1
|
González-Gómez CD, Garcia-Guirado J, Quidant R, Carrique F, Ruiz-Reina E, Rica-Alarcón RA. A hybrid dielectrophoretic trap-optical tweezers platform for manipulating microparticles in aqueous suspension. LAB ON A CHIP 2025; 25:2462-2474. [PMID: 40278863 DOI: 10.1039/d4lc00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We demonstrate that a set of microfabricated electrodes can be coupled to a commercial optical tweezers device, implementing a hybrid electro-optical platform with multiple functionalities for the manipulation of micro-/nanoparticles in suspension. We show that the hybrid scheme allows enhanced manipulation capabilities, including hybrid dynamics, controlled accumulation in the dielectrophoretic trap from the optical tweezers, selectivity, and video tracking of the individual trajectories of trapped particles. This creates opportunities for novel studies in statistical physics and stochastic thermodynamics with multi-particle systems, previously limited to investigations with individual particles.
Collapse
Affiliation(s)
- Carlos David González-Gómez
- Universidad de Granada, Department of Applied Physics, Nanoparticles Trapping Laboratory, Granada, 18071, Spain.
- Department of Applied Physics II, Universidad de Malaga, 29071, Malaga, Spain
| | | | - Romain Quidant
- Nanophotonic Systems Laboratory, ETH Zurich, 8092, Zurich, Switzerland
| | - Félix Carrique
- Department of Applied Physics I, Universidad de Malaga, 29071, Malaga, Spain
- Institute Carlos I for Theoretical and Computational Physics (iC1), 29071, Malaga, Spain
| | - Emilio Ruiz-Reina
- Department of Applied Physics II, Universidad de Malaga, 29071, Malaga, Spain
- Institute Carlos I for Theoretical and Computational Physics (iC1), 29071, Malaga, Spain
| | - Raúl A Rica-Alarcón
- Universidad de Granada, Department of Applied Physics, Nanoparticles Trapping Laboratory, Granada, 18071, Spain.
- Research Unit "Modeling Nature" (MNat), Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
2
|
Naseem S, Sajid R, Nabeel M, Sadiqa A, Rizwan M, Zulfiqar MR, Ahmad A, Iqbal DN. Advancing nanocellulose-based biosensors: pioneering eco-friendly solutions for biomedical applications and sustainable material replacement. Int J Biol Macromol 2025; 309:143057. [PMID: 40220829 DOI: 10.1016/j.ijbiomac.2025.143057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
The escalating demand for sustainable and high-performance biosensing technologies has intensified interest in nanocellulose-based biosensors as eco-friendly alternatives to conventional materials. Nanocellulose, derived from abundant natural sources, offers remarkable properties such as high surface area, mechanical strength, biocompatibility, and chemical versatility, making it highly suitable for biosensing applications. This review delves into the synthesis, functionalization, and diverse applications of nanocellulose materials, particularly bacterial nanocellulose (BNC) and cellulose nanofibrils (CNFs), in the development of advanced biosensors. Innovative functionalization techniques, including polymer grafting and TEMPO oxidation, have been employed to enhance the specificity, stability, and sensitivity of these biosensors. These advancements lay the foundation for a sustainable and efficient biosensing framework, positioning nanocellulose-based technologies at the forefront of developing eco-friendly and accessible biosensors for biomedical applications and beyond.
Collapse
Affiliation(s)
- Sobia Naseem
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan; Department of Polymer and Process Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Rumana Sajid
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Nabeel
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Ayesha Sadiqa
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan.
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| | | | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan.
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
3
|
Nandi A, Singh K, Sharma K. Advancement in early diagnosis of polycystic ovary syndrome: biomarker-driven innovative diagnostic sensor. Mikrochim Acta 2025; 192:331. [PMID: 40310524 DOI: 10.1007/s00604-025-07187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous multifactorial endocrine disorder that affects one in five women around the globe. The pathology suggests a strong polygenic and epigenetic correlation, along with hormonal and metabolic dysfunction, but the exact etiology is still a mystery. The current diagnosis is mostly based on Rotterdam criteria, which resulted in a delayed diagnosis in most of the cases, leading to unbearable lifestyle complications and infertility. PCOS is not new; thus, constant efforts are made in the field of biomarker discovery and advanced diagnostic techniques. A plethora of research has enabled the identification of promising PCOS diagnostic biomarkers across hormonal, metabolic, genetic, and epigenetic domains. Not only biomarker identification, but the utilization of biosensing platforms also renders effective point-of-care diagnostic devices. Artificial intelligence also shows its power in modifying existing image-based analysis, even developing symptom-based prediction systems for the early diagnosis of this multifaceted disorder. This approach could affect the future management and treatment direction of PCOS, decreasing its severity and improving the reproductive life of women. The rationale of the current review is to identify the advancements in understanding the pathophysiology through biomarker discovery and the implementation of modern analytical techniques for the early diagnosis of PCOS.
Collapse
Affiliation(s)
- Aniket Nandi
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, G.T Road, Ghal Kalan, Moga, Punjab, 142001, India
| | - Kamal Singh
- Bond Life Sciences Center, and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, G.T Road, Ghal Kalan, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Anyaegbunam NJ, Okpe KE, Bello AB, Ajanaobionye TI, Mgboji CC, Olonade A, Anyaegbunam ZKG, Mba IE. Leveraging innovative diagnostics as a tool to contain superbugs. Antonie Van Leeuwenhoek 2025; 118:63. [PMID: 40140116 DOI: 10.1007/s10482-025-02075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
The evolutionary adaptation of pathogens to biological materials has led to an upsurge in drug-resistant superbugs that significantly threaten public health. Treating most infections is an uphill task, especially those associated with multi-drug-resistant pathogens, biofilm formation, persister cells, and pathogens that have acquired robust colonization and immune evasion mechanisms. Innovative diagnostic solutions are crucial for identifying and understanding these pathogens, initiating efficient treatment regimens, and curtailing their spread. While next-generation sequencing has proven invaluable in diagnosis over the years, the most glaring drawbacks must be addressed quickly. Many promising pathogen-associated and host biomarkers hold promise, but their sensitivity and specificity remain questionable. The integration of CRISPR-Cas9 enrichment with nanopore sequencing shows promise in rapid bacterial diagnosis from blood samples. Moreover, machine learning and artificial intelligence are proving indispensable in diagnosing pathogens. However, despite renewed efforts from all quarters to improve diagnosis, accelerated bacterial diagnosis, especially in Africa, remains a mystery to this day. In this review, we discuss current and emerging diagnostic approaches, pinpointing the limitations and challenges associated with each technique and their potential to help address drug-resistant bacterial threats. We further critically delve into the need for accelerated diagnosis in low- and middle-income countries, which harbor more infectious disease threats. Overall, this review provides an up-to-date overview of the diagnostic approaches needed for a prompt response to imminent or possible bacterial infectious disease outbreaks.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation Unit, Science Education Department, University of Nigeria Nsukka, Nsukka, Nigeria
| | | | - Aisha Bisola Bello
- Department of Biological Sciences, Federal Polytechnic Bida Niger State, Bida, Nigeria
| | | | | | - Aanuoluwapo Olonade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukk, Nsukka, 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukk, Nsukka, 410001, Nigeria.
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, 200005, Nigeria.
| |
Collapse
|
5
|
Luo S, Yin L, Liu X, Wang X. Advances in Virus Biorecognition and Detection Techniques for the Surveillance and Prevention of Infectious Diseases. BIOSENSORS 2025; 15:198. [PMID: 40136995 PMCID: PMC11940537 DOI: 10.3390/bios15030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Viral infectious diseases pose a serious threat to global public health due to their high transmissibility, rapid mutation rates, and limited treatment options. Recent outbreaks of diseases such as plague, monkeypox, avian influenza, and coronavirus disease 2019 (COVID-19) have underscored the urgent need for efficient diagnostic and surveillance technologies. Focusing on viral infectious diseases that seriously threaten human health, this review summarizes and analyzes detection techniques from the perspective of combining viral surveillance and prevention advice, and discusses applications in improving diagnostic sensitivity and specificity. One of the major innovations of this review is the systematic integration of advanced biorecognition and detection technologies, such as bionanosensors, rapid detection test strips, and microfluidic platforms, along with the exploration of artificial intelligence in virus detection. These technologies address the limitations of traditional methods and enable the real-time monitoring and early warning of viral outbreaks. By analyzing the application of these technologies in the detection of pathogens, new insights are provided for the development of next-generation diagnostic tools to address emerging and re-emerging viral threats. In addition, we analyze the current progress of developed vaccines, combining virus surveillance with vaccine research to provide new ideas for future viral disease prevention and control and vaccine development, and call for global attention and the development of new disease prevention and detection technologies.
Collapse
Affiliation(s)
- Shuwen Luo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| |
Collapse
|
6
|
Fan Y, Liao Y, Gao Z, Wang H, Li Y, Shi C, Ma C. N-Doped Porous Carbon Synergistic Freezing-Induced DNA with Catalyzed Hairpin Assembly Enables Electrochemical One-Pot Detection of Pathogen in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4342-4352. [PMID: 39920042 DOI: 10.1021/acs.jafc.4c11487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
A DNA electrochemical interface biosensor based on screen-printed carbon electrodes (SPCEs) holds promise for point-of-care testing (POCT) detection of pathogens in food safety. Nevertheless, SPCE commonly has a rough surface and suffers from a relatively low electron transfer rate, disorder of DNA capture probes (CPs), and the steric hindrance effect of target nucleic acid binding. These issues lead to a low sensitivity. Herein, a simple and rapid electrochemical biosensor based on N-doped porous carbon (NPC)-modified SPCE and freezing-directed DNA combined with catalyzed hairpin assembly (CHA) was constructed for the one-pot detection of pathogens in food samples without time-consuming growth cultures. The biosensor was constructed by SPCE modified with NPC for enhanced electrochemical properties, and the DNA CP designed for CHA was stably fixed on the electrode for a high hybridization efficiency. Moreover, the signals amplified by CHA enable the selective and sensitive detection of pathogens without washing steps. This one-pot method is simple and sensitive with a wide detection linear range of 101 to 107 CFU/mL and limit of detection of 5 CFU/mL for Escherichia coli and shows specificity against other coexisting pathogens. The whole detection of pathogens in complex samples is performed only within 60 min from sample-to-answer, which has great potential for POCT of pathogens in food safety.
Collapse
Affiliation(s)
- Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Yu Liao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Zhiying Gao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Haoran Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of the Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, 266071 Qingdao, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| |
Collapse
|
7
|
Lucena RPS, Silva-Junior AG, Frías IAM, Gil LHV, Cordeiro MT, El Salhi AE, Andrade CAS, Oliveira MDL. Microcontact printing of lectin self-assembled monolayers for arbovirus detection. Biotechnol Prog 2025:e70008. [PMID: 39968671 DOI: 10.1002/btpr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Arboviruses significantly burden public health in Brazil, constituting a constant challenge for health authorities. The diagnosis and, consequently, clinical management and the reporting of arbovirus infections in regions where multiple arboviruses coexist are complex processes. Herein, we report the development of a new electrochemical biosensor based on Concanavalin A (ConA) to identify carbohydrate patterns in the viral structure of Dengue 3 (DENV-3), Zika (ZIKV) and Chikungunya (CHIKV) viruses. The biorecognition of arboviruses was carried out through functionalization with 4-aminophenylacetic acid (CMA) on poly (ethylene terephthalate) (PET) substrate coated with a gold layer combining microcontact printing (μCP). Bovine serum albumin (BSA) was used after ConA immobilization to block binding to nonspecific sites. Subsequently, the interaction between ConA and arbovirus was characterized by standard atomic force microscopy (AFM), fluorescence microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Fluorescent imaging was conducted to confirm the occurrence of the DENV-3, ZIKV, and CHIKV detection processes. The obtained results demonstrated the success of the biosensor (CMA-ConA-BSA) manufactured on a PET substrate using μCP for detecting medically significant arboviruses. RCT values showed an increase in impedimetric response total of the system after exposition to DENV-3 (RCT = 68.82 kΩ) and a lower recognition to CHIKV (RCT = 44.44 kΩ). The present biosensor platform reveals the applicability of the ConA lectin in the viral biorecognition process based on flexible biosensors for differential detection of DENV-3, ZIKV, and CHIKV. ConA-based electrochemical biosensor provide high selectivity, real-time detection, and low volumes of analytes.
Collapse
Affiliation(s)
- Raiza P S Lucena
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Alberto G Silva-Junior
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Isaac A M Frías
- Institut des Sciences Analytiques, Claude Bernard University Lyon 1, Lyon, France
| | - Laura H V Gil
- Departamento de Virologiam, Instituto Aggeu Magalhães-Fiocruz, Recife, Brazil
| | - Marli T Cordeiro
- Departamento de Virologiam, Instituto Aggeu Magalhães-Fiocruz, Recife, Brazil
| | | | - Cesar A S Andrade
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
8
|
Baskar A, Madhivanan K, Atchudan R, Arya S, Sundramoorthy AK. Nanoparticle electrochemical biosensors for virus detection. Clin Chim Acta 2025; 566:120054. [PMID: 39551230 DOI: 10.1016/j.cca.2024.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Viruses pose a significant threat to global public health, underscoring the urgent need for rapid, accurate, and sensitive diagnostic methods for timely detection and intervention. The demand for efficient diagnostics that can detect a wide range of viral pathogens has never been greater. In this context, metal nanoparticle-based biosensors have emerged as a promising solution, offering exceptional sensitivity for detecting various analytes, including nucleic acids (DNA/RNA), proteins, and other biomarkers associated with pathogens. These biosensors are particularly critical for the development of point-of-care (POC) diagnostic tools, enabling early detection of infectious agents. This review explores recent advancements in nanoparticle (NP)-based biosensors that utilize noble metals like gold (Au), silver (Ag), and platinum (Pt) for viral pathogen detection, focusing on viruses such as SARS-CoV, HIV, hepatitis, influenza, and Zika. It highlights the role of NP-based electrochemical sensors and compares traditional and contemporary detection techniques. The review also examines key performance metrics such as limits of detection (LOD), linear detection ranges, cost-effectiveness, and accessibility, with a special emphasis on their application in POC diagnostics. The aim is to provide researchers with valuable insights into the development of next-generation NP-based biosensors, facilitating the creation of innovative diagnostic technologies for viral diseases.
Collapse
Affiliation(s)
- Anandavalli Baskar
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Keerthana Madhivanan
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
9
|
Oushyani Roudsari Z, Karami Y, Khoramrooz SS, Rouhi S, Ghasem H, Khatami SH, Alizadeh M, Ahmad Khosravi N, Mansoriyan A, Ghasemi E, Movahedpour A, Dargahi Z. Electrochemical and optical biosensors for the detection of E. Coli. Clin Chim Acta 2025; 565:119984. [PMID: 39401653 DOI: 10.1016/j.cca.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousof Karami
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Hassan Ghasem
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ahmad Khosravi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mansoriyan
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Zahra Dargahi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Wityk P, Terebieniec A, Nowak R, Łubiński J, Mroczyńska-Szeląg M, Wityk T, Kostrzewa-Nowak D. Reusable Biosensor for Easy RNA Detection from Unfiltered Saliva. SENSORS (BASEL, SWITZERLAND) 2025; 25:360. [PMID: 39860729 PMCID: PMC11769206 DOI: 10.3390/s25020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Biosensors are transforming point-of-care diagnostics by simplifying the detection process and enabling rapid, accurate testing. This study introduces a novel, reusable biosensor designed for direct viral RNA detection from unfiltered saliva, targeting SARS-CoV-2. Unlike conventional methods requiring filtration, our biosensor leverages a unique electrode design that prevents interference from saliva debris, allowing precise measurements. The biosensor is based on electrochemical principles, employing oligonucleotide probes immobilized on a hydrophobic-coated electrode, which prevents air bubbles and salt crystal formation. During validation, the biosensor demonstrated a sensitivity and specificity of 100%, accurately identifying SARS-CoV-2 in saliva samples without false positives or negatives. Cross-validation with RT-qPCR, the gold standard for COVID-19 diagnostics, confirmed the reliability of our device. The biosensor's performance was tested on 60 participants, yielding 12 true positive results and 48 true negatives, aligning perfectly with RT-qPCR outcomes. This reusable, easy-to-use biosensor offers significant potential for point-of-care applications in various healthcare settings, providing a fast, efficient, and cost-effective method for detecting viral infections such as COVID-19. Its robust design, minimal sample preparation requirements, and multiple-use capability mark a significant advancement in biosensing technology.
Collapse
Affiliation(s)
- Paweł Wityk
- Map Your DNA Ltd., Świerkowa 40, 83-330 Lniska, Poland
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Halera 107, 80-416 Gdańsk, Poland
| | - Agata Terebieniec
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 40B Piastów Al., Building 6, 71-065 Szczecin, Poland;
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Jacek Łubiński
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | | | - Tomasz Wityk
- Map Your DNA Ltd., Świerkowa 40, 83-330 Lniska, Poland
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| |
Collapse
|
11
|
Shahrtash SA, Ghnim ZS, Ghaheri M, Adabi J, Hassanzadeh MA, Yasamineh S, Afkhami H, Kheirkhah AH, Gholizadeh O, Moghadam HZ. Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus. Mol Biotechnol 2025; 67:54-79. [PMID: 38393630 DOI: 10.1007/s12033-024-01052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
Humans contract the Chikungunya virus (CHIKV), an alphavirus transmitted by mosquitoes that induces acute and chronic musculoskeletal discomfort and fever. Millions of cases of the disease have been attributed to CHIKV in the Indian Ocean region since 2004, and the virus has since spread to Europe, the Middle East, and the Pacific. The exponential proliferation of CHIKV in recent times underscores the critical nature of implementing preventative measures and exploring potential control strategies. The principal laboratory test employed to diagnose infection in serum samples collected over six days after the onset of symptoms is the detection of CHIKV or viral RNA. Although two commercially available real-time reverse transcription-polymerase chain reaction products exist, data on their validity are limited. A diagnostic instrument that is rapid, sensitive, specific, and cost-effective is, therefore an absolute necessity, particularly in developing nations. Biosensors have demonstrated considerable potential in the realm of pathogen detection. The rapid and sensitive detection of viruses has been facilitated by the development of numerous types of biosensors, including affinity-based nano-biosensors, graphene affinity-based biosensors, optical nano-biosensors, surface Plasmon Resonance-based optical nano-biosensors, and electrochemical nano-biosensors. Furthermore, the utilization of nanomaterials for signal extension, including but not limited to gold and silver nanoparticles, quantum dots, and iron oxide NPs, has enhanced the precision and sensitivity of biosensors. The developed innovative diagnostic method is time-efficient, precise, and economical; it can be implemented as a point-of-care device. The technique may be implemented in diagnostic laboratories and hospitals to identify patients infected with CHIKV. Throughout this article, we have examined a multitude of CHIKV nano-biosensors and their respective properties. Following a discussion of representative nanotechnologies for biosensors, numerous NPs-assisted CHIKV nano-biosensors are summarized in this article. As a result, we anticipate that this review will furnish a significant foundation for advancing innovative CHIKV nano-biosensors.
Collapse
Affiliation(s)
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Javid Adabi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Science, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Omid Gholizadeh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Azad Researcher, Virology and Biotechnology, Tehran, Iran.
| | - Hesam Zendehdel Moghadam
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Yadav S, Bukke SPN, Prajapati S, Singh AP, Chettupalli AK, Nicholas B. Nanobiosensors in neurodegenerative disease diagnosis: A promising pathway for early detection. Digit Health 2025; 11:20552076251342457. [PMID: 40376568 PMCID: PMC12078979 DOI: 10.1177/20552076251342457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's, are characterized by progressive neuronal loss, leading to cognitive and motor impairments. Early diagnosis remains a challenge due to the slow progression of symptoms and the limitations of current diagnostic methods. Nanobiosensors, leveraging the high sensitivity and specificity of nanotechnology, offer a promising, noninvasive, and cost-effective approach for detecting disease biomarkers at ultra-low concentrations. This review highlights recent advancements in nanobiosensor technology, including the integration of gold nanoparticles, quantum dots, and carbon nanotubes, which have significantly enhanced biomarker detection precision. Furthermore, it examines the advantages of nanobiosensors over traditional diagnostic techniques, such as improved sensitivity, rapid detection, and minimal invasiveness. The potential of these innovative sensors to revolutionize early disease detection and improve patient outcomes is discussed, along with existing challenges in clinical translation, including stability, reproducibility, and regulatory considerations. Addressing these limitations will be crucial for integrating nanobiosensors into routine clinical practice and advancing personalized medicine for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmaceutical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sarad Pawar Naik Bukke
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Ishaka-Bushenyi, Uganda
| | | | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ananda Kumar Chettupalli
- Department of Pharmaceutical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Buyinza Nicholas
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Ishaka-Bushenyi, Uganda
| |
Collapse
|
13
|
Lee MJ, Shin JH, Jung SH, Oh BK. Recent Advances in Biosensors Using Enzyme-Stabilized Gold Nanoclusters. BIOSENSORS 2024; 15:2. [PMID: 39852053 PMCID: PMC11763740 DOI: 10.3390/bios15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Recently, gold nanoclusters (AuNCs) have been widely used in biological applications due to their ultrasmall size, ranging within a few nanometers; large specific surface area; easy functionalization; unique fluorescence properties; and excellent conductivity. However, because they are unstable in solution, AuNCs require stabilization by using ligands such as dendrimers, peptides, DNA, and proteins. As a result, the properties of AuNCs and their formation are determined by the ligand, so the selection of the ligand is important. Of the many ligands implemented, enzyme-stabilized gold nanoclusters (enzyme-AuNCs) have attracted increasing attention for biosensor applications because of the excellent optical/electrochemical properties of AuNCs and the highly target-specific reactions of enzymes. In this review, we explore how enzyme-AuNCs are prepared, their properties, and the various types of enzyme-AuNC-based biosensors that use optical and electrochemical detection techniques. Finally, we discuss the current challenges and prospects of enzyme-AuNCs in biosensing applications. We expect this review to provide interdisciplinary knowledge about the application of enzyme-AuNC-based materials within the biomedical and environmental fields.
Collapse
Affiliation(s)
| | | | | | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea; (M.-J.L.); (J.-H.S.); (S.-H.J.)
| |
Collapse
|
14
|
Blázquez AB, Jiménez de Oya N. Biosensors for the detection of flaviviruses: A review. Synth Syst Biotechnol 2024; 10:194-206. [PMID: 39552759 PMCID: PMC11564047 DOI: 10.1016/j.synbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Flaviviruses affect the lives of millions of people in endemic regions and also have the potential to impact non-endemic areas. Factors such as climate change, global warming, deforestation, and increased travel and trade are linked to the spread of flaviviruses into new habitats and host species. Given the absence of specific treatments and the limited availability of vaccines, it is imperative to understand the biology of flaviviruses and develop rapid and sensitive diagnostic tests. These measures are essential for preventing the transmission of these potentially life-threatening pathogens. Flavivirus infections are mainly diagnosed using conventional methods. However, these techniques present several drawbacks, including high expenses, time-consuming procedures, and the need for skilled professionals. The search for fast, easy-to-use, and affordable alternative techniques as a feasible solution for developing countries is leading to the search for new methods in the diagnosis of flaviviruses, such as biosensors. This review provides a comprehensive overview of different biosensor detection strategies for flaviviruses and describes recent advances in diagnostic technologies. Finally, we explore their future prospects and potential applications in pathogen detection. This review serves as a valuable resource to understand advances in ongoing research into new biosensor-based diagnostic methods for flaviviruses.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - Nereida Jiménez de Oya
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| |
Collapse
|
15
|
Xu J, Zhang T, Lv X, Shi L, Bai W, Ye L. An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods 2024; 13:3200. [PMID: 39410234 PMCID: PMC11475897 DOI: 10.3390/foods13193200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Among the pathogens that cause infectious diarrhea in China, Shigella is the most prominent. Shigellosis affects both adults and children, particularly those in developing nations, with nearly 190 million annual cases and a third resulting in fatalities. The recently emerged CRISPR/Cas system has also been increasingly applied for the detection of different biological targets. The lateral flow assay (LFA) has the advantages of short detection time, simple operation, high sensitivity, and low cost, and it provides an ideal platform for on-site detection. In this study, a recombinase polymerase amplification-CRISPR/Cas12a-LFA test for Shigella flexneri was constructed. The established method had good specificity and sensitivity, and the qualitative accuracy of 32 tested strains reached 100%. The detection limit of genomic DNA reached 8.3 copies/μL. With the advantages of high accuracy and portability, this diagnostic apparatus represents a novel method of identification and detection of Shigella flexneri, particularly in settings that lack complex laboratory infrastructure.
Collapse
Affiliation(s)
- Jieru Xu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Tianxin Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xinrui Lv
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Shandong Yuwang Ecological Food Industry Co., Ltd., Yucheng 251200, China
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Seo Y, Zhou A, Nguyen TH, Wei N. Yeast Surface-Displayed Quenchbody as a Novel Whole-Cell Biosensor for One-Step Detection of Influenza A (H1N1) Virus. ACS Synth Biol 2024; 13:2926-2937. [PMID: 39256183 DOI: 10.1021/acssynbio.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Timely surveillance of airborne pathogens is essential to preventing the spread of infectious diseases and safeguard human health. Methods for sensitive, efficient, and cost-effective detection of airborne viruses are needed. With advances in synthetic biology, whole-cell biosensors have emerged as promising platforms for environmental monitoring and medical diagnostics. However, the current design paradigm of whole-cell biosensors is mostly based on intracellular detection of analytes that can transport across the cell membrane, which presents a critical challenge for viral pathogens and large biomolecules. To address this challenge, we developed a new type of whole-cell biosensor by expressing and displaying VHH-based quenchbody (Q-body) on the surface of the yeast Saccharomyces cerevisiae for simple one-step detection of influenza A (H1N1) virus. Seventeen VHH antibody fragments targeting the hemagglutinin protein H1N1-HA were displayed on the yeast cells and screened for the H1N1-HA binding affinity. The functionally displayed VHHs were selected to create surface-displayed Q-body biosensors. The surface-displayed Q-body exhibiting the highest quenching and dequenching efficiency was identified. The biosensor quantitatively detected H1N1-HA in a range from 0.5 to 16 μg/mL, with a half-maximal concentration of 2.60 μg/mL. The biosensor exhibited high specificity for H1N1-HA over other hemagglutinin proteins from various influenza A virus subtypes. Moreover, the biosensor succeeded in detecting the H1N1 virus at concentrations from 2.4 × 104 to 1.5 × 107 PFU/mL. The results from this study demonstrated a new whole-cell biosensor design that circumvents the need for transport of analytes into biosensor cells, enabling efficient detection of the target virus particles.
Collapse
Affiliation(s)
- Yoonjoo Seo
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Khaleque MA, Hossain SI, Ali MR, Aly Saad Aly M, Abuelmakarem HS, Al Mamun MS, Hossain Khan MZ. Bioreceptor modified electrochemical biosensors for the detection of life threating pathogenic bacteria: a review. RSC Adv 2024; 14:28487-28515. [PMID: 39247512 PMCID: PMC11378029 DOI: 10.1039/d4ra04038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The lack of reliable and efficient techniques for early monitoring to stop long-term effects on human health is an increasing problem as the pathogenesis effect of infectious bacteria is growing continuously. Therefore, developing an effective early detection technique coupled with efficient and continuous monitoring of pathogenic bacteria is increasingly becoming a global public health prime target. Electrochemical biosensors are among the strategies that can be utilized for accomplishing that goal with promising potential. In recent years, identifying target biological analytes by interacting with bioreceptors modified electrodes is among the most commonly used detection techniques in electrochemical biosensing strategies. The commonly employed bioreceptors are nucleic acid molecules (DNA or RNA), proteins, antibodies, enzymes, organisms, tissues, and biomimetic components such as molecularly imprinted polymers. Despite the advancement in electrochemical biosensing, developing a reliable and effective biosensor for detecting pathogenic bacteria is still in the infancy stage with so much room for growth. A major milestone in addressing some of the issues and improving the detection pathway is the investigation of specific bacterial detection techniques. The present study covers the fundamental concepts of electrochemical biosensors, human PB illnesses, and the latest electrochemical biosensors based on bioreceptor elements that are designed to detect specific pathogenic bacteria. This study aims to assist researchers with the most up-to-date research work in the field of bio-electrochemical pathogenic bacteria detection and monitoring.
Collapse
Affiliation(s)
- Md Abdul Khaleque
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Syed Imdadul Hossain
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Centre for Sophisticated Instrumentation and Research Laboratory (CSIRL), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Romzan Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Mohamed Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI) Shenzhen Guangdong 518055 China
| | - Hala S Abuelmakarem
- Systems and Biomedical Engineering Department, The Higher Institute of Engineering El Shorouk Egypt
| | - Muhammad Shamim Al Mamun
- Chemistry Discipline, School of Science, Engineering and Technology, Khulna University Khulna 9208 Bangladesh
| | - Md Zaved Hossain Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
18
|
Khan MQ, Khan J, Alvi MAH, Nawaz H, Fahad M, Umar M. Nanomaterial-based sensors for microbe detection: a review. DISCOVER NANO 2024; 19:120. [PMID: 39080121 PMCID: PMC11289191 DOI: 10.1186/s11671-024-04065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Airborne microorganisms pose a significant health threat, causing various illnesses. Traditional detection methods are often slow and complex. This review highlights the potential of nanomaterial-based biosensors, particularly colorimetric sensors, for rapid and on-site detection of airborne microbes. Colorimetric sensors offer real-time visual detection without complex instrumentation. We explore the integration of these sensors with Lab-on-a-Chip technology using PDMS microfluidics. This review also proposes a novel PDMS-based colorimetric biosensor for real-time detection of airborne microbes. The sensor utilizes a color change phenomenon easily observable with the naked eye, simplifying analysis and potentially enabling point-of-care applications.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan.
| | - Jahangir Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Abbas Haider Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Muhammad Fahad
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
19
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
20
|
Flynn CD, Chang D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. Diagnostics (Basel) 2024; 14:1100. [PMID: 38893627 PMCID: PMC11172335 DOI: 10.3390/diagnostics14111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The integration of artificial intelligence (AI) into point-of-care (POC) biosensing has the potential to revolutionize diagnostic methodologies by offering rapid, accurate, and accessible health assessment directly at the patient level. This review paper explores the transformative impact of AI technologies on POC biosensing, emphasizing recent computational advancements, ongoing challenges, and future prospects in the field. We provide an overview of core biosensing technologies and their use at the POC, highlighting ongoing issues and challenges that may be solved with AI. We follow with an overview of AI methodologies that can be applied to biosensing, including machine learning algorithms, neural networks, and data processing frameworks that facilitate real-time analytical decision-making. We explore the applications of AI at each stage of the biosensor development process, highlighting the diverse opportunities beyond simple data analysis procedures. We include a thorough analysis of outstanding challenges in the field of AI-assisted biosensing, focusing on the technical and ethical challenges regarding the widespread adoption of these technologies, such as data security, algorithmic bias, and regulatory compliance. Through this review, we aim to emphasize the role of AI in advancing POC biosensing and inform researchers, clinicians, and policymakers about the potential of these technologies in reshaping global healthcare landscapes.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dingran Chang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Fang PH, Chang HC, Cheng HL, Huang CC, Wang S, Teng CH, Chia ZC, Chiang HP, Ruan J, Shih WA, Chou WY. Bacteria Contaminants Detected by Organic Inverter-Based Biosensors. Polymers (Basel) 2024; 16:1462. [PMID: 38891409 PMCID: PMC11174487 DOI: 10.3390/polym16111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The importance of bacteria detection lies in its role in enabling early intervention, disease prevention, environmental protection, and effective treatment strategies. Advancements in technology continually enhance the speed, accuracy, and sensitivity of detection methods, aiding in addressing these critical issues. This study first reports the fabrication of an inverter constructed using crosslinked-poly(4-vinylphenol) (C-PVP) as the dielectric layer and an organic complementary metal-oxide semiconductor (O-CMOS) based on pentacene and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) as a diagnostic biosensor to rapidly detect bacterial concentration. Bacteria including Escherichia coli O157, Staphylococcus aureus ATCC25922, and Enterococcus faecalis SH-1051210 were analysed on the inverters at an ultra-low operating voltage of 2 V. The high density of negative charge on bacteria surfaces strongly modulates the accumulated negative carriers within the inverter channel, resulting in a shift of the switching voltage. The inverter-based bacteria sensor exhibits a linear-like response to bacteria concentrations ranging from 102 to 108 CFU/mL, with a sensitivity above 60%. Compared to other bacterial detectors, the advantage of using an inverter lies in its ability to directly read the switching voltage without requiring an external computing device. This facilitates rapid and accurate bacterial concentration measurement, offering significant ease of use and potential for mass production.
Collapse
Affiliation(s)
- Po-Hsiang Fang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Chun Chang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Horng-Long Cheng
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jrjeng Ruan
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-An Shih
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Yang Chou
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
22
|
Ziaei Chamgordani S, Yadegar A, Ghourchian H. C. difficile biomarkers, pathogenicity and detection. Clin Chim Acta 2024; 558:119674. [PMID: 38621586 DOI: 10.1016/j.cca.2024.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is the main etiologic agent of antibiotic-associated diarrhea. CDI contributes to gut inflammation and can lead to disruption of the intestinal epithelial barrier. Recently, the rate of CDI cases has been increased. Thus, early diagnosis of C. difficile is critical for controlling the infection and guiding efficacious therapy. APPROACH A search strategy was set up using the terms C. difficile biomarkers and diagnosis. The found references were classified into two general categories; conventional and advanced methods. RESULTS The pathogenicity and biomarkers of C. difficile, and the collection manners for CDI-suspected specimens were briefly explained. Then, the conventional CDI diagnostic methods were subtly compared in terms of duration, level of difficulty, sensitivity, advantages, and disadvantages. Thereafter, an extensive review of the various newly proposed techniques available for CDI detection was conducted including nucleic acid isothermal amplification-based methods, biosensors, and gene/single-molecule microarrays. Also, the detection mechanisms, pros and cons of these methods were highlighted and compared with each other. In addition, approximately complete information on FDA-approved platforms for CDI diagnosis was collected. CONCLUSION To overcome the deficiencies of conventional methods, the potential of advanced methods for C. difficile diagnosis, their direction, perspective, and challenges ahead were discussed.
Collapse
Affiliation(s)
- Sepideh Ziaei Chamgordani
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Zhang Z, Du M, Cheng X, Dou X, Zhou J, Wu J, Xie X, Zhu M. A disposable paper-based electrochemical biosensor decorated by electrospun cellulose acetate nanofibers for highly sensitive bio-detection. Analyst 2024; 149:2436-2444. [PMID: 38498083 DOI: 10.1039/d4an00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 μmol mL-1, 100 fg mL-1-10 μg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Manman Du
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiao Cheng
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Xuechen Dou
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Junting Zhou
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jianguo Wu
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xinwu Xie
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Mengfu Zhu
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- National Bio-Protection Engineering Center, Tianjin 300161, China
| |
Collapse
|
24
|
Rossetti M, Srisomwat C, Urban M, Rosati G, Maroli G, Yaman Akbay HG, Chailapakul O, Merkoçi A. Unleashing inkjet-printed nanostructured electrodes and battery-free potentiostat for the DNA-based multiplexed detection of SARS-CoV-2 genes. Biosens Bioelectron 2024; 250:116079. [PMID: 38295580 DOI: 10.1016/j.bios.2024.116079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Following the global COVID-19 pandemic triggered by SARS-CoV-2, the need for rapid, specific and cost-effective point-of-care diagnostic solutions remains paramount. Even though COVID-19 is no longer a public health emergency, the disease still poses a global threat leading to deaths, and it continues to change with the risk of new variants emerging causing a new surge in cases and deaths. Here, we address the urgent need for rapid, cost-effective and point-of-care diagnostic solutions for SARS-CoV-2. We propose a multiplexed DNA-based sensing platform that utilizes inkjet-printed nanostructured gold electrodes and an inkjet-printed battery-free near-field communication (NFC) potentiostat for the simultaneous quantitative detection of two SARS-CoV-2 genes, the ORF1ab and the N gene. The detection strategy based on the formation of an RNA-DNA sandwich structure leads to a highly specific electrochemical output. The inkjet-printed nanostructured gold electrodes providing a large surface area enable efficient binding and increase the sensitivity. The inkjet-printed battery-free NFC potentiostat enables rapid measurements and real-time data analysis via a smartphone application, making the platform accessible and portable. With the advantages of speed (5 min), simplicity, sensitivity (low pM range, ∼450% signal gain) and cost-effectiveness, the proposed platform is a promising alternative for point-of-care diagnostics and high-throughput analysis that complements the COVID-19 diagnostic toolkit.
Collapse
Affiliation(s)
- Marianna Rossetti
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Chawin Srisomwat
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Gabriel Maroli
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain; Instituto de Investigaciones en Ingeniería Eléctrica Alfredo Desages (IIIE), Universidad Nacional del Sur, CONICET, Avenida Colón 80 Bahía Blanca, Buenos Aires, Argentina
| | - Hatice Gödze Yaman Akbay
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
25
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
26
|
Osaki S, Saito M, Nagai H, Tamiya E. Surface Modification of Screen-Printed Carbon Electrode through Oxygen Plasma to Enhance Biosensor Sensitivity. BIOSENSORS 2024; 14:165. [PMID: 38667159 PMCID: PMC11048330 DOI: 10.3390/bios14040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-treated biosensors. In this research, we compared antibody modification by plasma treatment and physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Consequently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed the electrochemical properties owing to electrostatic interactions. In this study, we compared the following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody (a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were 0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the plasma treatment generated many carboxyl groups and increased the number of antibody adsorption sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as a simple method for modifying various molecular recognition elements on printed carbon electrodes.
Collapse
Affiliation(s)
- Shuto Osaki
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
| | - Masato Saito
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hidenori Nagai
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
| | - Eiichi Tamiya
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
- SANKEN-The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| |
Collapse
|
27
|
Katiyar D, Manish. Recent Advances in Electrochemical Biosensors Targeting Stress Markers. Comb Chem High Throughput Screen 2024; 27:1877-1886. [PMID: 38279751 DOI: 10.2174/0113862073278547231210170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers. MATERIALS AND METHODS The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers. RESULTS In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials. CONCLUSION This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).
Collapse
Affiliation(s)
- Deepti Katiyar
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| |
Collapse
|
28
|
Gunasinghe Pattiya Arachchillage KG, Chandra S, Williams A, Rangan S, Piscitelli P, Florence L, Ghosal Gupta S, Artes Vivancos JM. A single-molecule RNA electrical biosensor for COVID-19. Biosens Bioelectron 2023; 239:115624. [PMID: 37639885 DOI: 10.1016/j.bios.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The COVID-19 pandemic shows a critical need for rapid, inexpensive, and ultrasensitive early detection methods based on biomarker analysis to reduce mortality rates by containing the spread of epidemics. This can be achieved through the electrical detection of nucleic acids at the single-molecule level. In particular, the scanning tunneling microscopic-assisted break junction (STM-BJ) method can be utilized to detect individual nucleic acid molecules with high specificity and sensitivity in liquid samples. Here, we demonstrate single-molecule electrical detection of RNA coronavirus biomarkers, including those of SARS-CoV-2 as well as those of different variants and subvariants. Our target sequences include a conserved sequence in the human coronavirus family, a conserved target specific for the SARS-CoV-2 family, and specific targets at the variant and subvariant levels. Our results demonstrate that it is possible to distinguish between different variants of the COVID-19 virus using electrical conductance signals, as recently suggested by theoretical approaches. Our results pave the way for future miniaturized single-molecule electrical biosensors that could be game changers for infectious diseases and other public health applications.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Ajoke Williams
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Srijith Rangan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Patrick Piscitelli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Lily Florence
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | | | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
29
|
He X, Wang S, Ma C, Xu GR, Ma J, Xie H, Zhu W, Liu H, Wang L, Wang Y. Utilizing Electrochemical Biosensors as an Innovative Platform for the Rapid and On-Site Detection of Animal Viruses. Animals (Basel) 2023; 13:3141. [PMID: 37835747 PMCID: PMC10571726 DOI: 10.3390/ani13193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Animal viruses are a significant threat to animal health and are easily spread across the globe with the rise of globalization. The limitations in diagnosing and treating animal virus infections have made the transmission of diseases and animal deaths unpredictable. Therefore, early diagnosis of animal virus infections is crucial to prevent the spread of diseases and reduce economic losses. To address the need for rapid diagnosis, electrochemical sensors have emerged as promising tools. Electrochemical methods present numerous benefits, including heightened sensitivity and selectivity, affordability, ease of use, portability, and rapid analysis, making them suitable for real-time virus detection. This paper focuses on the construction of electrochemical biosensors, as well as promising biosensor models, and expounds its advantages in virus detection, which is a promising research direction.
Collapse
Affiliation(s)
- Xun He
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Guang-Ri Xu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongbing Xie
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Wei Zhu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongyang Liu
- Shuangliao Animal Disease Control Center, Siping 136400, China;
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Yimin Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| |
Collapse
|
30
|
Ficek M, Cieślik M, Janik M, Brodowski M, Sawczak M, Bogdanowicz R, Ryl J. Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications. Mikrochim Acta 2023; 190:410. [PMID: 37736868 PMCID: PMC10516795 DOI: 10.1007/s00604-023-05991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
This paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials' architecture and the receptor immobilisation procedures. The study presents a two-step modification process involving the electroreduction of diazonium salt at the BDDPE and the immobilisation of antibodies using zero-length cross-linkers for a selective impedimetric biosensor of Haemophilus influenzae (Hi). The incorporation of diamond nanosheets into BDDPE leads to enhanced charge transfer and electrochemical behaviour, demonstrating greatly improved electrochemically active surface area compared with unmodified screen-printed electrodes (by 44% and 10% on average for [Ru(NH3)6]Cl2 and K3[Fe(CN)6], respectively). The presented sensing system shows high specificity towards protein D in Hi bacteria, as confirmed by negative controls against potential interference from other pathogens, with an estimated tolerance limit for interference under 12%. The Hi limit of detection by electrochemical impedance spectroscopy was 1 CFU/mL (measured at - 0.13 V vs BDDPE pseudo-reference), which was achieved in under 10 min, including 5 min sample incubation in the presence of the analyte.
Collapse
Affiliation(s)
- Mateusz Ficek
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mateusz Cieślik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Monika Janik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Mateusz Brodowski
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mirosław Sawczak
- Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Jacek Ryl
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
31
|
Liu J, Wang M, Guo C, Tao Z, Wang M, He L, Liu B, Zhang Z. Defective porphyrin-based metal-organic framework nanosheets derived from V 2CT x MXene as a robust bioplatform for impedimetric aptasensing 17β-estradiol. Food Chem 2023; 416:135839. [PMID: 36893636 DOI: 10.1016/j.foodchem.2023.135839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
An electrochemical aptasensor was prepared for the efficient, sensitive, and selective detection of 17β-estradiol. The sensor was based on a defective two-dimensional porphyrin-based metal-organic framework derived from V2CTx MXene. The resulting metal-organic framework nanosheets benefited from the advantages of V2CTx MXene nanosheets and porphyrin-based metal-organic framework, two-dimensional porphyrin-based metal-organic framework nanosheets demonstrated amplified electrochemical response and enhanced aptamer-immobilization ability compared with V2CTx MXene nanosheets. The sensor's detection limit was ultralow at 0.81 fg mL-1 (2.97 fM), and the 17β-estradiol concentration range was wide, thereby outperforming most reported aptasensors. The high selectivity, superior stability and reproducibility, and excellent regeneration performance of the constructed aptasensor indicated its remarkable potential application for 17β-estradiol determination in diverse real samples. This aptasensing strategy can be used to analyze other targets by replacing the corresponding aptamer.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zheng Tao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
32
|
Alshammari A, van Zalinge H, Sandall I. In Situ Monitoring of Aptamer-Protein Binding on a ZnO Surface Using Spectroscopic Ellipsometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:6353. [PMID: 37514647 PMCID: PMC10385375 DOI: 10.3390/s23146353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The dissolution of zinc oxide is investigated using spectroscopic ellipsometry to investigate its suitability as a platform for biosensing applications. The results indicate that once the ZnO surface has been functionalised, it is suitably protected, and no significant dissolving of the ZnO occurs. The binding kinetics of the SARS-CoV-2 spike protein on aptamer-functionalised zinc oxide surfaces are subsequently investigated. Values are extracted for the refractive index and associated optical constants for both the aptamer layer used and the protein itself. It is shown that upon an initial exposure to the protein, a rapid fluctuation in the surface density is observed. After around 20 min, this effect stabilises, and a fixed increase in the surface density is observed, which itself increases as the concentration of the protein is increased. This technique and setup are demonstrated to have a limit-of-detection down to 1 nanomole (nM) and display a linear response to concentrations up to 100 nM.
Collapse
Affiliation(s)
- Adeem Alshammari
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Harm van Zalinge
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Ian Sandall
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| |
Collapse
|
33
|
Puthussery JV, Ghumra DP, McBrearty KR, Doherty BM, Sumlin BJ, Sarabandi A, Mandal AG, Shetty NJ, Gardiner WD, Magrecki JP, Brody DL, Esparza TJ, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Real-time environmental surveillance of SARS-CoV-2 aerosols. Nat Commun 2023; 14:3692. [PMID: 37429842 DOI: 10.1038/s41467-023-39419-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Real-time surveillance of airborne SARS-CoV-2 virus is a technological gap that has eluded the scientific community since the beginning of the COVID-19 pandemic. Offline air sampling techniques for SARS-CoV-2 detection suffer from longer turnaround times and require skilled labor. Here, we present a proof-of-concept pathogen Air Quality (pAQ) monitor for real-time (5 min time resolution) direct detection of SARS-CoV-2 aerosols. The system synergistically integrates a high flow (~1000 lpm) wet cyclone air sampler and a nanobody-based ultrasensitive micro-immunoelectrode biosensor. The wet cyclone showed comparable or better virus sampling performance than commercially available samplers. Laboratory experiments demonstrate a device sensitivity of 77-83% and a limit of detection of 7-35 viral RNA copies/m3 of air. Our pAQ monitor is suited for point-of-need surveillance of SARS-CoV-2 variants in indoor environments and can be adapted for multiplexed detection of other respiratory pathogens of interest. Widespread adoption of such technology could assist public health officials with implementing rapid disease control measures.
Collapse
Affiliation(s)
- Joseph V Puthussery
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Dishit P Ghumra
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Kevin R McBrearty
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - Brookelyn M Doherty
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - Benjamin J Sumlin
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Amirhossein Sarabandi
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anushka Garg Mandal
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nishit J Shetty
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Woodrow D Gardiner
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - Jordan P Magrecki
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - David L Brody
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas J Esparza
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Traci L Bricker
- Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University, St. Louis, MO, 63110, USA
- Departments Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - John R Cirrito
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA.
| | - Rajan K Chakrabarty
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
34
|
Shelash Al-Hawary SI, Sapaev IB, Althomali RH, Musad Saleh EA, Qadir K, Romero-Parra RM, Ismael Ouda G, Hussien BM, Ramadan MF. Recent Progress in Screening of Mycotoxins in Foods and Other Commodities Using MXenes-Based Nanomaterials. Crit Rev Anal Chem 2023; 54:3066-3082. [PMID: 37307199 DOI: 10.1080/10408347.2023.2222412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin pollution in agricultural food products endangers animal and human health during the supply chains, therefore the development of accurate and rapid techniques for the determination of mycotoxins is of great importance for food safety guarantee. MXenes-based nanoprobes have attracted enormous attention as a complementary analysis and promising alternative strategies to conventional diagnostic methods, because of their fascinating features, like high electrical conductivity, various surface functional groups, high surface area, superb thermal resistance, good hydrophilicity, and environmentally-friendlier characteristics. In this study, we outline the state-of-the-art research on MXenes-based probes in detecting various mycotoxins like aflatoxin, ochratoxin, deoxynivalenol, zearalenone, and other toxins as a most commonly founded mycotoxin in the agri-food supply chain. First, we present the diverse synthesis approaches and exceptional characteristics of MXenes. Afterward, based on the detecting mechanism, we divide the biosensing utilizations of MXenes into two subcategories: electrochemical, and optical biosensors. Then their performance in effective sensing of mycotoxins is comprehensively deliberated. Finally, present challenges and prospective opportunities for MXenes are debated.
Collapse
Affiliation(s)
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Saudi Arabia
| | - Kamran Qadir
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin, China
| | | | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
35
|
Bolourinezhad M, Rezayi M, Meshkat Z, Soleimanpour S, Mojarrad M, Zibadi F, Aghaee-Bakhtiari SH, Taghdisi SM. Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19. Talanta 2023; 265:124804. [PMID: 37329753 PMCID: PMC10259158 DOI: 10.1016/j.talanta.2023.124804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Since the rapid spread of the SARS-CoV-2 (2019), the need for early diagnostic techniques to control this pandemic has been highlighted. Diagnostic methods based on virus replication, such as RT-PCR, are exceedingly time-consuming and expensive. As a result, a rapid and accurate electrochemical test which is both available and cost-effective was designed in this study. MXene nanosheets (Ti3C2Tx) and carbon platinum (Pt/C) were employed to amplify the signal of this biosensor upon hybridization reaction of the DNA probe and the virus's specific oligonucleotide target in the RdRp gene region. By the differential pulse voltammetry (DPV) technique, the calibration curve was obtained for the target with varying concentrations ranging from 1 aM to 100 nM. Due to the increase in the concentration of the oligonucleotide target, the signal of DPV increased with a positive slope and a correlation coefficient of 0.9977. Therefore, at least a limit of detection (LOD) was obtained 0.4 aM. Furthermore, the specificity and sensitivity of the sensors were evaluated with 192 clinical samples with positive and negative RT-PCR tests, which revealed 100% accuracy and sensitivity, 97.87% specificity and limit of quantification (LOQ) of 60 copies/mL. Besides, various matrices such as saliva, nasopharyngeal swabs, and serum were assessed for detecting SARS-CoV-2 infection by the developed biosensor, indicating that this biosensor has the potential to be used for rapid Covid-19 test detection.
Collapse
Affiliation(s)
- Monireh Bolourinezhad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Genetics, School of Medicine Medical Genetics Research Center Basic Sciences Research Institute Mashhad University of Medical Sciences, Iran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Wang L, Xu J, Liu H, Wang S, Ou W, Zhang M, Wei F, Luo S, Chen B, Zhang S, Yu K. Ultrasensitive and on-site eDNA detection for the monitoring of crown-of-thorns starfish densities at the pre-outbreak stage using an electrochemical biosensor. Biosens Bioelectron 2023; 230:115265. [PMID: 36996547 DOI: 10.1016/j.bios.2023.115265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The coral reef crisis has significantly intensified over the last decades, mainly due to severe outbreaks of crown-of-thorns starfish (COTS). Current ecological monitoring has failed to detect COTS densities at the pre-outbreak stage, thus preventing early intervention. In this work, we developed an effective electrochemical biosensor modified by a MoO2/C nanomaterial, as well as a specific DNA probe that could detect trace COTS environmental DNA (eDNA) at a lower detection limit (LOD = 0.147 ng/μL) with excellent specificity. The reliability and accuracy of the biosensor were validated against the standard methods by an ultramicro spectrophotometer and droplet digital PCR (p > 0.05). The biosensor was then utilized for the on-site analysis of seawater samples from SYM-LD and SY sites in the South China Sea. For the SYM-LD site suffering an outbreak, the COTS eDNA concentrations were 0.33 ng/μL (1 m, depth) and 0.26 ng/μL (10 m, depth), respectively. According to the ecological survey, the COTS density was 500 ind/hm2 at the SYM-LD site, verifying the accuracy of our measurements. At the SY site, COTS eDNA was also detected at 0.19 ng/μL, but COTS was not found by the traditional survey. Hence, larvae were possibly present in this region. Therefore, this electrochemical biosensor could be used to monitor COTS populations at the pre-outbreak stages, and potentially serve as a revolutionary early warning method. We will continue to improve this method for picomolar or even femtomolar detection of COTS eDNA.
Collapse
Affiliation(s)
- Liwei Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Jiarong Xu
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shaopeng Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Wenchao Ou
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Man Zhang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Fen Wei
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Songlin Luo
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kefu Yu
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
37
|
Wu X, Zhao H, Zhou E, Zou Y, Xiao S, Ma S, You R, Li P. Two-Dimensional Transition Metal Dichalcogenide Tunnel Field-Effect Transistors for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23583-23592. [PMID: 37020349 DOI: 10.1021/acsami.3c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials have drawn significant attention due to their outstanding sensitivity. However, the Boltzmann distribution of electrons imposes a physical limit on the subthreshold swing (SS), and a 2D-material biosensor with sub-60 mV/dec SS has not been realized, which hinders further increase of the sensitivity of 2D-material FET biosensors. Here, we report tunnel FETs (TFETs) based on a SnSe2/WSe2 heterostructure and observe the tunneling effect of a 2D material in aqueous solution for the first time with an ultralow SS of 29 mV/dec. A bilayer dielectric (Al2O3/HfO2) and graphene contacts, which significantly reduce the leakage current in solution and contact resistance, respectively, are crucial to the realization of the tunneling effect in solution. Then, we propose a novel biosensing method by using tunneling current as the sensing signal. The TFETs show an extremely high pH sensitivity of 895/pH due to ultralow SS, surpassing the sensitivity of FET biosensors based on a single 2D material (WSe2) by 8-fold. Specific detection of glucose is realized, and the biosensors show a superb sensitivity (3158 A/A for 5 mM), wide sensing range (from 10-9 to 10-3 M), low detection limit (10-9 M), and rapid response rate (11 s). The sensors also exhibit the ability of monitoring glucose in complex biofluid (sweat). This work provides a platform for ultrasensitive biosensing. The discovery of the tunneling effect of 2D materials in aqueous solution may stimulate further fundamental research and potential applications.
Collapse
Affiliation(s)
- Xian Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Haojie Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Enze Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Shanpeng Xiao
- China Mobile Research Institute, Beijing 100053, China
| | - Shuai Ma
- China Mobile Research Institute, Beijing 100053, China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| |
Collapse
|
38
|
Roberts A, Dhanze H, Sharma GT, Gandhi S. Point-of-care detection of Japanese encephalitis virus biomarker in clinical samples using a portable smartphone-enabled electrochemical "Sensit" device. Bioeng Transl Med 2023; 8:e10506. [PMID: 37206199 PMCID: PMC10189466 DOI: 10.1002/btm2.10506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 05/21/2023] Open
Abstract
Japanese encephalitis (JE), a neglected tropical zoonotic disease prevalent in south-east Asian and western pacific countries, caused by the flavivirus JE virus (JEV), has a dearth of electrochemical point-of-care (PoC) diagnostic tools available to manage endemic breakouts. To overcome this, we have developed a screen-printed carbon electrode (SPCE) immunosensor for rapid PoC detection of JEV nonstructural 1 (NS1) antigen (Ag), found circulating in serum of infected individuals using a smartphone based portable "Sensit" device. The modification of SPCE surface with JEV NS1 antibody (Ab) was confirmed via observation of globular protein structures via scanning electron microscopy (SEM), increase in electrode surface hydrophilicity via contact angle measurement and decrease in current via differential pulse voltammetry (DPV). The fabrication and testing parameters were optimized based on highest current output obtained using DPV. The SPCE was tested for detection limit of target JEV NS1 Ag ranging from 1 fM to 1 μM, which was determined as 0.45 fM in spiked serum. The disposable immunosensor was also found to be highly specific in detecting JEV NS1 Ag over other flaviviral NS1 Ag. Finally, the modified SPCE was clinically validated by testing 62 clinical JEV samples using both a portable miniaturized electrochemical "Sensit" device coupled with a smartphone and a laboratory-based potentiostat. The results were corroborated with gold-standard RT-PCR and showed 96.77% accuracy, 96.15% sensitivity, and 97.22% specificity. Hence, this technique may further be developed into a one-step rapid diagnostic tool for JEV, especially in rural areas.
Collapse
Affiliation(s)
- Akanksha Roberts
- DBT‐National Institute of Animal Biotechnology (NIAB)HyderabadTelanganaIndia
- DBT‐Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Himani Dhanze
- ICAR‐Indian Veterinary Research Institute (IVRI)IzatnagarUttar PradeshIndia
| | - G. Taru Sharma
- DBT‐National Institute of Animal Biotechnology (NIAB)HyderabadTelanganaIndia
- DBT‐Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Sonu Gandhi
- DBT‐National Institute of Animal Biotechnology (NIAB)HyderabadTelanganaIndia
- DBT‐Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| |
Collapse
|
39
|
Curulli A. Functional Nanomaterials Enhancing Electrochemical Biosensors as Smart Tools for Detecting Infectious Viral Diseases. Molecules 2023; 28:molecules28093777. [PMID: 37175186 PMCID: PMC10180161 DOI: 10.3390/molecules28093777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electrochemical biosensors are known as analytical tools, guaranteeing rapid and on-site results in medical diagnostics, food safety, environmental protection, and life sciences research. Current research focuses on developing sensors for specific targets and addresses challenges to be solved before their commercialization. These challenges typically include the lowering of the limit of detection, the widening of the linear concentration range, the analysis of real samples in a real environment and the comparison with a standard validation method. Nowadays, functional nanomaterials are designed and applied in electrochemical biosensing to support all these challenges. This review will address the integration of functional nanomaterials in the development of electrochemical biosensors for the rapid diagnosis of viral infections, such as COVID-19, middle east respiratory syndrome (MERS), influenza, hepatitis, human immunodeficiency virus (HIV), and dengue, among others. The role and relevance of the nanomaterial, the type of biosensor, and the electrochemical technique adopted will be discussed. Finally, the critical issues in applying laboratory research to the analysis of real samples, future perspectives, and commercialization aspects of electrochemical biosensors for virus detection will be analyzed.
Collapse
Affiliation(s)
- Antonella Curulli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 00161 Rome, Italy
| |
Collapse
|
40
|
Chen H, Zhang J, Huang R, Wang D, Deng D, Zhang Q, Luo L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023; 28:molecules28083605. [PMID: 37110837 PMCID: PMC10144570 DOI: 10.3390/molecules28083605] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Disease-related biomarkers may serve as indicators of human disease. The clinical diagnosis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been the subject of extensive investigations. Due to the specificity of antibody and antigen recognition, electrochemical immunosensors can accurately detect multiple disease biomarkers, including proteins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical immunosensors. The electrochemical immunosensors are developed using three different catalysts: redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses on the applications of those immunosensors in the detection of cancer, Alzheimer's disease, novel coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosensors are addressed in terms of achieving lower detection limits, improving electrode modification capabilities and developing composite functional materials.
Collapse
Affiliation(s)
- Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dejia Wang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
41
|
Zheng Y, Song X, Fredj Z, Bian S, Sawan M. Challenges and perspectives of multi-virus biosensing techniques: A review. Anal Chim Acta 2023; 1244:340860. [PMID: 36737150 PMCID: PMC9868144 DOI: 10.1016/j.aca.2023.340860] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
In the context of globalization, individuals have an increased chance of being infected by multiple viruses simultaneously, thereby highlighting the importance of developing multiplexed devices. In addition to sufficient sensitivity and rapid response, multi-virus sensing techniques are expected to offer additional advantages including high throughput, one-time sampling for parallel analysis, and full automation with data visualization. In this paper, we review the optical, electrochemical, and mechanical platforms that enable multi-virus biosensing. The working mechanisms of each platform, including the detection principle, transducer configuration, bio-interface design, and detected signals, are reviewed. The advantages and limitations, as well as the challenges in implementing various detection strategies in real-life scenarios, were evaluated. Future perspectives on multiplexed biosensing techniques are critically discussed. Earlier access to multi-virus biosensors will efficiently serve for immediate pandemic control, such as in emerging SARS-CoV-2 and monkeypox cases.
Collapse
Affiliation(s)
- Yuqiao Zheng
- Zhejiang University, Hangzhou, 310058, Zhejiang, China,Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xixi Song
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Zina Fredj
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Sumin Bian
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China.
| | - Mohamad Sawan
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
42
|
Ang PC, Perumal V, Ibrahim MNM, Adnan R, Mohd Azman DK, Gopinath SCB, Raja PB. Electrochemical biosensor detection on respiratory and flaviviruses. Appl Microbiol Biotechnol 2023; 107:1503-1513. [PMID: 36719432 PMCID: PMC9887245 DOI: 10.1007/s00253-023-12400-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance.
Collapse
Affiliation(s)
- Phaik Ching Ang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
- Mechanical Engineering Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
| | | | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Daruliza Kernain Mohd Azman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
43
|
Bazazi S, Hosseini SP, Hashemi E, Rashidzadeh B, Liu Y, Saeb MR, Xiao H, Seidi F. Polysaccharide-based C-dots and polysaccharide/C-dot nanocomposites: fabrication strategies and applications. NANOSCALE 2023; 15:3630-3650. [PMID: 36728615 DOI: 10.1039/d2nr07065k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
C-dots are a new class of materials with vast applications. The synthesis of bio-based C-dots has attracted increasing attention in recent years. Polysaccharides being the most abundant natural materials with high biodegradability and no toxicity have been the focus of researchers for the synthesis of C-dots. C-dots obtained from polysaccharides are generally fabricated via thermal procedures, carbonization, and microwave pyrolysis. Small size, photo-induced electron transfer (PET), and highly adjustable luminosity behavior are the most important physical and chemical properties of C-dots. However, C-dot/polysaccharide composites can be introduced as a new generation of composites that combine the features of both C-dots and polysaccharides having a wide range of applications in biomedicines, biosensors, drug delivery systems, etc. This review demonstrates the features, raw materials, and methods used for the fabrication of C-dots derived from different polysaccharides. Furthermore, the properties, applications, and synthesis conditions of various C-dot/polysaccharide composites are discussed in detail.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Seyedeh Parisa Hosseini
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | | | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
44
|
Svalova TS, Malysheva NN, Zaidullina RA, Medvedeva MV, Mazur AV, Kozitsina AN. Novel electrochemical immunosensing platform based on magnetite-antibody conjugate as a direct signal label: design and application for Salmonella typhimurium antigen determination. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Tatiana S. Svalova
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Natalia N. Malysheva
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Regina A. Zaidullina
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Margarita V. Medvedeva
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Alena V. Mazur
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Alisa N. Kozitsina
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| |
Collapse
|
45
|
Truong PL, Yin Y, Lee D, Ko SH. Advancement in COVID-19 detection using nanomaterial-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20210232. [PMID: 37323622 PMCID: PMC10191025 DOI: 10.1002/exp.20210232] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/11/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has exemplified how viral growth and transmission are a significant threat to global biosecurity. The early detection and treatment of viral infections is the top priority to prevent fresh waves and control the pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified through several conventional molecular methodologies that are time-consuming and require high-skill labor, apparatus, and biochemical reagents but have a low detection accuracy. These bottlenecks hamper conventional methods from resolving the COVID-19 emergency. However, interdisciplinary advances in nanomaterials and biotechnology, such as nanomaterials-based biosensors, have opened new avenues for rapid and ultrasensitive detection of pathogens in the field of healthcare. Many updated nanomaterials-based biosensors, namely electrochemical, field-effect transistor, plasmonic, and colorimetric biosensors, employ nucleic acid and antigen-antibody interactions for SARS-CoV-2 detection in a highly efficient, reliable, sensitive, and rapid manner. This systematic review summarizes the mechanisms and characteristics of nanomaterials-based biosensors for SARS-CoV-2 detection. Moreover, continuing challenges and emerging trends in biosensor development are also discussed.
Collapse
Affiliation(s)
- Phuoc Loc Truong
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Yiming Yin
- New Materials InstituteDepartment of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboChina
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
| | - Daeho Lee
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
- Institute of Advanced Machinery and Design (SNU‐IAMD)/Institute of Engineering ResearchSeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
46
|
Ali MR, Bacchu MS, Das S, Akter S, Rahman MM, Saad Aly MA, Khan MZH. Label free flexible electrochemical DNA biosensor for selective detection of Shigella flexneri in real food samples. Talanta 2023; 253:123909. [PMID: 36152607 DOI: 10.1016/j.talanta.2022.123909] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
An effective tool for early-stage selective detection of the foodborne bacterial pathogen Shigella flexneri (S. flexneri) is essential for diagnosing infectious diseases and controlling outbreaks. Here, a label-free electrochemical DNA biosensor for monitoring S. flexneri is developed. To fabricate the biosensor, detection probe (capture probe) is immobilized on the surface of poly melamine (P-Mel) and poly glutamic acid (PGA), and disuccinimidyl suberate (DSS) functionalized flexible indium tin oxide (ITO) electrode. Anthraquinone-2-sulfonic acid monohydrate sodium salt (AQMS) is used as a signal indicator for the detection of S. flexneri. The proposed DNA biosensor exhibits a wide dynamic range with concentration of the targets ranging from 1 × 10-6 to 1 × 10-21 molL-1 with a limit of detection (LOD) of 7.4 × 10-22 molL-1 in the complementary linear target of S. flexneri, and a detection range of 8 × 1010-80 cells/ml with a LOD of 10 cells/ml in real S. flexneri sample. The proposed flexible biosensor provides high specificity for the detection of S. flexneri compared to other target signals such as discrete base mismatches and different bacterial species. The developed biosensor displayed excellent recoveries in detecting S. flexneri in spiked food samples. Therefore, the proposed biosensor can serve as a model methodology for the detection of other pathogens in a broad span of industries.
Collapse
Affiliation(s)
- M R Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M S Bacchu
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - S Das
- Dept. of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - S Akter
- Dept. of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M M Rahman
- Faculty of Science and Information Technology, Daffodil International University, Dhaka, 1207, Bangladesh
| | - M Aly Saad Aly
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Daegu, 42988, South Korea
| | - M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
47
|
Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal 2023; 223:115120. [DOI: 10.1016/j.jpba.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
48
|
Muttaqien SE, Khoris IM, Pambudi S, Park EY. Nanosphere Structures Using Various Materials: A Strategy for Signal Amplification for Virus Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 23:160. [PMID: 36616758 PMCID: PMC9824175 DOI: 10.3390/s23010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials have been explored in the sensing research field in the last decades. Mainly, 3D nanomaterials have played a vital role in advancing biomedical applications, and less attention was given to their application in the field of biosensors for pathogenic virus detection. The versatility and tunability of a wide range of nanomaterials contributed to the development of a rapid, portable biosensor platform. In this review, we discuss 3D nanospheres, one of the classes of nanostructured materials with a homogeneous and dense matrix wherein a guest substance is carried within the matrix or on its surface. This review is segmented based on the type of nanosphere and their elaborative application in various sensing techniques. We emphasize the concept of signal amplification strategies using different nanosphere structures constructed from a polymer, carbon, silica, and metal-organic framework (MOF) for rendering high-level sensitivity of virus detection. We also briefly elaborate on some challenges related to the further development of nanosphere-based biosensors, including the toxicity issue of the used nanomaterial and the commercialization hurdle.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Enoch Y. Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
49
|
Li C, Che B, Deng L. Electrochemical Biosensors Based on Carbon Nanomaterials for Diagnosis of Human Respiratory Diseases. BIOSENSORS 2022; 13:12. [PMID: 36671847 PMCID: PMC9855565 DOI: 10.3390/bios13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In recent years, respiratory diseases have increasingly become a global concern, largely due to the outbreak of Coronavirus Disease 2019 (COVID-19). This inevitably causes great attention to be given to the development of highly efficient and minimal or non-invasive methods for the diagnosis of respiratory diseases. And electrochemical biosensors based on carbon nanomaterials show great potential in fulfilling the requirement, not only because of the superior performance of electrochemical analysis, but also given the excellent properties of the carbon nanomaterials. In this paper, we review the most recent advances in research, development and applications of electrochemical biosensors based on the use of carbon nanomaterials for diagnosis of human respiratory diseases in the last 10 years. We first briefly introduce the characteristics of several common human respiratory diseases, including influenza, COVID-19, pulmonary fibrosis, tuberculosis and lung cancer. Then, we describe the working principles and fabrication of various electrochemical biosensors based on carbon nanomaterials used for diagnosis of these respiratory diseases. Finally, we summarize the advantages, challenges, and future perspectives for the currently available electrochemical biosensors based on carbon nanomaterials for detecting human respiratory diseases.
Collapse
|
50
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|