1
|
Lu C, Wang G, Zhang X, Fang Z, Wang X, Tang F, Ning K, Xu M, Wang J, Jiang H, Tao R, Xu P. Cost-effective, label-free electrochemical aptasensors for rapid detection of concanavalin A with screen printed electrodes. Food Chem 2025; 476:143338. [PMID: 39977999 DOI: 10.1016/j.foodchem.2025.143338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Intake of Concanavalin A (Con A), a hazardous lectin protein commonly discovered in legume vegetables, could cause various systemic symptoms including rash, nausea, vomiting, diarrhea, etc. Herein, we present a novel label-free and cost-effective electrochemical Con A aptasensor. [Fe(CN)6]3-/4- ions in testing buffer not only generate redox peaks during electrochemical scan, but also serve as electron acceptor/donor to enhance electron transfer. Anti-Con A aptamer is immobilized on surface of screen printed electrode to capture Con A molecules and form aptamer-protein complex, which hinders electron transfer near electrode surface and causes a decrease in peak current value. The constructed aptasensor displays a low detection limit of 17.88 ng/mL (around 171.92 pM), as well as good specificity against other legume lectins. The practicality of electrochemical sensors was evaluated using real-world samples, demonstrating their ability to rapid detect Con A in crude protein extracts from jack bean seeds. This work provides novel tools for rapid evaluation of Con A content in massive samples, which is required in food safety inspection and safety breeding of legume vegetables.
Collapse
Affiliation(s)
- Chenze Lu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Gongyan Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoxiao Zhang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Department of Pharmacy, Shanxian Central Hospital, Heze, Shandong Province 274300, China
| | - Zhihui Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyuan Wang
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang 310022, China
| | - Fan Tang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Kang Ning
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Min Xu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jing Wang
- Zhejiang Gongzheng Testing Center Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Ran Tao
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Pei Xu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Pushparajah S, Shafiei M, Yu A. Current Advances in Aptasensors for Pesticide Detection. Top Curr Chem (Cham) 2025; 383:17. [PMID: 40121587 PMCID: PMC11930883 DOI: 10.1007/s41061-025-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/16/2025] [Indexed: 03/25/2025]
Abstract
The increasing use of pesticides necessitates the development of innovative analytical methods to regulate environmental impacts and ensure food safety. Aptamer-based sensors hold great promise for pesticide detection owing to their superior selectivity, stability, repeatability, and regenerative capabilities. Integrated with nanomaterials, aptasensors have demonstrated enhanced sensitivity for detecting a broad range of pesticides. This study first introduces the aptamer binding mechanism and presents the fundamental concept and justification for selecting aptamer over other biorecognition molecules. It then provides a comprehensive review of recent advancements and applications of various types of aptasensors for targeted pesticide detection, including electrochemical, fluorescent, colorimetric, electrochemiluminescent, and surface-enhanced Raman scattering (SERS) aptasensors. Additionally, it offers a comparative analysis of different aptasensors by evaluating their strengths and limitations. Finally, this review discusses strategies, such as advanced Systemic Evolution of Ligands by Exponential Enrichment (SELEX) technique, self-assembled monolayers (SAMs), and the use of antifouling agents to improve the aptamer's selectivity, signal-to-noise ratio, and mitigate nonspecific adsorption challenges. These developments are essential for creating highly sensitive and selective aptasensors, facilitating their practical use in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Suthira Pushparajah
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Mahnaz Shafiei
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Aimin Yu
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
3
|
Yan P, Huang J, Wu G, Zhang Y, Mo Z, Xu K, Ling M, Dong S, Xu L, Li H. Construction of a In 2O 3/ultrathin g-C 3N 4 S-scheme heterojunction for sensitive photoelectrochemical aptasensing of diazinon. J Colloid Interface Sci 2025; 679:653-661. [PMID: 39388951 DOI: 10.1016/j.jcis.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
A single semiconductor-based photoelectrochemical (PEC) aptasensor usually faces a challenge of low sensitivity due to poor solar energy utilization and a high photogenerated carrier recombination rate. Herein, an ultra-thin carbon nitride nanosheet-coated In2O3 (In2O3/CNS) S-type heterojunction-based PEC aptasensor has been established to achieve highly sensitive detection of diazinon (DZN) pesticide in water environment. Construction of S-type heterojunction induces a band shift and an electric field effect, enhancing light utilization and accelerating directional transmission of carriers, leading to outstanding PEC performance. The creation of internal electric field at interface ensures stable carrier transport. Additionally, ultrathin CNS structure can effectively shorten the transport path of carriers. The close coating of In2O3 and CNS promotes the transfer of charge. The synergistic effects amplify the sensor's response, ultimately enabling the effective detection of DZN residue over a wide detection range (0.98 ∼ 980.0 pg mL-1), a low detection limit (0.33 pg mL-1, S/N = 3) and excellent accuracy in practical application (RSD < 5 %). This work provides a reference for the construction of a new S-type heterojunction-based PEC sensor.
Collapse
Affiliation(s)
- Pengcheng Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Yongkang Jiaxiao Electric Welding Automation Equipment Co., Ltd, Jinhua 321300, Zhejiang, PR China
| | - Jing Huang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Guanyu Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yu Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhao Mo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224007, Jiangsu, PR China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sihua Dong
- YTO Group Corporation Dongfanghong (Henan) Agricultural Service Technology Co., Ltd., Luoyang 471033, PR China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
4
|
Kumar P, Chugh P, Ali SS, Chawla W, Sushmita S, Kumar R, Raval AV, Shamim S, Bhatia A, Kumar R. Trends of Nanobiosensors in Modern Agriculture Systems. Appl Biochem Biotechnol 2025; 197:667-690. [PMID: 39136915 DOI: 10.1007/s12010-024-05039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Sustainable agriculture and the provision of food for all become dependent on the availability of efficient diagnostic techniques for the prompt identification of plant diseases. Current scientific findings suggest that nanotechnology can positively affect the agrifood industry by reducing the adverse effects of agricultural practices on human health and the environment, increasing food security and productivity, and fostering social and economic justice. Nanomaterials' unique physical and chemical characteristics have made it possible to employ them as cutting-edge, effective diagnostic instruments for various plant infections and other significant disease biomarkers. By creating diagnostic instruments and methods, nanobiosensors significantly contribute to the revolution of farming. In real time, nanobiosensors can detect infections, metabolites, pesticides, nutrient levels, soil moisture, and temperature. This helps with precision farming techniques and maximises resource use. To better address agricultural concerns, we have included the most recent research on the concept, types, applications, commercial aspects, and future scope of nanobiosensors in this review.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| | - Priya Chugh
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Greater Noida, 201306, Uttar Pradesh, India
| | - Wineet Chawla
- School of Agriculture Sciences and Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathind, 151001, Punjab, India
| | - Sushmita Sushmita
- Department of Commerce, Punjabi University, Patiala, 147002, Punjab, India
| | - Ram Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | | | - Shamim Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, 250001, Uttar Pradesh, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
5
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
6
|
Huang J, Zhang M, Huang X, Li H, Han J, Zhao S, Bedair Mohamed Ahmed M, Sun X, Guo Y. Stable detection of diazinon residues in vegetables by an electrochemiluminescent aptasensor based on the in-situ production of H 2O 2 from dual-catalytic glucose. Talanta 2024; 277:126443. [PMID: 38897007 DOI: 10.1016/j.talanta.2024.126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Stable detection of diazinon (DZN) residues in vegetables is important for food safety. In this work, an electrochemiluminescence (ECL) aptasensor with dual-catalytic glucose in-situ production of H2O2 was constructed for the stable detection of DZN in vegetables. Firstly, MWCNTs@MB was prepared using π-π stacking interactions between methylene blue (MB) and multi-walled carbon nanotubes (MWCNTs) to enhance the loading of MB on an electrode and thus catalyze the generation of H2O2 from glucose. Secondly, Cu2O@AuNPs was formed by loading AuNPs on the surface of Cu2O through spontaneous reduction reaction, which improved the interfacial charge transfer, Cu2O nano-enzyme had glucose oxidase mimicking activity and could further catalyze the production of more H2O2 from glucose. MWCNTs@MB and Cu2O@AuNPs played a key role in the in-situ generation of co-reacting reagent H2O2, which solved the problem of unstable detection caused by the easy decomposition of the H2O2 solution added to the luminescence system. In addition, the aptamer was immobilized on the electrode surface by forming Au-S bonds with Cu2O@AuNPs. As a result, the ECL aptasensor performed good linearity in 1.00 pg mL-1-1.00 μg mL-1 and a low limit of detection (LOD) to 0.39 pg mL-1 (S/N = 3). This work provided an effective method for the accurate and stable detection of DZN residues in vegetables, which was of great significance in ensuring food safety and assessing the environmental risk of DZN.
Collapse
Affiliation(s)
- Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Mei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Xue Huang
- Binzhou Polytechnic, Binzhou, Shandong, 256603, China
| | - He Li
- Binzhou Polytechnic, Binzhou, Shandong, 256603, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Shancang Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Mohamed Bedair Mohamed Ahmed
- Food Toxicology and Contaminants Dept., Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| |
Collapse
|
7
|
Shrikrishna NS, Mahari S, Gandhi S. Sensing of trans-cleavage activity of CRISPR/Cas12a for detection of Salmonella. Int J Biol Macromol 2024; 258:128979. [PMID: 38154710 DOI: 10.1016/j.ijbiomac.2023.128979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Salmonella typhimurium (S. typhi) a predominant foodborne pathogen, significantly impacting global public health. Therefore, timely diagnosis is imperative to safeguard overall human health. To address this, we developed a novel CRISPR/Cas12a-mediated electrochemical detection system (biosensor) for targeting the SifA gene of S. typhi. To construct the biosensor, we utilized a screen-printed gold electrode (SPGE) as an electrochemical transducer and CRISPR/Cas12a for detection of SifA gene of S. typhi. The developed electrochemical biosensor exhibited an exceptional detection limit of 0.634 ± 0.029 pM, which was determined through differential pulse voltammetry (DPV) by utilizing a potentiostat. We compared the fabricated biosensor with gold standard RT-PCR and the visual detection limit of SifA was found to be 10 μM (in spiked buffer samples). The lower detection limit of fabricated biosensor provides an upper edge over the RT-PCR. Further, the fabricated biosensor also has the potential to serve as a rapid, stable, efficient, and early detection tool for S. typhi, offering promising advancements in diagnostic realms.
Collapse
Affiliation(s)
- Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
8
|
Liu Y, Xue Q, Liu Z, He L, Liu F, Xie H. Flexible electrode-based voltammetric detection of Y (III) ions in real water samples using an efficient CyDTA complexing strategy. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132210. [PMID: 37541124 DOI: 10.1016/j.jhazmat.2023.132210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
The rapid detection of rare earth elements is crucial in various fields, such as materials science, biomedicine, and water quality assessment. However, no studies have reported on the detection of yttrium (Y) using electrochemical sensor-based devices. In this study, we present an innovative method for detecting Y(III) ions in aquatic environments using an electroanalytical detection platform. We have developed a complexation catalytic method that integrates trans-1,2-cyclohexanediaminetetraacetic acid (CyDTA) and silver nanoparticles (Ag NPs), thereby enhancing the adsorption and electrochemical response of Y(III) ions. The modified electrode demonstrates an 18-fold increase in the response signal of the Y(III) reduction peak compared to the bare LIG electrode. To elucidate the electrocatalytic mechanism, we conducted various interface characterization methods and DFT simulations. The Ag-CyDTA/LIG electrode exhibits excellent detection performance, with a broad linear dynamic range of 1 × 10-6 to 0.01 g/L and an exceptionally low detection limit of 0.02 μg/L. Significantly, we successfully employed the electrochemical sensing platform to analyze real water samples from rare earth ore, marking the first report on the voltammetric detection of Y(III) ions in real water samples using a flexible electrode. These findings offer a promising technical solution for the practical detection of Y(III) ions.
Collapse
Affiliation(s)
- Yao Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Qiang Xue
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Zeyu Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Lin He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou City, Zhejiang Province 310003, PR China
| |
Collapse
|
9
|
Liu YH, Liu C, Wang XH, Li T, Zhang X. Electrochemical sensor for sensitive detection of bisphenol A based on molecularly imprinted TiO 2 with oxygen vacancy. Biosens Bioelectron 2023; 237:115520. [PMID: 37429148 DOI: 10.1016/j.bios.2023.115520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical and broadly used in plastics. The leakage of BPA in food and water cycles poses a significant risk to the environment and human health. Thus, monitoring the concentration of BPA to avoid its potential risk is highly important. In this work, a simple and efficient oxygen deficient molecularly imprinted TiO2 electrochemical sensor was proposed for the detection of BPA. The introduction both oxygen vacancies and molecular imprinting evidently enhanced the electrochemical oxidation signal of BPA. The sensor had a good linear response ranging from 0.01 μM to 20 μM with a limit of detection of 3.6 nM. Additionally, the sensor showed remarkable stability, reproducibility and interference resistant ability. It also exhibits excellent recovery during the detection of real water. These findings suggested that the sensor has the potential to be developed as a simple, efficient and low-cost monitoring system for the monitoring of BPA in water.
Collapse
Affiliation(s)
- Yu-Huan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xin-Hui Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xing Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
10
|
Kizilkurtlu AA, Demirbas E, Agel HE. Electrochemical aptasensors for pathogenic detection toward point-of-care diagnostics. Biotechnol Appl Biochem 2023; 70:1460-1479. [PMID: 37277950 DOI: 10.1002/bab.2485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 06/07/2023]
Abstract
A biosensor system refers to a biomedical device, which detects biological, chemical, or biochemical components by converting those signals to an electrical signal by utilizing and uniting physical or chemical transducer with biorecognition elements. An electrochemical biosensor is generally based on the reaction of either production or consumption of electrons under a three-electrode system. Biosensor systems are exploited in a wide range of areas, such as medicine, agriculture, husbandry, food, industry, environment protection, quality control, waste disposal, and the military. Pathogenic infections are the third leading cause of death worldwide after cardiovascular diseases and cancer. Therefore, there is an urgent need for effective diagnostic tools to control food, water, and soil contamination result in protecting human life and health. Aptamers are peptide or oligonucleotide-based molecules that show very high affinity to their targets that are produced from large pools of random amino acid or oligonucleotide sequences. Generally, aptamers have been utilized for fundamental sciences and clinical implementations for their target-specific affinity and have been intensely exploited for different kinds of biosensor applications for approximately 30 years. The convergence of aptamers with biosensor systems enabled the construction of voltammetric, amperometric, and impedimetric biosensors for the detection of specific pathogens. In this review, electrochemical aptamer biosensors were evaluated by discussing the definition, types, and production techniques of aptamers, the advantages of aptamers as a biological recognition element against their alternatives, and a wide range of aptasensor examples from literature in the detection of specific pathogens.
Collapse
Affiliation(s)
| | - Erhan Demirbas
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hatice Esra Agel
- BioNano Functional Materials Technologies Research Group TÜBİTAK - Marmara Research Center, Gebze, Kocaeli, Turkey
| |
Collapse
|
11
|
Jiang W, Li Z, Yang Q, Hou X. Integration of Metallic Nanomaterials and Recognition Elements for the Specifically Monitoring of Pesticides in Electrochemical Sensing. Crit Rev Anal Chem 2023; 54:2636-2657. [PMID: 36971430 DOI: 10.1080/10408347.2023.2189955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Although all countries have been controlling the excessive use of pesticides, incidents of pesticide residues still existed. Electrochemical biosensors are extensively applied detection techniques to monitor pesticides with the help of different types of biorecognition components mainly including, antibodies, aptamers, enzymes (i.e., acetylcholinesterase, organophosphorus hydrolase, etc.), and synthetic molecularly imprinted polymers. Besides, the electrode materials mainly affected the sensitivity of electrochemical biosensors. Metallic nanomaterials with various structures and excellent electrical conductivity were desirable choice to construct electrochemical platforms to achieve the detection with high sensitivity and good specificity toward the target. This work reviewed the developed metallic materials including monometallic nanoparticles, bimetallic nanomaterials, metal atoms, metal oxides, metal molybdates, metal-organic frameworks, MXene, etc. Integration of recognition elements endowed the electrode materials with higher specificity toward the target pesticide. Besides, future challenges of metallic nanomaterials-based electrochemical biosensors for the detection of pesticides are also discussed and described.
Collapse
Affiliation(s)
- Wenpeng Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
12
|
Thakur D, Fatima T, Sharma P, Hasan MR, Malhotra N, Khanuja M, Shukla SK, Narang J. High-performance biosensing systems for diagnostics of Sexually transmitted disease – A strategic review. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Mondal R, Dam P, Chakraborty J, Paret ML, Katı A, Altuntas S, Sarkar R, Ghorai S, Gangopadhyay D, Mandal AK, Husen A. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon 2022; 8:e12207. [PMID: 36578430 PMCID: PMC9791828 DOI: 10.1016/j.heliyon.2022.e12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Mathew L. Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA
- Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Katı
- Department of Biotechnology, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Ranit Sarkar
- Department of Microbiology, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Silkworm Genetics and Breeding Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
14
|
Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. SEPARATIONS 2022. [DOI: 10.3390/separations9120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Grapes are rich in phenolic compounds, being important for human health with anti-inflammatory, antiatherosclerotic, antimutagenic, anticarcinogenic, antibacterial, antiviral, and antimicrobial activity. The winemaking of the grapes generates significant amounts of waste. These wastes contain bioactive compounds in their biomass that can be used as a source of food improvement or as a source of nutrition supplementation. This study looks at the content of bioactive compounds, the polyphenolic profile, and the antioxidant activity in different white and red grape pomaces. The investigation of bioactive characteristics (total polyphenols, total flavonoids, catechins, tannins, and antioxidant activity) was carried out by UV-Vis spectrophotometric methods, while the individual polyphenolic composition was investigated by target and screening UHPLC-HRMS/MS analysis. Principal components (PCA) and the heat maps analysis allows the discrimination between the grape pomace resulted from white grape cultivars (Muscat Ottonel and Tamaioasa Romaneasca) and red grape pomaces (Cabernet Sauvignon, Merlot, Feteasca Neagra, Burgund Mare, Pinot Nore), with the identification of the specific phenolic compounds for each grape pomace type.
Collapse
|
15
|
Pepłowski A, Budny F, Jarczewska M, Lepak-Kuc S, Dybowska-Sarapuk Ł, Baraniecki D, Walter P, Malinowska E, Jakubowska M. Self-Assembling Graphene Layers for Electrochemical Sensors Printed in a Single Screen-Printing Process. SENSORS (BASEL, SWITZERLAND) 2022; 22:8836. [PMID: 36433435 PMCID: PMC9692624 DOI: 10.3390/s22228836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This article reports findings on screen-printed electrodes employed in microfluidic diagnostic devices. The research described includes developing a series of graphene- and other carbon form-based printing pastes compared to their rheological parameters, such as viscosity in static and shear-thinning conditions, yield stress, and shear rate required for thinning. In addition, the morphology, electrical conductivity, and electrochemical properties of the electrodes, printed with the examined pastes, were investigated. Correlation analysis was performed between all measured parameters for six electrode materials, yielding highly significant (p-value between 0.002 and 0.017) correlations between electron transfer resistance (Ret), redox peak separation, and static viscosity and thinning shear-rate threshold. The observed more electrochemically accessible surface was explained according to the fluid mechanics of heterophase suspensions. Under changing shear stress, the agglomeration enhanced by the graphene nanoplatelets' interparticle affinity led to phase separation. Less viscous pastes were thinned to a lesser degree, allowing non-permanent clusters to de-agglomerate. Thus, the breaking of temporary agglomerates yielded an unblocked electrode surface. Since the mechanism of phase ordering through agglomeration and de-agglomeration is affected by the pastes' rheology and stress during the printing process and requires no further treatment, it can be appropriately labeled as a self-assembling electrode material.
Collapse
Affiliation(s)
- Andrzej Pepłowski
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Filip Budny
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Marta Jarczewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
| | - Sandra Lepak-Kuc
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Łucja Dybowska-Sarapuk
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Dominik Baraniecki
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Piotr Walter
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
- Division of Medical Diagnostics, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Małgorzata Jakubowska
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| |
Collapse
|
16
|
Stability improvement of polyaniline nanocomposite immunosensor for early detection of insulin receptor antibody as biomarker of type 2 diabetes. Mikrochim Acta 2022; 189:439. [DOI: 10.1007/s00604-022-05503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/17/2022] [Indexed: 11/09/2022]
|
17
|
Khosropour H, Kalambate PK, Kalambate RP, Permpoka K, Zhou X, Chen GY, Laiwattanapaisal W. A comprehensive review on electrochemical and optical aptasensors for organophosphorus pesticides. Mikrochim Acta 2022; 189:362. [PMID: 36044085 DOI: 10.1007/s00604-022-05399-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 12/07/2022]
Abstract
There has been a rise in pesticide use as a result of the growing industrialization of agriculture. Organophosphorus pesticides have been widely applied as agricultural and domestic pest control agents for nearly five decades, and they remain as health and environmental hazards in water supplies, vegetables, fruits, and processed foods causing serious foodborne illness. Thus, the rapid and reliable detection of these harmful organophosphorus toxins with excellent sensitivity and selectivity is of utmost importance. Aptasensors are biosensors based on aptamers, which exhibit exceptional recognition capability for a variety of targets. Aptasensors offer numerous advantages over conventional approaches, including increased sensitivity, selectivity, design flexibility, and cost-effectiveness. As a result, interest in developing aptasensors continues to expand. This paper discusses the historical and modern advancements of aptasensors through the use of nanotechnology to enhance the signal, resulting in high sensitivity and detection accuracy. More importantly, this review summarizes the principles and strategies underlying different organophosphorus aptasensors, including electrochemical, electrochemiluminescent, fluorescent, and colorimetric ones.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pramod K Kalambate
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rupali P Kalambate
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khageephun Permpoka
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - George Y Chen
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen, 518060, China
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Caratelli V, Moccia M, Paggioro FR, Fiore L, Avitabile C, Saviano M, Imbriani AL, Dardano P, De Stefano L, Moscone D, Colabufo NA, Ghafir El Idrissi I, Russo F, Riezzo G, Giannelli G, Arduini F. Liquid Biopsy beyond Cancer: A miRNA Detection in Serum with Electrochemical Chip for Non‐Invasive Coeliac Disease Diagnosis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Veronica Caratelli
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Maria Moccia
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Francesca R. Paggioro
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Luca Fiore
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Concetta Avitabile
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Michele Saviano
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Anna Lisa Imbriani
- Biochemical Systems International S.p.A. Loc, Palazzo del Pero, 23 52100 Arezzo Italy
| | - Principia Dardano
- Department of Physical Sciences and Matter Technology Institute for Applied Science and Intelligent Systems National Research Council Via Pietro Castellino 111 80131 Napoli Italy
| | - Luca De Stefano
- Department of Physical Sciences and Matter Technology Institute for Applied Science and Intelligent Systems National Research Council Via Pietro Castellino 111 80131 Napoli Italy
| | - Danila Moscone
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Nicola A. Colabufo
- Department of Pharmacy-Pharmaceutical Science University of Bari Aldo Moro Via Orabona 4 70125 Bari Italy
- Biofordrug S.R.L Spin-off of the University of Bari Aldo Moro Via Dante 99, Triggiano 70019 Bari Italy
| | - Imane Ghafir El Idrissi
- Department of Pharmacy-Pharmaceutical Science University of Bari Aldo Moro Via Orabona 4 70125 Bari Italy
- Biofordrug S.R.L Spin-off of the University of Bari Aldo Moro Via Dante 99, Triggiano 70019 Bari Italy
| | - Francesco Russo
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Giuseppe Riezzo
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Fabiana Arduini
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
- SENSE4MED S.R.L. Via della ricerca scientifica 00133 Rome Italy
| |
Collapse
|
19
|
Kumar V, Bhatt D, Saruchi, Pandey S. Luminescence Nanomaterials for Biosensing Applications. LUMINESCENCE 2022. [PMID: 36042553 DOI: 10.1002/bio.4373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Due to their capabilities of immobilizing more bioreceptor parts with reduced volumes, nanomaterials have emerged as potential tools for increasing sensitivity to specific molecules. Furthermore, carbon nanotube, gold nanoparticles, polymer nanoparticles, semiconductor quantum dots, graphene, nano-diamonds and graphene are among the nanomaterials that are under investigation. Due to the fast development of such a field of research, review summarises the classification of biosensors using main receptors, and designing biosensors. Numerous studies have concentrated on the manipulation of Persistent luminescence nanoparticles (PLNPs) in biosensing, cell tracking, bioimaging, and cancer therapy due to the effective removal of the autofluorescence interferences from tissues and the ultra-long near-infrared afterglow emission. As luminescence has a unique optical property, it can be detected without constant external illumination, preventing autofluorescence and light dispersion through tissues. These successes sparked an increasing curiosity in creating novel PLNP kinds with desired superior properties and multiple purposes. In this review, we emphasize the most recent developments in biosensing, imaging, and image-guided therapy while summarizing the research on synthesis methods, bio applications, bio membrane modification and bio-safety of PLNPs. Finally, the remaining issues and difficulties are examined together with prospective future developments in the field of biomedical applications.
Collapse
Affiliation(s)
- Vaneet Kumar
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Diksha Bhatt
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Saruchi
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences (CTIPS) , CT Group of Institutions, Shahpur Campus Jalandhar, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
20
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
21
|
A novel cathodic electrochemiluminescent sensor based on CuS/carbon quantum dots/g-C3N4 nanosheets and boron nitride quantum dots for the sensitive detection of organophosphate pesticide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Jamalipour P, Choobkar N, Abrishamkar M, Pournamdari E. Design of fluorescent method for sensing toxic diazinon in water samples using PbS quantum dots-based gelatin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:720-728. [PMID: 35899463 DOI: 10.1080/03601234.2022.2103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this current article, a chemical sensor was synthesized PbS functionalized with gelatin quantum dots for toxic diazinon. The measure of toxic diazinon was performed using concentration 0.5 µM, PbS quantum dot-gelatin nanocomposites sensor, pH 6, and time 50 s, wavelength 300 nm, in phosphate buffer solution. Under the optimum conditions, the detection limit linear range was obtained (0.01-20.0 µg L-1). The standard deviation of less than (1.0%), and detection limits (3S/m) of the method (0.01 µg L-1) and quantification (LOQ) of (0.099 µg L-1), for determination of toxic diazinon, was obtained. The observed outcomes confirmed the suitability recovery and a very low detection limit for measuring the toxic diazinon. The Chemical PbS Quantum Dot-Gelatin nanocomposites sensor as excellent sensor was applied to measure and analyze residue toxic diazinon in water samples.
Collapse
Affiliation(s)
- Parisa Jamalipour
- Department of Environment, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Nasrin Choobkar
- Department of Environment, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Maryam Abrishamkar
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Elham Pournamdari
- Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
23
|
Douaki A, Garoli D, Inam AKMS, Angeli MAC, Cantarella G, Rocchia W, Wang J, Petti L, Lugli P. Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors. BIOSENSORS 2022; 12:bios12080574. [PMID: 36004970 PMCID: PMC9405846 DOI: 10.3390/bios12080574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This “smart” SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor’s response. This can be explained by considering the aptamers’ conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule.
Collapse
Affiliation(s)
- Ali Douaki
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy;
| | - A. K. M. Sarwar Inam
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Martina Aurora Costa Angeli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Giuseppe Cantarella
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Walter Rocchia
- CONCEPT Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy;
| | - Jiahai Wang
- School of Mechanical and Electrical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Luisa Petti
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Paolo Lugli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| |
Collapse
|
24
|
Kim TY, Lim MC, Lim JW, Woo MA. Rolling Circle Amplification-based Copper Nanoparticle Synthesis on Cyclic Olefin Copolymer Substrate and Its Application in Aptasensor. BIOTECHNOL BIOPROC E 2022; 27:202-212. [PMID: 35474695 PMCID: PMC9026004 DOI: 10.1007/s12257-021-0220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to develop a label-free fluorescent aptasensor for the detection of diazinon (DZN) on a cyclic olefin copolymer (COC) substrate. The aptasensor design was based on rolling circle amplification (RCA) technology and the use of self-assembled copper nanoparticles (CuNPs). A dual-function (DF) probe, capable of binding to circular DNA and an aptamer, was designed and immobilized on a COC-bottom 96-well plate. An aptamer was used for selective recognition of DZN, and the specific site of the aptamer that strongly reacted with DZN was successfully identified using circular dichroism (CD) analysis. In presence of DZN, the aptamer and DZN formed a strong complex, thus providing an opportunity for hybridization of the DF probe and circular DNA, thereby initiating an RCA reaction. Repetitive poly thymine (T) sequence with a length of 30-mer, generated in the RCA reaction, served as a template for the synthesis of fluorescent copper nanoparticles, emitting an orange fluorescence signal (at approximately 620 nm) proportional to the amount of RCA product, within 10 min under UV irradiation. The CuNP fluorescence was imaged and quantified using an image analysis software. A linear correlation of the fluorescence signal was confirmed in the DZN concentration range of 0.1–3 ppm, with a detection limit of 0.15 ppm. Adoption of a label-free detection method, utilizing RCA and fluorescent CuNPs on COC substrates, reduced the need for complex equipment and requirements for DZN analysis, thereby representing a simple and rapid sensing method circumventing the limitations of current complex and labor-intensive methods.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| | - Ji Won Lim
- The 4th R&D Institute, 6th Directorate, Agency for Defense Development, Daejeon, Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| |
Collapse
|
25
|
Qin Y, Ye G, Liang H, Li M, Zhao J. An amplified fluorescence polarization assay for sensitive sensing of organophosphorus pesticides via MnO 2 nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120759. [PMID: 34968836 DOI: 10.1016/j.saa.2021.120759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
It is highly desirable to develop a simple, efficient and sensitive strategy for organophosphorus pesticides (OPs) in both environment pollution and human health. Herein, a novel amplified fluorescence polarization (FP) biosensor was established for highly sensitive detection of OPs using MnO2 nanosheets as the signal enhancer. In this system, OPs can suppress the activity of acetylcholinesterase (AChE) efficiently, blocking the hydrolysis reaction of acetylthiocholine (ATCh) to generate thiocholine (TCh) by AChE. TCh can lead the decomposition of MnO2 nanosheets to manganese ions. So, without the influence of TCh, MnO2 nanosheets can maintain its original shape and form a stable complex with FAM-DNA, which greatly enhanced the FP signal. This method can tremendously improve the sensitivity of FP with a detection limit of 0.01 ng/mL for diazinon. In addition, it was also applicable to determine other four OPs and investigate the level of diazinon in real water samples. Consequently, the proposed approach provides a new promising platform for detection of OPs and is expected to be used in application of environmental monitoring.
Collapse
Affiliation(s)
- Yingfeng Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China; Guangxi Key Laboratory of Bioactive Molecular Research and Evaluation, School of Basic Medical Sciences & Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Gaojie Ye
- Guangxi Key Laboratory of Bioactive Molecular Research and Evaluation, School of Basic Medical Sciences & Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Hao Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Ming Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Jingjin Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| |
Collapse
|
26
|
Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals (Basel) 2022; 15:ph15010090. [PMID: 35056148 PMCID: PMC8781427 DOI: 10.3390/ph15010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The lateral flow assay (LFA) is an extensively used paper-based platform for the rapid and on-site detection of different analytes. The method is user-friendly with no need for sophisticated operation and only includes adding sample. Generally, antibodies are employed as the biorecognition elements in the LFA. However, antibodies possess several disadvantages including poor stability, high batch-to-batch variation, long development time, high price and need for ethical approval and cold chain. Because of these limitations, aptamers screened by an in vitro process can be a good alternative to antibodies as biorecognition molecules in the LFA. In recent years, aptamer-based LFAs have been investigated for the detection of different analytes in point-of-care diagnostics. In this review, we summarize the applications of aptamer technology in LFAs in clinical diagnostic rapid tests for the detection of biomarkers, microbial analytes, hormones and antibiotics. Performance, advantages and drawbacks of the developed assays are also discussed.
Collapse
|
27
|
Hassani S, Maghsoudi AS, Akmal MR, Shoeibi S, Ghadipasha F, Mousavi T, Ganjali MR, Hosseini R, Abdollahi M. A novel approach to design electrochemical aptamer-based biosensor for ultrasensitive detecting of zearalenone as a prevalent estrogenic mycotoxin. Curr Med Chem 2021; 29:5881-5894. [PMID: 34906054 DOI: 10.2174/0929867328666211214165814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zearalenone is a well-known estrogenic mycotoxin produced by Fusarium species, a serious threat to the agricultural and food industries worldwide. Zearalenone, with its known metabolites, are biomarkers of exposure to certain fungi, primarily through food. It has considerable toxic effects on biological systems due to its carcinogenicity, mutagenicity, renal toxicity, teratogenicity, and immunotoxicity. INTRODUCTION This study aims to design a simple, quick, precise, and cost-effective method on a biosensor platform to evaluate the low levels of this toxin in foodstuffs and agricultural products. METHODS An aptamer-based electrochemical biosensor was introduced that utilizes screen-printed gold electrodes instead of conventional electrodes. The electrode position process was employed to develop a gold nanoparticle-modified surface to enhance the electroactive surface area. Thiolated aptamers were immobilized on the surface of gold nanoparticles, and subsequently, the blocker and analyte were added to the modified surface. In the presence of a redox probe, electrochemical characterization of differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy were used to investigate the various stages of aptasensor fabrication. RESULTS The proposed aptasensor for zearalenone concentration had a wide linear dynamic range covering the 0.5 pg/mL to 100 ng/mL with a 0.14 pg/mL detection limit. Moreover, this aptasensor had high specificity so that a non-specific analyte cannot negatively affect the selectivity of the aptasensor. CONCLUSION Overall, due to its simple design, high sensitivity, and fast performance, this aptasensor showed a high potential for assessing zearalenone in real samples, providing a clear perspective for designing a portable and cost-effective device.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Shahram Shoeibi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Fatemeh Ghadipasha
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Rohollah Hosseini
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
28
|
Lakshmanakumar M, Nesakumar N, Sethuraman S, S RK, Krishnan UM, Rayappan JBB. Fabrication of GQD-Electrodeposited Screen-Printed Carbon Electrodes for the Detection of the CRP Biomarker. ACS OMEGA 2021; 6:32528-32536. [PMID: 34901602 PMCID: PMC8655768 DOI: 10.1021/acsomega.1c04043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 05/24/2023]
Abstract
The traditional three-electrode electrochemical system used in the development of biosensors for detecting various biomarkers of interest necessitates the use of bulk electrodes, which precludes the deployment of handheld electrochemical devices in clinical applications. Affordable screen-printed carbon electrodes (SPCEs) modified with functional interfaces are being developed to enhance the sensitivity of a compact sensing system as a whole. In this work, SPCEs were fabricated on an overhead projection (OHP) sheet in three different active areas of 2 × 2, 3 × 3, and 4 × 4 mm2 using a screen printing technique, and then ∼2 nm sized graphene quantum dots (GQDs) were electrodeposited over the SPCE surface to add functionality for the detection of ultralow levels of one of the cardiac biomarkers, C-reactive protein (CRP). The proposed mediator-dependent voltammetric biosensor exhibited good sensitivity, a low detection limit, and a linear range of 2.45 μA ng-1 mL-1 cm-2, 0.036 ng mL-1, and 0.5-10 ng mL-1, respectively. The fabricated SPCE/GQDs/anti-CRP biosensor could rapidly detect CRP in less than 25 s. The intra- and interassays were performed with five sensor strips, which showed a minimum standard deviation of 1.85 and 2.8%, respectively. The SPCE/GQDs/anti-CRP electrode was used to detect CRP concentrations in a ringer lactate solution. Thus, the developed biosensor has all of the characteristics such as rapidity, inexpensive disposable electrodes, miniaturization, and a lower detection limit needed to evolve as a point-of-care (PoC) application.
Collapse
Affiliation(s)
- Muthaiyan Lakshmanakumar
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Electrical
& Electronics Engineering (SEEE), School of Chemical & Biotechnology
(SCBT), School of Arts, Science & Humanities (SASH), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Electrical
& Electronics Engineering (SEEE), School of Chemical & Biotechnology
(SCBT), School of Arts, Science & Humanities (SASH), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Swaminathan Sethuraman
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Electrical
& Electronics Engineering (SEEE), School of Chemical & Biotechnology
(SCBT), School of Arts, Science & Humanities (SASH), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Rajan K. S
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Electrical
& Electronics Engineering (SEEE), School of Chemical & Biotechnology
(SCBT), School of Arts, Science & Humanities (SASH), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Uma Maheswari Krishnan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Electrical
& Electronics Engineering (SEEE), School of Chemical & Biotechnology
(SCBT), School of Arts, Science & Humanities (SASH), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - John Bosco Balaguru Rayappan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Electrical
& Electronics Engineering (SEEE), School of Chemical & Biotechnology
(SCBT), School of Arts, Science & Humanities (SASH), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
29
|
Kurup CP, Mohd-Naim NF, Ahmed MU. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit Rev Biotechnol 2021; 42:794-812. [PMID: 34632900 DOI: 10.1080/07388551.2021.1960792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasensitive biosensors have become a necessity in the world of scientific research, and several signal enhancement strategies have been employed to attain exceptionally low detection limits. Nanotechnology turns out to be a strong contender for signal amplification, as they can be employed as platform modifiers, catalysts, carriers or labels. Here, we have described the most recent advancements in the utilization of nanomaterials as signal amplification components in aptamer-based electrochemical biosensors. We have briefly reviewed the methods that utilized nanomaterials, namely gold and carbon, as well as nanocomposites such as: graphene, carbon nanotubes, quantum dots, and metal-organic frameworks.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.,PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
30
|
Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Aptamer-based lateral flow assay on-site biosensors. Biosens Bioelectron 2021; 186:113279. [PMID: 33979718 DOI: 10.1016/j.bios.2021.113279] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
The lateral flow assay (LFA) is a widely used paper-based on-site biosensor that can detect target analytes and obtain test results in several minutes. Generally, antibodies are utilized as the biorecognition molecules in the LFA. However, antibodies selected using an in vivo process not only may risk killing the animal hosts and causing errors between different batches but also their range is restricted by the refrigerated conditions used to store them. To avoid these limitations, aptamers screened by an in vitro process have been studied as biorecognition molecules in LFAs. Based on the sandwich or competitive format, the aptamer-based LFA can accomplish on-site detection of target analytes. Since aptamers have a distinctive ability to undergo conformational changes, the adsorption-desorption format has also been exploited to detect target analytes in aptamer-based LFAs. This paper reviews developments in aptamer-based LFAs in the last three years for the detection of target analytes. Three formats of aptamer-based LFAs, i.e., sandwich, competitive, and adsorption-desorption, are described in detail. Based on these formats, signal amplification strategies and multiplexed detection are discussed in order to provide an overview of aptamer-based LFAs for on-site detection of target analytes. In addition, the potential commercialization and future perspectives of aptamer-based LFAs for rapid detection of SARS-CoV-2 are given to support the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shulin Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ke Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Bay Laboratory, No.9 Duxue Road, Shenzhen, 518055, China.
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
31
|
Jiang H, Guo Q, Zhang C, Sun Z, Weng X. Microfluidic origami nano-aptasensor for peanut allergen Ara h1 detection. Food Chem 2021; 365:130511. [PMID: 34237563 DOI: 10.1016/j.foodchem.2021.130511] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022]
Abstract
In this study, an origami microfluidic electrochemical nano-aptasensor was developed for the rapid detection of the peanut allergen Ara h1. Specifically, the microfluidic aptasensor was fabricated through sequential folding of a piece of chromatography paper substrate patterned with microchannel and screen-printed electrodes. Aptamer-decorated black phosphorus nanosheets (BPNSs) were electrodeposited onto the paper-based electrode surface as sensing probes for enhanced electrochemical detection and high specificity and selectivity. Critical design parameters (the concentration of probe, time for self-assembly of aptamer and reaction time) were investigated to optimize the aptasensor performance. The prepared aptasensor was able to complete detection within 20 min and demonstrated a linear range from 50 ~ 1000 ng/mL with a detection limit of 21.6 ng/mL. The aptasensor was successfully used to detect the Ara h1 spiked cookie dough sample. The proposed method reduces the gap between complex lab testing and food allergen analysis at the point of need.
Collapse
Affiliation(s)
- Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China
| | - Qian Guo
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Cheng Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zhikang Sun
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China.
| |
Collapse
|
32
|
Sepand MR, Aghsami M, Keshvadi MH, Bigdelou B, Behzad R, Zanganeh S, Shadboorestan A. The role of macrophage polarization and function in environmental toxicant-induced cancers. ENVIRONMENTAL RESEARCH 2021; 196:110933. [PMID: 33689818 DOI: 10.1016/j.envres.2021.110933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Macrophages are a critical member of the innate immune system and can intensify tumor invasiveness and assist the growth of neoplastic cells. Moreover, they have the capability to reinforce immunosuppression and angiogenesis. Various investigations suggest that health-related issues, including inflammatory disorders and neoplastic diseases may be caused by environmental toxicant exposure. However, it is still unclear what role these environmental toxicants play in causing carcinogenesis by disturbing the mechanisms of migration, polarization, differentiation, and immune-stimulatory functions of macrophages. Accordingly, in this article, we will explore the interaction between environmental chemicals and inflammatory macrophage processes at the molecular level and their association with tumor progression and carcinogenesis.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Keshvadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Bigdelou
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA.
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
33
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Salek Maghsoudi A, Hassani S, Mirnia K, Abdollahi M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine 2021; 16:803-832. [PMID: 33568907 PMCID: PMC7870343 DOI: 10.2147/ijn.s294417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Heavy metals cause considerable environmental pollution due to their extent and non-degradability in the environment. Analysis and trace levels of arsenic, lead, mercury, and cadmium as the most toxic heavy metals show that they can cause various hazards in humans' health. To achieve rapid, high-sensitivity methods for analyzing ultra-trace amounts of heavy metals in different environmental and biological samples, novel biosensors have been designed with the participation of strategies applied in nanotechnology. This review attempted to investigate the novel, sensitive, efficient, cost-benefit, point of care, and user-friendly biosensors designed to detect these heavy metals based on functional mechanisms. The study's search strategies included examining the primary databases from 2015 onwards and various keywords focusing on heavy metal biosensors' performance and toxicity mechanisms. The use of aptamers and whole cells as two important bio-functional nanomaterials is remarkable in heavy metal diagnostic biosensors' bioreceptor design. The application of hybridized nanomaterials containing a specific physicochemical function in the presence of a suitable transducer can improve the sensing performance to achieve an integrated detection system. Our study showed that in addition to both labeled and label-free detection strategies, a wide range of nanoparticles and nanocomposites were used to modify the biosensor surface platform in the detection of heavy metals. The detection limit and linear dynamic range as an essential characteristic of superior biosensors for the primary toxic metals are studied. Furthermore, the perspectives and challenges facing the design of heavy metal biosensors are outlined. The development of novel biosensors and the application of nanotechnology, especially in real samples, face challenges such as the capability to simultaneously detect multiple heavy metals, the interference process in complex matrices, the efficiency and stability of nanomaterials implemented in various laboratory conditions.
Collapse
Affiliation(s)
- Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Zhen J, Liang G, Chen R, Jia W. Label-free hairpin-like aptamer and EIS-based practical, biostable sensor for acetamiprid detection. PLoS One 2020; 15:e0244297. [PMID: 33362222 PMCID: PMC7757884 DOI: 10.1371/journal.pone.0244297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Acetamiprid (ACE) is a kind of broad-spectrum pesticide that has potential health risk to human beings. Aptamers (Ap-DNA (1)) have a great potential as analytical tools for pesticide detection. In this work, a label-free electrochemical sensing assay for ACE determination is presented by electrochemical impedance spectroscopy (EIS). And the specific binding model between ACE and Ap-DNA (1) was further investigated for the first time. Circular dichroism (CD) spectroscopy and EIS demonstrated that the single strand AP-DNA (1) first formed a loosely secondary structure in Tris-HClO4 (20 mM, pH = 7.4), and then transformed into a more stable hairpin-like structure when incubated in binding buffer (B-buffer). The formed stem-loop bulge provides the specific capturing sites for ACE, forming ACE/AP-DNA (1) complex, and induced the RCT (charge transfer resistance) increase between the solution-based redox probe [Fe(CN)6]3−/4− and the electrode surface. The change of ΔRCT (charge transfer resistance change, ΔRCT = RCT(after)-RCT(before)) is positively related to the ACE level. As a result, the AP-DNA (1) biosensor showed a high sensitivity with the ACE concentration range spanning from 5 nM to 200 mM and a detection limit of 1 nM. The impedimetric AP-DNA (1) sensor also showed good selectivity to ACE over other selected pesticides and exhbited excellent performance in environmental water and orange juice samples analysis, with spiked recoveries in the range of 85.8% to 93.4% in lake water and 83.7% to 89.4% in orange juice. With good performance characteristics of practicality, sensitivity and selectivity, the AP-DNA (1) sensor holds a promising application for the on-site ACE detection.
Collapse
Affiliation(s)
- Jianhui Zhen
- Shijiazhuang Customs Technology Center P.R. China, Shijiazhuang, Hebei Province, China
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
- * E-mail:
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center P.R. China, Shijiazhuang, Hebei Province, China
| | - Wenshen Jia
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| |
Collapse
|
36
|
Dip Gandarilla AM, Regiart M, Bertotti M, Correa Glória J, Morais Mariuba LA, Ricardo Brito W. One-step enzyme-free dual electrochemical immunosensor for histidine-rich protein 2 determination. RSC Adv 2020; 11:408-415. [PMID: 35423017 PMCID: PMC8691096 DOI: 10.1039/d0ra08729g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
In the present work, we describe a novel one-step enzyme-free dual electrochemical immunosensor for the determination of histidine-rich protein 2 (Ag-PfHRP2), a specific malaria biomarker. A gold electrode (GE) was functionalized with the PfHRP2 antibody (Ab-PfHRP2) using dihexadecyl phosphate (DHP) polymer as an immobilization platform. The Ab-PfHRP2/DHP/GE sensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The developed immunosensor was employed for indirect Ag-PfHRP2 determination by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The linear range was 10-400 ng mL-1 and 10-500 ng mL-1 for EIS and DPV, while the limit of detection was 3.3 ng mL-1 and 2.8 ng mL-1, respectively. The electrochemical immunosensor was successfully applied for Ag-PfHRP2 determination in human serum samples. Its performance was compared with an ELISA test, and good correspondence was achieved. The coefficients of intra- and inter-assay variations were less than 5%. The electrochemical immunosensor is a useful and straightforward tool for in situ malaria biomarker determination.
Collapse
Affiliation(s)
| | - Matias Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo São Paulo 05508-000 Brazil +55 11 982885489
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo São Paulo 05508-000 Brazil +55 11 982885489
| | - Juliane Correa Glória
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation Manaus Amazonas 69057-070 Brazil
| | | | - Walter Ricardo Brito
- Department of Chemistry, Federal University of Amazonas Manaus Amazonas 69067-005 Brazil +55 92 981379920
| |
Collapse
|
37
|
Phopin K, Tantimongcolwat T. Pesticide Aptasensors-State of the Art and Perspectives. SENSORS 2020; 20:s20236809. [PMID: 33260648 PMCID: PMC7730859 DOI: 10.3390/s20236809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Contamination by pesticides in the food chain and the environment is a worldwide problem that needs to be actively monitored to ensure safety. Unfortunately, standard pesticide analysis based on mass spectrometry takes a lot of time, money and effort. Thus, simple, reliable, cost-effective and field applicable methods for pesticide detection have been actively developed. One of the most promising technologies is an aptamer-based biosensor or so-called aptasensor. It utilizes aptamers, short single-stranded DNAs or RNAs, as pesticide recognition elements to integrate with various innovative biosensing technologies for specific and sensitive detection of pesticide residues. Several platforms for aptasensors have been dynamically established, such as colorimetry, fluorometry, electrochemistry, electrochemiluminescence (ECL) and so forth. Each platform has both advantages and disadvantages depending on the purpose of use and readiness of technology. For example, colorimetric-based aptasensors are more affordable than others because of the simplicity of fabrication and resource requirements. Electrochemical-based aptasensors have mainly shown better sensitivity than others with exceedingly low detection limits. This paper critically reviews the progression of pesticide aptasensors throughout the development process, including the selection, characterization and modification of aptamers, the conceptual frameworks of integrating aptamers and biosensors, the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users) criteria of different platforms and the future outlook.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Correspondence:
| |
Collapse
|
38
|
Laghrib F, Aghris S, Ajermoun N, Hrioua A, Bakasse M, Lahrich S, El Mhammedi MA. Recent progress in controlling the synthesis and assembly of nanostructures: Application for electrochemical determination of p-nitroaniline in water. Talanta 2020; 219:121234. [PMID: 32887125 DOI: 10.1016/j.talanta.2020.121234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/11/2023]
Abstract
The development of nanoparticle research has grown considerably in recent years. One of the reasons for the considerable current interest in nanoparticles is because such materials frequently display unusual physical (structural, electronic, magnetic, and optical) and chemical (catalytic) properties. The development of nanomaterials is of interest to the scientific community and industrial companies. Different methods (physical, chemical, and biological) allow their manufacture. In particular, a major effort has been devoted to the development and improvement of synthesis methods in order to obtain nano-objects of controlled size and shape, a necessary pre-requisite to their organization, and to the study of their intrinsic and collective properties. Reviews play an important role in keeping interested parties up to date on the current state of the research in any academic field. This review aims to focus on the development of nanoparticles and stabilization with adsorbed/covalently attached ligands in solution phase since these factors are deeply related to the origins of the particles' stability, the media to which they are exposed, and the involved applications. This study also examines the factors that influence the synthesis of nanoparticles. It aims to provide an overview of existing electrochemical sensors, particularly those that operate with nanomaterial-based electrode modifications for p-nitroaniline (PNA) determination and to propose guidelines for related research and development activities. Emphasis was placed on the procedure for the analysis of PNA in water samples using nanosilver-based electrodes.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - N Ajermoun
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - A Hrioua
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M Bakasse
- University Chouaib Doukkali, Organic Micropollutants Analysis Team, Faculty of Sciences, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco.
| |
Collapse
|
39
|
Kazi AP, Routsi AM, Kaur B, Christodouleas DC. Inexpensive, Three-Dimensional, Open-Cell, Fluid-Permeable, Noble-Metal Electrodes for Electroanalysis and Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45582-45589. [PMID: 32926774 DOI: 10.1021/acsami.0c13303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study describes the fabrication of three-dimensional, open-cell, noble-metal (Au, Ag, and Pt) electrodes that have a complex geometry, i.e., wire mesh, metallic foam, "origami" wire mesh, and helix wire mesh. The electrodes were fabricated using an ultrasonication-assisted electroplating method that deposits a thin, continuous, and defect-free layer of noble metal (i.e., Au, Ag, or Pt) on an inexpensive copper substrate that has the desired geometry. The method is inexpensive, easy to use, and capable of fabricating noble-metal electrodes of complex geometries that cannot be fabricated using established techniques like screen printing or physical vapor deposition. By minimizing the amount of the pure noble metal in the electrodes, their cost drops significantly and could become low enough even for single-use applications; for example, the cost of metal in a Au wire-mesh electrode is $0.007/cm2 of exposed area that is about 400 times lower than that of a wire-mesh electrode composed entirely of Au. The electrodes exhibit an almost identical electrochemical performance to noble-metal electrodes of similar shape composed of bulk noble metal; therefore, these electrodes could replace two-dimensional noble-metal electrodes (e.g., rods, disks, foils) in numerous electroanalytical and electrocatalytical systems or even allow the use of noble-metal electrodes in new applications such as flow-based electrochemical systems. In this study, wire-mesh and metallic foam noble-metal electrodes have been successfully used as working electrodes for the electrocatalytical oxidation of methanol and for the electrochemical detection of redox mediators, lead ions, and nitrobenzene using various electroanalytical techniques.
Collapse
Affiliation(s)
- Abbas Parvez Kazi
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts 01854, United States
| | - Anna Maria Routsi
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts 01854, United States
| | - Balwinder Kaur
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts 01854, United States
| | | |
Collapse
|
40
|
Hassani S, Rezaei Akmal M, Salek Maghsoudi A, Rahmani S, Vakhshiteh F, Norouzi P, Ganjali MR, Abdollahi M. High-Performance Voltammetric Aptasensing Platform for Ultrasensitive Detection of Bisphenol A as an Environmental Pollutant. Front Bioeng Biotechnol 2020; 8:574846. [PMID: 33015024 PMCID: PMC7498542 DOI: 10.3389/fbioe.2020.574846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) as a pervasive endocrine-disrupting compound (EDC) has been shown to cause multiple detrimental effects including cardiovascular disorders, pregnancy complications, obesity, glucose metabolism disorders, and reproductive toxicity even at a concentration as low as tolerable daily intake (TDI) (4 μg/kg/day). In the present study, a novel ultra-sensitive, electrochemical aptasensor was designed using a screen-printed carbon electrode (SPCE) modified by gold nanoparticles (Au NPs) conjugated to thiolated aptamers for accurate determination of BPA in biological, industrial and environmental samples. To characterize the electrochemical properties of the aptasensor, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were implemented. Detection of BPA was also performed through differential pulse voltammetry (DPV) in [Fe(CN)6]3–/4– electrolyte solution. Under optimum condition, the present electrochemical aptasensor demonstrated an outstanding linear response in the concentration range of 1 pM to 10 nM with a remarkably low limit of detection of 0.113 pM. Due to the superb affinity between anti-BPA aptamers and BPA molecules, the designed aptasensor did not show any significant interaction with other analytes in real samples. Also, fabricated biosensor remained perfectly stable in long-term storage. The analytical results of the fabricated aptasensor are well compatible with those obtained by the ELISA method, indicating the trustworthiness and reasonable accuracy of the application of aptasensor in real samples. Overall, the proposed aptasensor would be a credible and economical method of precise, reproducible, and highly selective detection of minimum levels of BPA in food containers and clinical samples. This would be a promising strategy to enhance the safety of food products and reduce the risk of BPA daily exposure.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahmani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Fang L, Liao X, Jia B, Shi L, Kang L, Zhou L, Kong W. Recent progress in immunosensors for pesticides. Biosens Bioelectron 2020; 164:112255. [DOI: 10.1016/j.bios.2020.112255] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
|
42
|
Lim ES, Lim MC, Park K, Lee G, Lim JA, Woo MA, Lee N, Choi SW, Chang HJ. Selective Binding and Elution of Aptamers for Pesticides Based on Sol-Gel-Coated Nanoporous Anodized Aluminum Oxide Membrane. NANOMATERIALS 2020; 10:nano10081533. [PMID: 32764256 PMCID: PMC7466512 DOI: 10.3390/nano10081533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023]
Abstract
Sol-gel-based mesopores allow the entry of target small molecules retained in their cavity and aptamers to bind to target molecules. Herein, sol-gel-based materials are applied to screen-selective aptamers for small molecules, such as pesticides. To enhance the efficiency of aptamer screening using a sol-gel, it is necessary to increase the binding surface. In this study, we applied the sol-gel to an anodized aluminum oxide (AAO) membrane, and the morphological features were observed via electron microscopy after spin coating. The binding and elution processes were conducted and confirmed by fluorescence microscopy and polymerase chain reaction. The sol-gel coating on the AAO membrane formed a hollow nanocolumn structure. A diazinon-binding aptamer was bound to the diazinon-containing sol-gel-coated AAO membrane, and the bound aptamer was effectively retrieved from the sol-gel matrix by thermal elution. As a proof of concept, a sol-gel-coated AAO disc was mounted on the edge of a pipette tip, and the feasibility of the prepared platform for the systematic evolution of ligands by exponential enrichment (SELEX) of the aptamer binding was also confirmed. The proposed approach will be applied to an automated SELEX cycle using an automated dispenser, such as a pipetting robot, in the near future.
Collapse
Affiliation(s)
- Eun Seob Lim
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Min-Cheol Lim
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Kisang Park
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Department of Molecular Science and Technology, Ajou University, Suwon-si, Gyeonggi-do 16499, Korea
| | - Gaeul Lee
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea
| | - Jeong-A Lim
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Min-Ah Woo
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Nari Lee
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Sung-Wook Choi
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Hyun-Joo Chang
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Correspondence: ; Tel.: +82-63-219-9326
| |
Collapse
|
43
|
Flexible Screen Printed Aptasensor for Rapid Detection of Furaneol: A Comparison of CNTs and AgNPs Effect on Aptasensor Performance. NANOMATERIALS 2020; 10:nano10061167. [PMID: 32549348 PMCID: PMC7353281 DOI: 10.3390/nano10061167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Furaneol is a widely used flavoring agent, which can be naturally found in different products, such as strawberries or thermally processed foods. This is why it is extremely important to detect furaneol in the food industry using ultra-sensitive, stable, and selective sensors. In this context, electrochemical biosensors are particularly attractive as they provide a cheap and reliable alternative measurement device. Carbon nanotubes (CNTs) and silver nanoparticles (AgNPs) have been extensively investigated as suitable materials to effectively increase the sensitivity of the biosensors. However, a comparison of the performance of biosensors employing CNTs and AgNPs is still missing. Herein, the effect of CNTs and AgNPs on the biosensor performance has been thoughtfully analyzed. Therefore, disposable flexible and screen printed electrochemical aptasensor modified with CNTs (CNT-ME), or AgNPs (AgNP-ME) have been developed. Under optimized conditions, CNT-MEs showed better performance compared to AgNP-ME, yielding a linear range of detection over a dynamic concentration range of 1 fM-35 μM and 2 pM-200 nM, respectively, as well as high selectivity towards furaneol. Finally, our aptasensor was tested in a real sample (strawberry) and validated with high-performance liquid chromatography (HPLC), showing that it could find an application in the food industry.
Collapse
|
44
|
Optimization of rGO-PEI/Naph-SH/AgNWs/Frt/GOx nanocomposite anode for biofuel cell applications. Sci Rep 2020; 10:8919. [PMID: 32488131 PMCID: PMC7265384 DOI: 10.1038/s41598-020-65712-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
The present study reports a new nanocomposite design using surface modified silver nanowires decorated on the surface of polyethyleneimine (PEI), a cationic polymer acting as glue for anchoring nanowires and reduced graphene oxide (rGO). The synthesized nanocomposite was employed as a promising electrode material for immobilization of biomolecules and effective transportation of electron, in enzymatic biofuel cell (EBFCs) application. The synthesized nanocomposite was confirmed by analytical techniques, for instance, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The electrochemical behaviour of the nanobioelectrocatalysts rGO-PEI/Frt/GOx, rGO-PEI/AgNWs/Frt/GOx, and rGO-PEI/Naph-SH/AgNWs/Frt/GOx was determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The maximum current density obtained by the modified bioanode was found to be 19.9 mA cm−2 at the limiting glucose concentration of 50 mM in PBS (pH 7.0) as supporting electrolyte at a scan rate of 100 mVs−1.
Collapse
|
45
|
Pesticides determination in foods and natural waters using solid amalgam-based electrodes: Challenges and trends. Talanta 2020; 212:120756. [DOI: 10.1016/j.talanta.2020.120756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/22/2022]
|
46
|
Khanmohammadi A, Jalili Ghazizadeh A, Hashemi P, Afkhami A, Arduini F, Bagheri H. An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01940-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Negahdary M. Electrochemical aptasensors based on the gold nanostructures. Talanta 2020; 216:120999. [PMID: 32456913 DOI: 10.1016/j.talanta.2020.120999] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Electrochemical aptasensors as novel diagnostic tools have attracted sufficient research interest in biomedical sciences. In this review, recent leading trends about gold (Au) nanostructures based electrochemical aptasensors have been collected, reviewed, and compared. Here, the considered electrochemical aptasensors were categorized based on the analytes and diagnostic techniques. Pharmaceutical analytes and biomolecules were reviewed in a separate section consisting of a variety of antibiotics, analgesics, and other biomolecules. Various aptasensors have also measured toxins, ions, and hazardous chemicals, and the findings of them have also been reviewed. Many aptasensors have been designed to detect different disease biomarkers that will play an essential role in the future of early diagnosis of diseases. Pathogen microorganisms have been considered as the analyte in several designed electrochemical aptasensors in recent researches, and their results have been reviewed and discussed as another section. Important aspects considered in the review of the mentioned aptasensors were the type of analyte, features of the aptamer as the biorecognition element, type of Au nanostructures, diagnostic technique, diagnostic mechanism, detection range and the limit of detection (LOD). In the last section, an in-depth analysis has been provided based on the crucial features of all included aptasensors.
Collapse
Affiliation(s)
- Masoud Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
48
|
Pérez-Fernández B, Costa-García A, Muñiz ADLE. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. BIOSENSORS 2020; 10:E32. [PMID: 32252430 PMCID: PMC7236603 DOI: 10.3390/bios10040032] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Pesticides are among the most important contaminants in food, leading to important global health problems. While conventional techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) have traditionally been utilized for the detection of such food contaminants, they are relatively expensive, time-consuming and labor intensive, limiting their use for point-of-care (POC) applications. Electrochemical (bio)sensors are emerging devices meeting such expectations, since they represent reliable, simple, cheap, portable, selective and easy to use analytical tools that can be used outside the laboratories by non-specialized personnel. Screen-printed electrodes (SPEs) stand out from the variety of transducers used in electrochemical (bio)sensing because of their small size, high integration, low cost and ability to measure in few microliters of sample. In this context, in this review article, we summarize and discuss about the use of SPEs as analytical tools in the development of (bio)sensors for pesticides of interest for food control. Finally, aspects related to the analytical performance of the developed (bio)sensors together with prospects for future improvements are discussed.
Collapse
Affiliation(s)
| | | | - Alfredo de la Escosura- Muñiz
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
49
|
Salek Maghsoudi A, Hassani S, Rezaei Akmal M, Ganjali MR, Mirnia K, Norouzi P, Abdollahi M. An Electrochemical Aptasensor Platform Based on Flower-Like Gold Microstructure-Modified Screen-Printed Carbon Electrode for Detection of Serpin A12 as a Type 2 Diabetes Biomarker. Int J Nanomedicine 2020; 15:2219-2230. [PMID: 32280216 PMCID: PMC7127862 DOI: 10.2147/ijn.s244315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE In the present study, a highly sensitive and simple electrochemical (EC) aptasensor for the detection of serpin A12 as a novel biomarker of diabetes was developed on a platform where flower-like gold microstructures (FLGMs) are electrodeposited onto a disposable screen-printed carbon electrode. Meanwhile, serpin A12-specific thiolated aptamer was covalently immobilized on the FLGMs. METHODS The electrochemical activity of a fabricated aptasensor under various conditions were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Aptamer concentration, deposition time, self-assembly time, and incubation time were optimized for assay of serpin A12. The differential pulse voltammetry (DPV) was implemented for quantitative detection of serpin A12 in K3 [Fe (CN) 6]/K4 [Fe (CN) 6] solution (redox probe). RESULTS The label-free aptasensor revealed a linear range of serpin A12 concentration (0.039-10 ng/mL), detection limit of 0.020 ng/mL (S/N=3), and 0.031 ng/mL in solution buffer and plasma, respectively. CONCLUSION The results indicate that this aptasensor has a high sensitivity, selectivity, stability, and acceptable reproducibility for detection of serpin A12 in diabetic patients.
Collapse
Affiliation(s)
- Armin Salek Maghsoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Khosropour H, Rezaei B, Rezaei P, Ensafi AA. Ultrasensitive voltammetric and impedimetric aptasensor for diazinon pesticide detection by VS 2 quantum dots-graphene nanoplatelets/carboxylated multiwalled carbon nanotubes as a new group nanocomposite for signal enrichment. Anal Chim Acta 2020; 1111:92-102. [PMID: 32312402 DOI: 10.1016/j.aca.2020.03.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Polluted water and groundwater resources contaminated by pesticides are among the most important environmental distresses. Therefore, a simple, ultrasensitive, and selective electrochemical aptasensor is proposed for diazinon (DZN) determination as an organophosphorus compound. The vanadium disulfide quantum dots (VS2QDs) were synthesized by a facile hydrothermal method and doped on the graphene nanoplatelets/carboxylated multiwalled carbon nanotubes (GNP/CMWCNTs) as a new group of nanocomposite. The prepared nanocomposite (VS2QDs-GNP/CMWCNTs) on a glassy carbon electrode (GCE) was incubated with the DZN binding aptamer (DZBA) through electrostatic interaction (GCE/VS2QDs-GNP/CMWCNTs/DZBA). The modified electrode was used for the low detection of DZN by monitoring the oxidation of [Fe(CN)6]3-/4- as the redox probe. The characterizations of the modified electrode were performed by several electrochemical methods include: cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Also, the prepared nanocomposite was characterized with field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, fourier transform infrared (FT-IR), fluorescence emission spectroscopy, dynamic light scattering (DLS), elemental mapping, and energy dispersive spectroscopy (EDS). The DZBA selectively adsorbs DZN on the modified electrode, leading to a decrease and increase in the current of DPV and charge transfer resistance (RCT) of EIS, respectively, as analytical signals. The developed electrochemical aptasensor at the optimal conditions have low limits of detection (LOD) equal to 1.1 × 10-14 and 2.0 × 10-15 mol L-1 with wide dynamic ranges of 5.0 × 10-14-1.0 × 10-8 mol L-1 and 1.0 × 10-14-1.0 × 10-8 mol L-1 for DPV and EIS calibration curves, respectively. Finally, this aptasensor had good selectivity, stability, reproducibility, and feasibility for the DZN detection in various real samples.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Parisa Rezaei
- Department of Medical Laboratory Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|