1
|
Ma Y, Lewis W, Yan P, Shao X, Mou Q, Kong L, Guo W, Lu Y. Highly selective DNA aptamer sensor for intracellular detection of coenzyme A. Chem Sci 2025:d5sc00332f. [PMID: 40206557 PMCID: PMC11976443 DOI: 10.1039/d5sc00332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Detecting Coenzyme A (CoA) in cells is vital for understanding its role in metabolism. DNA aptamers, though widely used for monitoring many other molecules, have not been effective for CoA detection, as previous attempts at obtaining DNA aptamers for CoA using SELEX resulted in aptamers that only recognize the adenine moiety of CoA. This "tyranny" of adenine dominating in SELEX has, therefore, hampered the SELEX of aptamers specific for CoA. To meet this challenge, we employed a capture SELEX method by incorporating rigorous counter selections against adenine, adenosine, ATP, pantetheine, and pantothenic acid, resulting in a highly specific DNA aptamer for CoA over adenosine, ATP and other related metabolites such as NADH, with a dissociation constant of 48.9 μM. This aptamer was then converted to a fluorescent sensor for CoA across pH 6.4-8.0. Confocal microscopy showed its ability to visualize CoA in living cells, with fluorescence changes observed upon manipulating CoA levels. This method broadens SELEX's application and presents a promising approach for studying and understanding CoA dynamics.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Peng Yan
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao Shandong 266113 P. R. China
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin Austin Texas 78712 USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin Austin Texas 78712 USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin Austin Texas 78712 USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin Austin Texas 78712 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Molecular Biosciences, The University of Texas at Austin Austin Texas 78712 USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin Austin Texas 78712 USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
2
|
Han Y, Zhang P, Duan X, Gao X, Gao L. Advances in precise synthesis of metal nanoclusters and their applications in electrochemical biosensing of disease biomarkers. NANOSCALE 2025; 17:3616-3634. [PMID: 39744955 DOI: 10.1039/d4nr04714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers. First, we provide a brief overview of current nanotechnology-enabled electrochemical biosensors. Subsequently, we highlight the precise synthesis of metal NCs protected by various ligands such as peptides, proteins and nucleic acids. Next, we summarize the design and construction of electrochemical biosensors that utilize metal NCs as electrode materials to detect electrochemically active and inactive disease-associated biomarkers, including small biomolecules (glucose, reactive oxygen species, cholesterol, neurotransmitters and amino acids) and biomacromolecules (proteins, enzymes, and nucleic acids). Due to unique electrocatalytic properties, high specific surface areas, and atomically modulated structures, metal NCs promote electron exchange or act as a redox medium in these electrochemical sensing platforms. Finally, we conclude with present challenges and propose future research directions, with the aim to enhance the specificity, sensitivity, and durability of customized metal NC-based electrochemical biosensors for precise disease diagnostics.
Collapse
Affiliation(s)
- Ying Han
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Ping Zhang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xiaoyi Duan
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
3
|
Yang H, Zhu L, Wang X, Song Y, Dong Y, Xu W. Extension characteristics of TdT and its application in biosensors. Crit Rev Biotechnol 2024; 44:981-995. [PMID: 37880088 DOI: 10.1080/07388551.2023.2270772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
The advantages of rapid amplification of nucleic acid without a template based on terminal deoxyribonucleotidyl transferase (TdT) have been widely used in the field of biosensors. However, the catalytic efficiency of TdT is affected by extension conditions. The sensitivity of TdT- mediated biosensors can be improved only under appropriate conditions. Therefore, in this review, we provide a comprehensive overview of TdT extension characteristics and its applications in biosensors. We focus on the relationship between TdT extension conditions and extension efficiency. Furthermore, the construction strategy of TdT-mediated biosensors according to five different recognition types and their applications in targets are discussed and, finally, several current challenges and prospects in the field are taken into consideration.
Collapse
Affiliation(s)
- He Yang
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Longjiao Zhu
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Xinxin Wang
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Yuhan Song
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), China Agricultural University, Beijing, China
| | - Yulan Dong
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wentao Xu
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Li M, Yu H, Li Y, Li X, Huang S, Liu X, Weng G, Xu L, Hou T, Guo DS, Wang Y. Rational design of supramolecular self-assembly sensor for living cell imaging of HDAC1 and its application in high-throughput screening. Biosens Bioelectron 2023; 242:115716. [PMID: 37820557 DOI: 10.1016/j.bios.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Supramolecular chemistry offers new insights in bioimaging, but specific tracking of enzyme in living cells via supramolecular host-guest reporter pair remains challenging, largely due to the interference caused by the complex cellular environment on the binding between analytes and hosts. Here, by exploiting the principle of supramolecular tandem assay (STA) and the classic host-guest reporter pair (p-sulfonatocalix[4]arene (SC4A) and lucigenin (LCG)) and rationally designing artificial peptide library to screen sequence with high affinity of the target enzyme, we developed a "turn-on" fluorescent sensing system for intracellular imaging of histone deacetylase 1 (HDAC1), which is a potential therapeutic target for various diseases, including cancer, neurological, and cardiovascular diseases. Based on computational simulations and experimental validations, we verified that the deacetylated peptide by HDAC1 competed LCG, freeing it from the SC4A causing fluorescence increase. Enzyme kinetics experiments were further conducted to prove that this assay could detect HDAC1 specifically with high sensitivity (the LOD value is 0.015 μg/mL, ten times lower than the published method). This system was further applied for high-throughput screening of HDAC1 inhibitors over a natural compound library containing 147 compounds, resulting in the identification of a novel HDAC1 down-regulator (Ginsenoside RK3). Our results demonstrated the sensitivity and robustness of the assay system towards HDAC1. It should serve as a valuable tool for biochemical studies and drug screening.
Collapse
Affiliation(s)
- Min Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijuan Yu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqing Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore
| | - Gaoqi Weng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Future Health Laboratory Innovation Center of Yangtze River Delta Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
5
|
Guo X, Wang M. Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Crit Rev Food Sci Nutr 2023; 64:13093-13111. [PMID: 37778392 DOI: 10.1080/10408398.2023.2260508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
AFB1 (Aflatoxin B1) contamination is becoming a global concern issue due to its extraordinary occurrence, severe toxicity, as well as the great influence on the economic losses, food safety and environment. Therefore, it is desirable to develop novel analytical techniques for simple, rapid, accurate, and even point-of-care testing of AFB1. Fortunately, aptamer, considered as a new generation bioreceptor and even superior to classic antibody and enzyme, has been emerged remarkable application in food hazards detection. Correspondingly, aptasensors have been well-established toward AFB1 determination with outstanding performance. In this article, we first discuss and summarize the recent progress in optical and electrochemical aptasensors to monitor AFB1 over the past three years. In particular, the embedding of advanced nanomaterials for their improved analytical performance is highlighted. Furthermore, the critical analysis on various signal transduction strategies for aptasensors construction is discussed. Finally, we reveal the challenges and provide our opinion in future opportunities for aptasensor development.
Collapse
Affiliation(s)
- Xiaodong Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Anbiaee G, Khoshbin Z, Zahraee H, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Exonuclease-based aptasensors: Promising for food safety and diagnostic aims. Talanta 2023; 259:124500. [PMID: 37001398 DOI: 10.1016/j.talanta.2023.124500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
As of today's requirement, developing cost-effective smart sensing tools with ultrahigh sensitivity for food safety insurance is of special importance. For this purpose, aptamer-based biosensors (aptasensors) powered by the superiorities of the recycling signal amplification strategies have been expanded especially. Target recycling supported by enzymes is an appealing approach for implementing signal amplification. As the supreme biocatalyst enzymes, exonucleases can inaugurate signal improvement by involving a single target in a process would result in appreciable repeating cycles of the cleavage of the phosphodiester bonds between the building blocks of the nucleic acid strands, and also, their terminals. Although there are diverse substances for catalyzing amplification strategies, including nanoparticles, carbon-based nanocomposites, and quantum dots (QDs), exonucleases are of superiority over them by simplifying the amplification process with no need for the complicated pre-treatment processes. The outstanding selectivity and great sensitivity of the aptasensors tuned by amplification potency of exonucleases nominate them as the promising sensing tools for label-free, ease-of-use, cost-effective, and real-time diagnosis of diverse targets. Here, we summarize the achievements and perspectives in the scientific branch of aptasensor design for the qualitative monitoring of diverse targets by cooperation of exonucleases with the conspicuous potential for the signal amplification. Finally, some results are expressed to provide a comprehensive viewpoint for developing novel nuclease-based aptasensors in the future.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Kang W, Liu L, Yu P, Zhang T, Lei C, Nie Z. A switchable Cas12a enabling CRISPR-based direct histone deacetylase activity detection. Biosens Bioelectron 2022; 213:114468. [PMID: 35700604 DOI: 10.1016/j.bios.2022.114468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The efficient and robust signal reporting ability of CRISPR-Cas system exhibits huge value in biosensing, but its applicability for non-nucleic acid analyte detection relies on the coupling of additional recognition modules. To address this limitation, we described a switchable Cas12a and exploited it for CRISPR-based direct analysis of histone deacetylase (HDAC) activity. Starting from the acetylation-mediated inactivation of Cas12a by anti-CRISPR protein AcrVA5, we demonstrated that the acetyl-inactivated Cas12a could be reversibly activated by HDAC-mediated deacetylation based on computational simulations (e.g., deep learning and protein-protein docking analysis) and experimental verifications. By leveraging this switchable Cas12a for both target sensing and signal amplification, we established a sensitive one-pot assay capable of detecting deacetylase sirtuin-1 with sub-nanomolar sensitivity, which is 50 times lower than the standard two-step peptide-based assay. The versability of this assay was validated by the sensitive assessment of cellular HDAC activities in different cell lines with good accuracy, making it a valuable tool for biochemical studies and clinical diagnostics.
Collapse
Affiliation(s)
- Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Lin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Peihang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Tianyi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
8
|
Wang Q, Zhou H, Hao T, Hu K, Qin L, Ren X, Guo Z, Wang S, Hu Y. A fully integrated fast scan cyclic voltammetry electrochemical method: Improvements in reaction kinetics and signal stability for specific Ag(I) and Hg(II) analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Tao Y, Chen L, Pan M, Zhu F, Zhu D. Tailored Biosensors for Drug Screening, Efficacy Assessment, and Toxicity Evaluation. ACS Sens 2021; 6:3146-3162. [PMID: 34516080 DOI: 10.1021/acssensors.1c01600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biosensors have been flourishing in the field of drug discovery with pronounced developments in the past few years. They facilitate the screening and discovery of innovative drugs. However, there is still a lack of critical reviews that compare the merits and shortcomings of these biosensors from a pharmaceutical point of view. This contribution presents a critical and up-to-date overview on the recent progress of tailored biosensors, including surface plasmon resonance, fluorescent, photoelectrochemical, and electrochemical systems with emphasis on their mechanisms and applications in drug screening, efficacy assessment, and toxicity evaluation. Multiple functional nanomaterials have also been incorporated into the biosensors. Representative examples of each type of biosensors are discussed in terms of design strategy, response mechanism, and potential applications. In the end, we also compare the results and summarize the major insights gained from the works, demonstrating the challenges and prospects of biosensors-assisted drug discovery.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiling Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
10
|
Yu M, Chang Q, Zhang L, Huang Z, Song C, Chen Y, Wu X, Lu Y. Ultra‐sensitive Detecting OPs‐isocarbophos Using Photoinduced Regeneration of Aptamer‐based Electrochemical Sensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mengdi Yu
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 China
| | - Qing Chang
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province Anhui Agricultural University Hefei 230036 China
| | - Liangliang Zhang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 China
| | - Zenghui Huang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 China
| | - Chunxia Song
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 China
| | - Ying Chen
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 China
| | - Xiangwei Wu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province Anhui Agricultural University Hefei 230036 China
| | - Ying Lu
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 China
| |
Collapse
|
11
|
Chen Y, Zhou Y, Yin H. Recent advances in biosensor for histone acetyltransferase detection. Biosens Bioelectron 2021; 175:112880. [DOI: 10.1016/j.bios.2020.112880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
|
12
|
López L, Hernández N, Reyes Morales J, Cruz J, Flores K, González-Amoretti J, Rivera V, Cunci L. Measurement of Neuropeptide Y Using Aptamer-Modified Microelectrodes by Electrochemical Impedance Spectroscopy. Anal Chem 2021; 93:973-980. [PMID: 33297678 PMCID: PMC7856015 DOI: 10.1021/acs.analchem.0c03719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aptamer-modified microelectrodes for Neuropeptide Y measurement by electrochemical impedance spectroscopy was described here. The advantages of using carbon fiber or platinum microelectrodes are because they are promising materials with high electrical conductivity, chemical stability, and high surface area that can be easily modified on their surface. The immobilization and biofouling were studied and compared using EIS. Moreover, the adsorption of NPY to the aptamer-modified microelectrodes was also demonstrated by EIS. Changes of -ω*Zimag, an impedance factor that gives information of the capacitance, is directly correlated with concentrations. A widely linear range was obtained from 10 to 1000 ng/mL of NPY. This method was able to detect NPY without performing a redox reaction by adsorption at the surface of the microelectrodes, with the specificity provided by aptamer functionalization of the microelectrode surface.
Collapse
Affiliation(s)
- Luis López
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Nerika Hernández
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Joshua Reyes Morales
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - John Cruz
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Krystal Flores
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - John González-Amoretti
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Vitmary Rivera
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Lisandro Cunci
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| |
Collapse
|
13
|
Lu Q, Huang T, Zhou J, Zeng Y, Wu C, Liu M, Li H, Zhang Y, Yao S. Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118893. [PMID: 32916589 DOI: 10.1016/j.saa.2020.118893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rational design of detection strategy is the key to high-performance fluorescence analysis. In this article, we found that the glucose-induced limitations can greatly enhance the fluorescence of functionalized carbon nanoparticles (CNPs), which are synthesized through one-step thermal pyrolysis method using phenylboronic acid derivative as the precursors. The glucose can assembly onto the surface of the CNPs to form a "shell", limiting the surfaces' intramolecular rotation and reducing non-radiative decay, which hence resulted in enhanced fluorescence of the CNPs. Under optimal conditions, the fluorescence intensity of the CNPs is nearly 70-fold enhanced, and the method has low detection limit (10 μM) and linear response in the concentration range from 50 μM to 2000 μM. Based on this interesting "target-triggered limitation-induced fluorescence enhancement" phenomenon, a simple and effective non-enzymatic fluorescence enhancement method was developed and successfully applied to the determination of glucose in spiked serum samples. This work provides new insight into the design of fluorescence-enhanced detection strategies based on the limitation-induced property.
Collapse
Affiliation(s)
- Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ting Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jieqiong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yue Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
14
|
Liu S, Xiong X, Ruan Z, Lin J, Chen Y. Conjugated polymer-based ratiometric fluorescent biosensor for probing the activity of protein-acetylation-related enzymes. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Zhang Q, Hao T, Hu D, Guo Z, Wang S, Hu Y. RNA aptamer-driven ECL biosensing for tracing histone acetylation based on nano-prism substrate and cascade DNA amplification strategy. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01292-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Xu S, Dai B, Zhao W, Jiang L, Huang H. Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO 4 microspheres. Anal Chim Acta 2020; 1120:1-10. [PMID: 32475386 DOI: 10.1016/j.aca.2020.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
Beta-lactoglobulin is a natural milk protein and the main cause of infant milk allergy. In this work, a sensitive, selective and inexpensive electrochemical biosensor for the detection of β-lactoglobulin was developed. In this sensor, a DNA aptamer was used instead of an expensive antibody as the recognition group highly selective for β-lactoglobulin. The flower-like BiVO4 microspheres were firstly found to have peroxidase mimic catalytic activity and used to amplify the electrochemical signal. The aptamer can bind β-lactoglobulin and fall off from the working electrode, after which the DNA2/Au/BiVO4 probe can be fixed to the DNA1/AuNPs/ITO working electrode by the hybridization of DNA2 with DNA1. Therefore, a higher concentration of β-lactoglobulin leads to increased fabrication of the DNA2/Au/BiVO4 probe on the surface of the working electrode, and thereby increases the electrochemical signal. This electrochemical biosensor exhibited a wide detection range from 0.01 to 1000 ng mL-1, with a limit of detection (LOD) of 0.007 ng mL-1, which indicates a good potential application in the field of food analysis.
Collapse
Affiliation(s)
- Shengpan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Benlin Dai
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Wei Zhao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China.
| |
Collapse
|