1
|
Guo L, Lee HK, Oh S, Koirala GR, Kim TI. Smart Bioelectronics for Real-Time Diagnosis and Therapy of Body Organ Functions. ACS Sens 2025; 10:3239-3273. [PMID: 40310273 DOI: 10.1021/acssensors.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Noncommunicable diseases (NCDs) associated with cardiovascular, neurological, and gastrointestinal disorders remain a leading cause of global mortality, sounding the alarm for the urgent need for better diagnostic and therapeutic solutions. Wearable and implantable biointegrated electronics offer a groundbreaking solution, combining real-time, high-resolution monitoring with innovative treatment capabilities tailored to specific organ functions. In this comprehensive review, we focus on the diseases affecting the brain, heart, gastrointestinal organs, bladder, and adrenal gland, along with their associated physiological parameters. Additionally, we provide an overview of the characteristics of these parameters and explore the potential of bioelectronic devices for in situ sensing and therapeutic applications and highlight the recent advancements in their deployment across specific organs. Finally, we analyze the current challenges and prospects of implementing closed-loop feedback control systems in integrated sensor-therapy applications. By emphasizing organ-specific applications and advocating for closed-loop systems, this review highlights the potential of future bioelectronics to address physiological needs and serves as a guide for researchers navigating the interdisciplinary fields of diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Lili Guo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Salatin S, Shafiee-Kandjani AR, Ghobadloo PA, Pakkhesal S, Hamidi S. Nanopsychiatry: Advancing psychiatric diagnosis and monitoring through nanotechnology-based detection. Clin Chim Acta 2025; 572:120268. [PMID: 40154722 DOI: 10.1016/j.cca.2025.120268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Nanopsychiatry, operating at the nanoscale, leverages engineered nanomaterials and nanodevices to revolutionize psychiatric diagnostics and therapeutics. This review systematically analyzes the implementation of advanced nanomaterials, including quantum dots, carbon nanotubes (CNTs), and metal nanoparticles, in neural interface systems for neurotransmitter detection and drug monitoring. We evaluate the integration of nanoscale architectures in developing high-specificity biosensors for key neurotransmitters such as dopamine, serotonin, and glutamate. The review critically examines recent advances in nanomaterial-based electrochemical and optical sensing platforms, incorporating modified electrodes with conducting polymers, metallic nanocomposites, and functionalized graphene derivatives. These systems demonstrate enhanced sensitivity and selective multi-analyte detection capabilities in complex biological matrices. We analyze how these nanosensors complement conventional neuroimaging techniques, enabling monitoring of neurochemical dynamics in psychiatric conditions with improved spatial and temporal resolution. Furthermore, we assess the development of flexible, nanomaterial-enhanced wearable biosensors incorporating screen-printed electrodes and microfluidic systems. These devices achieve continuous monitoring of neurological biomarkers, facilitating quantitative assessment of psychiatric symptoms and treatment responses. The integration of machine learning algorithms with these nanoscale sensing platforms enables data processing and pattern recognition for personalized psychiatric interventions.
Collapse
Affiliation(s)
- Sara Salatin
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Abedi Ghobadloo
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Coskun A, Savas IN, Can O, Lippi G. From population-based to personalized laboratory medicine: continuous monitoring of individual laboratory data with wearable biosensors. Crit Rev Clin Lab Sci 2025; 62:198-227. [PMID: 39893518 DOI: 10.1080/10408363.2025.2453152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Monitoring individuals' laboratory data is essential for assessing their health status, evaluating the effectiveness of treatments, predicting disease prognosis and detecting subclinical conditions. Currently, monitoring is performed intermittently, measuring serum, plasma, whole blood, urine and occasionally other body fluids at predefined time intervals. The ideal monitoring approach entails continuous measurement of concentration and activity of biomolecules in all body fluids, including solid tissues. This can be achieved through the use of biosensors strategically placed at various locations on the human body where measurements are required for monitoring. High-tech wearable biosensors provide an ideal, noninvasive, and esthetically pleasing solution for monitoring individuals' laboratory data. However, despite significant advances in wearable biosensor technology, the measurement capacities and the number of different analytes that are continuously monitored in patients are not yet at the desired level. In this review, we conducted a literature search and examined: (i) an overview of the background of monitoring for personalized laboratory medicine, (ii) the body fluids and analytes used for monitoring individuals, (iii) the different types of biosensors and methods used for measuring the concentration and activity of biomolecules, and (iv) the statistical algorithms used for personalized data analysis and interpretation in monitoring and evaluation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Nur Savas
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Li Z, Luo D, Zhang Y, Niu X, Liu H. Smart Health Monitoring: Review of Electrochemical Biosensors for Cortisol Monitoring. Adv Healthc Mater 2025; 14:e2404454. [PMID: 40099568 DOI: 10.1002/adhm.202404454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Cortisol, also known as the stress hormone, is a crucial corticosteroid hormone that significantly increases secretion in the human body when facing notable stress. Monitoring cortisol levels is crucial for personal stress management and the diagnosis and treatment of certain diseases. Electrochemical biosensors combine the efficient sensitivity of electrochemical technology with the high specificity of biological recognition processes, making them widely applicable in the analysis of human body fluid components. This work outlines the working mechanism of cortisol electrochemical biosensors, focusing particularly on sensing elements such as antibodies, aptamers, and molecularly imprinted polymers. It provides detailed explanations of the operational principles of these different recognition elements. This work summarizes and evaluates the latest advancements in electrochemical biosensors for detecting cortisol in human body fluids, discussing the influence of different recognition elements on sensor design and electrochemical performance. Subsequently, through a comparative analysis of various sensor performances, the work further discusses the challenges in translating laboratory achievements into practical applications, including enhancing key metrics such as sensor reusability, reproducibility, long-term stability, continuous monitoring capability, and response time. Finally, it offers insights and recommendations for achieving real-time, continuous, and long-term monitoring with cortisol electrochemical biosensors.
Collapse
Affiliation(s)
- Zhijie Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Yaqian Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Xin Niu
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- School of Arts, Tiangong University, Tianjin, 300387, China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
5
|
Wang Y, Liu C, Zhao W, Wang Q, Sun X, Zhang S. Biosensors and Biomarkers for the Detection of Motion Sickness. Adv Healthc Mater 2025; 14:e2403606. [PMID: 39901439 DOI: 10.1002/adhm.202403606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Motion sickness (MS) is a prevalent syndrome that predominantly occurs during transportation and virtual reality (VR). The absence of reliable indicators and detection methods makes precise diagnosis difficult. Biomarker concentrations and trends may imply individual susceptibility, symptom classification, and the specific progression of MS. It is therefore essential to explore biosensors capable of providing sensitive, accurate, and real-time monitoring of biomarkers. This review provides a summary of the pathogenesis and biological pathways underlying MS, followed by an examination of biomarkers and their research progress. The most recent electrochemical biosensors developed for the non-invasive detection of representative biomarkers (e.g., cortisol, α-amylase, and estrogen) are comprehensively summarized. The effectiveness of these biosensors in practical application is discussed. It is anticipated that electrochemical biosensors can be gradually improved from the sampling methods, multimodal combinations, and data processing, which can facilitate the detection of MS toward individuation, refinement, and intelligence.
Collapse
Affiliation(s)
- Yanbing Wang
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
| | - Chen Liu
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Qingfeng Wang
- Nottingham University Business School China, University of Nottingham, Ningbo, Zhejiang, 315100, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham, Ningbo, 315100, China
| | - Sheng Zhang
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Santhoshkumar P, Ramu D, Mahalakshmi L, Moses JA. 3D printed edible electronics: Components, fabrication approaches and applications. Biosens Bioelectron 2025; 272:117059. [PMID: 39752889 DOI: 10.1016/j.bios.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases. These edible devices include different components, such as sensors, actuators, and other electronic elements, all made from edible ingredients such as sugars, proteins, polysaccharides, polymers, and others. Among the different fabrication approaches, 3D printing can provide reliable solutions to specific requirements. The concept of EEs has the potential to transform healthcare, providing more convenient, less invasive alternatives and personalized, customizable products for patients that beat traditional manufacturing methods. While the potential is enormous, there are critical challenges, notably ensuring the long-term stability, and regulatory and safety of these devices within the human body. Accordingly, a detailed understanding of the underlying concepts, fabrication approaches, design considerations, and action in the body/application range has been presented. As an evolving field, there is ample scope for research and multiple challenges must be addressed; these are elaborated towards the concluding sections of this article.
Collapse
Affiliation(s)
- P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Dheetchanya Ramu
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - L Mahalakshmi
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
7
|
Kryger MH, Thomas RJ. The Past and Future of Sleep Medicine. Sleep Med Clin 2025; 20:1-17. [PMID: 39894590 DOI: 10.1016/j.jsmc.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The past of sleep medicine is rich with seminal discoveries, from the recognition of clinical syndromes to measurement of sleep itself to classic and novel therapeutics. Advances in neurobiology have mapped a number of sleep circuits, described the central and peripheral circadian system, and identified the cause of narcolepsy with cataplexy. Sleep apnea endotypes and phenotypes now have established clinical relevance, though treatment implications are a work in progress. Artificial intelligence will continue to change sleep medicine in a number of domains from aiding scoring to health outcome predictions. There is a large gap between the known science and clinical translational.
Collapse
Affiliation(s)
- Meir H Kryger
- Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Robert Joseph Thomas
- Harvard Medical School / Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
9
|
Ji T, Ye W, Xiao W, Dawson G, Dong Q, Gwenin C. Iridium oxide-modified reference screen-printed electrodes for point-of-care portable electrochemical cortisol detection. Talanta 2024; 280:126776. [PMID: 39216420 DOI: 10.1016/j.talanta.2024.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Cortisol is a well-known stress biomarker; this study focuses on using electrochemical immuno-sensing to measure the concentration of cortisol selectively and sensitively in artificial samples. Anti-cortisol antibodies have been immobilised on polycrystalline Au electrodes via strong covalent thiol bonds, fabricating an electrochemical bio-immunosensor for cortisol detection. IrOx was then anodically electrodeposited as a reference electrode on a commercial screen-printed electrode and electrochemical impedance spectrometry (EIS) studies were used to correlate the electrochemical response to cortisol concentration and the induced changes in charge transfer resistance (Rct). A linear relationship between the Rct and the logarithm of cortisol concentration was found in concentrations ranging from 1 ng/mL to 1 mg/mL with limit of detection at 11.85 pg/mL (32.69 pM). The modification of the reference electrode with iridium oxide has greatly improved the reproducibility of the screen-printed electrode. The sensing system can provide a reliable and sensitive detection approach for cortisol measurements.
Collapse
Affiliation(s)
- Tong Ji
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Wen Ye
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Weiyu Xiao
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Graham Dawson
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Qiuchen Dong
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China.
| | - Christopher Gwenin
- School of Applied Sciences Division of Health Sciences, Abertay University, Bell St, Dundee, DD1 1HG, United Kingdom.
| |
Collapse
|
10
|
Assalve G, Lunetti P, Di Cagno A, De Luca EW, Aldegheri S, Zara V, Ferramosca A. Advanced Wearable Devices for Monitoring Sweat Biochemical Markers in Athletic Performance: A Comprehensive Review. BIOSENSORS 2024; 14:574. [PMID: 39727839 DOI: 10.3390/bios14120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Wearable technology has advanced significantly, offering real-time monitoring of athletes' physiological parameters and optimizing training and recovery strategies. Recent developments focus on biosensor devices capable of monitoring biochemical parameters in addition to physiological ones. These devices employ noninvasive methods such as sweat analysis, which reveals critical biomarkers like glucose, lactate, electrolytes, pH, and cortisol. These biomarkers provide valuable insights into an athlete's energy use, hydration status, muscle function, and stress levels. Current technologies utilize both electrochemical and colorimetric methods for sweat analysis, with electrochemical methods providing higher precision despite potential signal interference. Wearable devices such as epidermal patches, temporary tattoos, and fabric-based sensors are preferred for their flexibility and unobtrusive nature compared to more rigid conventional wearables. Such devices leverage advanced materials and transmit real-time data to computers, tablets, or smartphones. These data would aid coaches and sports medical personnel in monitoring athletes' health, optimizing diets, and developing training plans to enhance performance and reduce injuries.
Collapse
Affiliation(s)
- Graziana Assalve
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Paola Lunetti
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Alessandra Di Cagno
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Ernesto William De Luca
- Department of Engineering Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- Institute of Technical and Business Information Systems, Otto-von-Guericke-University of Magdeburg, 39106 Magdeburg, Germany
| | - Stefano Aldegheri
- Department of Engineering Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Vincenzo Zara
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|
11
|
Shahzad S, Iftikhar FJ, Shah A, Rehman HA, Iwuoha E. Novel interfaces for internet of wearable electrochemical sensors. RSC Adv 2024; 14:36713-36732. [PMID: 39559568 PMCID: PMC11570917 DOI: 10.1039/d4ra07165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
The integration of wearable devices, the Internet of Things (IoT), and advanced sensing platforms implies a significant paradigm shift in technological innovations and human interactions. The IoT technology allows continuous monitoring in real time. Thus, Internet of Wearables has made remarkable strides, especially in the field of medical monitoring. IoT-enabled wearable systems assist in early disease detection that facilitates personalized interventions and proactive healthcare management, thereby empowering individuals to take charge of their wellbeing. Until now, physical sensors have been successfully integrated into wearable devices for physical activity monitoring. However, obtaining biochemical information poses challenges in the contexts of fabrication compatibility and shorter operation lifetimes. IoT-based electrochemical wearable sensors allow real-time acquisition of data and interpretation of biomolecular information corresponding to biomarkers, viruses, bacteria and metabolites, extending the diagnostic capabilities beyond physical activity tracking. Thus, critical heath parameters such as glucose levels, blood pressure and cardiac rhythm may be monitored by these devices regardless of location and time. This work presents versatile electrochemical sensing devices across different disciplines, including but not limited to sports, safety and wellbeing by using IoT. It also discusses the detection principles for biomarkers and biofluid monitoring, and their integration into devices and advancements in sensing interfaces.
Collapse
Affiliation(s)
- Suniya Shahzad
- National University of Technology (NUTECH) Islamabad 44000 Pakistan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Emmanuel Iwuoha
- Sensorlab, Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| |
Collapse
|
12
|
Deshpande P, De D, Badhe Y, Tallur S, Paul D, Rai B. An in silico design method of a peptide bioreceptor for cortisol using molecular modelling techniques. Sci Rep 2024; 14:22325. [PMID: 39333310 PMCID: PMC11436820 DOI: 10.1038/s41598-024-73044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Cortisol is established as a reliable biomarker for stress prompting intensified research in developing wearable sensors to detect it via eccrine sweat. Since cortisol is present in sweat in trace quantities, typically 8-140 ng/mL, developing such biosensors necessitates the design of bioreceptors with appropriate sensitivity and selectivity. In this work, we present a systematic biomimetic methodology and a semi-automated high-throughput screening tool which enables rapid selection of bioreceptors as compared to ab initio design of peptides via computational peptidology. Candidate proteins from databases are selected via molecular docking and ranked according to their binding affinities by conducting automated AutoDock Vina scoring simulations. These candidate proteins are then validated via full atomistic steered molecular dynamics computations including umbrella sampling to estimate the potential of mean force using GROMACS version 2022.6. These explicit molecular dynamic calculations are carried out in an eccrine sweat environment taking into consideration the protein dynamics and solvent effects. Subsequently, we present a candidate baseline peptide bioreceptor selected as a contiguous sequence of amino acids from the selected protein binding pocket favourably interacting with the target ligand (i.e., cortisol) from the active binding site of the proteins and maintaining its tertiary structure. A unique cysteine residue introduced at the N-terminus allows orientation-specific surface immobilization of the peptide onto the gold electrodes and to ensure exposure of the binding site. Comparative binding affinity simulations of this peptide with the target ligand along with commonly interfering species e.g., progesterone, testosterone and glucose are also presented to demonstrate the validity of this proposed peptide as a candidate baseline bioreceptor for future cortisol biosensor development.
Collapse
Affiliation(s)
- Parijat Deshpande
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India.
- Centre for Research in Nanotechnology & Science (CRNTS), IIT Bombay, Mumbai, 400076, India.
| | - Debankita De
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India
| | - Yogesh Badhe
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India
| | - Siddharth Tallur
- Department of Electrical Engineering, IIT Bombay, Mumbai, 400076, India
| | - Debjani Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Beena Rai
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India
| |
Collapse
|
13
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
14
|
Tsukada H, Wako M, Ueda S, Nagamine K. Touchpad-based immunochromatographic strip for detecting the skin surface proteins. Anal Biochem 2024; 692:115575. [PMID: 38796117 DOI: 10.1016/j.ab.2024.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
This study demonstrates, for the first time, the proof-of-concept of a novel immunosensor, a touchpad-based immunochromatographic strip, that non-invasively extracts and detects skin surface proteins. The strip was composed of a nitrocellulose membrane at the center, where a spot of anti-human IgG capture antibody was physically adsorbed. The capture antibody spot was covered with a glass fiber membrane impregnated with phosphate-buffered saline (PBS) to extract skin surface proteins, avoiding direct contact of the human skin with the capture antibodies. Skin surface IgG was detected in two steps: (1) touching the capture antibody via a glass fiber membrane containing PBS, and (2) dipping the strip into the Au-nanoparticle-labeled secondary antibody to visualize the existence of the captured skin surface IgG on the strip. We qualitatively demonstrated that using a very small amount of PBS while maintaining contact with the skin, skin surface proteins can be concentrated and detected, even with a relatively low-sensitivity immunochromatographic chip. This sensor is expected to be a potential biosensor for the non-invasive diagnosis of the integrity of human skin.
Collapse
Affiliation(s)
- Hyugo Tsukada
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan
| | - Mai Wako
- Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan
| | - Syunsuke Ueda
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan
| | - Kuniaki Nagamine
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan; Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, 992-8510, Yonezawa, Yamagata, Japan.
| |
Collapse
|
15
|
Backiyalakshmi G, Snekhalatha U, Salvador AL. Recent advancements in non-invasive wearable electrochemical biosensors for biomarker analysis - A review. Anal Biochem 2024; 692:115578. [PMID: 38801938 DOI: 10.1016/j.ab.2024.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
A biomarker is a molecular indicator that can be used to identify the presence or severity of a disease. It may be produced due to biochemical or molecular changes in normal biological processes. In some cases, the presence of a biomarker itself is an indication of the disease, while in other cases, the elevated or depleted level of a particular protein or chemical substance aids in identifying a disease. Biomarkers indicate the progression of the disease in response to therapeutic interventions. Identifying these biomarkers can assist in diagnosing the disease early and providing proper therapeutic treatment. In recent years, wearable electrochemical (EC) biosensors have emerged as an important tool for early detection due to their excellent selectivity, low cost, ease of fabrication, and improved sensitivity. There are several challenges in developing a fully integrated wearable sensor, such as device miniaturization, high power consumption, incorporation of a power source, and maintaining the integrity and durability of the biomarker for long-term continuous monitoring. This review covers the recent advancements in the fabrication techniques involved in device development, the types of sensing platforms utilized, different materials used, challenges, and future developments in the field of wearable biosensors.
Collapse
Affiliation(s)
- G Backiyalakshmi
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - U Snekhalatha
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines.
| | - Anela L Salvador
- College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines
| |
Collapse
|
16
|
Zhao J, Gong S, Mu Y, Jia X, Zhou Y, Tian Y, Chao D. Wearable dual-drug controlled release patch for psoriasis treatment. J Colloid Interface Sci 2024; 669:835-843. [PMID: 38749222 DOI: 10.1016/j.jcis.2024.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.
Collapse
Affiliation(s)
- Jiaxin Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Shengen Gong
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yueming Mu
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
17
|
Chaiyo S, Kunpatee K, Kalcher K, Yakoh A, Pungjunun K. 3D Paper-Based Device Integrated with a Battery-Less NFC Potentiostat for Nonenzymatic Detection of Cholesterol. ACS MEASUREMENT SCIENCE AU 2024; 4:432-441. [PMID: 39184358 PMCID: PMC11342457 DOI: 10.1021/acsmeasuresciau.4c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Portable electrochemical analytical devices such as cholesterol sensors are widely used for disease diagnosis. However, these tools are bulky and require bioreceptors for the specific detection of cholesterol. Herein, a novel 3D electrochemical paper-based analytical device (3D-ePAD) combined with a near-field communication (NFC) potentiostat was developed and applied to the nonenzymatic detection of cholesterol. This 3D-ePAD platform was designed so that all working operations are performed on a single device, which is separated into an origami PAD (oPAD) and an inset PAD (iPAD). β-Cyclodextrin (β-CD), which is immobilized on oPAD, is used as a specific material for the nonenzymatic detection of cholesterol. Through this device, cholesterol detection is integrated with a battery-free NFC potentiostat on a smartphone. The concentration of cholesterol was examined through a [Fe(CN)6]3-/4- current signal as a redox indicator, which was previously stored in the detection part of an iPAD. Under optimal conditions, 3D-ePAD/NFC exhibited a linear detection efficiency of 1-500 μM and a maximum detection limit of 0.3 μM for cholesterol detection. Moreover, the proposed sensor was successfully used to measure cholesterol in real serum samples from humans, and the results were consistent with those of a commercial cholesterol meter. Therefore, the new NFC-operated 3D-ePAD platform can be used as an alternative tool for the nonenzymatic quantification of various biomarkers. In addition, 3D-ePAD/NFC can support the diagnosis of other diseases in the future, as the device is inexpensive, portable, and disposable and functions with low sample volumes.
Collapse
Affiliation(s)
- Sudkate Chaiyo
- The
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of
Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanjana Kunpatee
- The
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kurt Kalcher
- Institute
of Chemistry, Karl-Franzens University, Universitätsplatz 1, Graz A-8010, Austria
| | - Abdulhadee Yakoh
- The
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of
Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kingkan Pungjunun
- Sensor
Technologist, Silicon Craft Technology Public
Company Limited, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Liu K, Wang H, Zhu F, Chang Z, Du R, Deng Y, Qi X. Lab on the Microneedles: A Wearable Metal-organic Frameworks-Based Sensor for Visual Monitoring of Stress Hormone. ACS NANO 2024; 18:14207-14217. [PMID: 38767706 DOI: 10.1021/acsnano.3c11729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Abnormal secretion and dysrhythmias of cortisol (CORT) are associated with various diseases such as sleep disorders, depression, and chronic fatigue. Wearable devices are a cutting-edge technology for point-of-care detection and dynamic monitoring of CORT with inspiring convenience. Herein, we developed a minimally invasive skin-worn device with the advanced integration of both interstitial fluid (ISF) sampling and target molecule sensing for simultaneous detection of CORT via a microneedle-based sensor with high sensitivity, excellent efficiency, and outstanding reproducibility. In the microneedle patch, swellable hydrogel was employed as the adsorption matrix for ISF extraction. Meanwhile, europium metal-organic frameworks (Eu-MOF) wrapped in the matrix played a vital role in CORT recognition and quantitative analysis. The wearable and label-free Eu-MOF-loaded microneedle patch exhibited high sensitivity in CORT detection with the detection limit reaching 10-9 M and excellent selectivity. Molecular dynamics simulation-driven mechanism exploration revealed that the strong interface interaction promoted fluorescence quenching of Eu-MOF. Moreover, in vitro and in vivo investigation confirmed the feasibility and reliability of the sensing method, and excellent biocompatibility was validated. Overall, a sensitive approach based on the wearable Eu-MOF microneedle (MN) patch was established for the simultaneous detection of CORT via visible fluorescence quenching with exciting clinical-translational ability.
Collapse
Affiliation(s)
- Kexin Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China
| | - Fengyuan Zhu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Ran Du
- School of Materials Science & Engineering, Beijing Institute of Technologya, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
19
|
Li C, Hu J, Hu N, Zhao J, Li Q, Han Y, Liu Y, Hu X, Zheng L, Cao Q. Aptamer-aided plasmonic nano-urchins for reporter-free surface-enhanced Raman spectroscopy analysis of cortisol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38683672 DOI: 10.1039/d4ay00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cortisol is a vital glucocorticoid hormone reflecting stress levels and related disease processes. In this study, we report an aptamer-functionalized plasmonic nano-urchin (α-FeOOH@Au-aptamer)-aided cortisol-capturing and surface-enhanced Raman spectroscopy (SERS) analysis approach. The designed α-FeOOH@Au-aptamer exhibits a well-patterned plasma structure, which combines the good SERS enhancement ability of reduced nanogaps between the Au plasma and the hot spot-favored structure of anisotropic tips from α-FeOOH urchins, with the high affinity of the aptamer towards cortisol molecules. The α-FeOOH@Au-aptamer achieved reporter-free SERS quantification for cortisol with good sensitivity (limit of detection <0.28 μmol L-1), robust salt (1.0 mol per L NaCl) and protein (5.0 mg per mL bovine serum protein) tolerance, favorable reproducibility, as well as good reusability. We further demonstrated the good cortisol-capturing ability and SERS efficacy of the α-FeOOH@Au-aptamer profiling in the serum and urine samples. Our approach provides an alternative tool for cortisol analysis and a reference strategy for report-free SERS detection of small molecules.
Collapse
Affiliation(s)
- Chengyu Li
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Jing Hu
- Clinical Psychology Department, Zhongshan Third People's Hospital, Zhongshan, Guangdong, 528451, China
| | - Nan Hu
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Jianjun Zhao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Qianwen Li
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Yanhui Han
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Yanxiong Liu
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Xufang Hu
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
20
|
Lin B, Sun T, Hui J, Zhou L, Xing Z, Wu Z, Mao H. Monitoring of Sweat Ions and Physiological Parameters via a Reconfigurable Modular System. ACS Sens 2024; 9:1272-1279. [PMID: 38265266 DOI: 10.1021/acssensors.3c02137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In recent years, wearable sensors have revolutionized health monitoring by enabling continuous, real-time tracking of human health and performance. These noninvasive devices are usually designed to monitor human physical state and biochemical markers. However, enhancing their functionalities often demands intricate customization by designers and additional expenses for users. Here, we present a strategy using assembled modular circuits to customize health monitoring wearables. The modular circuits can be effortlessly reconfigured to meet various specific requirements, facilitating the incorporation of diverse functions at a lower cost. To validate this approach, modular circuits were employed to develop four distinct systems for in vitro evaluations. These systems enabled the detection of sweat biomarkers and physical signals under various scenarios, including sedentary state, exercise, and daily activities with or without incorporating iontophoresis to induce sweat. Four key sweat markers (K+, Ca2+, Na+, and pH) and three essential physical indicators (heart rate, blood oxygen levels, and skin temperature) are selected as the detection targets. Commercial methods were also used to evaluate the potential for effective health monitoring with our technique. This reconfigurable modular wearable (ReModuWear) system promises to provide more easy-to-use and comprehensive health assessments. Additionally, it may contribute to environmental sustainability by reusing modules.
Collapse
Affiliation(s)
- Bo Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Sun
- Lin Gang Laboratory, Shanghai 201306, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Xing
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Xue J, Mao K, Cao H, Feng R, Chen Z, Du W, Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection. Food Chem 2024; 434:137456. [PMID: 37716150 DOI: 10.1016/j.foodchem.2023.137456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Organophosphorus pesticides (OPs) play an important role in agricultural production and the accurate detection of OP residues is essential to ensure food safety. Portable sensors are expected to be a potential device due to their high detection efficiency, easy-to-use processes and low cost. Due to the widespread popularity and powerful capabilities of smartphones, smartphone-based sensing systems have rapidly developed into ideal tools for portable detection, however, a systematic review on the detection of OPs is still lacking. Therefore, a comprehensive overview of sensors equipped with smartphones for OP detection in recent year is provided; this overview includes their sensing signals (colorimetric, fluorescent, chemiluminescent and electrochemical signals), detection mechanism, analysis applications, advantages/disadvantages and perspectives. Moreover, the progress of sensors equipped with smartphones for the detection of OPs in food is thoroughly summarized. This review contributes to food safety and the development of efficient and reliable methods for smartphone-based OPs detection.
Collapse
Affiliation(s)
- Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
22
|
Ok J, Park S, Jung YH, Kim TI. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211595. [PMID: 36917076 DOI: 10.1002/adma.202211595] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cortisol is a steroid hormone that is released from the body in response to stress. Although a moderate level of cortisol secretion can help the body maintain homeostasis, excessive secretion can cause various diseases, such as depression and anxiety. Conventional methods for cortisol measurement undergo procedures that limit continuous monitoring, typically collecting samples of bodily fluids, followed by separate analysis in a laboratory setting that takes several hours. Thus, recent studies demonstrate wearable, miniaturized sensors integrated with electronic modules that enable wireless real-time analysis. Here, the primary focus is on wearable and implantable electronic devices that continuously measure cortisol concentration. Diverse types of cortisol-sensing techniques, such as antibody-, DNA-aptamer-, and molecularly imprinted polymer-based sensors, as well as wearable and implantable devices that aim to continuously monitor cortisol in a minimally invasive fashion are discussed. In addition to the cortisol monitors that directly measure stress levels, other schemes that indirectly measure stress, such as electrophysiological signals and sweat are also summarized. Finally, the challenges and future directions in stress monitoring and management electronics are reviewed.
Collapse
Affiliation(s)
- Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sumin Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
23
|
Weber CJ, Clay OM, Lycan RE, Anderson GK, Simoska O. Advances in electrochemical biosensor design for the detection of the stress biomarker cortisol. Anal Bioanal Chem 2024; 416:87-106. [PMID: 37989847 DOI: 10.1007/s00216-023-05047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The monitoring of stress levels in humans has become increasingly relevant, given the recent incline of stress-related mental health disorders, lifestyle impacts, and chronic physiological diseases. Long-term exposure to stress can induce anxiety and depression, heart disease, and risky behaviors, such as drug and alcohol abuse. Biomarker molecules can be quantified in biological fluids to study human stress. Cortisol, specifically, is a hormone biomarker produced in the adrenal glands with biofluid concentrations that directly correlate to stress levels in humans. The rapid, real-time detection of cortisol is necessary for stress management and predicting the onset of psychological and physical ailments. Current methods, including mass spectrometry and immunoassays, are effective for sensitive cortisol quantification. However, these techniques provide only single measurements which pose challenges in the continuous monitoring of stress levels. Additionally, these analytical methods often require trained personnel to operate expensive instrumentation. Alternatively, low-cost electrochemical biosensors enable the real-time detection and continuous monitoring of cortisol levels while also providing adequate analytical figures of merit (e.g., sensitivity, selectivity, sensor response times, detection limits, and reproducibility) in a simple design platform. This review discusses the recent developments in electrochemical biosensor design for the detection of cortisol in human biofluids. Special emphasis is given to biosensor recognition elements, including antibodies, molecularly imprinted polymers (MIPs), and aptamers, as critical components of electrochemical biosensors for cortisol detection. Furthermore, the advantages and limiting factors of various electrochemical techniques and sensing in complex biofluid matrices are overviewed. Remarks on the current challenges and future perspectives regarding electrochemical biosensors for stress monitoring are provided, including matrix effects (pH dependence and biological interferences), wearability, and large-scale production.
Collapse
Affiliation(s)
- Courtney J Weber
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olivia M Clay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Reese E Lycan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Gracie K Anderson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
24
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
25
|
Karuppaiah G, Lee MH, Bhansali S, Manickam P. Electrochemical sensors for cortisol detection: Principles, designs, fabrication, and characterisation. Biosens Bioelectron 2023; 239:115600. [PMID: 37611448 DOI: 10.1016/j.bios.2023.115600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Psychological stress is a major factor contributing to health discrepancies among individuals. Sustained exposure to stress triggers signalling pathways in the brain, which leading to the release of stress hormones in the body. Cortisol, a steroid hormone, is a significant biomarker for stress management due to its responsibility in the body's reply to stress. The release of cortisol in bloodstream prepares the body for a "fight or flight" response by increasing heart rate, blood pressure, metabolism, and suppressing the immune system. Detecting cortisol in biological samples is crucial for understanding its role in stress and personalized healthcare. Traditional techniques for cortisol detection have limitations, prompting researchers to explore alternative strategies. Electrochemical sensing has emerged as a reliable method for point-of-care (POC) cortisol detection. This review focuses on the progress made in electrochemical sensors for cortisol detection, covering their design, principle, and electroanalytical methodologies. The analytical performance of these sensors is also analysed and summarized. Despite significant advancements, the development of electrochemical cortisol sensors faces challenges such as biofouling, sample preparation, sensitivity, flexibility, stability, and recognition layer performance. Therefore, the need to develop more sensitive electrodes and materials is emphasized. Finally, we discussed the potential strategies for electrode design and provides examples of sensing approaches. Moreover, the encounters of translating research into real world applications are addressed.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
26
|
Clark KM, Ray TR. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics. ACS Sens 2023; 8:3606-3622. [PMID: 37747817 PMCID: PMC11211071 DOI: 10.1021/acssensors.3c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.
Collapse
Affiliation(s)
- Kaylee M. Clark
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI 96813, USA
| |
Collapse
|
27
|
Lazaro A, Villarino R, Lazaro M, Canellas N, Prieto-Simon B, Girbau D. Recent Advances in Batteryless NFC Sensors for Chemical Sensing and Biosensing. BIOSENSORS 2023; 13:775. [PMID: 37622861 PMCID: PMC10452174 DOI: 10.3390/bios13080775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
This article reviews the recent advances in the field of batteryless near-field communication (NFC) sensors for chemical sensing and biosensing. The commercial availability of low-cost commercial NFC integrated circuits (ICs) and their massive integration in smartphones, used as readers and cloud interfaces, have aroused great interest in new batteryless NFC sensors. The fact that coil antennas are not importantly affected by the body compared with other wireless sensors based on far-field communications makes this technology suitable for future wearable point-of-care testing (PoCT) devices. This review first compares energy harvesting based on NFC to other energy-harvesting technologies. Next, some practical recommendations for designing and tuning NFC-based tags are described. Power transfer is key because in most cases, the energy harvested has to be stable for several seconds and not contaminated by undesired signals. For this reason, the effect of the dimensions of the coils and the conductivity on the wireless power transfer is thoroughly discussed. In the last part of the review, the state of the art in NFC-based chemical and biosensors is presented. NFC-based tags (or sensor tags) are mainly based on commercial or custom NFC ICs, which are used to harvest the energy from the RF field generated by the smartphone to power the electronics. Low-consumption colorimeters and potentiostats can be integrated into these NFC tags, opening the door to the integration of chemical sensors and biosensors, which can be harvested and read from a smartphone. The smartphone is also used to upload the acquired information to the cloud to facilitate the internet of medical things (IoMT) paradigm. Finally, several chipless sensors recently proposed in the literature as a low-cost alternative for chemical applications are discussed.
Collapse
Affiliation(s)
- Antonio Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Ramon Villarino
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Marc Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Nicolau Canellas
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Beatriz Prieto-Simon
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - David Girbau
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| |
Collapse
|
28
|
Sun J, Wang Z, Guan J. Single-atom nanozyme-based electrochemical sensors for health and food safety monitoring. Food Chem 2023; 425:136518. [PMID: 37290237 DOI: 10.1016/j.foodchem.2023.136518] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Electrochemical sensors and biosensors play an important role in many fields, including biology, clinical trials, and food industry. For health and food safety monitoring, accurate and quantitative sensing is needed to ensure that there is no significantly negative impact on human health. It is difficult for traditional sensors to meet these requirements. In recent years, single-atom nanozymes (SANs) have been successfully used in electrochemical sensors due to their high electrochemical activity, good stability, excellent selectivity and high sensitivity. Here, we first summarize the detection principle of SAN-based electrochemical sensors. Then, we review the detection performances of small molecules on SAN-based electrochemical sensors, including H2O2, dopamine (DA), uric acid (UA), glucose, H2S, NO, and O2. Subsequently, we put forward the optimization strategies to promote the development of SAN-based electrochemical sensors. Finally, the challenges and prospects of SAN-based sensors are proposed.
Collapse
Affiliation(s)
- Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
29
|
Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2023; 9:2020-2047. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | | |
Collapse
|
30
|
Wu CH, Ma HJH, Baessler P, Balanay RK, Ray TR. Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis. SCIENCE ADVANCES 2023; 9:eadg4272. [PMID: 37134158 PMCID: PMC10881187 DOI: 10.1126/sciadv.adg4272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023]
Abstract
Skin-interfaced wearable systems with integrated microfluidic structures and sensing capabilities offer powerful platforms for monitoring the signals arising from natural physiological processes. This paper introduces a set of strategies, processing approaches, and microfluidic designs that harness recent advances in additive manufacturing [three-dimensional (3D) printing] to establish a unique class of epidermal microfluidic ("epifluidic") devices. A 3D printed epifluidic platform, called a "sweatainer," demonstrates the potential of a true 3D design space for microfluidics through the fabrication of fluidic components with previously inaccessible complex architectures. These concepts support integration of colorimetric assays to facilitate in situ biomarker analysis operating in a mode analogous to traditional epifluidic systems. The sweatainer system enables a new mode of sweat collection, termed multidraw, which facilitates the collection of multiple, independent sweat samples for either on-body or external analysis. Field studies of the sweatainer system demonstrate the practical potential of these concepts.
Collapse
Affiliation(s)
- Chung-Han Wu
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Howin Jian Hing Ma
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Paul Baessler
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Roxanne Kate Balanay
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| |
Collapse
|
31
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
32
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
33
|
Soleh A, Saisahas K, Promsuwan K, Saichanapan J, Thavarungkul P, Kanatharana P, Meng L, Mak WC, Limbut W. A wireless smartphone-based "tap-and-detect" formaldehyde sensor with disposable nano-palladium grafted laser-induced graphene (nanoPd@LIG) electrodes. Talanta 2023; 254:124169. [PMID: 36549140 DOI: 10.1016/j.talanta.2022.124169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
We developed a fully integrated smart sensing device for on-site testing of food to detect trace formaldehyde (FA). A nano-palladium grafted laser-induced graphene (nanoPd@LIG) composite was synthesized by one-step laser irradiation of a Pd2+-chitosan-polyimide precursor. The composite was synthesized in the form of a three-electrode sensor on a polymer substrate. The electrochemical properties and morphology of the fabricated composite were characterized and the electrochemical kinetics of FA oxidation at the nanoPd@LIG electrode were investigated. The nanoPd@LIG electrode was combined with a smart electrochemical sensing (SES) device to determine FA electrochemically. The proposed SES device uses near field communication (NFC) to receive power and transfer data between a smartphone interface and a battery-free sensor. The proposed FA sensor exhibited a linear detection range from 0.01 to 4.0 mM, a limit of detection of 6.4 μM, good reproducibility (RSDs between 2.0 and 10.1%) and good anti-interference properties for FA detection. The proposed system was used to detect FA in real food samples and the results correlated well with the results from a commercial potentiostat and a spectrophotometric analysis.
Collapse
Affiliation(s)
- Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
34
|
Kim ER, Joe C, Mitchell RJ, Gu MB. Biosensors for healthcare: current and future perspectives. Trends Biotechnol 2023; 41:374-395. [PMID: 36567185 DOI: 10.1016/j.tibtech.2022.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Biosensors are utilized in several different fields, including medicine, food, and the environment; in this review, we examine recent developments in biosensors for healthcare. These involve three distinct types of biosensor: biosensors for in vitro diagnosis with blood, saliva, or urine samples; continuous monitoring biosensors (CMBs); and wearable biosensors. Biosensors for in vitro diagnosis have seen a significant expansion recently, with newly reported clustered regularly interspaced short palindromic repeats (CRISPR)/Cas methodologies and improvements to many established integrated biosensor devices, including lateral flow assays (LFAs) and microfluidic/electrochemical paper-based analytical devices (μPADs/ePADs). We conclude with a discussion of two novel groups of biosensors that have drawn great attention recently, continuous monitoring and wearable biosensors, as well as with perspectives on the commercialization and future of biosensors.
Collapse
Affiliation(s)
- Eun Ryung Kim
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Cheulmin Joe
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Robert J Mitchell
- Department of Biological Sciences, UNIST, Ulsan 44919, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
35
|
Yuan X, Li C, Yin X, Yang Y, Ji B, Niu Y, Ren L. Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. BIOSENSORS 2023; 13:313. [PMID: 36979525 PMCID: PMC10045998 DOI: 10.3390/bios13030313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biological information detection technology is mainly used for the detection of physiological and biochemical parameters closely related to human tissues and organ lesions, such as biomarkers. This technology has important value in the clinical diagnosis and treatment of chronic diseases in their early stages. Wearable biosensors can be integrated with the Internet of Things and Big Data to realize the detection, transmission, storage, and comprehensive analysis of human physiological and biochemical information. This technology has extremely wide applications and considerable market prospects in frontier fields including personal health monitoring, chronic disease diagnosis and management, and home medical care. In this review, we systematically summarized the sweat biomarkers, introduced the sweat extraction and collection methods, and discussed the application and development of epidermal wearable biosensors for monitoring biomarkers in sweat in preclinical research in recent years. In addition, the current challenges and development prospects in this field were discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xu Yin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
36
|
Karachaliou CE, Koukouvinos G, Goustouridis D, Raptis I, Kakabakos S, Petrou P, Livaniou E. Cortisol Immunosensors: A Literature Review. BIOSENSORS 2023; 13:bios13020285. [PMID: 36832050 PMCID: PMC9954523 DOI: 10.3390/bios13020285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 05/26/2023]
Abstract
Cortisol is a steroid hormone that is involved in a broad range of physiological processes in human/animal organisms. Cortisol levels in biological samples are a valuable biomarker, e.g., of stress and stress-related diseases; thus, cortisol determination in biological fluids, such as serum, saliva and urine, is of great clinical value. Although cortisol analysis can be performed with chromatography-based analytical techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), conventional immunoassays (radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), etc.) are considered the "gold standard" analytical methodology for cortisol, due to their high sensitivity along with a series of practical advantages, such as low-cost instrumentation, an assay protocol that is fast and easy to perform, and high sample throughput. Especially in recent decades, research efforts have focused on the replacement of conventional immunoassays by cortisol immunosensors, which may offer further improvements in the field, such as real-time analysis at the point of care (e.g., continuous cortisol monitoring in sweat through wearable electrochemical sensors). In this review, most of the reported cortisol immunosensors, mainly electrochemical and also optical ones, are presented, focusing on their immunosensing/detection principles. Future prospects are also briefly discussed.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Georgios Koukouvinos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Dimitrios Goustouridis
- ThetaMetrisis S.A., Christou Lada 40, 121 32 Athens, Greece
- Department of Electrical & Electronics Engineering, University of West Attica, 122 44 Athens, Greece
| | - Ioannis Raptis
- ThetaMetrisis S.A., Christou Lada 40, 121 32 Athens, Greece
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| |
Collapse
|
37
|
Khumngern S, Jeerapan I. Advances in wearable electrochemical antibody-based sensors for cortisol sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04577-y. [PMID: 36781449 DOI: 10.1007/s00216-023-04577-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Cortisol is a crucial hormone involving many physiological processes. Hence, cortisol detection is essential. This review highlights the key progress made on wearable electrochemical sensors using antibodies. It covers the design, principle, and electroanalytical methodology for detecting cortisol noninvasively. This article also analyzes and collects the analytical performances of electrochemical cortisol sensors. The development of these sensors continues to face challenges such as biofouling, sample management, sensitivity, flexibility, stability, and recognition layer performance. It is also necessary to develop a sensitive electrode and material. This article also presents potential strategies for designing antibody electrodes and provides examples of sensing systems. Additionally, it discusses the challenges in translating research into practical applications.
Collapse
Affiliation(s)
- Suntisak Khumngern
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
38
|
Faham S, Salimi A, Ghavami R. Electrochemical-based remote biomarker monitoring: Toward Internet of Wearable Things in telemedicine. Talanta 2023; 253:123892. [PMID: 36095939 DOI: 10.1016/j.talanta.2022.123892] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Internet of Wearable Things (IoWT) will be a major breakthrough for remote medical monitoring. In this scenario, wearable biomarker sensors have been developing not only to diagnose point-of-care (POC) of diseases, but also to continuously manage them. On-body tracking of biomarkers in biofluids is regarded as a proper substitution of conventional biomarker sensors for dynamic sampling and analyzing due to their high sensitivity, conformability, and affordability, creating ever-rising the market demand for them. In a wireless body area network (WBAN), data is captured from all sensors on the body to a smartphone/laptop, and sent the sensed data to a cloud for storing, processing, and retrieving, and ultimately displayed the data on custom applications (Apps). Wearable IoT biomarker sensors are used for early diseases diagnosis and continuous monitoring in developing countries in which people hardly access to healthcare systems. In this review, we aim to highlight a wide range of wearable electrochemical biomarker sensors, accompanied by microfluidics for continuous sampling, which will pave the way toward developing wearable IoT biomarker sensors to track health status. The current challenges and future perspective in skin-conformal biomarker sensors will be discussing their potential applicability for IoWT in cloud-based telemedicine.
Collapse
Affiliation(s)
- Shadab Faham
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Raouf Ghavami
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
39
|
Nan M, Darmawan BA, Go G, Zheng S, Lee J, Kim S, Lee T, Choi E, Park JO, Bang D. Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat. BIOSENSORS 2023; 13:184. [PMID: 36831950 PMCID: PMC9953546 DOI: 10.3390/bios13020184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Wearable biosensors have the potential for developing individualized health evaluation and detection systems owing to their ability to provide continuous real-time physiological data. Among various wearable biosensors, localized surface plasmon resonance (LSPR)-based wearable sensors can be versatile in various practical applications owing to their sensitive interactions with specific analytes. Understanding and analyzing endocrine responses to stress is particularly crucial for evaluating human performance, diagnosing stress-related diseases, and monitoring mental health, as stress takes a serious toll on physiological health and psychological well-being. Cortisol is an essential biomarker of stress because of the close relationship between cortisol concentration in the human body and stress level. In this study, a flexible LSPR biosensor was manufactured to detect cortisol levels in the human body by depositing gold nanoparticle (AuNP) layers on a 3-aminopropyltriethoxysilane (APTES)-functionalized poly (dimethylsiloxane) (PDMS) substrate. Subsequently, an aptamer was immobilized on the surface of the LSPR substrate, enabling highly sensitive and selective cortisol capture owing to its specific cortisol recognition. The biosensor exhibited excellent detection ability in cortisol solutions of various concentrations ranging from 0.1 to 1000 nM with a detection limit of 0.1 nM. The flexible LSPR biosensor also demonstrated good stability under various mechanical deformations. Furthermore, the cortisol levels of the flexible LSPR biosensor were also measured in the human epidermis before and after exercise as well as in the morning and afternoon. Our biosensors, which combine easily manufactured flexible sensors with sensitive cortisol-detecting molecules to measure human stress levels, could be versatile candidates for human-friendly products.
Collapse
Affiliation(s)
- Minghui Nan
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Gwangjun Go
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Shirong Zheng
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Junhyeok Lee
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seokjae Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Taeksu Lee
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Doyeon Bang
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Graduate School of Data Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
40
|
Zhang J, Chen M, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Han T, Wang Y, Gao Z. Wearable biosensors for human fatigue diagnosis: A review. Bioeng Transl Med 2023; 8:e10318. [PMID: 36684114 PMCID: PMC9842037 DOI: 10.1002/btm2.10318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.
Collapse
Affiliation(s)
- Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| |
Collapse
|
41
|
Yulianti ES, Rahman SF, Whulanza Y. Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Cortisol. BIOSENSORS 2022; 12:1090. [PMID: 36551057 PMCID: PMC9776045 DOI: 10.3390/bios12121090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As a steroid hormone, cortisol has a close relationship with the stress response, and therefore, can be used as a biomarker for early detection of stress. An electrochemical immunosensor is one of the most widely used methods to detect cortisol, with antibodies as its bioreceptor. Apart from conventional laboratory-based methods, the trend for cortisol detection has seemed to be exploiting antibodies and aptamers. Both can provide satisfactory performance with high selectivity and sensitivity, but they still face issues with their short shelf life. Molecularly imprinted polymers (MIPs) have been widely used to detect macro- and micro-molecules by forming artificial antibodies as bioreceptors. MIPs are an alternative to natural antibodies, which despite demonstrating high selectivity and a low degree of cross-reactivity, often also show a high sensitivity to the environment, leading to their denaturation. MIPs can be prepared with convenient and relatively affordable fabrication processes. They also have high durability in ambient conditions, a long shelf life, and the ability to detect cortisol molecules at a concentration as low as 2 ag/mL. By collecting data from the past five years, this review summarizes the antibody and aptamer-based amperometric sensors as well as the latest developments exploiting MIPs rather than antibodies. Lastly, factors that can improve MIPs performance and are expected to be developed in the future are also explained.
Collapse
Affiliation(s)
- Elly Septia Yulianti
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| | - Siti Fauziyah Rahman
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| | - Yudan Whulanza
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| |
Collapse
|
42
|
Singh A, Ahmed A, Sharma A, Arya S. Graphene and Its Derivatives: Synthesis and Application in the Electrochemical Detection of Analytes in Sweat. BIOSENSORS 2022; 12:910. [PMID: 36291046 PMCID: PMC9599499 DOI: 10.3390/bios12100910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 05/25/2023]
Abstract
Wearable sensors and invasive devices have been studied extensively in recent years as the demand for real-time human healthcare applications and seamless human-machine interaction has risen exponentially. An explosion in sensor research throughout the globe has been ignited by the unique features such as thermal, electrical, and mechanical properties of graphene. This includes wearable sensors and implants, which can detect a wide range of data, including body temperature, pulse oxygenation, blood pressure, glucose, and the other analytes present in sweat. Graphene-based sensors for real-time human health monitoring are also being developed. This review is a comprehensive discussion about the properties of graphene, routes to its synthesis, derivatives of graphene, etc. Moreover, the basic features of a biosensor along with the chemistry of sweat are also discussed in detail. The review mainly focusses on the graphene and its derivative-based wearable sensors for the detection of analytes in sweat. Graphene-based sensors for health monitoring will be examined and explained in this study as an overview of the most current innovations in sensor designs, sensing processes, technological advancements, sensor system components, and potential hurdles. The future holds great opportunities for the development of efficient and advanced graphene-based sensors for the detection of analytes in sweat.
Collapse
Affiliation(s)
| | | | | | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India
| |
Collapse
|
43
|
Xu S, Kim J, Walter JR, Ghaffari R, Rogers JA. Translational gaps and opportunities for medical wearables in digital health. Sci Transl Med 2022; 14:eabn6036. [PMID: 36223451 DOI: 10.1126/scitranslmed.abn6036] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A confluence of advances in biosensor technologies, enhancements in health care delivery mechanisms, and improvements in machine learning, together with an increased awareness of remote patient monitoring, has accelerated the impact of digital health across nearly every medical discipline. Medical grade wearables-noninvasive, on-body sensors operating with clinical accuracy-will play an increasingly central role in medicine by providing continuous, cost-effective measurement and interpretation of physiological data relevant to patient status and disease trajectory, both inside and outside of established health care settings. Here, we review current digital health technologies and highlight critical gaps to clinical translation and adoption.
Collapse
Affiliation(s)
- Shuai Xu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60611, USA.,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Sibel Health, Niles, IL 60714, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60611, USA
| | - Jessica R Walter
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60611, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Epicore Biosystems Inc., Cambridge, MA 02139, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
44
|
Hu X, Yu C, Dong T, Yang Z, Fang Y, Jiang Z. Biomarkers and detection methods of bipolar disorder. Biosens Bioelectron 2022; 220:114842. [DOI: 10.1016/j.bios.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022]
|
45
|
Demuru S, Kim J, El Chazli M, Bruce S, Dupertuis M, Binz PA, Saubade M, Lafaye C, Briand D. Antibody-Coated Wearable Organic Electrochemical Transistors for Cortisol Detection in Human Sweat. ACS Sens 2022; 7:2721-2731. [PMID: 36054907 DOI: 10.1021/acssensors.2c01250] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dysregulation of the hormone cortisol is related to several pathological states, and its monitoring could help prevent severe stress, fatigue, and mental diseases. While wearable antibody-based biosensors could allow real-time and simple monitoring of antigens, an accurate and low-cost antibody-based cortisol detection through electrochemical methods is considerably challenging due to its low concentration and the high ionic strength of real biofluids. Here, a label-free and fast sensor for cortisol detection is proposed based on antibody-coated organic electrochemical transistors. The developed devices show unprecedented high sensitivities of 50 μA/dec for cortisol sensing in high-ionic-strength solutions with effective cortisol detection demonstrated with real human sweat. The sensing mechanism is analyzed through impedance spectroscopy and confirmed with electrical models. Compared to existing methods requiring bulky and expensive laboratory equipment, these wearable devices enable point-of-care cortisol detection in 5 min with direct sweat collection for personalized well-being monitoring.
Collapse
Affiliation(s)
- Silvia Demuru
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Jaemin Kim
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Marwan El Chazli
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Stephen Bruce
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Michael Dupertuis
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pierre-Alain Binz
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Mathieu Saubade
- Sports Medicine Unit, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Céline Lafaye
- Sports Medicine Unit, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Danick Briand
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| |
Collapse
|
46
|
Guo SY, Hou PX, Zhang F, Liu C, Cheng HM. Gas Sensors Based on Single-Wall Carbon Nanotubes. Molecules 2022; 27:5381. [PMID: 36080149 PMCID: PMC9458085 DOI: 10.3390/molecules27175381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good stability and unique metallic or semiconducting electrical conductivity, they are therefore considered a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the Internet of Things and various portable and wearable electronics. In this review, we first introduce the sensing mechanism of SWCNTs and the typical structure and key parameters of SWCNT-based gas sensors. We then summarize research progress on the design, fabrication, and performance of SWCNT-based gas sensors. Finally, the principles and possible approaches to further improving the performance of SWCNT-based gas sensors are discussed.
Collapse
Affiliation(s)
- Shu-Yu Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Feng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
47
|
Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155670. [PMID: 35957227 PMCID: PMC9371187 DOI: 10.3390/s22155670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 05/12/2023]
Abstract
As a vital biomarker, glucose plays an important role in multiple physiological and pathological processes. Thus, glucose detection has become an important direction in the electrochemical analysis field. In order to realize more convenient, real-time, comfortable and accurate monitoring, smartphone-based portable, wearable and implantable electrochemical glucose monitoring is progressing rapidly. In this review, we firstly introduce technologies integrated in smartphones and the advantages of these technologies in electrochemical glucose detection. Subsequently, this overview illustrates the advances of smartphone-based portable, wearable and implantable electrochemical glucose monitoring systems in diverse biofluids over the last ten years (2012-2022). Specifically, some interesting and innovative technologies are highlighted. In the last section, after discussing the challenges in this field, we offer some future directions, such as application of advanced nanomaterials, novel power sources, simultaneous detection of multiple markers and a closed-loop system.
Collapse
|
48
|
Abstract
In recent years, wearable sensors have enabled the unique mode of real-time and noninvasive monitoring to develop rapidly in medical care, sports, and other fields. Sweat contains a wide range of biomarkers such as metabolites, electrolytes, and various hormones. Combined with wearable technology, sweat can reflect human fatigue, disease, mental stress, dehydration, and so on. This paper comprehensively describes the analysis of sweat components such as glucose, lactic acid, electrolytes, pH, cortisol, vitamins, ethanol, and drugs by wearable sensing technology, and the application of sweat wearable devices in glasses, patches, fabrics, tattoos, and paper. The development trend of sweat wearable devices is prospected. It is believed that if the sweat collection, air permeability, biocompatibility, sensing array construction, continuous monitoring, self-healing technology, power consumption, real-time data transmission, specific recognition, and other problems of the wearable sweat sensor are solved, we can provide the wearer with important information about their health level in the true sense.
Collapse
|
49
|
Kinnamon DS, Heggestad JT, Liu J, Chilkoti A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:123-149. [PMID: 35216530 PMCID: PMC10024863 DOI: 10.1146/annurev-anchem-061020-123817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
Collapse
Affiliation(s)
- David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jason Liu
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
50
|
Zahertar S, Torun H, Sun C, Markwell C, Dong Y, Yang X, Fu Y. Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies. SENSORS (BASEL, SWITZERLAND) 2022; 22:4344. [PMID: 35746129 PMCID: PMC9228408 DOI: 10.3390/s22124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device.
Collapse
Affiliation(s)
- Shahrzad Zahertar
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
- Zepler Institute, University of Southampton, Southampton SO17 1BJ, UK
| | - Hamdi Torun
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
| | - Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Christopher Markwell
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
| | - Yinhua Dong
- Department of Neurology, Tianjin 4th Centre Hospital Affiliated to Nankai University, Tianjin 300140, China;
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
| |
Collapse
|