1
|
Hasani R, Ehsani A, Hassanzadazar H, Aminzare M, Khezerlou A. Copper metal-organic framework for selective detection of florfenicol based on fluorescence sensing in chicken meat. Food Chem X 2024; 23:101598. [PMID: 39071929 PMCID: PMC11283086 DOI: 10.1016/j.fochx.2024.101598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Using a hydrothermal technique, a highly sensitive metal-organic Cu-MOFs sensor has been created to detect florfenicol (FFC) fluorescent in chicken meat. The sensor has demonstrated the ability to respond to the presence of FFC in an aqueous solution with accuracy and selectivity, as evidenced by an increase in fluorescence intensity. The interactions and adsorption mechanism based on hydrogen bonding, π- π, and n-π interactions demonstrate the high sensitivity and specificity of Cu-MOFs towards. FFC was detected quantitatively with a recovery of 96.48-98.79% in chicken meat samples. Within a broad linear range of 1-50 μM, the Cu-MOFs nanosensor exhibits a fast response time of 1 min, a low limit of detection (LOD) of 2.93 μM, and a limit of quantification (LOQ) of 8.80 μM. The potential applicability of the Cu-MOFs nanosensor for the detection of FFC in food matrices is confirmed by the results obtained with high-performance liquid chromatography (HPLC). Chemical compounds Copper (II) nitrate (PubChem CID: 18616); Terephthalic acid (PubChem CID: 7489); Polyvinyl pyrrolidone (PubChem CID: 486422059); N, N-dimethylformamide (PubChem CID: 6228); Ethyl alcohol (PubChem CID: 702); Hydrochloric acid (PubChem CID: 313); Sodium hydroxide (PubChem CID: 14798); Acetic acid (PubChem CID: 176); Trichloroacetic acid (PubChem CID: 6421); Florfenicol (PubChem CID: 114811).
Collapse
Affiliation(s)
- Roshanak Hasani
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Nasrollahpour H, Mirzaie A, Sharifi M, Rezabakhsh A, Khalilzadeh B, Rahbarghazi R, Yousefi H, Klionsky DJ. Biosensors; a novel concept in real-time detection of autophagy. Biosens Bioelectron 2024; 254:116204. [PMID: 38507929 PMCID: PMC11907300 DOI: 10.1016/j.bios.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response. During recent decades, a range of biochemical analyses, chemical assays, and varied imaging techniques have been used for monitoring this pathway. Due to the complexity and dynamic aspects of autophagy, the application of the conventional methodology for following autophagic progression is frequently associated with a mistake in discrimination between a complete and incomplete autophagic response. Biosensors provide a de novo platform for precise and accurate analysis of target molecules in different biological settings. It has been suggested that these devices are applicable for real-time monitoring and highly sensitive detection of autophagy effectors. In this review article, we focus on cutting-edge biosensing technologies associated with autophagy detection.
Collapse
Affiliation(s)
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sharifi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Dezhakam E, Tavakkol M, Kafili T, Nozohouri E, Naseri A, Khalilzadeh B, Rahbarghazi R. Electrochemical and optical (bio)sensors for analysis of antibiotic residuals. Food Chem 2024; 439:138145. [PMID: 38091787 DOI: 10.1016/j.foodchem.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Antibiotic residuals in foods may lead to crucial health and safety issues in the human body. Rapid and in-time analysis of antibiotics using simple and sensitive techniques is in high demand. Among the most commonly applicable modalities, chromatography-based techniques like HPLC and LC-MS, along with immunological approaches, particularly ELISA have been exampled in the analysis of antibiotics. Despite being highly sensitive, these methods are considerably time-consuming, thus the presence of skilled personnel and costly equipment is essential. Nanomaterial-based (bio)sensors, however, are de novo analytical equipment with some beneficial characteristics, such as simplicity, low price, on-site, high accuracy, and sensitivity for the detection of analytes. This review aimed to collect the latest developments in NM-based sensors and biosensors for the observation of highly used antibiotics like Vancomycin (Van), Linezolid (Lin), and Clindamycin (Clin). The current challenges and developmental perspectives are also debated in detail for future research directions.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Tavakkol
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Taha Kafili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Abdolhosein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Khezerlou A, Tavassoli M, Alizadeh Sani M, Ghasempour Z, Ehsani A, Khalilzadeh B. Rapid and sensitive detection of tetracycline residue in food samples using Cr(III)-MOF fluorescent sensor. Food Chem X 2023; 20:100883. [PMID: 38144784 PMCID: PMC10740053 DOI: 10.1016/j.fochx.2023.100883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
As tetracycline antibiotics were used in the poultry sector, their residue in edible animal products may adversely affect food safety and human health. The development of selective and sensitive tetracycline sensors has garnered a lot of interest due to the complexity of food samples. Therefore, a fluorescent sensing probe based on chromium(III)-metal-organic framework was developed for the rapid detection of tetracycline. After the addition of tetracycline, blue emission at λem 410 nm was effectively quenched by the interaction between TC and Cr(III)-metal-organic framework material. Under optimized conditions (sensor concentration: 30 mg/L and pH: 10.0), the sensing probe showed a fast response time (1 min), and low detection limit (0.78 ng/mL) with a linear range (5-45 ng/mL). Interestingly, the Cr(III)-metal-organic framework was successfully applied to quantity tetracycline residue in chicken meat and egg samples with recoveries of 95.17-06.93%. To deduce, our work can provide a new strategy for the direct detection of tetracycline in food samples.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran
| |
Collapse
|
5
|
Guo Y, Zhang X, Zhang H, Liu Y, Shi J, Meng H, Chen X, Lan Q, Zhu B. Application of microfluidic technologies in forensic analysis. Electrophoresis 2023; 44:1725-1743. [PMID: 37857551 DOI: 10.1002/elps.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023]
Abstract
The application of microfluidic technology in forensic medicine has steadily expanded over the last two decades due to the favorable features of low cost, rapidity, high throughput, user-friendliness, contamination-free, and minimum sample and reagent consumption. In this context, bibliometric methods were adopted to visualize the literature information contained in the Science Citation Index Expanded from 1989 to 2022, focusing on the co-occurrence analysis of forensic and microfluidic topics. A deep interpretation of the literature was conducted based on co-occurrence results, in which microfluidic technologies and their applications in forensic medicine, particularly forensic genetics, were elaborated. The purpose of this review is to provide an impartial evaluation of the utilization of microfluidic technology in forensic medicine. Additionally, the challenges and future trends of implementing microfluidic technology in forensic genetics are also addressed.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yaoshun Liu
- Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi, P. R. China
| | - Jianfeng Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Haotian Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xin Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
6
|
Chakari-Khiavi F, Mirzaie A, Khalilzadeh B, Yousefi H, Abolhasan R, Kamrani A, Pourakbari R, Shahpasand K, Yousefi M, Rashidi MR. Application of Pt@ZIF-8 nanocomposite-based electrochemical biosensor for sensitive diagnosis of tau protein in Alzheimer's disease patients. Sci Rep 2023; 13:16163. [PMID: 37758805 PMCID: PMC10533502 DOI: 10.1038/s41598-023-43180-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disorder characterized by the ongoing decline of brain functions. Studies have revealed the detrimental effects of hyperphosphorylated tau (p-tau) protein fibrils in AD pathogenesis, highlighting the importance of this factor in the early-stage detection of AD conditions. We designed an electrochemical immunosensor for quantitative detection of the cis conformation of the p-tau protein (cis-p-tau) employing platinum nanoparticles (Pt NPs) supported on zeolitic imidazolate frameworks (ZIF) for modifying the glassy carbon electrode (GCE) surface. Under optimum conditions, the immunosensor selectively and sensitively detected cis-p-tau within the broad linear range of 1 fg mL-1 to 10 ng mL-1 and the low limit of detection (LOD) of 1 fg mL-1 with desired reproducibility and stability. Furthermore, the fabricated immunosensor's performance was examined for the cis-p-tau analysis in the serum of AD patients, indicating its accuracy and feasibility for real-sample analysis. Notably, this is the first application of Pt@ZIF-8 nanocomposite in fabricating a valid immunosensor for selective cis-p-tau detection, even in the presence of trans-p-tau. It is worth mentioning that the enzyme-linked immunosorbent assay (ELISA) reference technique is not able to evaluate pico- or femtomolar concentrations of cis-p-tau, making the fabricated immunosensor superior for early-stage measurement and screening of AD.
Collapse
Affiliation(s)
- Forough Chakari-Khiavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, PO Box: 6446-14155, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Rozita Abolhasan
- Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Pourakbari
- Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, 1665659911, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, PO Box: 6446-14155, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Tavassoli M, Khezerlou A, Hamishehkar H, Ehsani A, Khalilzadeh B. An ultrasensitive aptamer-based fluorescent on/off system for trace amount evaluation of Yersinia enterocolitica in food samples. Mikrochim Acta 2023; 190:253. [PMID: 37286753 DOI: 10.1007/s00604-023-05820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
An innovative aptamer labeled with 5-FAM has been developed with a high affinity for Yersinia enterocolitica (Y. enterocolitica) using graphene oxide (GO) as a quenching platform. The selectivity of the prepared system was evaluated in the presence of common coexisted bacteria like Yersinia pseudotuberculosis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium. Some experimental factors like pH and stability were investigated. The results showed that in the absence of Y. enterocolitica, aptamer labeled with 5-FAM was bonded with GO, causing fluorescence to be relatively weak. After the addition of Y. enterocolitica, the aptamer is released from the GO surface and binds to the target bacteria, and significantly increases the fluorescence intensity with an excitation wavelength of 410 nm and an emission wavelength of 530 nm. After optimizing all conditions, the system exhibited a wide linear response for Y. enterocolitica in the concentration range 10 to 1.0 × 109 CFU•mL-1 and the limit of detection (LOD) was 3 CFU•mL-1. This system demonstrated that GO-designed aptamers can be successful in detecting Y. enterocolitica in whole-cell forms, making them potentially useful for screening and rapid detection.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51666-14711, Iran
| |
Collapse
|
8
|
Mehrannia L, Khalilzadeh B, Rahbarghazi R, Milani M, Saydan Kanberoglu G, Yousefi H, Erk N. Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. BIOSENSORS 2023; 13:216. [PMID: 36831982 PMCID: PMC9954029 DOI: 10.3390/bios13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (L.M.) is a gram-positive bacillus with wide distribution in the environment. This bacterium contaminates water sources and food products and can be transmitted to the human population. The infection caused by L.M. is called listeriosis and is common in pregnant women, immune-deficient patients, and older adults. Based on the released statistics, listeriosis has a high rate of hospitalization and mortality; thus, rapid and timely detection of food contamination and listeriosis cases is necessary. During the last few decades, biosensors have been used for the detection and monitoring of varied bacteria species. These devices are detection platforms with great sensitivity and low detection limits. Among different types of biosensors, electrochemical biosensors have a high capability to circumvent several drawbacks associated with the application of conventional laboratory techniques. In this review article, different electrochemical biosensor types used for the detection of listeriosis were discussed in terms of actuators, bioreceptors, specific working electrodes, and signal amplification. We hope that this review will facilitate researchers to access a complete and comprehensive template for pathogen detection based on the different formats of electrochemical biosensors.
Collapse
Affiliation(s)
- Leila Mehrannia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | | | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 58167-53464, Iran
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
9
|
JAFAR S, KABIR F, ANJUM KM, ZAHOOR MY, SHEHZAD W, IMRAN M. Comparison of different DNA preparatory methods for development of a universal direct PCR-RFLP workflow for identification of meat origin in food products. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.65122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
11
|
Application of biosensors for detection of meat species: A short review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Heat-Treated Meat Origin Tracing and Authenticity through a Practical Multiplex Polymerase Chain Reaction Approach. Nutrients 2022; 14:nu14224727. [PMID: 36432413 PMCID: PMC9693382 DOI: 10.3390/nu14224727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Meat adulteration have become a global issue, which has increasingly raised concerns due to not only economic losses and religious issues, but also public safety and its negative effects on human health. Using optimal primers for seven target species, a multiplex PCR method was developed for the molecular authentication of camel, cattle, dog, pig, chicken, sheep and duck in one tube reaction. Species-specific amplification from the premixed total DNA of seven species was corroborated by DNA sequencing. The limit of detection (LOD) is as low as 0.025 ng DNA for the simultaneous identification of seven species in both raw and heat-processed meat or target meat: as little as 0.1% (w/w) of the total meat weight. This method is strongly reproducible even while exposed to intensively heat-processed meat and meat mixtures, which renders it able to trace meat origins in real-world foodstuffs based on the authenticity assessment of commercial meat samples. Therefore, this method is a powerful tool for the inspection of meat adulterants and has broad application prospects.
Collapse
|
13
|
Yang C, Zhong G, Zhou S, Guo Y, Pan D, Wang S, Liu Q, Xia Q, Cai Z. Detection and characterization of meat adulteration in various types of meat products by using a high-efficiency multiplex polymerase chain reaction technique. Front Nutr 2022; 9:979977. [PMID: 36185690 PMCID: PMC9525214 DOI: 10.3389/fnut.2022.979977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of meat authenticity is a matter of increasing concerns due to religious, economical, legal, and public health reasons. However, little is known about the inspection of eight meat species in one tube reaction due to technological challenge of multiplex polymerase chain reaction (PCR) techniques. Here, a developed multiplex PCR method can simultaneously authenticate eight meat species including ostrich (753 bp), cat (564 bp), goose (391 bp), duck (347 bp), chicken (268 bp), horse (227 bp), dog (190 bp), and sheep (131 bp). The detectable deoxyribonucleic acid (DNA) contents for each target species was as low as 0.01 ng in both raw and heat-treated meat or target meat down to 0.1% (w/w) of total meat weight reflecting high stability of the assay in heat processing condition, indicating that this method is adequate for tracing meat origin in real-world meat products, which has been further validated by authenticity assays of commercial meat products. Overall, this method is a powerful tool for accurate evaluation of meat origin with a good application foreground.
Collapse
Affiliation(s)
- Caijiao Yang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Song Zhou
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yingqi Guo
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Sha Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
- *Correspondence: Sha Wang,
| | - Qianqian Liu
- Key Lab of Clean Energy and Green Circulation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, China
- Qianqian Liu,
| | - Qiang Xia
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhendong Cai, ;
| |
Collapse
|
14
|
Zhou S, Zhong G, Zhou H, Zhang X, Zeng X, Wu Z, Pan D, He J, Cai Z, Liu Q. A Heptaplex PCR Assay for Molecular Traceability of Species Origin With High Efficiency and Practicality in Both Raw and Heat Processing Meat Materials. Front Nutr 2022; 9:890537. [PMID: 35811966 PMCID: PMC9260169 DOI: 10.3389/fnut.2022.890537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Frequent meat frauds have become a global issue because adulteration risks the food safety, breaches market rules, and even threatens public health. Multiplex PCR is considered to be a simple, fast, and inexpensive technique that can be applied for the identification of meat products in food industries. However, relatively less is known about a multiplex PCR method authenticating seven animal species simultaneously in one reaction due to technological challenge. Through screening new species-specific primers and optimizing PCR system, a heptaplex PCR method was established, which could simultaneously detect seven meat ingredients of camel (128 bp), pigeon (157 bp), chicken (220 bp), duck (272 bp), horse (314 bp), beef (434 bp), and pork (502 bp) in a single-tube reaction. DNA sequencing solidly validated that each set of primers specifically amplified target species from total DNA mixtures of seven meat species. The developed multiplex assay was stable and sensitive enough to detect 0.01–0.025 ng DNA from various meat treatments including raw, boiled, and autoclaved meat samples or target meat content of 0.1% total meat weight, suggesting the suitability of the heptaplex PCR technique for tracing target meats with high accuracy and precision. Most importantly, a market survey validated the availability of this multiplex PCR technique in real-world meat products with a good application foreground.
Collapse
Affiliation(s)
- Song Zhou
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanxiao Zhou
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaoxia Zhang
- Ordos Agriculture and Animal Husbandry Technology Extension Centre, Ordos, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- *Correspondence: Daodong Pan
| | - Jun He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Jun He
| | - Zhendong Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhendong Cai ;
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| |
Collapse
|
15
|
Sangaré M, Karoui R. Evaluation and monitoring of the quality of sausages by different analytical techniques over the last five years. Crit Rev Food Sci Nutr 2022; 63:8136-8160. [PMID: 35333686 DOI: 10.1080/10408398.2022.2053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sausages are among the most vulnerable and perishable products, although those products are an important source of essential nutrients for human organisms. The evaluation of the quality of sausages becomes more and more required by consumers, producers, and authorities to thwarter falsification. Numerous analytical techniques including chemical, sensory, chromatography, and so on, are employed for the determination of the quality and authenticity of sausages. These methods are expensive and time consuming, and are often sensitive to significant sources of variation. Therefore, rapid analytical techniques such as fluorescence spectroscopy, near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR), among others were considered helpful tools in this domain. This review will identify current gaps related to different analytical techniques in assessing and monitoring the quality of sausages and discuss the drawbacks of existing analytical methods regarding the quality and authenticity of sausages from 2015 up to now.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
- Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, ISSMV/Dalaba, Guinée
- Univ. Gamal Abdel Nasser de Conakry, Guinée, Uganc, Guinée
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
| |
Collapse
|
16
|
Cai Z, Zhong G, Liu Q, Yang X, Zhang X, Zhou S, Zeng X, Wu Z, Pan D. Molecular Authentication of Twelve Meat Species Through a Promising Two-Tube Hexaplex Polymerase Chain Reaction Technique. Front Nutr 2022; 9:813962. [PMID: 35399682 PMCID: PMC8989424 DOI: 10.3389/fnut.2022.813962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Frequent meat frauds have aroused significant social attention. The aim of this study is to construct a two-tube hexaplex polymerase chain reaction (PCR) method offering accurate molecular authentication of twelve meat species in actual adulteration event. Deoxyribonucleic acid (DNA) sequencing demonstrates that designed primers can specifically amplify target species from genomic DNA mixture of six species in each tube reaction, which showed 100% accuracy of horse (148 bp), pigeon (218 bp), camel (283 bp), rabbit (370 bp), ostrich (536 bp), and beef (610 bp) as well as turkey (124 bp), dog (149 bp), chicken (196 bp), duck (277 bp), cat (380 bp), and goose (468 bp). A species-specific primer pair produced the target band in the presence of target genomic DNA but not non-target species. Through multiplex PCR assays with serial concentration of the DNA mixture of six species in each PCR reaction, the detection limit (LOD) of the two-tube hexaplex PCR assay reached up to 0.05–0.1 ng. Using genomic DNA isolated from both boiled and microwave-cooked meat as templates, PCR amplification generated expected PCR products. These findings demonstrate that the proposed method is specific, sensitive and reproducible, and is adequate for food inspection. Most importantly, this method was successfully applied to detect meat frauds in commercial meat products. Therefore, this method is of great importance with a good application foreground.
Collapse
Affiliation(s)
- Zhendong Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
- *Correspondence: Qianqian Liu,
| | - Xingqiao Yang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaoxia Zhang
- Ordos Agriculture and Animal Husbandry Technology Extension Centre, Ordos, China
| | - Song Zhou
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Daodong Pan,
| |
Collapse
|
17
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Abolhasan R, Khalilzadeh B, Yousefi H, Samemaleki S, Chakari-Khiavi F, Ghorbani F, Pourakbari R, Kamrani A, Khataee A, Rad TS, Rashidi MR, Yousefi M, AghebatiMaleki L. Ultrasensitive and label free electrochemical immunosensor for detection of ROR1 as an oncofetal biomarker using gold nanoparticles assisted LDH/rGO nanocomposite. Sci Rep 2021; 11:14921. [PMID: 34290319 PMCID: PMC8295321 DOI: 10.1038/s41598-021-94380-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
In the present article, we developed a highly sensitive label-free electrochemical immunosensor based on NiFe-layered double hydroxides (LDH)/reduced graphene oxide (rGO)/gold nanoparticles modified glassy carbon electrode for the determination of receptor tyrosine kinase-like orphan receptor (ROR)-1. In this electrochemical immunoassay platform, NiFe-LDH/rGO was used due to great electron mobility, high specific surface area and flexible structures, while Au nanoparticles were prepared and coated on the modified electrodes to improve the detection sensitivity and ROR1 antibody immobilizing (ROR1Ab). The modification procedure was approved by using cyclic voltammetry and differential pulse voltammetry based on the response of peak current to the step by step modifications. Under optimum conditions, the experimental results showed that the immunosensor revealed a sensitive response to ROR1 in the range of 0.01-1 pg mL-1, and with a lower limit of quantification of 10 attogram/mL (10 ag mL-1). Furthermore, the designed immunosensor was applied for the analysis of ROR1 in several serum samples of chronic lymphocytic leukemia suffering patients with acceptable results, and it also exhibited good selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Rozita Abolhasan
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, 51664-14766, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, 51664-14766, Tabriz, Iran. .,Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Sahar Samemaleki
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Forough Chakari-Khiavi
- Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Pourakbari
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, 51664-14766, Tabriz, Iran
| | - Amin Kamrani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.,Department of Materrial Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Tannaz Sadeghi Rad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili AghebatiMaleki
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, 51664-14766, Tabriz, Iran. .,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Immunology Research Center, Tabriz University of Medical Sciences, PO Box 6446-14155, Tabriz, Iran.
| |
Collapse
|
19
|
Ultra-sensitive facile CdS nanocrystals-based electrochemical biosensor to detect myocardial infarction marker troponin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Cai Z, Zhou S, Liu Q, Ma H, Yuan X, Gao J, Cao J, Pan D. A Simple and Reliable Single Tube Septuple PCR Assay for Simultaneous Identification of Seven Meat Species. Foods 2021; 10:1083. [PMID: 34068370 PMCID: PMC8153340 DOI: 10.3390/foods10051083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Multiplex PCR methods have been frequently used for authentication of meat product adulteration. Through screening of new species-specific primers designed based on the mitochondrial DNA sequences, a septuple PCR method is ultimately developed and optimized to simultaneously detect seven species including turkey (110 bp), goose (194 bp), pig (254 bp), sheep (329 bp), beef (473 bp), chicken (612 bp) and duck (718 bp) in one reaction. The proposed method has been validated to be specific, sensitive, robust and inexpensive. Taken together, the developed septuple PCR assay is reliable and efficient, not only to authenticate animal species in commercial meat products, but also easily feasible in a general laboratory without special infrastructures.
Collapse
Affiliation(s)
- Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Z.C.); (S.Z.); (H.M.); (X.Y.); (J.G.); (J.C.)
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Song Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Z.C.); (S.Z.); (H.M.); (X.Y.); (J.G.); (J.C.)
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Hui Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Z.C.); (S.Z.); (H.M.); (X.Y.); (J.G.); (J.C.)
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xinyi Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Z.C.); (S.Z.); (H.M.); (X.Y.); (J.G.); (J.C.)
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jiaqi Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Z.C.); (S.Z.); (H.M.); (X.Y.); (J.G.); (J.C.)
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Z.C.); (S.Z.); (H.M.); (X.Y.); (J.G.); (J.C.)
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Z.C.); (S.Z.); (H.M.); (X.Y.); (J.G.); (J.C.)
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
21
|
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
Collapse
Affiliation(s)
- Hazal Turasan
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jozef Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| |
Collapse
|
22
|
Yiwei X, Yahui L, Weilong T, Jiyong S, Xiaobo Z, Wen Z, Xinai Z, Yanxiao L, Changqiang Z, Lele A, Hong L, Tingting S. Electrochemical determination of hantavirus using gold nanoparticle-modified graphene as an electrode material and Cu-based metal-organic framework assisted signal generation. Mikrochim Acta 2021; 188:112. [PMID: 33675442 DOI: 10.1007/s00604-021-04769-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/20/2021] [Indexed: 11/29/2022]
Abstract
An electrochemical biosensor was prepared for nucleic acid-based hantavirus detection using a Cu-based metal-organic framework (CuMOF) as a signal tag. The CuMOF was synthesized by the solvothermal method and then covalently bonded with signal DNA (sDNA) probes. The Au nanoparticles and reduced graphene oxide composite were deposited on the electrode surface by electroreduction as support substrate and was then functionalized with capture DNA (cDNA) probes by self-assembly. Through the complementary base pairing, the target DNA (tDNA) fragment of hantavirus hybridized with the cDNA and the sDNA in a sandwich-type format. The tDNA was detected according to the current signal of the CuMOF catalyzed reaction using o-phenylenediamine as redox substrate. The peak current of the biosensor at - 0.55 V increased linearly in proportion to the logarithmic value of the tDNA concentration from 10-15 to 10-9 mol/L, with a detection limit of 0.74 × 10-15 mol/L. Moreover, the proposed biosensor was successfully applied to detect hantavirus and was able to distinguish hantavirus from other arboviruses.
Collapse
Affiliation(s)
- Xu Yiwei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Li Yahui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tan Weilong
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China.
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhang Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhang Xinai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Li Yanxiao
- Centre for instrumental analysis, Jiangsu University, Zhenjiang, 212013, China
| | - Zhu Changqiang
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China
| | - Ai Lele
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China
| | - Li Hong
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, China
| | - Shen Tingting
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
23
|
Fathi F, Rashidi MR, Pakchin PS, Ahmadi-Kandjani S, Nikniazi A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2020; 221:121615. [PMID: 33076145 PMCID: PMC7466948 DOI: 10.1016/j.talanta.2020.121615] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Photonic crystal (PC)-based inverse opal (IO) arrays are one of the substrates for label-free sensing mechanism. IO-based materials with their advanced and ordered three-dimensional microporous structures have recently found attractive optical sensor and biological applications in the detection of biomolecules like proteins, DNA, viruses, etc. The unique optical and structural properties of IO materials can simplify the improvements in non-destructive optical study capabilities for point of care testing (POCT) used within a wide variety of biosensor research. In this review, which is an interdisciplinary investigation among nanotechnology, biology, chemistry and medical sciences, the recent fabrication methodologies and the main challenges regarding the application of (inverse opals) IOs in terms of their bio-sensing capability are summarized. The recent main challenges regarding the application of inverse opals (IOs) in the detection of biomolecules are reviewed. Sensing mechanisms of biomolecules including glucose, proteins, DNA, viruses were summarized. IO materials with their ordered 3D microporous structures have found attractive optical biosensor applications.
Collapse
Affiliation(s)
- Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Ahmadi-Kandjani
- Photonics Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Arash Nikniazi
- Photonics Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran; Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
24
|
Rezabakhsh A, Rahbarghazi R, Fathi F. Surface plasmon resonance biosensors for detection of Alzheimer's biomarkers; an effective step in early and accurate diagnosis. Biosens Bioelectron 2020; 167:112511. [PMID: 32858422 DOI: 10.1016/j.bios.2020.112511] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
The rapid and direct detection of biomarkers in biofluids at clinically relevant concentrations faces serious limitations to develop diagnostic criteria for neurodegenerative diseases such as Alzheimer's disease (AD). In this regard, the early detection of biomarkers correlated with AD using novel modalities and instruments is at the center of attention. Recently, some newly invented optical-based biosensors namely Surface Plasmon Resonance (SPR) has been extensively investigated for the detection of biomarkers using a label-free method or by checking interaction between ligand and analyte. These approaches can sense a very small amount of target molecules in the blood and cerebrospinal fluids samples. In this review, the different hypothesis related to AD, and the structural properties of AD biomarkers was introduced. Also, we aim to highlight the specific role of available SPR-based sensing methods for early detection of AD biomarkers such as aggregated β-amyloid and tau proteins. Efforts to better understand the accuracy and efficiency of optical-based biosensors in the field of neurodegenerative disease enable us to accelerate the advent of novel modalities in the clinical setting for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
25
|
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 2020; 19:2256-2296. [PMID: 33337107 DOI: 10.1111/1541-4337.12579] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Shu-Yan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Min Zhang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
26
|
Pleskacheva M, Artamonova M, Litvinova E, Gergel M, Davydova E. Methodology for identification and quantification of chicken meat in food products. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-1-98-106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. The problem of food adulteration is highly relevant today. Food manufacturers are increasingly replacing expensive raw materials with cheaper poultry. We aimed to develop an effective method for identification and quantification of chicken meat and egg products in multicomponent meat systems using real-time PCR. Study objects and methods. We studied native animal tissue, namely that of chicken, pork, beef, turkey, quail, duck, horse meat, rabbit, sheep, and goat. Standard samples were taken from pure fresh chicken muscle tissue. We also used raw, boiled, and powdered chicken eggs. For a semiquantitative analysis of chicken mass in the sample, we compared the threshold cycle (Ct) of chicken DNA and the threshold cycles of calibration samples. To ensure the absence of PCR inhibition, we used an internal control sample which went through all the stages of analysis, starting with DNA extraction. Results and discussion. We developed a methodology to qualitatively determine the content of chicken tissue in the product and distinguish between the presence of egg products and contamination on the production line. The method for chicken DNA identification showed 100% specificity. This genetic material was detected in the range of 0.1% to 0.01% of chicken meat in the sample. The efficiency of the duplex PCR system for chicken DNA detection was more than 95% (3.38 on the Green slope channel and 3.45 on the Yellow slope channel). The analytical sensitivity of the primers was 40 copies/reaction. Conclusion. Our methodology is suitable for analyzing multicomponent food products, raw materials, feed, and feed additives. It can identify the content of chicken meat at a concentration of up to 1%, as well as distinguish egg impurities from contamination of various origin. PCR allows differentiation between chicken meat and egg products.
Collapse
Affiliation(s)
- Mariya Pleskacheva
- The Russian State Center for Animal Feed and Drug Standardization and Quality
| | | | | | - Mariia Gergel
- The Russian State Center for Animal Feed and Drug Standardization and Quality
| | - Ekaterina Davydova
- The Center for Strategic Planning and Management of Medical and Biological Health Risks
| |
Collapse
|