1
|
Kusonpan P, Kunpatee K, Chailapakul O, Kalcher K, Ortner A, Chaiyo S, Samphao A. A simple manually rotated paper-based analytical device with electrochemical sensors for the determination of nitrite and nitrate. Talanta 2025; 292:127919. [PMID: 40107197 DOI: 10.1016/j.talanta.2025.127919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
A user-friendly, rotational paper-based device integrating electrochemical sensors is presented. This innovative device accurately determines nitrite and nitrate ions. Its circular design facilitates the simultaneous detection of both ions. The rotational analytical platform consists of a paper disc that accommodates samples introduced via plastic pipettes. The front side of the disc contains the electrochemical sensors, while the back features a pattern for sample loading. These sensors are specifically designed to detect nitrite and nitrate ions in the sample. Nitrite is determined directly at a working potential of +0.6 V, whereas nitrate is measured after its reduction to nitrite using zinc dust. Moreover, the sensing electrodes are screen-printed carbon electrodes modified with N-doped multiwalled carbon nanotubes (N-MWCNTs) and copper(II) phthalocyanine (CuPc) to enhance sensitivity for nitrite oxidation. This simple device provides a linear range of 50-1000 μM for the simultaneous determination of nitrite and nitrate ions, with detection limits of 10.0 and 20.0 μM, respectively. Furthermore, a manually rotated acrylic plate is employed during sample preparation to facilitate the reduction of nitrate to nitrite. The analytical protocol has been successfully applied to meat samples, and this integrated, portable device shows great potential for rapid, on-site determination of nitrite and nitrate ions in food samples.
Collapse
Affiliation(s)
- Preeya Kusonpan
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kanjana Kunpatee
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kurt Kalcher
- Institute of Chemistry, Analytical Chemistry, University of Graz, A-8010, Graz, Austria
| | - Astrid Ortner
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, A-8010, Graz, Austria
| | - Sudkate Chaiyo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand; Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
2
|
Srinivas S, Sekar M, Thirumurugan K, Senthil Kumar A. Hemozoin anchored MWCNTs for mediated reduction of hydrogen peroxide and real-time intracellular oxidative stress monitoring in colon cancer cells. J Mater Chem B 2025; 13:985-996. [PMID: 39625643 DOI: 10.1039/d4tb01902d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hemozoin (HZ, a malarial pigment) is an insoluble crystalline byproduct formed during the intraerythrocytic breakdown of hemoglobin by some blood-feeding parasites, such as Plasmodium falciparum. It consists of polymerized iron-porphyrin molecular units linked by carboxylic bonds. Due to the rigid molecular structure, studying the electron transfer activity of HZ is challenging. In this work, we report the development of a redox-active HZ-functionalized multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE/MWCNT@HZ-redox). Here, HZ-redox refers to the redox-active form of hemozoin. This electrode is designed to study the electron transfer activity and mimic the peroxidase enzyme's ability to mediate hydrogen peroxide reduction in a neutral pH solution. The modified electrode exhibited a stable and well-defined redox peak at -0.385 V vs. Ag/AgCl in N2-purged PBS (pH 7.0) with a surface excess value of 1.64 × 10-9 mol cm-2. The MWCNT@HZ-redox was characterized using Raman spectroscopy, FT-IR, and FESEM techniques. This biomimicking electrode showed excellent electrocatalytic reduction of H2O2 using cyclic voltammetry. Batch-injection analysis coupled with a screen-printed electrode demonstrated the electroanalytical performance for H2O2 sensing. The electrode exhibited a linear concentration range of 50-300 μM, with a sensitivity of 21 μA μM-1 and a detection limit of 220 nM. As a bioanalytical application, we successfully demonstrated the in situ monitoring of H2O2 within the reactive oxygen species of HCT-116 colon cancer cells under stimulated conditions.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Nano and Bioelectrochemistry Research Laboratory, Carbon dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore-632 014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India
| | - Mouliganesh Sekar
- Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore-632 014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India
| |
Collapse
|
3
|
Li Y, Zhao Y, Yang Y, Zhang W, Zhang Y, Sun S, Zhang L, Li M, Gao H, Huang C. Acoustofluidics-enhanced biosensing with simultaneously high sensitivity and speed. MICROSYSTEMS & NANOENGINEERING 2024; 10:92. [PMID: 38957168 PMCID: PMC11217392 DOI: 10.1038/s41378-024-00731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Simultaneously achieving high sensitivity and detection speed with traditional solid-state biosensors is usually limited since the target molecules must passively diffuse to the sensor surface before they can be detected. Microfluidic techniques have been applied to shorten the diffusion time by continuously moving molecules through the biosensing regions. However, the binding efficiencies of the biomolecules are still limited by the inherent laminar flow inside microscale channels. In this study, focused traveling surface acoustic waves were directed into an acoustic microfluidic chip, which could continuously enrich the target molecules into a constriction zone for immediate detection of the immune reactions, thus significantly improving the detection sensitivity and speed. To demonstrate the enhancement of biosensing, we first developed an acoustic microfluidic chip integrated with a focused interdigital transducer; this transducer had the ability to capture more than 91% of passed microbeads. Subsequently, polystyrene microbeads were pre-captured with human IgG molecules at different concentrations and loaded for detection on the chip. As representative results, ~0.63, 2.62, 11.78, and 19.75 seconds were needed to accumulate significant numbers of microbeads pre-captured with human IgG molecules at concentrations of 100, 10, 1, and 0.1 ng/mL (~0.7 pM), respectively; this process was faster than the other methods at the hour level and more sensitive than the other methods at the nanomolar level. Our results indicated that the proposed method could significantly improve both the sensitivity and speed, revealing the importance of selective enrichment strategies for rapid biosensing of rare molecules.
Collapse
Affiliation(s)
- Yuang Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Yang Yang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wenchang Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Yun Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| | - Sheng Sun
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Hang Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| |
Collapse
|
4
|
Li J, Saidi AM, Seydel K, Lillehoj PB. Rapid diagnosis and prognosis of malaria infection using a microfluidic point-of-care immunoassay. Biosens Bioelectron 2024; 250:116091. [PMID: 38325074 DOI: 10.1016/j.bios.2024.116091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Malaria is a major cause of illness and death worldwide. Rapid diagnostic tests are the most widely used tool for detecting malaria infection, however, they only provide binary results and lack the sensitivity needed to detect many asymptomatic infections. Molecular assays for quantifying malaria biomarkers offer higher detection sensitivity, however, they are time-consuming, and require expert training and expensive equipment, making them unsuitable for use in most of Africa. To address the need for simple, accurate and field-deployable malaria diagnostic tests, we have developed a microfluidic point-of-care (mPOC) immunoassay for rapid quantification of Plasmodium falciparum histidine-rich protein 2 (PfHRP2), a malaria parasite biomarker, in whole blood. This device features two diagnostic modes for detecting PfHRP2 at low (100's pg/mL) and high (1,000's ng/mL) concentrations, making it useful for multiple diagnostic applications, including the detection of asymptomatic infection, prediction of disease outcomes and diagnosis of cerebral malaria. Measurements of PfHRP2 in blood samples from malaria patients demonstrates that this platform offers similar accuracy as an ultra-sensitive PfHRP2 enzyme-linked immunosorbent assay (ELISA) test, while being 12× faster and simpler to use. This mPOC immunoassay can be deployed in rural health centers to assist clinicians in diagnosing and triaging malaria patients, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jiran Li
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Alexuse M Saidi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48864, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
6
|
Prat-Trunas J, Arias-Alpizar K, Álvarez-Carulla A, Orio-Tejada J, Molina I, Sánchez-Montalvá A, Colomer-Farrarons J, Del Campo FJ, Miribel-Català PL, Baldrich E. Paper-based microfluidic electro-analytical device (PMED) for magneto-assay automation: Towards generic point-of-care diagnostic devices. Biosens Bioelectron 2024; 246:115875. [PMID: 38039728 DOI: 10.1016/j.bios.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Rapid diagnostic tests (RDTs) for point-of-care (POC) testing of infectious diseases are popular because they are easy to use. However, RDTs have limitations such as low sensitivity and qualitative responses that rely on subjective visual interpretation. Additionally, RDTs are made using paper-bound reagents, which leads to batch-to-batch variability, limited storage stability and detection of only the analytes they were designed for. This work presents the development of a versatile technology, based on short magneto-assays and inexpensive paper-based microfluidic electro-analytical devices (PMEDs). PMEDs were produced locally using low-cost equipment, they were stable at room temperature, easy to use, and provided quantitative and objective results. The devices served to detect alternatively a variety of magneto-assays, granting quantitation of streptavidin-HRP, biotinylated HRP and Pasmodium falciparum lactate dehydrogenase (Pf-LDH) in less than 25 min, using either commercial or customized screen-printed electrodes and measurement equipment. Furthermore, Pf-LDH detection in diluted lysed whole blood displayed a linear response between 3 and 25 ng mL-1, detection and quantification limits ranging between 1 and 3 ng mL-1 and 6-12 ng mL-1, respectively, and provided results that correlated with those of the reference ELISA. In short, this technology is versatile, simple, and highly cost-effective, making it perfect for POC testing.
Collapse
Affiliation(s)
- J Prat-Trunas
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - K Arias-Alpizar
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - A Álvarez-Carulla
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona (UB), Barcelona, Spain
| | - J Orio-Tejada
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain
| | - I Molina
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - A Sánchez-Montalvá
- Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - J Colomer-Farrarons
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona (UB), Barcelona, Spain
| | - F J Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Vizcaya, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - P Ll Miribel-Català
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona (UB), Barcelona, Spain
| | - E Baldrich
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Zhang Y, Ke L, Sun T, Liu Y, Wei B, Du M. Rapid Detection of Malaria Based on Hairpin-Mediated Amplification and Lateral Flow Detection. MICROMACHINES 2023; 14:1917. [PMID: 37893354 PMCID: PMC10609466 DOI: 10.3390/mi14101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Malaria is listed as one of the three most hazardous infectious diseases worldwide. Travelers and migrants passing through exit and entry ports are important sources of malaria pandemics globally. Developing accurate and rapid detection technology for malaria is important. Here, a novel hairpin-mediated amplification (HMA) technique was proposed for the detection of four Plasmodium species, including P. falciparum, P. vivax, P. malariae, and P. ovale. Based on the conserved nucleotide sequence of Plasmodium, specific primers and probes were designed for the HMA process, and the amplicon can be detected using lateral flow detection (LFD); the results can be read visually without specialized equipment. The specificity of HMA-LFD was evaluated using nucleic acids extracted from four different Plasmodium species and two virus species. The sensitivity of HMA-LFD was valued using 10× serial dilutions of plasmid containing the template sequence. Moreover, 78 blood samples were collected to compare HMA-LFD and qPCR. The HMA-LFD results were all positive for four different Plasmodium species and negative for the other two virus species. The sensitivity of HMA-LFD was tested to be near five copies/μL. The analysis of clinical samples indicated that the consistency of HMA-LFD and qPCR was approximately 96.15%. Based on these results, the HMA-LFD assay was demonstrated to be a rapid, sensitive, and specific technique for the detection of Plasmodium and has great advantages for on-site detection in low-resource areas and exit and entry ports.
Collapse
Affiliation(s)
- Yang Zhang
- Comprehensive Technical Service Center of Xuzhou Customs, Xuzhou Customs, Xuzhou 221000, China;
| | - Lihui Ke
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
| | - Tao Sun
- Nanjing Customs, Nanjing 210001, China;
| | - Yang Liu
- Department of Health and Quarantine, Nanjing Customs, Nanjing 210001, China;
| | - Bo Wei
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
| | - Minghua Du
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
8
|
Oliveira MJ, Caetano S, Dalot A, Sabino F, Calmeiro TR, Fortunato E, Martins R, Pereira E, Prudêncio M, Byrne HJ, Franco R, Águas H. A simple polystyrene microfluidic device for sensitive and accurate SERS-based detection of infection by malaria parasites. Analyst 2023; 148:4053-4063. [PMID: 37529888 PMCID: PMC10440799 DOI: 10.1039/d3an00971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Early and accurate detection of infection by pathogenic microorganisms, such as Plasmodium, the causative agent of malaria, is critical for clinical diagnosis and ultimately determines the patient's outcome. We have combined a polystyrene-based microfluidic device with an immunoassay which utilises Surface-Enhanced Raman Spectroscopy (SERS) to detect malaria. The method can be easily translated to a point-of-care testing format and shows excellent sensitivity and specificity, when compared to the gold standard for laboratorial detection of Plasmodium infections. The device can be fabricated in less than 30 min by direct patterning on shrinkable polystyrene sheets of adaptable three-dimensional microfluidic chips. To validate the microfluidic system, samples of P. falciparum-infected red blood cell cultures were used. The SERS-based immunoassay enabled the detection of 0.0012 ± 0.0001% parasitaemia in a P. falciparum-infected red blood cell culture supernatant, an ∼7-fold higher sensitivity than that attained by most rapid diagnostic tests. Our approach successfully overcomes the main challenges of the current Plasmodium detection methods, including increased reproducibility, sensitivity, and specificity. Furthermore, our system can be easily adapted for detection of other pathogens and has excellent properties for early diagnosis of infectious diseases, a decisive step towards lowering their high burden on healthcare systems worldwide.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Soraia Caetano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana Dalot
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filipe Sabino
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tomás R Calmeiro
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Elvira Fortunato
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Rodrigo Martins
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Eulália Pereira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Street, Dublin 8, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| |
Collapse
|
9
|
Pinheiro KMP, Guinati BGS, Moreira NS, Coltro WKT. Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:117-138. [PMID: 37068747 DOI: 10.1146/annurev-anchem-091522-024759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.
Collapse
Affiliation(s)
| | | | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
10
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
11
|
Nath P, Mahtaba KR, Ray A. Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115053. [PMID: 37299780 DOI: 10.3390/s23115053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Fluorescence-based detection techniques are part of an ever-expanding field and are widely used in biomedical and environmental research as a biosensing tool. These techniques have high sensitivity, selectivity, and a short response time, making them a valuable tool for developing bio-chemical assays. The endpoint of these assays is defined by changes in fluorescence signal, in terms of its intensity, lifetime, and/or shift in spectrum, which is monitored using readout devices such as microscopes, fluorometers, and cytometers. However, these devices are often bulky, expensive, and require supervision to operate, which makes them inaccessible in resource-limited settings. To address these issues, significant effort has been directed towards integrating fluorescence-based assays into miniature platforms based on papers, hydrogels, and microfluidic devices, and to couple these assays with portable readout devices like smartphones and wearable optical sensors, thereby enabling point-of-care detection of bio-chemical analytes. This review highlights some of the recently developed portable fluorescence-based assays by discussing the design of fluorescent sensor molecules, their sensing strategy, and the fabrication of point-of-care devices.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Kazi Ridita Mahtaba
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
12
|
Parihar A, Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Khare V, Khan R, Natarajan S, Srivastava AK. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng Transl Med 2023; 8:e10481. [PMID: 37206204 PMCID: PMC10189496 DOI: 10.1002/btm2.10481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Microbial pathogens have threatened the world due to their pathogenicity and ability to spread in communities. The conventional laboratory-based diagnostics of microbes such as bacteria and viruses need bulky expensive experimental instruments and skilled personnel which limits their usage in resource-limited settings. The biosensors-based point-of-care (POC) diagnostics have shown huge potential to detect microbial pathogens in a faster, cost-effective, and user-friendly manner. The use of various transducers such as electrochemical and optical along with microfluidic integrated biosensors further enhances the sensitivity and selectivity of detection. Additionally, microfluidic-based biosensors offer the advantages of multiplexed detection of analyte and the ability to deal with nanoliters volume of fluid in an integrated portable platform. In the present review, we discussed the design and fabrication of POCT devices for the detection of microbial pathogens which include bacteria, viruses, fungi, and parasites. The electrochemical techniques and current advances in this field in terms of integrated electrochemical platforms that include mainly microfluidic- based approaches and smartphone and Internet-of-things (IoT) and Internet-of-Medical-Things (IoMT) integrated systems have been highlighted. Further, the availability of commercial biosensors for the detection of microbial pathogens will be briefed. In the end, the challenges while fabrication of POC biosensors and expected future advances in the field of biosensing have been discussed. The integrated biosensor-based platforms with the IoT/IoMT usually collect the data to track the community spread of infectious diseases which would be beneficial in terms of better preparedness for current and futuristic pandemics and is expected to prevent social and economic losses.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Pushpesh Ranjan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vedika Khare
- School of Nanotechnology, UTD, RGPV CampusBhopalMadhya PradeshIndia
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sathish Natarajan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avanish K. Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
13
|
Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem 2023:10.1007/s00216-023-04627-5. [PMID: 36917265 PMCID: PMC10011785 DOI: 10.1007/s00216-023-04627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.
Collapse
Affiliation(s)
- Elizabeth C Wilkirson
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jiran Li
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xue Jiang
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Diego H Gonzalez
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Ma G. Electrochemical sensing monitoring of blood lactic acid levels in sweat during exhaustive exercise. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
15
|
Zhou Y, Qi M, Yang M. Current Status and Future Perspectives of Lactate Dehydrogenase Detection and Medical Implications: A Review. BIOSENSORS 2022; 12:1145. [PMID: 36551112 PMCID: PMC9775244 DOI: 10.3390/bios12121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The demand for glucose uptake and the accompanying enhanced glycolytic energy metabolism is one of the most important features of cancer cells. Unlike the aerobic metabolic pathway in normal cells, the large amount of pyruvate produced by the dramatic increase of glycolysis in cancer cells needs to be converted to lactate in the cytoplasm, which cannot be done without a large amount of lactate dehydrogenase (LDH). This explains why elevated serum LDH concentrations are usually seen in cancer patient populations. LDH not only correlates with clinical prognostic survival indicators, but also guides subsequent drug therapy. Besides their role in cancers, LDH is also a biomarker for malaria and other diseases. Therefore, it is urgent to develop methods for sensitive and convenient LDH detection. Here, this review systematically summarizes the clinical impact of lactate dehydrogenase detection and principles for LDH detection. The advantages as well as limitations of different detection methods and the future trends for LDH detection were also discussed.
Collapse
Affiliation(s)
- Yangzhe Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
16
|
Recent advances on the piezoelectric, electrochemical, and optical biosensors for the detection of protozoan pathogens. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Arias-Alpízar K, Sánchez-Cano A, Prat-Trunas J, de la Serna Serna E, Alonso O, Sulleiro E, Sánchez-Montalvá A, Diéguez A, Baldrich E. Malaria quantitative POC testing using magnetic particles, a paper microfluidic device and a hand-held fluorescence reader. Biosens Bioelectron 2022; 215:114513. [DOI: 10.1016/j.bios.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
|
18
|
Arias-Alpízar K, Sánchez-Cano A, Prat-Trunas J, Sulleiro E, Bosch-Nicolau P, Salvador F, Oliveira I, Molina I, Sánchez-Montalvá A, Baldrich E. Magnetic Bead Handling Using a Paper-Based Device for Quantitative Point-of-Care Testing. BIOSENSORS 2022; 12:680. [PMID: 36140066 PMCID: PMC9496280 DOI: 10.3390/bios12090680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have been extensively proposed as ideal tools for point-of-care (POC) testing with minimal user training and technical requirements. However, most μPADs use dried bioreagents, which complicate production, reduce device reproducibility and stability, and require transport and storage under temperature and humidity-controlled conditions. In this work, we propose a μPAD produced using an affordable craft-cutter and stored at room temperature, which is used to partially automate a single-step colorimetric magneto-immunoassay. As a proof-of-concept, the μPAD has been applied to the quantitative detection of Plasmodium falciparum lactate dehydrogenase (Pf-LDH), a biomarker of malaria infection. In this system, detection is based on a single-step magneto-immunoassay that consists of a single 5-min incubation of the lysed blood sample with immuno-modified magnetic beads (MB), detection antibody, and an enzymatic signal amplifier (Poly-HRP). This mixture is then transferred to a single-piece paper device where, after on-chip MB magnetic concentration and washing, signal generation is achieved by adding a chromogenic enzyme substrate. The colorimetric readout is achieved by the naked eye or using a smartphone camera and free software for image analysis. This μPAD afforded quantitative Pf-LDH detection in <15 min, with a detection limit of 6.25 ng mL−1 when the result was interpreted by the naked eye and 1.4 ng mL−1 when analysed using the smartphone imaging system. Moreover, the study of a battery of clinical samples revealed concentrations of Pf-LDH that correlated with those provided by the reference ELISA and with better sensitivity than a commercial rapid diagnostic test (RDT). These results demonstrate that magneto-immunoassays can be partly automated by employing a μPAD, achieving a level of handling that approaches the requirements of POC testing.
Collapse
Affiliation(s)
- Kevin Arias-Alpízar
- Diagnostic Nanotools Group, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Ana Sánchez-Cano
- Diagnostic Nanotools Group, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Judit Prat-Trunas
- Diagnostic Nanotools Group, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Elena Sulleiro
- Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- International Health Unit Vall d’Hebron-Drassanes, Vall d’Hebron Hospital Universitari, PROSICS Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28028 Madrid, Spain
| | - Pau Bosch-Nicolau
- International Health Unit Vall d’Hebron-Drassanes, Vall d’Hebron Hospital Universitari, PROSICS Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28028 Madrid, Spain
| | - Fernando Salvador
- International Health Unit Vall d’Hebron-Drassanes, Vall d’Hebron Hospital Universitari, PROSICS Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28028 Madrid, Spain
| | - Inés Oliveira
- International Health Unit Vall d’Hebron-Drassanes, Vall d’Hebron Hospital Universitari, PROSICS Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28028 Madrid, Spain
| | - Israel Molina
- International Health Unit Vall d’Hebron-Drassanes, Vall d’Hebron Hospital Universitari, PROSICS Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28028 Madrid, Spain
| | - Adrián Sánchez-Montalvá
- Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- International Health Unit Vall d’Hebron-Drassanes, Vall d’Hebron Hospital Universitari, PROSICS Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28028 Madrid, Spain
| | - Eva Baldrich
- Diagnostic Nanotools Group, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28028 Madrid, Spain
| |
Collapse
|
19
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Kimura H, Asano R. Strategies to simplify operation procedures for applying labeled antibody-based immunosensors to point-of-care testing. Anal Biochem 2022; 654:114806. [PMID: 35835209 DOI: 10.1016/j.ab.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
Abstract
Point-of-care testing (POCT) is an ideal testing format for the rapid and on-site detection of analytes in patients, and facilitates disease diagnosis and monitoring. Molecular recognition elements are required for the specific detection of analytes, and biosensors that use antibodies as the molecular recognition elements are called immunosensors. Traditional immunosensors such as sandwich enzyme-linked immunosorbent assay (ELISA) require complicated procedures to form immunocomplexes consisting of detection antibodies, analytes, and capture antibodies. They also require long incubation times, washing procedures, and large and expensive specialized equipment that must be operated by laboratory technicians. Immunosensors for POCT should be systems that use relatively small pieces of equipment and do not require special training. In this review, to help in the construction of immunosensors for POCT, we have summarized the recently reported strategies for simplifying the operation, incubation, and washing procedures. We focused on the optical and electrochemical detection principles of immunosensors, compared the strategies for operation, sensitivity, and detection devices and discussed the ideal system. Combining detection devices that can be fabricated inexpensively and strategies that enable simplification of operation procedures and enhance sensitivities will contribute to the development of immunosensors for POCT.
Collapse
Affiliation(s)
- Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
21
|
Bhardwaj T, Ramana LN, Sharma TK. Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. BIOSENSORS 2022; 12:357. [PMID: 35624657 PMCID: PMC9139021 DOI: 10.3390/bios12050357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Better diagnostics are always essential for the treatment and prevention of a disease. Existing technologies for detecting infectious and non-infectious diseases are mostly tedious, expensive, and do not meet the World Health Organization's (WHO) ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end user) criteria. Hence, more accurate, sensitive, and faster diagnostic technologies that meet the ASSURED criteria are highly required for timely and evidenced-based treatment. Presently, the diagnostics industry is finding interest in microfluidics-based biosensors, as this integration comprises all qualities, such as reduction in the size of the equipment, rapid turnaround time, possibility of parallel multiple analysis or multiplexing, etc. Microfluidics deal with the manipulation/analysis of fluid within micrometer-sized channels. Biosensors comprise biomolecules immobilized on a physicochemical transducer for the detection of a specific analyte. In this review article, we provide an outline of the history of microfluidics, current practices in the selection of materials in microfluidics, and how and where microfluidics-based biosensors have been used for the diagnosis of infectious and non-infectious diseases. Our inclination in this review article is toward the employment of microfluidics-based biosensors for the improvement of already existing/traditional methods in order to reduce efforts without compromising the accuracy of the diagnostic test. This article also suggests the possible improvements required in microfluidic chip-based biosensors in order to meet the ASSURED criteria.
Collapse
Affiliation(s)
- Tanu Bhardwaj
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, 3rd Milestone, Gurugram Expressway, Faridabad 121001, India;
| | - Lakshmi Narashimhan Ramana
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India;
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gujarat International Finance and Tec (GIFT) City, Gandhinagar 382355, India
| |
Collapse
|
22
|
Nate Z, Gill AA, Chauhan R, Karpoormath R. Recent progress in electrochemical sensors for detection and quantification of malaria. Anal Biochem 2022; 643:114592. [DOI: 10.1016/j.ab.2022.114592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
|
23
|
Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021; 13:pharmaceutics13122189. [PMID: 34959470 PMCID: PMC8706932 DOI: 10.3390/pharmaceutics13122189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs' target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them.
Collapse
|
24
|
Samper IC, Sánchez-Cano A, Khamcharoen W, Jang I, Siangproh W, Baldrich E, Geiss BJ, Dandy DS, Henry CS. Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care. ACS Sens 2021; 6:4067-4075. [PMID: 34694794 PMCID: PMC8565458 DOI: 10.1021/acssensors.1c01527] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Rapid and inexpensive serological tests for SARS-CoV-2 antibodies are needed to conduct population-level seroprevalence surveillance studies and can improve diagnostic reliability when used in combination with viral tests. Here, we report a novel low-cost electrochemical capillary-flow device to quantify IgG antibodies targeting SARS-CoV-2 nucleocapsid proteins (anti-N antibody) down to 5 ng/mL in low-volume (10 μL) human whole blood samples in under 20 min. No sample preparation is needed as the device integrates a blood-filtration membrane for on-board plasma extraction. The device is made of stacked layers of a hydrophilic polyester and double-sided adhesive films, which create a passive microfluidic circuit that automates the steps of an enzyme-linked immunosorbent assay (ELISA). The sample and reagents are sequentially delivered to a nitrocellulose membrane that is modified with a recombinant SARS-CoV-2 nucleocapsid protein. When present in the sample, anti-N antibodies are captured on the nitrocellulose membrane and detected via chronoamperometry performed on a screen-printed carbon electrode. As a result of this quantitative electrochemical readout, no result interpretation is required, making the device ideal for point-of-care (POC) use by non-trained users. Moreover, we show that the device can be coupled to a near-field communication potentiostat operated from a smartphone, confirming its true POC potential. The novelty of this work resides in the integration of sensitive electrochemical detection with capillary-flow immunoassay, providing accuracy at the point of care. This novel electrochemical capillary-flow device has the potential to aid the diagnosis of infectious diseases at the point of care.
Collapse
Affiliation(s)
- Isabelle C. Samper
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ana Sánchez-Cano
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Diagnostic Nanotools Group, Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Wisarut Khamcharoen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Eva Baldrich
- Diagnostic Nanotools Group, Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Brian J. Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - David S. Dandy
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
25
|
Kishnani V, Park S, Nakate UT, Mondal K, Gupta A. Nano-functionalized paper-based IoT enabled devices for point-of-care testing: a review. Biomed Microdevices 2021; 24:2. [PMID: 34792679 PMCID: PMC8600500 DOI: 10.1007/s10544-021-00588-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/04/2022]
Abstract
Over the last few years, the microfluidics phenomenon coupled with the Internet of Things (IoT) using innovative nano-functional materials has been recognized as a sustainable and economical tool for point-of-care testing (POCT) of various pathogens influencing human health. The sensors based on these phenomena aim to be designed for cost-effectiveness, make it handy, environment-friendly, and get an accurate, easy, and rapid response. Considering the burgeoning importance of analytical devices in the healthcare domain, this review paper is based on the gist of sensing aspects of the microfabricated paper-based analytical devices (μPADs). The article discusses the various used design methodologies and fabrication approaches and elucidates the recently reported surface modification strategies, detection mechanisms viz., colorimetric, electrochemical, fluorescence, electrochemiluminescence, etc. In a nutshell, this article summarizes the state-of-the-art research work carried out over the nano functionalized paper-based analytical devices and associated challenges/solutions in the point of care testing domain.
Collapse
Affiliation(s)
- Vinay Kishnani
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India
| | - Sungjune Park
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Umesh T Nakate
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India.
| |
Collapse
|
26
|
Sánchez-Cano A, Ruiz-Vega G, Vicente-Gómez S, de la Serna E, Sulleiro E, Molina I, Sánchez-Montalvá A, Baldrich E. Development of a Fast Chemiluminescent Magneto-Immunoassay for Sensitive Plasmodium falciparum Detection in Whole Blood. Anal Chem 2021; 93:12793-12800. [PMID: 34496566 DOI: 10.1021/acs.analchem.1c03242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The World Health Organization (WHO) estimates that over three billion people are at risk of acquiring malaria, a parasitic infection that produces more than 200 million new infections and nearly half a million deaths each year. Expanding the access to early diagnosis and treatment is one of the most effective ways to prevent disease complications, reduce patient mortality, and curb the community transmission. However, none of the diagnostic methods used currently for malaria detection, including light microscopy, polymerase chain reaction (PCR), and rapid diagnostic tests (RDTs), can provide simultaneously fast results, high sensitivity, and parasitaemia quantitation with minimal user intervention. Here, we present a magneto-immunoassay that, based on the unique combination of magnetic beads (MB), an enzymatic signal amplifier (Poly-HRP), and chemiluminescence detection, provides fast, sensitive, and quantitative malaria diagnosis with easy user manipulation. This assay quantifies Plasmodium falciparum lactate dehydrogenase (PfLDH) in lysed whole blood samples in <15 min, exhibiting a limit of detection (LOD) of 0.02 ng mL-1 and providing patient stratification consistent with the reference methods. These figures of merit surpass the performance of the magneto-immunoassays reported previously for Plasmodium detection and demonstrate for the first time that the proposed combination of MB, Poly-HRP, and chemiluminescence detection produces extremely fast, simple, and efficient assays that approach the requirements of point-of-care (POC) malaria surveillance.
Collapse
Affiliation(s)
- Ana Sánchez-Cano
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain.,Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Gisela Ruiz-Vega
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Sergi Vicente-Gómez
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Erica de la Serna
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Elena Sulleiro
- Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.,Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain.,PROSICS (Catalan International Health Program), Barcelona 08035, Spain
| | - Israel Molina
- PROSICS (Catalan International Health Program), Barcelona 08035, Spain.,Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Adrián Sánchez-Montalvá
- Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.,PROSICS (Catalan International Health Program), Barcelona 08035, Spain.,Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Eva Baldrich
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| |
Collapse
|
27
|
Zhou C, Cui K, Liu Y, Li L, Zhang L, Hao S, Ge S, Yu J. Bi 2S 3@MoS 2 Nanoflowers on Cellulose Fibers Combined with Octahedral CeO 2 for Dual-Mode Microfluidic Paper-Based MiRNA-141 Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32780-32789. [PMID: 34228452 DOI: 10.1021/acsami.1c07669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An effective dual-mode microfluidic paper-based analysis device (μPAD) was proposed via Bi2S3@MoS2 nanoflowers combined with octahedral CeO2 for ultrasensitive miRNA-141 bioassay. To obtain the amplified electrochemical signal, Bi2S3@MoS2 nanoflowers were first in situ grown onto the surface of cellulose fibers to promote the reduction of H2O2. The prism-anchored octahedral CeO2 nanoparticles with a great catalytic function on the reduction of H2O2 were linked up to the functionalized cellulose fibers through the hybridization chain reaction to further enhance the electrochemical signal. By means of the catalysis effect of Bi2S3@MoS2 nanoflowers and octahedral CeO2 nanoparticles, the obtained signal was amplified, thereby achieving ultrasensitive electrochemical detection of the target. With the help of duplex specific nuclease, the octahedral CeO2 could be released from the electrochemical detection area and flow to the color channel through capillary action, which could initiate the oxidation reaction of 3,3',5,5'-tetramethylbenzidine in the existence of H2O2 to generate a blue visual band, avoiding the error of distinguishing color depth caused by the naked eye and thus improving the accuracy of the visual method. Under the optimal conditions, satisfactory prediction and accurate detection performance were achieved in the range of 10 fM-1 nM and 0.5 fM-1 nM, respectively, by measuring the length of the blue product and the electrochemical signal intensity. The electrochemical/visual detection limits of the proposed μPAD for miRNA-141 were as low as 0.12 and 2.65 fM (S/N = 3). This work provides great potential for the construction of low-cost and high-performance dual-mode biosensors for the detection of biomarkers.
Collapse
Affiliation(s)
- Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
28
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
29
|
Lu Q, Su T, Shang Z, Jin D, Shu Y, Xu Q, Hu X. Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens Bioelectron 2021; 184:113229. [PMID: 33894427 DOI: 10.1016/j.bios.2021.113229] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
It is very important to develop a rapid, simple, low cost point-of-care (POC) method for the early diagnosis of pathogens. In this work, a flexible paper-based electrode based on nickel metal-organic framework (Ni-MOF) composite/Au nanoparticles/carbon nanotubes/polyvinyl alcohol (Ni-Au composite/CNT/PVA) was constructed to detect target human immunodeficiency virus (HIV) DNA by DNA hybridization using methylene blue (MB) as a redox indicator. The CNT/PVA and Ni-Au composite were deposited on the cellulose membrane by vacuum filtration and drop-coating method in turn to obtain Ni-Au composite/CNT/PVA (CCP) film electrode. Compared to the CNT/PVA film electrode, CCP film electrode makes a higher loading of the probe DNA for its large specific surface area and conjugated π-electron system that can provide hydrogen bond sources to achieve interactions between MOF and single-stranded DNA, which improves the sensitivity for detecting target DNA. The variation of peak current for MB molecules adsorbed onto DNA before and after hybridization with HIV DNA was monitored. Electrochemical results proved that the CCP film maintained stable electrochemical property even after bending 200 times or stretching under different strains from 0% to 20%. The flexible paper electrode showed excellent sensing performance with a linear range of 10 nM-1 μM and a low detection limit of 0.13 nM. The target HIV DNA was successfully detected even in complex serum samples using the flexible CCP film electrode. Therefore, the simple and inexpensive flexible paper-based MOF composite film electrode can also be utilized for other pathogens POC diagnosis.
Collapse
Affiliation(s)
- Qin Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Tong Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Zhenjiao Shang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Dangqin Jin
- Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127, PR China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| |
Collapse
|
30
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
32
|
Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. LAB ON A CHIP 2021; 21:1433-1453. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lab-on-paper, or microfluidic paper-based analytical devices (μPADs), use paper as a substrate material, and are patterned with a system of microchannels, reaction zones and sensing elements to perform analysis and detection. The sample transfer in such devices is performed by capillary action. As a result, external driving forces are not required, and hence the size and cost of the device are significantly reduced. Lab-on-paper devices have thus attracted significant attention for point-of-care medical diagnostic purposes in recent years, particularly in less-developed regions of the world lacking medical resources and infrastructures. This review discusses the major advances in lab-on-paper technology for blood analysis and diagnosis in the past five years. The review focuses particularly on the many clinical applications of lab-on-paper devices, including diabetes diagnosis, acute myocardial infarction (AMI) detection, kidney function diagnosis, liver function diagnosis, cholesterol and triglyceride (TG) analysis, sickle-cell disease (SCD) and phenylketonuria (PKU) analysis, virus analysis, C-reactive protein (CRP) analysis, blood ion analysis, cancer factor analysis, and drug analysis. The review commences by introducing the basic transmission principles, fabrication methods, structural characteristics, detection techniques, and sample pretreatment process of modern lab-on-paper devices. A comprehensive review of the most recent applications of lab-on-paper devices to the diagnosis of common human diseases using blood samples is then presented. The review concludes with a brief summary of the main challenges and opportunities facing the lab-on-paper technology field in the coming years.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
33
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
34
|
Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
de la Serna E, Arias-Alpízar K, Borgheti-Cardoso LN, Sanchez-Cano A, Sulleiro E, Zarzuela F, Bosch-Nicolau P, Salvador F, Molina I, Ramírez M, Fernàndez-Busquets X, Sánchez-Montalvá A, Baldrich E. Detection of Plasmodium falciparum malaria in 1 h using a simplified enzyme-linked immunosorbent assay. Anal Chim Acta 2021; 1152:338254. [PMID: 33648654 DOI: 10.1016/j.aca.2021.338254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022]
Abstract
Malaria is a parasitic disease caused by protists of the genus Plasmodium, which are transmitted to humans through the bite of infected female Anopheles mosquitoes. Analytical methodologies and efficient drugs exist for the early detection and treatment of malaria, and yet this disease continues infecting millions of people and claiming several hundred thousand lives each year. One of the reasons behind this failure to control the disease is that the standard method for malaria diagnosis, microscopy, is time-consuming and requires trained personnel. Alternatively, rapid diagnostic tests, which have become common for point-of-care testing thanks to their simplicity of use, tend to be insufficiently sensitive and reliable, and PCR, which is sensitive, is too complex and expensive for massive population screening. In this work, we report a sensitive simplified ELISA for the quantitation of Plasmodium falciparum lactate dehydrogenase (Pf-LDH), which is capable of detecting malaria in 45-60 min. Assay development was founded in the selection of high-performance antibodies, implementation of a poly-horseradish peroxidase (polyHRP) signal amplifier, and optimization of whole-blood sample pre-treatment. The simplified ELISA achieved limits of detection (LOD) and quantification (LOQ) of 0.11 ng mL-1 and 0.37 ng mL-1, respectively, in lysed whole blood, and an LOD comparable to that of PCR in Plasmodium in vitro cultures (0.67 and 1.33 parasites μL-1 for ELISA and PCR, respectively). Accordingly, the developed immunoassay represents a simple and effective diagnostic tool for P. falciparum malaria, with a time-to-result of <60 min and sensitivity similar to the reference PCR, but easier to implement in low-resource settings.
Collapse
Affiliation(s)
- Erica de la Serna
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Kevin Arias-Alpízar
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Ana Sanchez-Cano
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Elena Sulleiro
- Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Francesc Zarzuela
- Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Pau Bosch-Nicolau
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Fernando Salvador
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Israel Molina
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Nanoscience and Nanotechnology Institute, Universitat de Barcelona (IN2UB), Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eva Baldrich
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
36
|
Chircov C, Bîrcă AC, Grumezescu AM, Andronescu E. Biosensors-on-Chip: An Up-to-Date Review. Molecules 2020; 25:E6013. [PMID: 33353220 PMCID: PMC7765790 DOI: 10.3390/molecules25246013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, biosensors are designed to translate physical, chemical, or biological events into measurable signals, thus offering qualitative and/or quantitative information regarding the target analytes. While the biosensor field has received considerable scientific interest, integrating this technology with microfluidics could further bring significant improvements in terms of sensitivity and specificity, resolution, automation, throughput, reproducibility, reliability, and accuracy. In this manner, biosensors-on-chip (BoC) could represent the bridging gap between diagnostics in central laboratories and diagnostics at the patient bedside, bringing substantial advancements in point-of-care (PoC) diagnostic applications. In this context, the aim of this manuscript is to provide an up-to-date overview of BoC system development and their most recent application towards the diagnosis of cancer, infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| |
Collapse
|
37
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
38
|
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
39
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2020; 93:167-183. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Madrid, Spain
| |
Collapse
|
40
|
Baharfar M, Rahbar M, Tajik M, Liu G. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens Bioelectron 2020; 167:112506. [PMID: 32823207 DOI: 10.1016/j.bios.2020.112506] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Applications of electrochemical detection methods in microfluidic paper-based analytical devices (μPADs) has revolutionized the area of point-of-care (POC) testing towards highly sensitive and selective quantification of various (bio)chemical analytes in a miniaturized, low-coat, rapid, and user-friendly manner. Shortly after the initiation, these relatively new modulations of μPADs, named as electrochemical paper-based analytical devices (ePADs), gained widespread popularity within the POC research community thanks to the inherent advantages of both electrochemical sensing and usage of paper as a suitable substrate for POC testing platforms. Even though general aspects of ePADs such as applications and fabrication techniques, have already been reviewed multiple times in the literature, herein, we intend to provide a critical engineering insight into the area of ePADs by focusing particularly on the practical strategies utilized to enhance their analytical performance (i.e. sensitivity), while maintaining the desired simplicity and efficiency intact. Basically, the discussed strategies are driven by considering the parameters potentially affecting the generated electrochemical signal in the ePADs. Some of these parameters include the type of filter paper, electrode fabrication methods, electrode materials, fluid flow patterns, etc. Besides, the limitations and challenges associated with the development of ePADs are discussed, and further insights and directions for future research in this field are proposed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Mohammad Rahbar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Mohammad Tajik
- School of Chemistry, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia.
| |
Collapse
|
41
|
Hochstetter A. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. MICROMACHINES 2020; 11:E468. [PMID: 32365567 PMCID: PMC7281269 DOI: 10.3390/mi11050468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
In the last three decades, microfluidics and its applications have been on an exponential rise, including approaches to isolate rare cells and diagnose diseases on the single-cell level. The techniques mentioned herein have already had significant impacts in our lives, from in-the-field diagnosis of disease and parasitic infections, through home fertility tests, to uncovering the interactions between SARS-CoV-2 and their host cells. This review gives an overview of the field in general and the most notable developments of the last five years, in three parts: 1. What can we detect? 2. Which detection technologies are used in which setting? 3. How do these techniques work? Finally, this review discusses potentials, shortfalls, and an outlook on future developments, especially in respect to the funding landscape and the field-application of these chips.
Collapse
Affiliation(s)
- Axel Hochstetter
- Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|