mood. The concentration of hormones that orchestrate the numerous bodily functions is very low (1 nM or less). Efforts have been made to develop highly sensitive tools to detect them. This review represents a critical comparison between different types of nanoparticle-based electrochemical biosensors for the detection of various hormones, namely cortisol, sex hormones (estradiol, progesterone, testosterone), insulin, thyroid-stimulating hormone (TSH) and growth hormone (GH). The electrochemical biosensors investigated for each hormone are first divided on the basis of the biological fluid tested for their detection, and successively on the basis of the electrochemical transducer utilized in the device (voltammetric or impedimetric). Focus is placed on the nanoparticles employed and the successive electrode modification developed in order to improve detection sensitivity and specificity and biosensor stability. Limit of detection (LOD), linear range, reproducibility and possibility of regeneration for continuous reuse are also investigated and compared. The review also addresses the recent trends in the development of wearable biosensors and point-of-care testing for hormone detection in clinical diagnostics useful for endocrinology research, and the future perspectives regarding the integration of nanomaterials, microfluidics, near field communication (NFC) technology and portable devices.
Collapse
Affiliation(s)
- Francesco Rossi
- ICCOM-CNR, Polo Scientifico, Via Madonna del piano 10, Sesto Fiorentino, FI, 50019, Italy
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Fendrych K, Górska-Ratusznik A, Smajdor J. Electrochemical Assays for the Determination of Antidiabetic Drugs-A Review. MICROMACHINES 2023; 15:10. [PMID: 38276837 PMCID: PMC10820374 DOI: 10.3390/mi15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
This article presents the current state of knowledge regarding electrochemical methods for determining the active substances within drugs that are used in the treatment of type 1 and type 2 diabetes. Electrochemical methods of analysis, due to their sensitivity and easiness, are a great alternative to other, usually more expensive analytical assays. The determination of active substances mentioned in this review is based on oxidation or reduction processes on the surface of the working electrode. A wide variety of working electrodes, often modified with materials such as nanoparticles or conducting polymers, have been used for the highly sensitive analysis of antidiabetic drugs. The presented assays allow us to determine the compounds of interest in various samples, such as pharmaceutical products or different human bodily fluids.
Collapse
Affiliation(s)
- Katarzyna Fendrych
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Anna Górska-Ratusznik
- Lukasiewicz Research Network—Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Joanna Smajdor
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Cracow, Poland
| |
Collapse
|
6
|
Sakthivel R, Prasanna SB, Tseng CL, Lin LY, Duann YF, He JH, Chung RJ. A Sandwich-Type Electrochemical Immunosensor for Insulin Detection Based on Au-Adhered Cu 5 Zn 8 Hollow Porous Carbon Nanocubes and AuNP Deposited Nitrogen-Doped Holey Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202516. [PMID: 35950565 DOI: 10.1002/smll.202202516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| |
Collapse
|
7
|
Chen J, Liu Z, Yang R, Liu M, Feng H, Li N, Jin M, Zhang M, Shui L. A liquid crystal-based biosensor for detection of insulin driven by conformational change of an aptamer at aqueous-liquid crystal interface. J Colloid Interface Sci 2022; 628:215-222. [DOI: 10.1016/j.jcis.2022.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
|
8
|
Abazar F, Sharifi E, Noorbakhsh A. Antifouling properties of carbon quantum dots-based electrochemical sensor as a promising platform for highly sensitive detection of insulin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
An electrochemical signal switch–based (on–off) aptasensor for sensitive detection of insulin on gold-deposited screen-printed electrodes. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
11
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
12
|
Aptamer-binding zirconium-based metal-organic framework composites prepared by two conjunction approaches with enhanced bio-sensing for detecting isocarbophos. Talanta 2022; 236:122822. [PMID: 34635212 DOI: 10.1016/j.talanta.2021.122822] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
A novel label-free and enzyme-free detection strategy has been developed for the electrochemical biosensor detection of isocarbophos (ICP) using UiO-66-NH2 and aptamer as the signal transducers. In this work, the ICP aptamers were attached to UiO-66-NH2 through physical mixing and chemical combination methods. In the presence of ICP, the aptamers could undergo conformational change and bind to them, which prevent the electron transfer to the surface of electrode. By comparing the two conjunction approaches of aptasensors, these proposed strategies could selectively and sensitively detect ICP with a detection limit of 6 ng mL-1 (20.74 nM) and 0.9 ng mL-1 (3.11 nM). Furthermore, we have also demonstrated the capability of this strategy in the detection of ICP in real samples from vegetable and fruit extract, indicating the potential application of this strategy in food safety issues.
Collapse
|
13
|
Liu B, Dai Q, Liu P, Gopinath SC, Zhang L. Nanostructure-mediated glucose oxidase biofunctionalization for monitoring gestational diabetes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
NiO Nanoparticles for Electrochemical Insulin Detection. SENSORS 2021; 21:s21155063. [PMID: 34372300 PMCID: PMC8347614 DOI: 10.3390/s21155063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus represents one of the most widespread diseases in civilization nowadays. Since the costs for treating and diagnosing of diabetes represent several billions of dollars per year, a cheap, fast, and simple sensor for diabetes diagnosis is needed. Electrochemical insulin sensors can be considered as a novel approach for diabetes diagnosis. In this study, carbon electrode with electrodeposited NiO nanoparticles was selected as a suitable electrode material for insulin determination. The morphology and surface composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). For a better understanding of insulin determination on NiO-modified electrodes, the mechanism of electrochemical reaction and the kinetic parameters were studied. They were calculated from both voltammetric and amperometric measurements. The modified carbon electrode displayed a wide linear range from 600 nM to 10 µM, a low limit of detection of 19.6 nM, and a high sensitivity of 7.06 µA/µM. The electrodes were stable for 30 cycles and were able to detect insulin even in bovine blood serum. Additionally, the temperature stability of this electrode and its storage conditions were studied with appropriate outcomes. The above results show the high promise of this electrode for detecting insulin in clinical samples.
Collapse
|
15
|
Aydin EB, Aydin M, Sezgintürk MK. A Label-free Electrochemical Immunosensor for Highly Sensitive Detection of TNF α, Based on Star Polymer-modified disposable ITO Electrode. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200409111759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Biomarkers are very important disease-related biomolecules which should be
analyzed sensitive and selective in related physiological fluids or tissues. Tumor necrosis factor-α is a
type of cytokine which plays vitlly important roles in different methabolic pathways such as cell death,
survival, differentiation, proliferation and migration, and infectious and inflammatory diseases including
rheumatoid arthritis, diabetes.
Objective:
In this study, it was aimed to develop a reliable tool based on star-shaped poly(glycidyl
methacrylate) polymer coated disposable indium tin oxide electrode for determination of Tumor necrosis
factor-α, an important disease biomarker.
Methods:
Star shaped polymer was used as an interface material for anti- Tumor necrosis factor α antibodies
immobilization. The antibodies were immobilized covalently onto polymer coated indium tin
oxide electrode. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were
used for all electrochemical measurements.
Results:
The suggested immunosensor exhibited a linear range between 0.02 and 4 pg/mL Tumor necrosis
factor-α, and the detection limit was found as 6 fg/mL. Scanning electron microscopy and atomic
force microscopy were used for electrode surface characterization. In addition, the suggested immunosensor
was used for Tumor necrosis factor-α sensing in human serum samples. The results displayed
recoveries between 97.07 and 100.19%. Moreover, this immunosensor had a simple fabrication
procedure and a long storage-stability.
Conclusion:
A new biosensor based on a Star shaped polymer for the ultra sensitive determination of a
biomarker Tumor necrosis factor-α was developed. The biosensor presented excellent repeatability and
reproducubility, and also wide calibration range for Tumor necrosis factor- α.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Muhammet Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale,Turkey
| |
Collapse
|
16
|
Guo W, Xu H, Cao X, Ma J, Liu Y. A novel electrochemical detemination platform of uranyl ion based on silver nanodendrites-reduced graphene oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Šišoláková I, Hovancová J, Chovancová F, Oriňaková R, Maskaľová I, Oriňak A, Radoňak J. Zn Nanoparticles Modified Screen Printed Carbon Electrode as a Promising Sensor for Insulin Determination. ELECTROANAL 2020. [DOI: 10.1002/elan.202060417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ivana Šišoláková
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Jana Hovancová
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Frederika Chovancová
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Renáta Oriňaková
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Iveta Maskaľová
- Department of Nutrition, Dietetics, and Animal Breeding University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovakia
| | - Andrej Oriňak
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Jozef Radoňak
- Faculty of Medicine University of P.J. Šafárik in Košice Trieda SNP 1 040 01 Košice Slovakia
| |
Collapse
|
18
|
Han XW, Pan H, liu M. In situ construction of reduced graphene oxide supported Ag nanoneedles heterogenous nanostructures with superior catalytic activity for 4-nitrophenol. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Garcia Cruz A, Haq I, Cowen T, Di Masi S, Trivedi S, Alanazi K, Piletska E, Mujahid A, Piletsky SA. Design and fabrication of a smart sensor using in silico epitope mapping and electro-responsive imprinted polymer nanoparticles for determination of insulin levels in human plasma. Biosens Bioelectron 2020; 169:112536. [PMID: 32980804 DOI: 10.1016/j.bios.2020.112536] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023]
Abstract
A robust and highly specific sensor based on electroactive molecularly imprinted polymer nanoparticles (nanoMIP) was developed. The nanoMIP tagged with a redox probe, combines both recognition and reporting capabilities. The developed nanoMIP replaces enzyme-mediator pairs used in traditional biosensors thus, offering enhanced molecular recognition for insulin, improving performance in complex biological samples, and yielding high stability. Also, most of existing sensors show poor performance after storage. To improve costs of the logistics and avoid the need of cold storage in the chain supply, we developed an alternative to biorecognition system that relies on nanoMIP. NanoMIP were computationally designed using "in-silico" insulin epitope mapping and synthesized by solid phase polymerisation. The characterisation of the polymer nanoparticles was performed by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform Infrared (FT-IR) and surface plasmon resonance (SPR). The electrochemical sensor was developed by chemical immobilisation of the nanoMIP on screen printed platinum electrodes. The insulin sensor displayed satisfactory performances and reproducible results (RSD = 4.2%; n = 30) using differential pulse voltammetry (DPV) in the clinically relevant concentration range from 50 to 2000 pM. The developed nanoMIP offers the advantage of large number of specific recognition sites with tailored geometry, as the resultant, the sensor showed high sensitivity and selectivity to insulin with a limit of detection (LOD) of 26 and 81 fM in buffer and human plasma, respectively, confirming the practical application for point of care monitoring. Moreover, the nanoMIP showed adequate storage stability of 168 days, demonstrating the robustness of sensor for several rounds of insulin analysis.
Collapse
Affiliation(s)
- Alvaro Garcia Cruz
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK.
| | - Isma Haq
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Todd Cowen
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Sabrina Di Masi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Edificio A6 Multipiano CSEEM, Campus Universitario Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Samir Trivedi
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Kaseb Alanazi
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Elena Piletska
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Sergey A Piletsky
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| |
Collapse
|
20
|
Yagati AK, Ngoc Le HT, Cho S. Bioelectrocatalysis of Hemoglobin on Electrodeposited Ag Nanoflowers toward H 2O 2 Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1628. [PMID: 32825146 PMCID: PMC7557759 DOI: 10.3390/nano10091628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
Hydrogen peroxide (H2O2) is a partially reduced metabolite of oxygen that exerts a diverse array of physiological and pathological activities in living organisms. Therefore, the accurate quantitative determination of H2O2 is crucial in clinical diagnostics, the food industry, and environmental monitoring. Herein we report the electrosynthesis of silver nanoflowers (AgNFs) on indium tin oxide (ITO) electrodes for direct electron transfer of hemoglobin (Hb) toward the selective quantification of H2O2. After well-ordered and fully-grown AgNFs were created on an ITO substrate by electrodeposition, their morphological and optical properties were analyzed with scanning electron microscopy and UV-Vis spectroscopy. Hb was immobilized on 3-mercaptopropionic acid-coated AgNFs through carbodiimide cross-linking to form an Hb/AgNF/ITO biosensor. Electrochemical measurement and analysis demonstrated that Hb retained its direct electron transfer and electrocatalytic properties and acted as a H2O2 sensor with a detection limit of 0.12 µM and a linear detection range of 0.2 to 3.4 mM in phosphate-buffered saline (PBS). The sensitivity, detection limit, and detection range of the Hb/AgNF/ITO biosensor toward detection H2O2 in human serum was also found to be 0.730 mA mM-1 cm-2, 90 µM, and 0.2 to 2.6 mM, indicating the clinical application for the H2O2 detection of the Hb/AgNF/ITO biosensor. Moreover, interference experiments revealed that the Hb/AgNF/ITO sensor displayed excellent selectivity for H2O2.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- Institute of Analytical Chemistry, Chemo- and Biosensors, Universität Regensburg, 93053 Regensburg, Germany;
| | - Hien T. Ngoc Le
- Department of Electronics Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea;
| | - Sungbo Cho
- Department of Electronics Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea;
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
21
|
Yagati AK, Go A, Vu NH, Lee MH. A MoS2–Au nanoparticle-modified immunosensor for T3 biomarker detection in clinical serum samples. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Garg K, Papponen P, Johansson A, Puttaraksa N, Gilbert L. Preparation of graphene nanocomposites from aqueous silver nitrate using graphene oxide's peroxidase-like and carbocatalytic properties. Sci Rep 2020; 10:5126. [PMID: 32198378 PMCID: PMC7083964 DOI: 10.1038/s41598-020-61929-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/25/2020] [Indexed: 11/30/2022] Open
Abstract
The present study evaluates the role of graphene oxide’s (GO’s) peroxidase-like and inherent/carbocatalytic properties in oxidising silver nitrate (AgNO3) to create graphene nanocomposites with silver nanoparticles (GO/Ag nanocomposite). Activation of peroxidase-like catalytic function of GO required hydrogen peroxide (H2O2) and ammonia (NH3) in pH 4.0 disodium hydrogen phosphate (Na2HPO4). Carbocatalytic abilities of GO were triggered in pH 4.0 deionised distilled water (ddH2O). Transmission electron microscope (TEM), scanning electron microscope (SEM), cyclic voltammetry (CV) and UV-Vis spectroscopy aided in qualitatively and quantitatively assessing GO/Ag nanocomposites. TEM and SEM analysis demonstrated the successful use of GO’s peroxidase-like and carbocatalytic properties to produce GO/Ag nanocomposite. UV-Vis analysis indicated a higher yield in optical density values for GO/Ag nanocomposites created using GO’s carbocatalytic ability rather than its peroxidase-like counterpart. Additionally, CV demonstrated that GO/Ag nanocomposite fabricated here is a product of an irreversible electrochemical reaction. Our study outcomes show new opportunities for GO as a standalone catalyst in biosensing. We demonstrate a sustainable approach to obtain graphene nanocomposites exclusive of harmful chemicals or physical methods.
Collapse
Affiliation(s)
- Kunal Garg
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland.,Te?ted Ltd, Mattilaniemi 6-8, Jyväskylä, Finland
| | - Petri Papponen
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Andreas Johansson
- Department of Chemistry, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physics, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Nitipon Puttaraksa
- Faculty of Science and Nanoscience & Nanotechnology, Graduate Program, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Leona Gilbert
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland. .,Te?ted Ltd, Mattilaniemi 6-8, Jyväskylä, Finland.
| |
Collapse
|
23
|
Khan MS, Ameer H, Ali A, Manzoor R, Yang L, Feng R, Jiang N, Wei Q. Electrochemiluminescence behaviour of silver/silver orthophosphate/graphene oxide quenched by Pd@Au core-shell nanoflowers for ultrasensitive detection of insulin. Biosens Bioelectron 2020; 147:111767. [DOI: 10.1016/j.bios.2019.111767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
|
24
|
Chinnadayyala SR, Park J, Kim YH, Choi SH, Lee SM, Cho WW, Lee GY, Pyun JC, Cho S. Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5560. [PMID: 31888286 PMCID: PMC6960938 DOI: 10.3390/s19245560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
An electrochemical capacitance immunosensor based on an interdigitated wave-shaped micro electrode array (IDWµE) for direct and label-free detection of C-reactive protein (CRP) was reported. A self-assembled monolayer (SAM) of dithiobis (succinimidyl propionate) (DTSP) was used to modify the electrode array for antibody immobilization. The SAM functionalized electrode array was characterized morphologically by atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX). The nature of gold-sulfur interactions on SAM-treated electrode array was probed by X-ray photoelectron spectroscopy (XPS). The covalent linking of anti-CRP-antibodies onto the SAM modified electrode array was characterized morphologically through AFM, and electrochemically through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The application of phosphate-buffered saline (PBS) and human serum (HS) samples containing different concentrations of CRP in the electrode array caused changes in the electrode interfacial capacitance upon CRP binding. CRP concentrations in PBS and HS were determined quantitatively by measuring the change in capacitance (ΔC) through EIS. The electrode immobilized with anti-CRP-antibodies showed an increase in ΔC with the addition of CRP concentrations over a range of 0.01-10,000 ng mL-1. The electrode showed detection limits of 0.025 ng mL-1 and 0.23 ng mL-1 (S/N = 3) in PBS and HS, respectively. The biosensor showed a good reproducibility (relative standard deviation (RSD), 1.70%), repeatability (RSD, 1.95%), and adequate selectivity in presence of interferents towards CRP detection. The sensor also exhibited a significant storage stability of 2 weeks at 4 °C in 1× PBS.
Collapse
Affiliation(s)
| | - Jinsoo Park
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Sang-Myung Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon 25341, Korea;
| | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do 15588, Korea;
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Incheon 13120, Korea;
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| |
Collapse
|
25
|
Taib M, Tan LL, Abd Karim NH, Ta GC, Heng LY, Khalid B. Reflectance aptasensor based on metal salphen label for rapid and facile determination of insulin. Talanta 2019; 207:120321. [PMID: 31594568 DOI: 10.1016/j.talanta.2019.120321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 01/31/2023]
Abstract
An optical aptasensor-based sensing platform for rapid insulin detection was fabricated. Aminated porous silica microparticles (PSiMPs) were synthesized via a facile mini-emulsion method to provide large surface area for covalent immobilization of insulin-binding DNA aptamer (IGA3) by glutaraldehyde cross-linking protocol. A Nickel-salphen type complex with piperidine side chain [Ni(II)-SP] was synthesized with a simple one-pot reaction, and functionalized as an optical label due to strong π-π interaction between aromatic carbons of G-quadruplex DNA aptamer and planar aromatic groups of Ni(II)-SP to form the immobilized IGA3-Ni(II)-SP complex, i.e. the dye-labeled aptamer, thereby bringing yellow colouration to the immobilized G-quartet plane. Optical characterization of aptasensor towards insulin binding was carried out with a fiber optic reflectance spectrophotometer. The maximum reflectance intensity of the immobilized IGA3-Ni(II)-SP complex at 656 nm decreased upon binding with insulin as aptasensor changed to brownish orange colouration in the background. This allows optical detection of insulin as the colour change of aptasensor is dependent on the insulin concentration. The linear detection range of the aptasensor is obtained from 10 to 50 μIU mL-1 (R2 = 0.9757), which conformed to the normal fasting insulin levels in human with a limit of detection (LOD) at 3.71 μIU mL-1. The aptasensor showed fast response time of 40 min and long shelf life stability of >3 weeks. Insulin detection using healthy human serums with informed consent provided by participants suggests the DNA aptamer biosensor was in good agreement with ELISA standard method using BIOMATIK Human INS (Insulin) ELISA Kit.
Collapse
Affiliation(s)
- Mahirah Taib
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Nurul Huda Abd Karim
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Goh Choo Ta
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Lee Yook Heng
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia; School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Bahariah Khalid
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Hospital Serdang, Jalan Puchong, 43000, Kajang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
26
|
Aydın EB, Aydın M, Sezgintürk MK. Ultrasensitive determination of cadherin-like protein 22 with a label-free electrochemical immunosensor using brush type poly(thiophene-g-glycidylmethacrylate) modified disposable ITO electrode. Talanta 2019; 200:387-397. [DOI: 10.1016/j.talanta.2019.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
27
|
Yagati AK, Go A, Chavan SG, Baek C, Lee MH, Min J. Nanostructured Au-Pt hybrid disk electrodes for enhanced parathyroid hormone detection in human serum. Bioelectrochemistry 2019; 128:165-174. [DOI: 10.1016/j.bioelechem.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
|
28
|
Shafiei-Irannejad V, Soleymani J, Azizi S, KhoubnasabJafari M, Jouyban A, Hasanzadeh M. Advanced nanomaterials towards biosensing of insulin: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
29
|
A novel fluorescent sensing platform for insulin detection based on competitive recognition of cationic pillar[6]arene. Talanta 2019; 197:130-137. [DOI: 10.1016/j.talanta.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023]
|
30
|
Chavan SG, Yagati AK, Mohammadniaei M, Min J, Lee MH. Robust Bioengineered Apoferritin Nanoprobes for Ultrasensitive Detection of Infectious Pancreatic Necrosis Virus. Anal Chem 2019; 91:5841-5849. [PMID: 30938982 DOI: 10.1021/acs.analchem.9b00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) has been identified as a viral pathogen for many fish diseases that have become a huge hurdle for the growing fishing industry. Thus, in this work, we report a label-free impedance biosensor to quantify IPNV in real fish samples at point-of-care (POC) level. High specificity IPNV sensor with a detection limit of 2.69 TCID50/mL was achieved by conjugating IPNV antibodies to portable Au disk electrode chips using human heavy chain apoferritin (H-AFN) nanoprobes as a binding agent. H-AFN probes were bioengineered through PCR by incorporating pET-28b(+) resulting in 24 subunits of 6 × his-tag and protein-G units on its outer surface to increase the sensitivity of the IPNV detection. The biosensor surface modifications were characterized by differential pulse voltammetry (DPV) and EIS methods for each modification step. The proposed nanoprobe based sensor showed three-fold enhancement in charge transfer resistance toward IPNV detection in comparison with the traditional linker approach when measured in a group of similar virus molecules. The portable sensor exhibited a linear range of 100-10000 TCID50/mL and sensitivity of 5.40 × 10-4 TCID50/mL in real-fish samples. The performance of the proposed IPNV sensor was fully validated using an enzyme-linked immunosorbent assay (ELISA) technique with a sensitivity of 3.02 × 10-4 TCID50/mL. Results from H-AFN nanoprobe based IPNV sensor indicated high selectivity, sensitivity, and stability could be a promising platform for the detection of similar fish viruses and other biological molecules of interest.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Ajay Kumar Yagati
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Mohsen Mohammadniaei
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Junhong Min
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Min-Ho Lee
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| |
Collapse
|
31
|
Dorledo de Faria RA, Iden H, Heneine LGD, Matencio T, Messaddeq Y. Non-Enzymatic Impedimetric Sensor Based on 3-Aminophenylboronic Acid Functionalized Screen-Printed Carbon Electrode for Highly Sensitive Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1686. [PMID: 30970595 PMCID: PMC6480368 DOI: 10.3390/s19071686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/18/2023]
Abstract
A highly sensitive glucose sensor was prepared by a one-step method using 3-aminophenyl boronic acid as a unit of recognition and a screen-printed carbon electrode (SPCE) as an electrochemical transducer. Scanning Electron Microscopy confirmed the success of the functionalization of the SPCE due to the presence of clusters of boronic acid distributed on the carbon surface. In agreement with the Electrochemical Impedance Spectroscopy (EIS) tests performed before and after the functionalization, Cyclic Voltammetry results indicated that the electroactivity of the electrode decreased 37.9% owing to the presence of the poly phenylboronic acid on the electrode surface. EIS revealed that the sensor was capable to selectively detect glucose at a broad range of concentrations (limit of detection of 8.53 × 10-9 M), not recognizing fructose and sucrose. The device presented a stable impedimetric response when immediately prepared but suffered the influence of the storage time and some interfering species (dopamine, NaCl and animal serum). The response time at optimized conditions was estimated to be equal to 4.0 ± 0.6 s.
Collapse
Affiliation(s)
- Ricardo Adriano Dorledo de Faria
- Department of Chemical Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30270-901, Brazil.
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Hassan Iden
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Quebec City, QC G1V 0A6, Canada.
- CDN Isotopes, Montreal, QC H9R 1H1, Canada.
| | - Luiz Guilherme Dias Heneine
- Department of Applied Immunology, Fundação Ezequiel Dias (FUNED), Belo Horizonte, Minas Gerais 30510-010, Brazil.
| | - Tulio Matencio
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30270-901, Brazil.
| | - Younès Messaddeq
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Quebec City, QC G1V 0A6, Canada.
- Institute of Chemistry, UNESP, Araraquara, São Paulo 14800-060, Brazil.
| |
Collapse
|
32
|
Taniselass S, Arshad MM, Gopinath SC. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 2019; 130:276-292. [DOI: 10.1016/j.bios.2019.01.047] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
|
33
|
Amyloid beta in nasal secretions may be a potential biomarker of Alzheimer's disease. Sci Rep 2019; 9:4966. [PMID: 30899050 PMCID: PMC6428828 DOI: 10.1038/s41598-019-41429-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Abstract
We investigated the level of amyloid beta (Aβ) in nasal secretions of patients with Alzheimer’s disease dementia (ADD) using interdigitated microelectrode (IME) biosensors and determined the predictive value of Aβ in nasal secretions for ADD diagnosis. Nasal secretions were obtained from 35 patients with ADD, 18 with cognitive decline associated with other neurological disorders (OND), and 26 cognitively unimpaired (CU) participants. Capacitance changes in IMEs were measured by capturing total Aβ (ΔCtAβ). After 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) was injected, additional capacitance changes due to the smaller molecular weight Aβ oligomers disassembled from the higher molecular weight oligomeric Aβ were determined (ΔCoAβ). By dividing two values, the capacitance ratio (ΔCoAβ/ΔCtAβ) was determined and then normalized to the capacitance change index (CCI). The CCI was higher in the ADD group than in the OND (p = 0.040) and CU groups (p = 0.007). The accuracy of the CCI was fair in separating into the ADD and CU groups (area under the receiver operating characteristic curve = 0.718, 95% confidence interval = 0.591–0.845). These results demonstrate that the level of Aβ in nasal secretions increases in ADD and the detection of Aβ in nasal secretions using IME biosensors may be possible in predicting ADD.
Collapse
|
34
|
Li F, Feng J, Gao Z, Shi L, Wu D, Du B, Wei Q. Facile Synthesis of Cu 2O@TiO 2-PtCu Nanocomposites as a Signal Amplification Strategy for the Insulin Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8945-8953. [PMID: 30758174 DOI: 10.1021/acsami.9b01779] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel ultrasensitive sandwich-type electrochemical immunosensor was proposed for the quantitative detection of insulin, a representative biomarker for diabetes. To this end, molybdenum disulfide nanosheet-loaded gold nanoparticles (MoS2/Au NPs) were used as substrates to modify bare glassy carbon electrodes. MoS2/Au NPs not only present superior biocompatible and large specific surface area to enhance the loading capacity of primary antibody (Ab1) but also present good electrical conductivity to accelerate electron transfer rate. Moreover, the amino-functionalized cuprous oxide decorated with titanium dioxide octahedral composites (Cu2O@TiO2-NH2) were prepared to load dendritic platinum-copper nanoparticles (PtCu NPs) to realize signal amplification strategy. The resultant nanocomposites (cuprous oxide decorated with titanium dioxide octahedral loaded dendritic platinum-copper nanoparticles) demonstrate uniform octahedral morphology and size, which effectively increases the catalytically active sites and specific surface area to load the secondary antibody (Ab2), even increases conductivity. Most importantly, the resultant nanocomposites possess superior electrocatalytic activity for hydrogen peroxide (H2O2) reduction, which present the signal amplification strategy. Under the optimal conditions, the proposed immunosensor exhibited a linear relationship between logarithm of insulin antigen concentration and amperometric response within a broad range from 0.1 pg/mL to 100 ng/mL and a limit detection of 0.024 pg/mL. Meanwhile, the immunosensor was employed to detect insulin in human serum with satisfactory results. Furthermore, it also presents good reproducibility, selectivity, and stability, which exhibits broad application prospects in biometric analysis.
Collapse
Affiliation(s)
- Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Zengqiang Gao
- School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo 255049 , P.R. China
| | - Li Shi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| |
Collapse
|
35
|
Electrochemical Impedance Characterization of Cell Growth on Reduced Graphene Oxide–Gold Nanoparticles Electrodeposited on Indium Tin Oxide Electrodes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The improved binding ability of graphene–nanoparticle composites to proteins or molecules can be utilized to develop new cell-based assays. In this study, we fabricated reduced graphene oxide–gold nanoparticles (rGO-AuNP) electrodeposited onto a transparent indium tin oxide (ITO) electrode and investigated the feasibility of the electrochemical impedance monitoring of cell growth. The electrodeposition of rGO–AuNP on the ITO was optically and electrochemically characterized in comparison to bare, rGO-, and AuNP-deposited electrodes. The cell growth on the rGO–AuNP/ITO electrode was analyzed via electrochemical impedance measurement together with the microscopic observation of HEK293 cells transfected with a green fluorescent protein expression vector. The results showed that rGO–AuNP was biocompatible and induced an increase in cell adherence to the electrode when compared to the bare, AuNP-, or rGO-deposited ITO electrode. At 54 h cultivation, the average and standard deviation of the saturated normalized impedance magnitude of the rGO–AuNP/ITO electrode was 3.44 ± 0.16, while the value of the bare, AuNP-, and rGO-deposited ITO electrode was 2.48 ± 0.15, 2.61 ± 0.18, and 3.01 ± 0.25, respectively. The higher saturated value of the cell impedance indicates that the impedimetric cell-based assay has a broader measurement range. Thus, the rGO–AuNP/ITO electrode can be utilized for label-free and real-time impedimetric cell-based assays with wider dynamic range.
Collapse
|
36
|
Šišoláková I, Hovancová J, Oriňaková R, Oriňak A, Rueda Garcia D, Shylenko O, Radoňák J. Comparison of Insulin Determination on NiNPs/chitosan- MWCNTs and NiONPs/chitosan-MWCNTs Modified Pencil Graphite Electrode. ELECTROANAL 2018. [DOI: 10.1002/elan.201800483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ivana Šišoláková
- Department of Physical Chemistry; University of P.J. Šafárik in Košice; Moyzesova 11 040 01 Košice Slovakia
| | - Jana Hovancová
- Department of Physical Chemistry; University of P.J. Šafárik in Košice; Moyzesova 11 040 01 Košice Slovakia
| | - Renáta Oriňaková
- Department of Physical Chemistry; University of P.J. Šafárik in Košice; Moyzesova 11 040 01 Košice Slovakia
| | - Andrej Oriňak
- Department of Physical Chemistry; University of P.J. Šafárik in Košice; Moyzesova 11 040 01 Košice Slovakia
| | - Daniel Rueda Garcia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) Campus UAB; E-08193 Bellaterra Barcelona Spain
| | - Oleg Shylenko
- Institute of Physics; University of P.J. Šafárik in Košice; Park Angelinum 9 040 01 Košice Slovakia
| | - Jozef Radoňák
- Faculty of medicine; University of P.J. Šafárik in Košice; Trieda SNP 1 040 01 Košice Slovakia
| |
Collapse
|
37
|
Yagati AK, Lee MH, Min J. Electrochemical immunosensor for highly sensitive and quantitative detection of tumor necrosis factor-α in human serum. Bioelectrochemistry 2018; 122:93-102. [DOI: 10.1016/j.bioelechem.2018.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/12/2023]
|
38
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Yagati AK, Chavan SG, Baek C, Lee MH, Min J. Label-Free Impedance Sensing of Aflatoxin B₁ with Polyaniline Nanofibers/Au Nanoparticle Electrode Array. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1320. [PMID: 29695134 PMCID: PMC5981831 DOI: 10.3390/s18051320] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
Abstract
Aflatoxin B1 (AFB₁) is produced by the Aspergillus flavus and Aspergillus parasiticus group of fungi which is most hepatotoxic and hepatocarcinogenic and occurs as a contaminant in a variety of foods. AFB₁ is mutagenic, teratogenic, and causes immunosuppression in animals and is mostly found in peanuts, corn, and food grains. Therefore, novel methodologies of sensitive and expedient strategy are often required to detect mycotoxins at the lowest level. Herein, we report an electrochemical impedance sensor that selectively detects AFB₁ at the lowest level by utilizing polyaniline nanofibers (PANI) coated with gold (Au) nanoparticles composite based indium tin oxide (ITO) disk electrodes. The Au-PANI nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy, and electrochemical impedance spectroscopy (EIS). The composite electrode exhibited a 14-fold decrement in |Z|1Hz in comparison with the bare electrode. The Au-PANI acted as an effective sensing platform having high surface area, electrochemical conductivity, and biocompatibility which enabled greater loading deposits of capture antibodies. As a result, the presence of AFB₁ was screened with high sensitivity and stability by monitoring the changes in impedance magnitude (|Z|) in the presence of a standard iron probe which was target specific and proportional to logarithmic AFB₁ concentrations (CAFB₁). The sensor exhibits a linear range 0.1 to 100 ng/mL with a detection limit (3) of 0.05 ng/mL and possesses good reproducibility and high selectivity against another fungal mycotoxin, Ochratoxin A (OTA). With regard to the practicability, the proposed sensor was successfully applied to spiked corn samples and proved excellent potential for AFB₁ detection and development of point-of-care (POC) disease sensing applications.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| |
Collapse
|
40
|
Piovesan JV, Santana ER, Spinelli A. Reduced graphene oxide/gold nanoparticles nanocomposite-modified glassy carbon electrode for determination of endocrine disruptor methylparaben. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Liu B, Dai W, Lu Z, Ye J, Ouyang L. Silver@Nitrogen-Doped Carbon Nanorods as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Media. Chemistry 2018; 24:3283-3288. [PMID: 29282777 DOI: 10.1002/chem.201705521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 12/20/2022]
Abstract
In recent years, various platinum-free catalysts for the oxygen reduction reaction (ORR) have attracted great attention due to the limited natural abundance and high cost of platinum. Herein, Ag@N-C (N-C: nitrogen-doped carbon) nanorods for the ORR were synthesized through chemical polymerization and pyrolysis methods by using pyrrole and silver nitrate as raw materials. Pyrolysis could significantly increase the specific surface area of as-synthesized catalysts and convert pyrrolic-N into graphitic-N and pyridinic-N. The results of electrochemical tests show that the Ag@N-C-900 catalyst (pyrolyzed at 900 °C) exhibits highly efficient ORR catalytic activity, improved stability, and better methanol resistance in comparison to that of Pt/C catalyst in alkaline media.
Collapse
Affiliation(s)
- Baichen Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Wanlin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Zhiwei Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Liuzhang Ouyang
- School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of, Guangdong Province, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
42
|
Zinc-doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection. Biosens Bioelectron 2017; 97:115-121. [DOI: 10.1016/j.bios.2017.05.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 01/29/2023]
|
43
|
Gündoğdu A, Aydın EB, Sezgintürk MK. A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum. Anal Biochem 2017; 537:84-92. [PMID: 28916435 DOI: 10.1016/j.ab.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
Abstract
A new, low-cost electrochemical immunosensor was developed for rapid detection of Melanoma-associated antigen 1 (MAGE-1), a cancer biomarker. The fabrication procedure of immunosensor was based on the covalent immobilization of anti-MAGE-1, biorecognition molecule, on ITO electrode by carboxyethylsilanetriol (CTES) monolayer. The biosensing MAGE-1 antigen was monitored by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) technique. Apart from these techniques, single frequency impedance (SFI) was used for investigation of antibody-antigen interactions. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) were utilized for characterization of the proposed biosensor. To fabricate highly sensitive, good stability immunosensor, some parameters were optimized. Under optimal conditions, the developed electrochemical immunosensor for MAGE-1 exhibited a dynamic range of 4 fg/mL and 200 fg/mL with a low detection limit of 1.30 fg/mL. It had acceptable repeatability (5.05%, n = 20) and good storage stability (3.58% loss after 10 weeks). Moreover, this electrochemical immunosensor has been successfully applied to the determination of MAGE-1 in human serum samples.
Collapse
Affiliation(s)
- Aslı Gündoğdu
- Namık Kemal University, Faculty of Science, Chemistry Department, Biochemistry Division, Tekirdağ, Turkey
| | - Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
44
|
Pasinszki T, Krebsz M, Tung TT, Losic D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1919. [PMID: 28825646 PMCID: PMC5579959 DOI: 10.3390/s17081919] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases, e.g., Parkinson's and Alzheimer's disease, diabetes, and various types of cancer, and monitoring the response of patients to the therapy plays a critical role in clinical treatment; therefore, there is an intensive research for the determination of many clinical analytes. In order to achieve point-of-care sensing in clinical practice, sensitive, selective, cost-effective, simple, reliable, and rapid analytical methods are required. Biosensors have become essential tools in biomarker sensing, in which electrode material and architecture play critical roles in achieving sensitive and stable detection. Carbon nanomaterials in the form of particle/dots, tube/wires, and sheets have recently become indispensable elements of biosensor platforms due to their excellent mechanical, electronic, and optical properties. This review summarizes developments in this lucrative field by presenting major biosensor types and variability of sensor platforms in biomedical applications.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| | - Melinda Krebsz
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Thanh Tran Tung
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| |
Collapse
|
45
|
Zhang ZH, Duan FH, Tian JY, He JY, Yang LY, Zhao H, Zhang S, Liu CS, He LH, Chen M, Chen DM, Du M. Aptamer-Embedded Zirconium-Based Metal-Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sens 2017; 2:982-989. [PMID: 28750523 DOI: 10.1021/acssensors.7b00236] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of Zr-based metal-organic framework (MOF) composites embedded with three kinds of aptamer strands (509-MOF@Apt) were achieved by a one-step de novo synthetic approach. A platform for ultrasensitive detection of analytes, namely, thrombin, kanamycin, and carcinoembryonic antigen (CEA), was also established. Considering the conformational changes caused by the binding interactions between aptamer strands and targeted molecules, the label-free electrochemical aptasensors based on 509-MOF@Apt composites could be developed to detect various target molecules. By comparing the common fabrication approaches of aptasensors, a distinct determination mechanism was presented through analysis of the electrochemical measurements on different interaction behaviors between probe aptamer strands and 509-MOF materials. The optimized aptasensors based on 509-MOFs@Apt demonstrated excellent sensitivity (with the detection limit of 0.40, 0.37, and 0.21 pg mL-1 for CEA, thrombin, and kanamycin, respectively), stability, repeatability, and applicability. This work will provide a new platform for direct and feasible detection in biosensing related to clinical diagnostics and therapeutics, and further, extend the scope of potential applications for MOF materials.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Feng-He Duan
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jia-Yue Tian
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jun-Ying He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Long-Yu Yang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Zhao
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ling-Hao He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Min Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Di-Ming Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Du
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
46
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
47
|
Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2291-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Wang G, Li Y, Liu J, Yuan Y, Shen Z, Mei X. Ultrasensitive multiplexed immunoassay of autophagic biomarkers based on Au/rGO and Au nanocages amplifying electrochemcial signal. Sci Rep 2017; 7:2442. [PMID: 28550286 PMCID: PMC5446417 DOI: 10.1038/s41598-017-02766-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
A novel sandwich-assay electrochemical immunosensor for simultaneous determination of autophagic biomarkers was introduced for the first time, the gold-reduced grapheme oxide nanocomposite (Au/r-GO) set as a good conductive platform with super high specific area, and provided more binding sites for the both antibodies of Beclin-1 and LC3B-II. While Au nanocages (AuNCs) served as good conductive platform to encapsulate a large amount of redox probe and secondary antibodies for signal amplification, due to the abundant reactive oxygen functional groups on its surface. Through differential pulse voltammetry (DPV) measurements, two separate signals can be detected directly in a single run, which represent the existence of Belin-1 and LC3B-II. Under optimized conditions, the electrochemical immunosensor exhibited good sensitivity and selectivity for the simultaneous determination of Beclin-1 and LC3B-II with linear ranges of 0.1-100 ng/mL. The detection limit for Beclin-1 and LC3B-II is 0.02 and 0.03 ng/mL respectively. This method was also applied for the analysis of Beclin-1 and LC3B-II levels in experimental cellular protein lysates, and the results were in good agreement with those of enzyme linked immunosorbent assay. This approach gives a promising simple, sensitive and quantitative strategy for the detection of autophagy.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| | - Yankun Li
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - Jinlei Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | | | - Zhaoliang Shen
- The Second Hospital of Jinzhou, Jinzhou, 121001, People's Republic of China
| | - Xifan Mei
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| |
Collapse
|
49
|
Hovancová J, Šišoláková I, Oriňaková R, Oriňak A. Nanomaterial-based electrochemical sensors for detection of glucose and insulin. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3544-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Visible-light driven photoelectrochemical immunosensor for insulin detection based on MWCNTs@SnS2@CdS nanocomposites. Biosens Bioelectron 2016; 86:301-307. [DOI: 10.1016/j.bios.2016.06.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022]
|