1
|
Chen T, Feng T, Wu S, Zhang X, Chen Y. MOF-derived FeCe@Carbon catalysts for the efficient tetracycline degradation by activated persulfate: Preparation and mechanistic study. J Colloid Interface Sci 2025; 685:1041-1055. [PMID: 39884092 DOI: 10.1016/j.jcis.2025.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Metal-organic frameworks (MOFs) derived materials are extensively utilized in wastewater treatment owing to their remarkable catalytic efficacy and durability. This study exploited iron-cerium-based bimetallic metal-organic framework (FeCe-MOF) as a sacrificial template, which was subsequently calcined at 700 °C to produce an iron-cerium-based bimetallic carbon nanospheres (FeCe@C). The FeCe@C has active sites of bimetallic Fe and Ce derivatives, demonstrating exceptional activation efficiency for persulfate, resulting in approximately 98.2 % elimination of tetracycline hydrochloride (TCH) within 120 min. This removal rate markedly exceeds that of the individual iron-based carbon nanospheres (Fe@C) (53.6 %) and cerium-based carbon nanospheres (Ce@C) (78.3 %). Characterization results, including X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR), demonstrate that the Fe and Ce composite induces coordination unsaturation at the metal centers, leading to the formation of oxygen vacancies and an increase in active reaction sites. Additionally, radical quenching, EPR and electrochemical experiments demonstrate that radical (OH, O2- and SO4-) and non-radical routes (O2-, 1O2 and electron transfer) synergistically catalyze the degradation of TCH. The observed increase in catalytic activity can be primarily ascribed to the synergistic interactions among multivalent metal ions and the rapid regeneration of metals in lower oxidation states. A potential degradation process for antimicrobial organic pollutants is given, providing new research areas and techniques for the effective degradation of related toxins in the future.
Collapse
Affiliation(s)
- Tingpeng Chen
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081 China
| | - Tao Feng
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081 China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081 China.
| | - Si Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081 China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081 China.
| | - Xiangtai Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081 China
| | - Yinyu Chen
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081 China
| |
Collapse
|
2
|
Wu S, Ma H, Song L, Zhong W, Gu Y, Miao Y, An Y. Ping pong chrysanthemum-like Bi-BiOI and ternary core-shell structured Pd@AuPt based dual-electric signal outputs biosensor for accurate detection of CA19 - 9. Mikrochim Acta 2025; 192:314. [PMID: 40261434 DOI: 10.1007/s00604-025-07150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
Carbohydrate antigen 19-9 (CA19 - 9) can be used as a biomarker for pancreatic cancer. Measuring the concentration of CA19 - 9 in serum is essential for screening pancreatic cancer patients. In this paper, a dual-electric signal outputs biosensor based on ping pong chrysanthemum-like Bi-BiOI and ternary core-shell structured Pd@AuPt was constructed for ultra-sensitive detection of tumor marker CA19 - 9 using differential pulse voltammetry (DPV) and chronoamperometry (i-t). Ping pong Chrysanthemum-like Bi-BIOI was prepared via one-pot hydrothermal method. To realize the covalent bonding of bismuth-based materials with MWCNT, bismuth-based materials were functionalized by amino groups. MWCNT-NH2-Bi-BIOI with large specific surface area and remarkable electrical conductivity was used as the sensing platform. Ternary core-shell structured Pd@AuPt with peroxide-like activity and enhanced biocompatibility immobilized massive antibodies through covalent Au-N and Pt-N bonds, thus broadening the linear range of the immunosensor. Based on the above materials, a dual-electric signal outputs biosensor was constructed for detecting CA19 - 9. Under optimal conditions, the detection range of DPV and i-t is 0.001-150 U/mL, the detection limit of DPV is 0.0003 U/mL, and that of i-t is 0.00024 U/mL. In addition, the dual-electric signal outputs immunoassay excels in anti-interference, splendid reproducibility and high recovery in actual sample detection, indicating that the immunosensor is a promising approach to be applied to the detection of CA19 - 9 in clinical diagnosis.
Collapse
Affiliation(s)
- Siyu Wu
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongyun Ma
- Department of Hepatobiliary and Pancreatic Surgery, PLA Naval Medical University, Shanghai, 200433, China
| | - Lin Song
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wen Zhong
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yingying Gu
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yarui An
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
Wu S, Ma H, Chen X, Zhong W, Gu Y, Miao Y, An Y. Collard-like Bi 2S 3@Au nanocomposites-based label free electrochemical immunosensor for quantitative detection of CA19-9. Talanta 2025; 285:127299. [PMID: 39671994 DOI: 10.1016/j.talanta.2024.127299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Here, a label-free immunosensor was conducted using rGO/Collard-like Bi2S3@Au nanocomposite system to detect carbohydrate antigen 19-9 (CA19-9) as a diagnostic biomarker for Pancreatic cancer. The unique morphology of Collard-like Bi2S3 increases its specific surface area, which allows it to immobilize more materials and biomolecules on its surface. To realize the covalent bonding of bismuth-based materials with biomolecules, bismuth-based materials were functionalized by Au NPs. Besides, the superior electrochemical activity and large specific surface area of Bi2S3@Au improved the stability of the sensor, which made it an ideal candidate for regulating the sensing interface in this study. Meanwhile, reduced graphene oxide (rGO) with remarkable electrical conductivity to improve the current response of the sensing interface, thus broadening the linear range of the immunosensor. Based on the above materials, a label free electrochemical immunosensor was constructed for detecting CA19-9. Under optimal conditions, it displays good linear relationship within the range of 0.01 U mL-1 to 100 U mL-1, the detection limit being 0.0012 U mL-1. Additionally, the immunosensor prepared in this work is characterized by superior interference immunity, reproducibility and storage stability, and has yielded satisfactory recovery rate in testing the serum samples of patients.
Collapse
Affiliation(s)
- Siyu Wu
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongyun Ma
- Department of Hepatobiliary and Pancreatic Surgery, PLA Naval Medical University, Shanghai, 200433, China
| | - Xiaoyan Chen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wen Zhong
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yingying Gu
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yarui An
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
4
|
Cabrero-Martín A, Santiago S, Serafín V, Pedrero M, Montero-Calle A, Pingarrón JM, Barderas R, Campuzano S. Multifunctional cerium nanolabels in electrochemical immunosensing with improved robustness and performance: determination of TIM-1 in colorectal cancer scenarios as a case study. Mikrochim Acta 2025; 192:243. [PMID: 40107988 DOI: 10.1007/s00604-025-07021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
A multifunctional cerium oxide nanoparticles (CeO2NPs)-based nanolabel is exploited to implement an electrochemical sandwich-type immunoplatform for the determination of T-cell immunoglobulin and mucin domain 1 (TIM-1) biomarker, a mucin-like class I membrane glycoprotein associated with cancer angiogenesis. The immunoplatform is constructed using screen-printed electrodes where capture antibody is immobilized through the chemistry of diazonium salts. CeO2NPs exhibit robust pseudo-peroxidase activity even at high substrate concentrations. They are covalently functionalized in a simple manner after carboxylation with a detector antibody (dAb), acting dually as a nanozyme and nanocarrier for sensing bioreceptors. This allows the development of immunoplatforms with improved robustness and performance (in terms of a moderate enhancement in sensitivity, a significant expansion in the linear range, and a reduction in the background current) compared with the immunoplatforms prepared using nanolabels also decorated with the natural enzyme (horseradish peroxidase, HRP) or the conventional enzymatic labeling involving the dAb and an HRP-secondary antibody. Under the optimized experimental conditions, the developed electrochemical immunoplatform allows the highly sensitive detection of the TIM-1 glycoprotein, with a detection limit of 9.9 pg mL-1 and a linear working range of 33-600 pg mL-1. This performance permits biomarker quantification within clinically relevant ranges. This innovative configuration enables the precise diagnosis and stratification of colorectal cancer patients by analyzing plasma samples without pretreatment beyond a sample dilution and allows establishment of the first cut-off values reported for this purpose.
Collapse
Affiliation(s)
- Andrea Cabrero-Martín
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Sara Santiago
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Verónica Serafín
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220, Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28046, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28046, Madrid, Spain.
| |
Collapse
|
5
|
Zhang W, Natarajan B, Kannan P, Medlín R, Nicolai LC, Procházka M, Minar J, Subramanian P. Rational construction of porous cobalt nanoparticle integrated nitrogen doped hollow carbon nanostructures for peptide agonist exendin-4 biosensing. Biosens Bioelectron 2025; 270:116938. [PMID: 39566332 DOI: 10.1016/j.bios.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
In this study, we designed a point-of-care (POC) testing electrochemical biosensor using an integrated biosensing assay based on hollow-like nitrogen-doped carbon nanostructures combined with cobalt nanoparticles (Co@HNCNs, Co3O4@HNCNs, and CoP@HNCNs). These are functionalized with Anti-Exendin-4 Antibodies (Anti-Ex-4-Abs) and Bovine Serum Albumin (BSA) to create sensitive probes (Co@HNCNs/Anti-Ex-4-Abs/BSA, Co3O4@HNCNs/Anti-Ex-4-Abs/BSA, and CoP@HNCNs/Anti-Ex-4-Abs/BSA) for the ultrasensitive detection of exendin-4 (Ex-4), a peptide agonist used in the treatment of type 2 diabetes mellitus (T2DM). Among the cobalt-based carbon nanostructures, the Co3O4@HNCNs/Anti-Ex-4-Abs/BSA nanoprobe demonstrated superior ability to specifically recognize Ex-4. This was indicated by a significant decrease in the chronoamperometric (CA) i-t current response, facilitating low-level detection of Ex-4. The nanoprobe was capable of detecting Ex-4 concentrations ranging from 1.0 to 90.0 pM, with a sensitivity of 0.60 μA/pM and a limit of detection (LOD) of 0.46 pM (S/N = 3). Furthermore, the Co3O4@HNCNs/Anti-Ex-4-Abs/BSA nanoprobes demonstrated the ability to detect nanomolar levels of Ex-4 in blood serum and urine samples, achieving satisfactory recovery rates of 96-104%. The proposed electrostatic interaction chemistry approach establishes a remarkable platform for constructing a peptide agonist biosensor that is effective for detecting Ex-4 in real human serum and urine samples.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bharathi Natarajan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China.
| | - Rostislav Medlín
- New Technologies - Research Center, University of West Bohemia, Plzen, 30100, Czech Republic
| | | | - Michal Procházka
- New Technologies - Research Center, University of West Bohemia, Plzen, 30100, Czech Republic
| | - Jan Minar
- New Technologies - Research Center, University of West Bohemia, Plzen, 30100, Czech Republic
| | - Palaniappan Subramanian
- New Technologies - Research Center, University of West Bohemia, Plzen, 30100, Czech Republic.
| |
Collapse
|
6
|
Rani N, Kumari K, Hooda V. The role of nanoparticles in transforming plant genetic engineering: advancements, challenges and future prospects. Funct Integr Genomics 2025; 25:23. [PMID: 39841261 DOI: 10.1007/s10142-025-01528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research. Traditional approaches like Agrobacterium-mediated transformation, biolistic particle delivery, electroporation and polyethylene glycol (PEG) transformation have shown some success but come with limitations like laborious, time-consuming and causing tissue damage. For instance, the Agrobacterium method can be applied only to the restricted host range, while PEG transformation and biolistic particle delivery are not very efficient. In contrast, nanotechnology made an appearance in the field of genetic engineering. Nanoparticles act as delivery vehicles for many cargos in animals. However, in plants, the application of nanocarriers for the delivery of biomolecules is still in its infant stage. Nonetheless, it holds immense potential for the future of plant biotechnology and genome editing.
Collapse
Affiliation(s)
- Neelam Rani
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kusum Kumari
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
7
|
Hu B, Wang Y, Jia H, Shang X, Duan F, Guo C, Zhang S, Wang M, Zhang Z. Portable smartphone-assisted amperometric immunosensor based on CoCe-layered double hydroxide for rapidly immunosensing erythromycin. Food Chem 2024; 461:140830. [PMID: 39151348 DOI: 10.1016/j.foodchem.2024.140830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Herein, we have manufactured a newly designed bifunctional impedimetric and amperometric immunosensor for rapidly detecting erythromycin (ERY) in complicated environments and food stuffs. For this, bimetallic cobalt/cerium-layered double hydroxide nanosheets (CoCe-LDH NSs), which was derived from Co-based zeolite imidazole framework via the structure conversion, was simultaneously utilized as the bioplatform for anchoring the ERY-targeted antibody and for modifying the gold and screen printed electrode. Basic characterizations revealed that CoCe-LDH NSs was composed of mixed metal valences, enrich redox, and abundant oxygen vacancies, facilitating the adhesion on the electrode, the antibody adsorption, and the electron transfers. The manufactured impedimetric and amperometric immunosensor based on CoCe-LDH has showed the comparable sensing performance, having a wide linear detection range from 1.0 fg mL-1 to 1.0 ng mL-1 with the ultralow detection limit toward ERY. Also, the portable, visualized, and efficient analysis of ERY was then attained at the smartphone-assisted CoCe-LDH-based SPE.
Collapse
Affiliation(s)
- Bin Hu
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China.
| | - Yifei Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Haosen Jia
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Xiaohong Shang
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Fenghe Duan
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Chuanpan Guo
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shuai Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Minghua Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Xia Y, He J, Tang L, Hu M, Zhou J, Xiao YY, Jiang ZC, Jiang X. Multifunctional bimetallic MOF with oxygen vacancy synthesized by microplasma for rapid total antioxidant capacity assessment in agricultural products. Food Chem X 2024; 21:101247. [PMID: 38434695 PMCID: PMC10907182 DOI: 10.1016/j.fochx.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
The assessment of total antioxidant capacity (TAC) is crucial for evaluating overall antioxidant potential, predicting the risk of chronic diseases, guiding dietary and nutritional interventions, and studying the effectiveness of antioxidants. However, achieving rapid TAC assessment with high sensitivity and stability remains a challenge. In this study, Ce/Fe-MOF with abundant oxygen vacancies was synthesized using microplasma for TAC determination. The microplasma synthesis method was rapid (30 min) and cost-effective. The presence of oxygen vacancies and the collaboration between iron and cerium in Ce/Fe-MOF not only enhanced the catalyst's efficiency but also conferred multiple enzyme-like properties: peroxidase-like, oxidase-like, and superoxide dismutase mimetic activities. Consequently, a simple colorimetric assay was established for TAC determination in vegetables and fruits, featuring a short analysis time of 15 min, a good linear range of 5-60 μM, a low detection limit of 1.3 μM and a good recovery of 91 %-107 %. This method holds promise for rapid TAC assessment in agricultural products.
Collapse
Affiliation(s)
- Yi Xia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Juan He
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Long Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Miao Hu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jie Zhou
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yao-Yu Xiao
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Chao Jiang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xue Jiang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
9
|
Hwang IJ, Choi C, Kim H, Lee H, Yoo Y, Choi Y, Hwang JH, Jung K, Lee JC, Kim JH. Confined growth of Ag nanogap shells emitting stable Raman label signals for SERS liquid biopsy of pancreatic cancer. Biosens Bioelectron 2024; 248:115948. [PMID: 38160636 DOI: 10.1016/j.bios.2023.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
To develop a reliable surface-enhanced Raman scattering (SERS) immunoassay as a new liquid biopsy modality, SERS nanoprobes emitting strong and stable signals are necessary. However, Ag nanoparticles used as SERS nanoprobes are prone to rapid fading of SERS signals by oxidation. This has driven the development of a new strategy for Ag-based SERS nanoprobes emitting stable and strong SERS signals over time. Herein, Ag nanogap shells entrapping Raman labels are created in the confined pores of mesoporous silica nanoparticles (AgNSM) through a rapid single-step reaction for SERS liquid biopsy. Each AgNSM nanoprobe possesses multiple nanogaps of 1.58 nm to entrap Raman labels, allowing superior long-term SERS signal stability and large enhancement of 1.5 × 106. AgNSM nanoprobes conjugated with an antibody specific for carbohydrate antigen (CA)19-9 are employed in the SERS sandwich immunoassay including antibody-conjugated magnetic nanoparticles for CA19-9 detection, showing a two orders of magnitude lower limit of detection (0.025 U mL-1) than an enzyme-linked immunosorbent assay (0.3 U mL-1). The AgNSM nanoprobe immunoassay accurately quantifies CA19-9 levels from clinical serum samples of early and advanced pancreatic cancer. AgNSM nanoprobes with stable SERS signals provide a new route to SERS liquid biopsy for effective detection of blood biomarkers.
Collapse
Affiliation(s)
- In-Jun Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hongwon Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyunji Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yejoo Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yujin Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 03080, Republic of Korea
| | - Kwangrok Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 03080, Republic of Korea
| | - Jong-Chan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 03080, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
10
|
Ahmadipour M, Bhattacharya A, Sarafbidabad M, Syuhada Sazali E, Krishna Ghoshal S, Satgunam M, Singh R, Rezaei Ardani M, Missaoui N, Kahri H, Pal U, Ling Pang A. CA19-9 and CEA biosensors in pancreatic cancer. Clin Chim Acta 2024; 554:117788. [PMID: 38246211 DOI: 10.1016/j.cca.2024.117788] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a complex pathophysiological condition causing millions of deaths each year. Early diagnosis is essential especially for pancreatic cancer. Existing diagnostic tools rely on circulating biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA). Unfortunately, these markers are nonspecific and may be increased in a variety of disorders. Accordingly, diagnosis of pancreatic cancer generally involves more invasive approaches such as biopsy as well as imaging studies. Recent advances in biosensor technology have allowed the development of precise diagnostic tools having enhanced analytical sensitivity and specificity. Herein we examine these advances in the detection of cancer in general and in pancreatic cancer specifically. Furthermore, we highlight novel technologies in the measurement of CA19-9 and CEA and explore their future application in the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia.
| | - Anish Bhattacharya
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohsen Sarafbidabad
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ezza Syuhada Sazali
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Sib Krishna Ghoshal
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Meenaloshini Satgunam
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Department of Mechanical Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia
| | - Ramesh Singh
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Center of Advanced Manufacturing and Materials Processing (AMMP), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammad Rezaei Ardani
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nadhem Missaoui
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Hamza Kahri
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Ujjwal Pal
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ai Ling Pang
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
11
|
Wang R, Du Y, Fu Y, Guo Y, Gao X, Guo X, Wei J, Yang Y. Ceria-Based Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. ACS Sens 2023; 8:4442-4467. [PMID: 38091479 DOI: 10.1021/acssensors.3c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a notable increase in interest surrounding nanozymes due to their ability to imitate the functions and address the limitations of natural enzymes. The scientific community has been greatly intrigued by the study of nanoceria, primarily because of their distinctive physicochemical characteristics, which include a variety of enzyme-like activities, affordability, exceptional stability, and the ability to easily modify their surfaces. Consequently, nanoceria have found extensive use in various biosensing applications. However, the impact of its redox activity on the enzymatic catalytic mechanism remains a subject of debate, as conflicting findings in the literature have presented both pro-oxidant and antioxidant effects. Herein, we creatively propose a seesaw model to clarify the regulatory mechanism on redox balance and survey possible mechanisms of multienzyme mimetic properties of nanoceria. In addition, this review aims to showcase the latest advancements in this field by systematically discussing over 180 research articles elucidating the significance of ceria-based nanozymes in enhancing, downsizing, and enhancing the efficacy of point-of-care (POC) diagnostics. These advancements align with the ASSURED criteria established by the World Health Organization (WHO). Furthermore, this review also examines potential constraints in order to offer readers a concise overview of the emerging role of nanoceria in the advancement of POC diagnostic systems for future biosensing applications.
Collapse
Affiliation(s)
- Ruixue Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Yuanyuan Du
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Ying Fu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250200, P. R. China
| | - Yanzhao Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250200, P. R. China
| |
Collapse
|
12
|
Zhou Y, Luo X, Yan F, Mou Y. Electrostatic Nanocage-Confined Probe for Electrochemical Detection of CA19-9 in Human Serum. ACS OMEGA 2023; 8:48491-48498. [PMID: 38144141 PMCID: PMC10733950 DOI: 10.1021/acsomega.3c08370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023]
Abstract
Prompt and accurate detection of CA19-9 in human serum has great clinical significance for the early diagnosis and disease monitoring of cancer. Herein, we develop a convenient and antifouling electrochemical sensor for CA19-9 determination by immobilization of both an electrochemical redox probe [methylene blue (MB)] and immunorecognition element (CA19-9 antibody) on an electrostatic nanocage consisting of bipolar silica nanochannel array (bp-SNA). bp-SNA is composed of a negatively charged inner layer (n-SNA) and positively charged outer layer (p-SNA), which could be stably prepared on indium tin oxide (ITO) in several seconds using a two-step electrochemically assisted self-assembly approach and display asymmetric surface charges for confinement and enrichment of cationic MB into the inner n-SNA layer through electrostatic interaction. Modification of the CA19-9 antibody on the top surface of bp-SNA confers the sensing interface with specific recognition capacity. An antibody-antigen complex formed at the as-prepared immunosensor causes the decreased electrochemical signals of MB, achieving sensitive determination of CA19-9 with a wider linear dynamic range from 10 μU/mL to 50 U/mL and a low detection limit (3 μU/mL). Furthermore, accurate and feasible analysis of the CA19-9 amount in human serum samples by our proposed probe-integrated electrochemical immunosensor is realized.
Collapse
Affiliation(s)
- Yucheng Zhou
- Medical
College of Soochow University, Suzhou 215006, China
- General
Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic
Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xuan Luo
- Key
Laboratory of Surface & Polymer Materials of Zhejiang Province,
Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher
Education Zone, Hangzhou 310018, China
| | - Fei Yan
- Key
Laboratory of Surface & Polymer Materials of Zhejiang Province,
Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher
Education Zone, Hangzhou 310018, China
| | - Yiping Mou
- Medical
College of Soochow University, Suzhou 215006, China
- General
Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic
Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
13
|
Chen W, Chi M, Wang M, Liu Y, Kong S, Du L, Wang J, Wu C. Label-Free Detection of CA19-9 Using a BSA/Graphene-Based Antifouling Electrochemical Immunosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:9693. [PMID: 38139539 PMCID: PMC10748090 DOI: 10.3390/s23249693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Evaluating the levels of the biomarker carbohydrate antigen 19-9 (CA19-9) is crucial in early cancer diagnosis and prognosis assessment. In this study, an antifouling electrochemical immunosensor was developed for the label-free detection of CA19-9, in which bovine serum albumin (BSA) and graphene were cross-linked with the aid of glutaraldehyde to form a 3D conductive porous network on the surface of an electrode. The electrochemical immunosensor was characterized through the use of transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscope (AFM), UV spectroscopy, and electrochemical methods. The level of CA19-9 was determined through the use of label-free electrochemical impedance spectroscopy (EIS) measurements. The electron transfer at the interface of the electrode was well preserved in human serum samples, demonstrating that this electrochemical immunosensor has excellent antifouling performance. CA19-9 could be detected in a wide range from 13.5 U/mL to 1000 U/mL, with a detection limit of 13.5 U/mL in human serum samples. This immunosensor also exhibited good selectivity and stability. The detection results of this immunosensor were further validated and compared using an enzyme-linked immunosorbent assay (ELISA). All the results confirmed that this immunosensor has a good sensing performance in terms of CA19-9, suggesting its promising application prospects in clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (W.C.); (M.C.); (M.W.); (Y.L.); (S.K.)
| | - Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (W.C.); (M.C.); (M.W.); (Y.L.); (S.K.)
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (W.C.); (M.C.); (M.W.); (Y.L.); (S.K.)
| |
Collapse
|
14
|
Zhang T, Ma Y, Zhang Y. A simple electrochemical strategy for the detection of the cancer marker CA19-9 by signal amplification using copper organic framework nanocomposite. Analyst 2023; 148:5905-5914. [PMID: 37855742 DOI: 10.1039/d3an01511d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this work, label-free electrochemical immunosensing of the cancer biomarker carbohydrate antigen 19-9 (CA19-9) is reported using [Fe(CN)6]3-/4- as a signal probe and a copper organic framework (Cu-BTC) nanocomposite for the amplification of the signal. The immunosensor was fabricated by the following process. First, the Cu-BTC nanomaterial with a larger surface area and good biocompatibility was synthesized to improve the dispersion of gold nanoparticles (Au NPs). Then, nitrogen-doped graphene (N-GR) was combined with Cu-BTC to form the nanocomposite. The synthesized Cu-BTC@N-GR@AuNPs@CS nanocomposite was employed to modify the surface of the immunosensor to accelerate the electron transfer rate and improve the immobilization amount of CA19-9 antibodies (Ab). Various techniques, including TEM, SEM and XPS were used to characterize Cu-BTC and nanocomposites. Differential pulse voltammetry (DPV) was used to measure the electrochemical response of the immunosensor in [Fe(CN)6]3-/4-. The signal intensity of the immunosensor was linearly changed upon increasing the concentration of CA19-9 antigen from 10 μU mL-1 to 100 U mL-1, and a detection limit of 4.2 μU mL-1 was achieved. Furthermore, the immunosensor showed good stability, reproducibility and specificity, indicating its potential application in clinical analysis.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| | - Yan Ma
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| |
Collapse
|
15
|
Li H, Zhang Z, Gan L, Fan D, Sun X, Qian Z, Liu X, Huang Y. Signal Amplification-Based Biosensors and Application in RNA Tumor Markers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094237. [PMID: 37177441 PMCID: PMC10180857 DOI: 10.3390/s23094237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Tumor markers are important substances for assessing cancer development. In recent years, RNA tumor markers have attracted significant attention, and studies have shown that their abnormal expression of post-transcriptional regulatory genes is associated with tumor progression. Therefore, RNA tumor markers are considered as potential targets in clinical diagnosis and prognosis. Many studies show that biosensors have good application prospects in the field of medical diagnosis. The application of biosensors in RNA tumor markers is developing rapidly. These sensors have the advantages of high sensitivity, excellent selectivity, and convenience. However, the detection abundance of RNA tumor markers is low. In order to improve the detection sensitivity, researchers have developed a variety of signal amplification strategies to enhance the detection signal. In this review, after a brief introduction of the sensing principles and designs of different biosensing platforms, we will summarize the latest research progress of electrochemical, photoelectrochemical, and fluorescent biosensors based on signal amplification strategies for detecting RNA tumor markers. This review provides a high sensitivity and good selectivity sensing platform for early-stage cancer research. It provides a new idea for the development of accurate, sensitive, and convenient biological analysis in the future, which can be used for the early diagnosis and monitoring of cancer and contribute to the reduction in the mortality rate.
Collapse
Affiliation(s)
- Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
16
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
17
|
Confinement of defect-rich bimetallic In 2O 3/CeO 2 nanocrystals in mesoporous nitrogen-doped carbon as a sensitive platform for photoelectrochemical aptasensing of Escherichia coli. Anal Chim Acta 2023; 1248:340893. [PMID: 36813455 DOI: 10.1016/j.aca.2023.340893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
The sensitive determination of food-borne pathogens from food products is essential to ensure food safety and to protect people's health. Herein, a novel photoelectrochemical (PEC) aptasensor was manufactured based on defect-rich bimetallic cerium/indium oxide nanocrystals confined in mesoporous nitrogen-doped carbon (denoted as In2O3/CeO2@mNC) for sensitively detecting Escherichia coli (E. coli) from real samples. A new cerium-based polymer-metal-organic framework [polyMOF(Ce)] was synthesized using polyether polymer containing 1,4-benzenedicarboxylic acid unit (L8) as ligand, trimesic acid as co-ligand, and cerium ions as coordination centers. After adsorbing trace indium ions (In3+), the gained polyMOF(Ce)/In3+ complex was calcined at high temperature under nitrogen atmosphere, resulting in the production of a series of defect-rich In2O3/CeO2@mNC hybrids. Benefitting from the advantages of high specific surface area, large pore size, and multiple functionality of polyMOF(Ce), In2O3/CeO2@mNC hybrids showed enhanced visible light absorption ability, separation performance of the photo-generated electrons and holes, promoted electron transfer, as well as the strong bioaffinity toward E. coli-targeted aptamer. Accordingly, the constructed PEC aptasensor illustrated an ultralow detection limit of 1.12 CFU mL-1, remarkably lower than most of the reported E. coli biosensors, along with high stability and selectivity, excellent reproducibility, and expected regeneration ability. The present work provides insight into the construction of a general PEC biosensing strategy based on MOF-based derivatives for the sensitive analysis of food-borne pathogens.
Collapse
|
18
|
Gholamin D, Karami P, Pahlavan Y, Johari-Ahar M. Highly sensitive photoelectrochemical immunosensor for detecting cancer marker CA19-9 based on a new SnSe quantum dot. Mikrochim Acta 2023; 190:154. [PMID: 36961600 DOI: 10.1007/s00604-023-05718-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/23/2023] [Indexed: 03/25/2023]
Abstract
A sandwich-type photoelectrochemical (PEC) immunosensor was constructed on a screen-printed electrode (SPE) using gold-coated tin selenide quantum dots (Au-SnSe QDs) to determine the carbohydrate antigen 19 9 (CA19-9). Water-soluble Au-SnSe QDs were prepared by coating low-cost SnSe QDs, prepared by reacting tin(II) 2-ethyl hexanoate with selenium ions (HNaSe) without needing to add an external capping agent (SnSe QDs). SnSe-based QDs were characterized using high-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS). DSP (dithio-bis (succinimidyl propionate)) as a linker was attached on Au@SnSe QDs and conjugated with CA19-9 monoclonal antibodies (Ab2-DSP-Au@SnSE QD). For capture probe assembling, an Au nano-layer was electrochemically deposited on a SPE by HAuCl4 reduction using 12 cycles of cyclic voltammetry (0 to - 1.4 V) at the scan rate of 50 mV s-1, then covered by self-assembly of DSP and covalent conjugation of CA19-9 Ab1. Our developed PEC immunosensor showed a significant photoelectrochemical response, recorded using chronoamperometry (0.3 V), for the presence of CA19-9 antigen in serum samples under light irradiation, with a detection limit (LOD) of 0.0011 U mL-1 and a dynamic range of 0.005-100 U mL-1. The recovery of CA19-9 determination from serum samples was 101 to 113%.
Collapse
Affiliation(s)
- Danial Gholamin
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pari Karami
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yasamin Pahlavan
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Johari-Ahar
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
19
|
Hierarchical CoCoPBA@PCN-221 nanostructure for the highly sensitive detection of deoxynivalenol in foodstuffs. Food Chem 2023; 403:134370. [DOI: 10.1016/j.foodchem.2022.134370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
|
20
|
Early detection of tumour-associated antigens: Assessment of point-of-care electrochemical immunoassays. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
21
|
Goldberg MA, Antonova OS, Donskaya NO, Fomin AS, Murzakhanov FF, Gafurov MR, Konovalov AA, Kotyakov AA, Leonov AV, Smirnov SV, Obolkina TO, Kudryavtsev EA, Barinov SM, Komlev VS. Effects of Various Ripening Media on the Mesoporous Structure and Morphology of Hydroxyapatite Powders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:418. [PMID: 36770379 PMCID: PMC9919035 DOI: 10.3390/nano13030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Mesoporous hydroxyapatite (HA) materials demonstrate advantages as catalysts and as support systems for catalysis, as adsorbent materials for removing contamination from soil and water, and as nanocarriers of functional agents for bone-related therapies. The present research demonstrates the possibility of the enlargement of the Brunauer-Emmett-Teller specific surface area (SSA), pore volume, and average pore diameter via changing the synthesis medium and ripening the material in the mother solution after the precipitation processes have been completed. HA powders were investigated via chemical analysis, X-ray diffraction analysis, Fourier-transform IR spectroscopy, transmission electron microscopy (TEM), and scanning (SEM) electron microscopy. Their SSA, pore volume, and pore-size distributions were determined via low-temperature nitrogen adsorption measurements, the zeta potential was established, and electron paramagnetic resonance (EPR) spectroscopy was performed. When the materials were synthesized in water-ethanol and water-acetone media, the SSA and total pore volume were 52.1 m2g-1 and 116.4 m2g-1, and 0.231 and 0.286 cm3g-1, respectively. After ripening for 21 days, the particle morphology changed, the length/width aspect ratio decreased, and looser and smaller powder agglomerates were obtained. These changes in their characteristics led to an increase in SSA for the water and water-ethanol samples, while pore volume demonstrated a multiplied increase for all samples, reaching 0.593 cm3g-1 for the water-acetone sample.
Collapse
Affiliation(s)
- Margarita A. Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga S. Antonova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda O. Donskaya
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander S. Fomin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Fadis F. Murzakhanov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Anatoliy A. Konovalov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Artem A. Kotyakov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander V. Leonov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey V. Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana O. Obolkina
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Egor A. Kudryavtsev
- Joint Research Center of Belgorod State National Research University «Technology and Materials», Belgorod State National Research University, Pobedy Str., 85, Belgorod 308015, Russia
| | - Sergey M. Barinov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
22
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
23
|
Wang B, He B, Xie L, Cao X, Liang Z, Wei M, Jin H, Ren W, Suo Z, Xu Y. A novel detection strategy for nitrofuran metabolite residues: Dual-mode competitive-type electrochemical immunosensor based on polyethyleneimine reduced graphene oxide/gold nanorods nanocomposite and silica-based multifunctional immunoprobe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158676. [PMID: 36096228 DOI: 10.1016/j.scitotenv.2022.158676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Excessive residues of semicarbazide (SEM) can accumulate in animals after the original drug has been abused, posing a risk to human health. Herein, based on multifunctional silica-initiated dual mode signal response, a novel competitive-type immunosensor was constructed for ultrasensitive detection of SEM. As a preliminary signal amplification platform for immunosensors, polyethyleneimine reduced graphene oxide composite gold nanorods (PEI-rGO/AuNRs) modified gold electrodes (AuE) provide a high specific surface area and high electrical conductivity. The thionine-aminated silica nanospheres-AuPt (thi-SiO2@AuPt) were synthesized by a racile coprecipitation method for enzyme immobilization and redox species loading. The multifunctional silica nanosphere conjugated with labeling antibodies (Ab2) was employed as an immunoprobe. The per unit concentration target of SEM can be determined by differential pulse voltammetry (DPV) to detect the thi loaded on the immunoprobe, which can also be determined by square wave voltammetry (SWV) to detect the current generated by the reaction system of H2O2 and hydroquinone (HQ) catalyzed by the immunoprobe with peroxidase. Under optimal conditions, the proposed immunosensor displayed a wide linear range from 1 μg-0.01 ng/mL and low detection limits (S/N = 3) of 0.488 pg/mL and 0.0157 ng/mL, respectively. Ultimately, the developed method exhibits excellent performance in practical applications, providing promising probabilities for SEM detection.
Collapse
Affiliation(s)
- Botao Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
24
|
Bimetallic metal–organic framework derived Mn, N co-doped Co-Carbon for electrochemical detection of nitrite. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Yan Z, Xing J, He R, Guo Q, Li J. Probe-Integrated Label-Free Electrochemical Immunosensor Based on Binary Nanocarbon Composites for Detection of CA19-9. Molecules 2022; 27:molecules27206778. [PMID: 36296370 PMCID: PMC9607002 DOI: 10.3390/molecules27206778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Convenient and sensitive detection of tumor biomarkers is crucial for the early diagnosis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue (MB) redox probes for detection of carbohydrate antigen 199 (CA19-9), which is closely associated with gastric malignancies. Nanocarbon composites consisting of electrochemically reduced graphene oxides and carbon nanotubes (ErGO-CNT) are electrodeposited onto an indium tin oxide (ITO) electrode surface to form a 3D nanocomposite film, which could provide high surface area to immobilize abundant MB probes, facilitate the electron transfer of MB, and therefore, improve sensitivity. Polydopamine (PDA) served as a bifunctional linker is able to immobilize anti-CA19-9 antibodies and stabilize the inner probe, conferring the sensing interface with specific recognition capacity. Electrochemical detection of CA19-9 is achieved based on the decrease of the redox signal of MB after specific binding of CA19-9 with a wide linear range of 0.1 mU/mL to 100 U/mL and a limit of detection (LOD) of 0.54 nU/mL (S/N = 3). The constructed electrochemical immunosensor has good selectivity, repeatability, reproducibility, and stability. Furthermore, determination of CA19-9 in human serum samples is also realized.
Collapse
Affiliation(s)
- Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence:
| | - Ruochong He
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Qinping Guo
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ji Li
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
26
|
Tan YY, Sun HN, Liu M, Liu A, Li SS. Simple synthesis of PtRu nanoassemblies as signal amplifiers for electrochemical immunoassay of carbohydrate antigen 19-9. Bioelectrochemistry 2022; 148:108263. [PMID: 36162334 DOI: 10.1016/j.bioelechem.2022.108263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
Abstract
In clinical analysis, carbohydrate antigen 19-9 (CA199) is a gold standard for pancreatic cancer diagnosis. Herein, PtRu nanoassemblies (NAs) were synthesized via a facile one-step solvothermal approach, with the help of octylphenoxypolye thoxyethanol (NP-40) acted as a growth-directing molecule, and triethylene glycol (TEG) worked as a reductant and solvent. During the assembly process of small particles, a large number of voids were formed, which significantly increase the specific surface area of the PtRu NAs exhibiting excellent electrocatalytic performance. Incorporating the PtRu NAs as signal amplifiers for potassium ferrocyanide oxidation into the specific molecular recognition of proteins, a facile signal-enhanced electrochemical (EC) immunosensor was developed. Verified by a series of experiments, the proposed immunosensor presented a wide linear range (10-4-70 U mL-1) and a low detection limit (3.3 × 10-5 U mL-1), accompanied by good reproducibility, selectivity, and stability, which could be applied in human serum samples for the determination of CA199, and was comparable to commercial electrochemiluminescence (ECL) immunoassay. Feasibility of batch fabrication of PtRu NAs makes nanomaterial-based EC immunoassay promising for the determination of similar cancer markers in future.
Collapse
Affiliation(s)
- Yuan-Yuan Tan
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - He-Nan Sun
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
27
|
Sahraei N, Mazloum-Ardakani M, Khoshroo A, Hoseynidokht F, Mohiti J, Moradi A. Electrochemical system designed on a paper platform as a label-free immunosensor for cancer derived exosomes based on a mesoporous carbon foam- ternary nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Jiao X, Peng T, Liang Z, Hu Y, Meng B, Zhao Y, Xie J, Gong X, Jiang Y, Fang X, Yu X, Dai X. Lateral Flow Immunoassay Based on Time-Resolved Fluorescence Microspheres for Rapid and Quantitative Screening CA199 in Human Serum. Int J Mol Sci 2022; 23:ijms23179991. [PMID: 36077387 PMCID: PMC9456114 DOI: 10.3390/ijms23179991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate antigen 199 (CA199) is a serum biomarker which has certain value and significance in the diagnosis, prognosis, treatment, and postoperative monitoring of cancer. In this study, a lateral flow immunoassay based on europium (III) polystyrene time-resolved fluorescence microspheres (TRFM-based LFIA), integrated with a portable fluorescence reader, has been successfully establish for rapid and quantitative analysis of CA199 in human serum. Briefly, time-resolved fluorescence microspheres (TRFMs) were conjugated with antibody I (Ab1) against CA199 as detection probes, and antibody II (Ab2) was coated as capture element, and a “TRFMs-Ab1-CA199-Ab2” sandwich format would form when CA199 was detected by the TRFM-based LFIA. Under the optimal parameters, the detection limit of the TRFM-based LFIA for visible quantitation with the help of an ultraviolet light was 4.125 U/mL, which was four times lower than that of LFIA based on gold nanoparticles. Additionally, the fluorescence ratio is well linearly correlated with the CA199 concentration (0.00–66.0 U/mL) and logarithmic concentration (66.0–264.0 U/mL) for quantitative detection. Serum samples from 10 healthy people and 10 liver cancer patients were tested to confirm the performances of the point-of-care application of the TRFM-based LFIA, 20.0 U/mL of CA199 in human serum was defined as the threshold for distinguishing healthy people from liver cancer patients with an accuracy of about 60%. The establishment of TRFM-based LFIA will provide a sensitive, convenient, and efficient technical support for rapid screening of CA199 in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Xueshima Jiao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Tao Peng
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Zhanwei Liang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yalin Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Bo Meng
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yang Zhao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Jie Xie
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiaoyun Gong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - You Jiang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiang Fang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Correspondence: (X.Y.); (X.D.); Tel.: +86-010-64524208 (X.D.); Fax: +86-010-64524962 (X.D.)
| | - Xinhua Dai
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- Correspondence: (X.Y.); (X.D.); Tel.: +86-010-64524208 (X.D.); Fax: +86-010-64524962 (X.D.)
| |
Collapse
|
29
|
Ehzari H, Safari M. A Sandwich-Type Electrochemical Immunosensor Using Antibody-Conjugated Pt-Doped CdTe QDs as Enzyme-Free Labels for Sensitive HER2 Detection Based on a Magnetic Framework. Front Chem 2022; 10:881960. [PMID: 35755254 PMCID: PMC9218600 DOI: 10.3389/fchem.2022.881960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor markers are highly sensitive and play an important role in the early diagnosis of cancer. We developed an electrochemical sandwich-type immunosensor that detects human epidermal growth factor receptor 2 (HER2). Magnetic framework (Fe3O4@ TMU-24) and AuNPs (Fe3O4@ TMU-24 -AuNPs) are utilized in this sensing platform. In addition to their high specific surface area and excellent biocompatibility, Fe3O4@ TMU-24-AuNPs nanocomposites exhibited excellent electrocatalytic properties. The primary antibody of HER2 (Ab1) was immobilized on the surface of the Fe3O4@ TMU-24-AuNPs. In this sensing method, palatine doped to CdTe QDs (Pt: CdTe QDs) is utilized as a novel labeling signal biomolecule (secondary antibodies). Pt: CdTe QDs own good biocompatibility and excellent catalytic performance. The amperometric technique was used to achieve the quantitative determination of HER2 by using a sandwich-type electrochemical immunosensor. Under the optimum conditions, the dependency of the current signal and HER2 concentration showed a linear region from 1 pg ml−1–100 ng ml−1 with 0.175 pg ml−1 as the limit of detection. This biosensing device also showed long stability and good reproducibility, which can be used for the quantitative assay of HER2.
Collapse
Affiliation(s)
- Hosna Ehzari
- Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah, Iran
| | - Meysam Safari
- Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah, Iran
| |
Collapse
|
30
|
Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022; 27:molecules27123841. [PMID: 35744967 PMCID: PMC9229873 DOI: 10.3390/molecules27123841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
Nanoengineering biosensors have become more precise and sophisticated, raising the demand for highly sensitive architectures to monitor target analytes at extremely low concentrations often required, for example, for biomedical applications. We review recent advances in functional nanomaterials, mainly based on novel organic-inorganic hybrids with enhanced electro-physicochemical properties toward fulfilling this need. In this context, this review classifies some recently engineered organic-inorganic metallic-, silicon-, carbonaceous-, and polymeric-nanomaterials and describes their structural properties and features when incorporated into biosensing systems. It further shows the latest advances in ultrasensitive electrochemical biosensors engineered from such innovative nanomaterials highlighting their advantages concerning the concomitant constituents acting alone, fulfilling the gap from other reviews in the literature. Finally, it mentioned the limitations and opportunities of hybrid nanomaterials from the point of view of current nanotechnology and future considerations for advancing their use in enhanced electrochemical platforms.
Collapse
|
31
|
Asadi L, Saadati Z, Salehpour M. Theoretical evaluation of Al-doped biphenylene nanosheet sensing properties toward gamma-butyrolactone. Struct Chem 2022. [DOI: 10.1007/s11224-022-01964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Qiu R, Dai J, Meng L, Gao H, Wu M, Qi F, Feng J, Pan H. A Novel Electrochemical Immunosensor Based on COF-LZU1 as Precursor to Form Heteroatom-Doped Carbon Nanosphere for CA19-9 Detection. Appl Biochem Biotechnol 2022; 194:3044-3065. [PMID: 35334069 DOI: 10.1007/s12010-022-03861-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 01/07/2023]
Abstract
Porous carbon sphere materials have a large variety of applications in several fields due to the large surface area, adaptable porosity, and good conductivity they possess. Obtaining a steady carbon sphere using the green synthesis method remains a significant challenge. In this experiment, covalent organic frameworks (COFs) were used as a precursor and Fe3O4NPs were integrated into the precursor in order to synthesize a porous carbon sphere material using the one-step pyrolysis method. COFs have an ordered porous structure, perpetual porosity, large surface area, and low density and display good environmental tolerance. These properties make them an excellent precursor for synthesizing porous carbon sphere, which maintains good morphology at high temperatures, and it is not involved in the removal of dangerous reagent and small size restrictions during the synthesis process. In addition to the formation of a porous carbon sphere, transition metal carbon material that contains N element can be an active catalyst. The composites exhibit better activity when Fe is doped into carbon materials containing N element than that of other doped transition metals including Mn and Co. In this situation, the integration of Fe3O4NPs and N element in the COF precursor exposed the active sites of the composites and the two substances synergistically improved the electrocatalytic properties, and the composites were named Fe3O4@NPCS. The constructed Fe3O4@NPCS/GCE immunosensor was applied as a means of detecting CA19-9 antigen and presented a wide linear range from 0.00001 to 10 U/mL with a low detection limit of 2.429 μU/mL (S/N = 3). In addition, the prepared immunosensor was utilized for detecting CA19-9 antigen in the real human serum, and the recovery rates were in the range from 95.24% to 106.38%. Therefore, a porous carbon sphere prepared by COFs as a precursor can be applied for the detection of CA19-9 antigen in real samples, which could be an excellent strategy for CA19-9 antigen detection and could potentially promote the development of COF materials in various electrochemical fields.
Collapse
Affiliation(s)
- Ren Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jianmin Dai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Lingqiang Meng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hongmin Gao
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Mengdie Wu
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feifan Qi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jing Feng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
33
|
Piloto AML, Ribeiro DSM, Rodrigues SSM, Santos JLM, Sampaio P, Sales MGF. Cellulose-based hydrogel on quantum dots with molecularly imprinted polymers for the detection of CA19-9 protein cancer biomarker. Mikrochim Acta 2022; 189:134. [PMID: 35247077 DOI: 10.1007/s00604-022-05230-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 01/08/2023]
Abstract
Molecularly imprinted polymers MIPs were successfully assembled around quantum dots (QDs), for the detection of the protein biomarker CA19-9 associated to pancreatic cancer (PC). These imprinted materials MIP@QDs were incorporated within the cellulose hydrogel with retention of its conformational structure inside the binding cavities. The concept is to use MIPs which function as the biorecognition elements, conjugated to cadmium telluride QDs as the sensing system. The excitation wavelength was set to 477 nm and the fluorescence signal was measured at its maximum intensity, with an emission range between 530 and 780 nm. The fluorescence quenching of the imprinted cellulose hydrogels occurred with increasing concentrations of CA19-9, showing linearity in the range 2.76 × 10 -2 - 5.23 × 10 2 U/ml, in a 1000-fold diluted human serum. Replicates of the imprinted hydrogel show a linear response below the cut-off values for pancreatic cancer diagnosis (< 23 U/ml), a limit of detection of 1.58 × 10 -3 U/ml and an imprinting factor (IF) of 1.76. In addition to the fact that the imprinted cellulose hydrogel displays good stability and selectivity towards CA19-9 when compared with the non-imprinted controls, the conjugation of MIPs to QDs increases the sensitivity of the system for an optical detection method towards ranges within clinical significance. This fact shows potential for the imprinted hydrogel to be applied as a sensitive, low-cost format for point-of-care tests (PoCTs).
Collapse
Affiliation(s)
- Ana Margarida L Piloto
- BioMark/ISEP, School of Engineering of the Polytechnic Institute of Porto, Porto, Portugal. .,Centre of Biological Engineering, CEB, Minho University, Braga, Portugal.
| | - David S M Ribeiro
- LAQV, REQUIMTE, Faculty of Pharmacy, Laboratory of Applied Chemistry, Department of Chemical Sciences, University of Porto, Porto, Portugal
| | - S Sofia M Rodrigues
- LAQV, REQUIMTE, Faculty of Pharmacy, Laboratory of Applied Chemistry, Department of Chemical Sciences, University of Porto, Porto, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Faculty of Pharmacy, Laboratory of Applied Chemistry, Department of Chemical Sciences, University of Porto, Porto, Portugal
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Maria Goreti Ferreira Sales
- BioMark/ISEP, School of Engineering of the Polytechnic Institute of Porto, Porto, Portugal.,Centre of Biological Engineering, CEB, Minho University, Braga, Portugal.,BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Song L, Yin X, Zhu L, Huang Z, Ma J, Xu A, Gu Y, An Y, Miao Y. A specific identification platform based on biscuit-like bismuth nanosheets for label-free electrochemical immunosensor. ANAL SCI 2022; 38:571-582. [DOI: 10.1007/s44211-022-00067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
|
35
|
Cui B, Fu G. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. NANOSCALE 2022; 14:1679-1699. [PMID: 35048101 DOI: 10.1039/d1nr07614k] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fossil-fuel shortage and severe environmental issues have posed ever-increasing demands on clean and renewable energy sources, for which the exploration of electrocatalysts has been a big challenge toward energy transfer and storage. Some indispensable features of electrocatalysts, such as large surface area, controlled structure, high porosity, and effective functionalization, have been proved to be critical for the improvement of electrocatalytic activities. Recently, the rapid expansion of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous-organic polymers has provided extensive opportunities for the development of various electrocatalysts. Moreover, combining diverse descriptions of porous-organic frameworks (such as MOFs and COFs) can generate amazing and fantastic properties, affording the formed MOF/COF (including core-shell MOF@MOF and MOF@COF and layer-on-layer MOF-on-MOF or COF-on-MOF) heterostructures wide applications in diverse fields, especially in clean energy and energy transfer. To further boosts electronic conductivity, catalytic performances, and energy storage abilities, these MOF/COF hybrid materials have been widely utilized as versatile precursors for the manufacture of transition metal catalysts embedded within mesoporous carbon nitrides (M@CNx) and porous carbon nitride frameworks (CNx) via a facile pyrolysis process. Given that these M@CNx and CNx hybrids are composed of abundant catalytic centers, rich functionalities, and large specific surface areas, vast applications in energy transfer and energy storage fields can be realized. In this mini-review, we summarize the preparation strategies of MOF/COF-based hybrids, as well as their derivatives, nanostructure formation mechanism of M@CNx and CNx hybrids from MOF/COF-based hybrid materials, and their applications as catalysts for driving diverse reactions and electrode materials for energy storage. Further, current challenges and future prospects of applying these derivatives into energy conversion and storage devices are also discussed.
Collapse
Affiliation(s)
- Bingbing Cui
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| |
Collapse
|
36
|
Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022; 195:356-383. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.
Collapse
|
37
|
Feng N, Liu Y, Dai X, Wang Y, Guo Q, Li Q. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv 2022; 12:1486-1493. [PMID: 35425183 PMCID: PMC8979138 DOI: 10.1039/d1ra05407d] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cerium oxide nanozymes have emerged as a new type of bio-antioxidants in recent years. CeO2 nanozymes possess enzyme mimetic activities with outstanding free radical scavenging activity, facile synthesis conditions, and excellent biocompatibility. Based on these extraordinary properties, use of CeO2 nanozymes has been demonstrated to be a highly versatile therapeutic method for many diseases, such as for inflammation, rheumatoid arthritis, hepatic ischemia-reperfusion injury and Alzheimer's disease. In addition to that, CeO2 nanozymes have been widely used in the diagnosis and treatment of cancer. Many examples can be found in the literature, such as magnetic resonance detection, tumour marker detection, chemotherapy, radiotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). This review systematically summarises the latest applications of CeO2-based nanozymes in cancer research and treatment. We believe that this paper will help develop value-added CeO2 nanozymes, offering great potential in the biotechnology industry and with great significance for the diagnosis and treatment of a wide range of malignancies.
Collapse
Affiliation(s)
- Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Ying Liu
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Xianglin Dai
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Yingying Wang
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qiong Guo
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
38
|
Jain R, Nirbhaya V, Chandra R, Kumar S. Nanostructured Mesoporous Carbon Based Electrochemical Biosensor for Efficient Detection of Swine Flu. ELECTROANAL 2022. [DOI: 10.1002/elan.202100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Raghav Jain
- Department of Chemistry University of Delhi Delhi 110007 India
| | | | - Ramesh Chandra
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Suveen Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
39
|
Tan M, Zhang C, Li Y, Xu Z, Wang S, Liu Q, Li Y. An Efficient Electrochemical Immunosensor for Alpha-Fetoprotein Detection based on the CoFe Prussian Blue Analog Combined PdAg Hybrid Nanodendrites. Bioelectrochemistry 2022; 145:108080. [DOI: 10.1016/j.bioelechem.2022.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022]
|
40
|
Rajaei H, Esmaeilzadeh F, Mowla D. Synthesis and Characterization of Nano-Sized Pt/HZSM–5 Catalyst for Application in the Xylene Isomerization Process. Catal Letters 2022. [DOI: 10.1007/s10562-021-03604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Brooks AK, Chakravarty S, Yadavalli VK. Flexible Sensing Systems for Cancer Diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:275-306. [DOI: 10.1007/978-3-031-04039-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Karbakhshzadeh A, Derakhshande M, Farhami N, Hosseinian A, Ebrahimiasl S, Ebadi A. Study the Adsorption of Letrozole Drug on the Silicon Doped Graphdiyne Monolayer: a DFT Investigation. SILICON 2022; 14. [PMCID: PMC8109220 DOI: 10.1007/s12633-021-01143-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the current study, by employing first-principles computations, the adsorption behavior of letrozole (LET) was investigated on the pristine graphdiyne nanosheet (GDY) as well as Si-doped graphdiyne (SiGDY). According to the adsorption energy, charge transfer value, and the change in the bang gap energy, the tendency of the pristine GDY towards LET is insignificant. However, the interaction of LET with SiGDY was strong and the adsorption energy was approximately − 19.20 kcal/mol. In addition, the associated electrical conductivity with SiGDY increased by approximately 23.53 % following the adsorption of LET. The results show that SiGDY can be employed as an electronic sensor to detect LET. Furthermore, LET is detected by SiGDY in the water phase based on the magnitude of solvation energy. Finally, a considerable charge-transfer between LET and SiGDY is a precondition for the adsorption of the LET molecule with proper binding energies, which delivers the Si atoms with a significant positive charge.
Collapse
Affiliation(s)
| | - Maryam Derakhshande
- Department of Chemistry, Faculty of Chemical Engineering, Islamic Azad University, Mahshahr Branch, Mahshahr, Iran
| | - Nabieh Farhami
- Department of Chemistry, Faculty of Chemical Engineering, Islamic Azad University, Mahshahr Branch, Mahshahr, Iran
| | - Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran, P. O. Box 11365-4563, Tehran, Iran
| | - Saeideh Ebrahimiasl
- Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran
- Industrial Nanotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| |
Collapse
|
43
|
Investigation the response of BC3NT towards 5-fluorouracil drug in the both perfect and defected sate; A DFT calculations. Struct Chem 2021. [DOI: 10.1007/s11224-021-01779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Li H, An F, Ebrahimiasl S. Evolution the properties of C3N monolayer as anodes for lithium-ion batteries with density functional theory. Struct Chem 2021. [DOI: 10.1007/s11224-021-01799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Yola ML, Atar N. Carbohydrate antigen 19-9 electrochemical immunosensor based on 1D-MoS2 nanorods/LiNb3O8 and polyoxometalate-incorporated gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Zeng H, Yang Q, Liu H, Wu G, Jiang W, Liu X, Wang J, Tang X. A sensitive immunosensor based on graphene-PAMAM composites for rapid detection of the CP4-EPSPS protein in genetically modified crops. Food Chem 2021; 361:129901. [PMID: 34082384 DOI: 10.1016/j.foodchem.2021.129901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/11/2021] [Accepted: 03/27/2021] [Indexed: 01/12/2023]
Abstract
A simple electrochemical immunosensor based on nitrogen-doped graphene and polyamide-amine (GN-PAM) composites was proposed for the detection of the CP4-EPSPS protein in genetically modified (GM) crops. In this immunosensor, the amplification of the detection signal was realized through antibodies labeled with gold nanoparticles (AuNPs). The electrochemical responses of the immunosensor were linear (R2 = 0.9935 and 0.9912) when the GM soybean RRS and maize NK603 content ranged from 0.025% to 1.0% and 0.05% to 1.5%, respectively. The limits of detection for the GM soybean RRS and maize NK603 were as low as 0.01% and 0.03%, respectively. The immunosensor also exhibited high specificity, and satisfactory stability, reproducibility, and accuracy. Our findings indicated that the constructed immunosensor provides a new approach for the sensitive detection of the CP4-EPSPS protein. Notably, the sensor may be applied to other proteins or pathogenic bacteria by simply changing the antibodies, and may also be used for multi-component analysis.
Collapse
Affiliation(s)
- Haijuan Zeng
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Qianwen Yang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hua Liu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Guogan Wu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Wei Jiang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jinbin Wang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| | - Xueming Tang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
47
|
Liu S, Zhu P, Zou S, Ebrahimiasl S. Theoretical evaluation of central ring doped Hexa-peri-hexabenzocoronene as Gamma-butyrolactone drug sensors. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
50
|
Zhong‐yang L, Long‐qiang H, Ahmadi S. Substituent effects on the stability of
N
‐heterocyclic germylenes using density functional theory. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Liu Zhong‐yang
- College of Chemical Industry and Environment Engineering Jiaozuo University Jiaozuo China
| | - He Long‐qiang
- College of Chemical Industry and Environment Engineering Jiaozuo University Jiaozuo China
| | - Sheida Ahmadi
- Department of Chemistry Payame Noor University Tehran Iran
| |
Collapse
|