1
|
Guo Y, Liu Y, Zhang Z, Zhang X, Jin X, Zhang R, Chen G, Zhu L, Zhu M. Biopolymer based Fibrous Aggregate Materials for Diagnosis and Treatment: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414877. [PMID: 40351104 DOI: 10.1002/adma.202414877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Biopolymer-based fibrous aggregate materials (BFAMs) have gained increasing attention in biomedicine due to their excellent biocompatibility, processability, biodegradability, and multifunctionality. Especially, the medical applications of BFAMs demand advanced structure, performance, and function, which conventional trial-and-error methods struggle to provide. This necessitates the rational selection of materials and manufacturing methods to design BFAMs with various intended functions and structures. This review summarizes the current progress in raw material selection, structural and functional design, processing technology, and application of BFAMs. Additionally, the challenges encountered during the development of BFAMs are discussed, along with perspectives for future research offered.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yifan Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaozhe Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Jin
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ruxu Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoyin Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
2
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Wang K, Liu W, Wu J, Li H, Peng H, Zhang J, Ding K, Wang X, Hou C, Zhang H, Luo Y. Smart Wearable Sensor Fuels Noninvasive Body Fluid Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13279-13301. [PMID: 39969947 DOI: 10.1021/acsami.4c22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The advancements in wearable sensor technology have revolutionized noninvasive body fluid monitoring, offering new possibilities for continuous and real-time health assessment. By analyzing body fluids such as sweat, saliva, tears, and interstitial fluid, these technologies provide painless diagnostic alternatives for detecting biomarkers such as glucose, electrolytes, and metabolites. These sensors play a crucial role in early disease detection, chronic condition management, and personalized healthcare. Recent innovations in flexible electronics, microfluidic systems, and biosensing materials have significantly improved the accuracy, reliability, and integration of sensors into everyday textiles. Moreover, the convergence of artificial intelligence and big data analytics has enhanced the precision and personalization of health monitoring systems, transforming wearable sensors into powerful tools for health holographic inspection. Despite significant progress, challenges remain, including improving sensor stability in dynamic environments, achieving real-time data transmission, and covering a broader range of biomarkers. Future research directions focus on enhancing material sustainability through green synthesis, optimizing sampling techniques, and leveraging machine learning to further improve sensor performance. This Review highlights the transformative potential of wearable sensors in medical applications, aiming to bridge gaps in healthcare accessibility and elevate the standards of patient care through noninvasive continuous monitoring technologies.
Collapse
Affiliation(s)
- Kang Wang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjing Liu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Jingzhi Wu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Heng Li
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Hai Peng
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing University Cancer Hospital, Chongqing 400030, P. R. China
| | - Ke Ding
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Xiaoxing Wang
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hong Zhang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Yang Luo
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| |
Collapse
|
4
|
Zhao LX, Fan YG, Zhang X, Li C, Cheng XY, Guo F, Wang ZY. Graphdiyne biomaterials: from characterization to properties and applications. J Nanobiotechnology 2025; 23:169. [PMID: 40038692 PMCID: PMC11881411 DOI: 10.1186/s12951-025-03227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
Graphdiyne (GDY), the sole synthetic carbon allotrope with sp-hybridized carbon atoms, has been extensively researched that benefit from its pore structure, fully conjugated surfaces, wide band gaps, and more reactive C≡C bonds. In addition to the intrinsic features of GDY, engineering at the nanoscale, including metal/transition metal ion modification, chemical elemental doping, and other biomolecular modifications, endowed GDY with a broader functionality. This has led to its involvement in biomedical applications, including enzyme catalysis, molecular assays, targeted drug delivery, antitumor, and sensors. These promising research developments have been made possible by the rational design and critical characterization of GDY biomaterials. In contrast to other research areas, GDY biomaterials research has led to the development of characterization techniques and methods with specific patterns and some innovations based on the integration of materials science and biology, which are crucial for the biomedical applications of GDY. The objective of this review is to provide a comprehensive overview of the biomedical applications of GDY and the characterization techniques and methods that are essential in this process. Additionally, a general strategy for the biomedical research of GDY will be proposed, which will be of limited help to researchers in the field of GDY or nanomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Chan Li
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue-Yan Cheng
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China.
| |
Collapse
|
5
|
Huang Q, Chen J, Zhao Y, Huang J, Liu H. Advancements in electrochemical glucose sensors. Talanta 2025; 281:126897. [PMID: 39293246 DOI: 10.1016/j.talanta.2024.126897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The development of electrochemical glucose sensors with high sensitivity, specificity, and stability, enabling real-time continuous monitoring, has posed a significant challenge. However, an opportunity exists to fabricate electrochemical glucose biosensors with optimal performance through innovative device structures and surface modification materials. This paper provides a comprehensive review of recent advances in electrochemical glucose sensors. Novel classes of nanomaterials-including metal nanoparticles, carbon-based nanomaterials, and metal-organic frameworks-with excellent electronic conductivity and high specific surface areas, have increased the availability of reactive sites to improved contact with glucose molecules. Furthermore, in line with the trend in electrochemical glucose sensor development, research progress concerning their utilisation with sweat, tears, saliva, and interstitial fluid is described. To facilitate the commercialisation of these sensors, further enhancements in biocompatibility and stability are required. Finally, the characteristics of the ideal electrochemical glucose sensor are described and the developmental trends in this field are outlines.
Collapse
Affiliation(s)
- Qing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Jingqiu Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Jing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Huan Liu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
| |
Collapse
|
6
|
Guo X, Zhang Q, Zhang C, Mi M, Li X, Zhang X, Ramakrishna S, Ji D, Qin X. Pumpless microfluidic sweat sensing yarn. Biosens Bioelectron 2024; 266:116713. [PMID: 39232436 DOI: 10.1016/j.bios.2024.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Textile sweat sensors possess immense potential for non-invasive health monitoring. Rapid in-situ sweat capture and prevention of its evaporation are crucial for accurate and stable real-time monitoring. Herein, we introduce a unidirectional, pump-free microfluidic sweat management system to tackle this challenge. A nanofiber sheath layer on micrometer-scale sensing filaments enables this pumpless microfluidic design. Utilizing the capillary effect of the nanofibers allows for the swift capture of sweat, while the differential configuration of the hydrophilic and hydrophobic properties of the sheath and core yarns prevents sweat evaporation. The Laplace pressure difference between the cross-scale fibers facilitates the management system to ultimately expulse sweat. This results in microfluidic control of sweat without the need for external forces, resulting in rapid (<5 s), sensitive (19.8 nA μM-1), and stable (with signal noise and drift suppression) sweat detection. This yarn sensor can be easily integrated into various fabrics, enabling the creation of health monitoring smart garments. The garments maintain good monitoring performance even after 20 washes. This work provides a solution for designing smart yarns for high-precision, stable, and non-invasive health monitoring.
Collapse
Affiliation(s)
- Xinyue Guo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chentian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mingyue Mi
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinxin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xueping Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Dongxiao Ji
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
7
|
Kim J, Kim MY, Han Y, Lee GY, Kim DH, Heo YJ, Park M. Development of an electrochemical biosensor for non-invasive cholesterol monitoring via microneedle-based interstitial fluid extraction. Talanta 2024; 280:126771. [PMID: 39191110 DOI: 10.1016/j.talanta.2024.126771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/09/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
In this study, we present the development of an innovative electrochemical biosensor integrated into a microneedle-based system for non-invasive and sensitive quantification of cholesterol levels in interstitial fluid (ISF). The biosensor employs a graphene-based electrode with a polyelectrolyte interlayer to immobilize cholesterol oxidase (ChOx), enabling selective cholesterol detection. Graphene oxide is electrochemically reduced to form a conductive layer, and PANI is chosen as the optimal polyelectrolyte for ChOx immobilization. The biosensor's performance is thoroughly evaluated, demonstrating excellent sensitivity, stability, and selectivity. Furthermore, the biosensor is successfully applied to skin-mimicking agarose gel and porcine skin, showcasing its potential for real-world interstitial fluid extraction and cholesterol monitoring. The integrated microneedle-based system offers a promising approach for non-invasive monitoring of cholesterol levels, with implications for personalized healthcare diagnostics.
Collapse
Affiliation(s)
- JeeYoung Kim
- Major in Materials Science and Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Integrative Materials Research Institute, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| | - Mi Yeon Kim
- Major in Materials Science and Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Integrative Materials Research Institute, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| | - Yuna Han
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea; Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Ga Yeong Lee
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea; Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Da Hyeon Kim
- Major in Materials Science and Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Integrative Materials Research Institute, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea; Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Min Park
- Major in Materials Science and Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Integrative Materials Research Institute, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
8
|
Weerarathna IN, Kumar P, Luharia A, Mishra G. Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered 2024; 15:2401269. [PMID: 39285709 PMCID: PMC11409512 DOI: 10.1080/21655979.2024.2401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 01/16/2025] Open
Abstract
In the dynamic realm of healthcare, the convergence of engineering and biomedical sciences has emerged as a pivotal frontier. In this review we go into specific areas of innovation, including medical imaging and diagnosis, developments in biomedical sensors, and drug delivery systems. Wearable biosensors, non-wearable biosensors, and biochips, which include gene chips, protein chips, and cell chips, are all included in the scope of the topic that pertains to biomedical sensors. Extensive research is conducted on drug delivery systems, spanning topics such as the integration of computer modeling, the optimization of drug formulations, and the design of delivery devices. Furthermore, the paper investigates intelligent drug delivery methods, which encompass stimuli-responsive systems such as temperature, redox, pH, light, enzyme, and magnetic responsive systems. In addition to that, the review goes into topics such as tissue engineering, regenerative medicine, biomedical robotics, automation, biomechanics, and the utilization of green biomaterials. The purpose of this analysis is to provide insights that will enhance continuing research and development efforts in engineering-driven biomedical breakthroughs, ultimately contributing to the improvement of healthcare. These insights will be provided by addressing difficulties and highlighting future prospects.
Collapse
Affiliation(s)
- Induni N. Weerarathna
- School of Allied Health Sciences, Department of Biomedical Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Anurag Luharia
- Department of Radio Physicist and Radio Safety, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Gaurav Mishra
- Department of Radio Diagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
9
|
Li T, Kosgei BK, Soko GF, Meena SS, Cao Q, Hou X, Cheng T, Wen W, Liu Q, Zhang L, Han RPS. An immunosensor for the near real-time and site of inflammation detections of multiple proinflammatory cytokines. Biosens Bioelectron 2024; 263:116618. [PMID: 39106691 DOI: 10.1016/j.bios.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Diseases mediated by cytokine storms are often characterized by an overexuberant pace of pathogenesis accompanied by significant morbidity and mortality. Thus, near real-time (NRT) detections via a site-of-inflammation (SOI) sampling of proinflammatory cytokines are essential to ensure a timely and effective treatment of acute inflammations, which up to now, has not been fully possible. In this work, we proposed a novel NRT and SOI immunosensor using ZIF-8 signal amplification together with an off-on strategy. To achieve NRT detections via a SOI sampling, the body fluid of choice is the dermal interstitial fluid (ISF). The significant merits of ISF over blood are the quality, quantity and diversity of ISF-based biomarkers; the fluid is non-coagulating, making it feasible to perform multiple or continuous samplings and the sampling is minimally invasive. Our immunosensor requires only 5 μL of ISF to achieve a simultaneous detection of five highly potent proinflammatory cytokines: IL-6, IFN-γ, IL-1β, TNF-α, IP-10. We employed a microneedle array patch (MAP) together with a trifurcated nozzle pump to extract a mean volume of between 30 and 60 μL of ISF in 20 min. Under optimal conditions, the biosensor is capable of high-quality performance that exhibits a lower limit of detection (LOD) of 5.761 pg/mL over a wide linear range of 5.761-3 ‒ 20.00 ng/mL. We believe our immunosensor for NRT detections via a SOI sampling of ISF-biomarkers offers new theranostic opportunities that may not be possible with blood-based biomarkers.
Collapse
Affiliation(s)
- Tong Li
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Benson K Kosgei
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Geofrey F Soko
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Stephene S Meena
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Qianan Cao
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xinju Hou
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Dept. of Rehabilitation, Nanchang Hongdu Hospital, 1399 Diezihu Road, Honggutan, Nanchang, Jiangxi, 330008, China
| | - Tingjun Cheng
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Weijie Wen
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Qingjun Liu
- Biosensor National Special Laboratory & Key Laboratory for Biomedical Engineering of Education Ministry, Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ling Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Ray P S Han
- Jiangzhong Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
10
|
Arjun AM, Deshpande S, Dunlop T, Norman B, Oliviera D, Vulpe G, Moreira F, Sharma S. Alzheimer's diagnosis beyond cerebrospinal fluid: Probe-Free Detection of Tau Proteins using MXene based redox systems and molecularly imprinted polymers. BIOSENSORS & BIOELECTRONICS: X 2024; 20:100513. [PMID: 39355372 PMCID: PMC11406148 DOI: 10.1016/j.biosx.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 10/03/2024]
Abstract
Phosphorylated Tau proteins are promising biomarkers for the diagnosis and prognosis of Alzheimer's disease. This study presents a novel voltametric sensor using a vanadium MXene polydopamine (VxPDA) redox active composite and a Tau-441-specific polyaniline molecularly imprinted polymer (PANI MIP) for the sensitive detection of Tau-441 in interstitial fluid (ISF) and plasma. The VxPDA/PANI MIP sensor demonstrates a broad detection range of 5 fg/mL to 5 ng/mL (122 aM/L to 122 pM/L) in ISF without the use of redox mediators, with a lower limit of detection (LOD) of 2.3 fg/mL (60 aM/L). Furthermore, a handheld device utilizing this technology successfully detects Tau-441 in artificial serum with high sensitivity (5 fg/mL to 150 fg/mL (122 aM/L to 366 aM/L)) and specificity within a clinically relevant range. The rapid detection time (∼32 min) and low cost (∼£20/device) of this sensor highlight its potential for minimally invasive, early AD diagnosis in clinical settings. This advancement aims to facilitate a transition away from invasive cerebrospinal fluid (CSF)-based diagnostic techniques for AD.
Collapse
Affiliation(s)
- Ajith Mohan Arjun
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Sudhaunsh Deshpande
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Tom Dunlop
- The Advanced Imaging of Materials (AIM) Facility, Faculty of Science and Engineering, Swansea University, UK
| | - Beth Norman
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Daniela Oliviera
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Georgeta Vulpe
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Felismina Moreira
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Sanjiv Sharma
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| |
Collapse
|
11
|
Jiang S, Li Q, Wu G, Mu X, Wang X, Wang Y, Wu Y, Wu J, Li Y. Advances in Label-Free Glucose Detection Using Self-Assembled Nanoparticles and Surface-Enhanced Raman Spectroscopy. Anal Chem 2024; 96:11533-11541. [PMID: 38973171 DOI: 10.1021/acs.analchem.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.
Collapse
Affiliation(s)
- Shen Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Qiuyun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Guangrun Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xuming Mu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, 90220 Oulu, Finland
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
12
|
Tang Z, Jian J, Guo M, Liu S, Ji S, Li Y, Liu H, Shao T, Gao J, Yang Y, Ren T. All-Fiber Flexible Electrochemical Sensor for Wearable Glucose Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4580. [PMID: 39065977 PMCID: PMC11281184 DOI: 10.3390/s24144580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today's wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin's irregular deformation. To address these constraints, we developed an innovative, wearable, all-fiber-structured electrochemical sensor. Our composite sensor incorporates polyurethane (PU) fibers prepared via electrospinning as electrode substrates to achieve excellent adaptability. Electrospun PU nanofiber films with gold layers shaped via thermal evaporation are used as base electrodes with exemplary conductivity and electrochemical catalytic attributes. To achieve glucose monitoring, gold nanofibers functionalized by gold nanoflakes (AuNFs) and glucose oxidase (GOx) serve as the working electrode, while Pt nanofibers and Ag/AgCl nanofibers serve as the counter and reference electrode. The acrylamide-sodium alginate double-network hydrogel synthesized on electrospun PU fibers serves as the adhesive and substance-transferring layer between the electrodes. The all-fiber electrochemical sensor is assembled layer-by-layer to form a robust structure. Given the stretchability of PU nanofibers coupled with a high specific surface area, the manufactured porous microneedle glucose sensor exhibits enhanced stretchability, superior sensitivity at 31.94 μA (lg(mM))-1 cm-2, a broad detection range (1-30 mM), and a significantly low detection limit (1 mM, S/N = 3), as well as satisfactory biocompatibility. Therefore, the novel electrochemical microneedle design is well-suited for wearable or even implantable continuous monitoring applications, thereby showing promising significant potential within the global arena of wearable medical technology.
Collapse
Affiliation(s)
- Zeyi Tang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Mingxin Guo
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Shangjian Liu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Shourui Ji
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yilong Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Houfang Liu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianqi Shao
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jian Gao
- BOE Health Technology Co., Ltd., Beijing 100016, China
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Matsui K, Katsumata H, Furukawa M, Tateishi I, Kaneco S. Determination of low concentrations of glucose through colorimetric analysis using CoFe 2O 4 magnetic catalyst and SAT-3. ANAL SCI 2024; 40:1249-1260. [PMID: 38602663 DOI: 10.1007/s44211-024-00554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
Natural enzyme mimics have attracted attention as alternatives to natural peroxidases. Among these, magnetic nanoparticles, especially ferrites, have attracted attention because of their unique electronic and physical structures, which are expected to be applied in various fields, including high-frequency magnetic materials, biomaterials, gas sensors, and semiconductor photocatalysts. The structural properties of the synthesized catalysts were investigated using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The prepared CoFe2O4 exhibited a spinel ferrite structure and formed a wood-flake-like bulk structure. In this study, magnetic CoFe2O4 was prepared using a precipitation method as a natural enzyme mimetic. CoFe2O4 showed excellent peroxidase-like activity, as demonstrated by the Michaelis-Menten constant (Km) and the maximum velocity (Vmax). The linear ranges of the calibration curves for H2O2 and glucose were in the range of 0-500 µM, and the detection limits were 1.83 and 5.91 µM, respectively. This analytical method was applied for the determination of glucose in human serum, and the results were satisfactory and consistent with certified values. The performance of this sensor was comparable to or superior to those of several other sensors commonly used for glucose analysis, indicating that its practical application is feasible.
Collapse
Affiliation(s)
- Kurumi Matsui
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan.
| | - Hideyuki Katsumata
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan.
| | - Mai Furukawa
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan
| | - Ikki Tateishi
- Global Environmental Center for Education & Research, Mie University, Tsu, Mie, 514-8507, Japan
| | - Satoshi Kaneco
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
14
|
Shi S, Ming Y, Wu H, Zhi C, Yang L, Meng S, Si Y, Wang D, Fei B, Hu J. A Bionic Skin for Health Management: Excellent Breathability, In Situ Sensing, and Big Data Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306435. [PMID: 37607262 DOI: 10.1002/adma.202306435] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Developing an intelligent wearable system is of great significance to human health management. An ideal health-monitoring patch should possess key characteristics such as high air permeability, moisture-wicking function, high sensitivity, and a comfortable user experience. However, such a patch that encompasses all these functions is rarely reported. Herein, an intelligent bionic skin patch for health management is developed by integrating bionic structures, nano-welding technology, flexible circuit design, multifunctional sensing functions, and big data analysis using advanced electrospinning technology. By controlling the preparation of nanofibers and constructing bionic secondary structures, the resulting nanofiber membrane closely resembles human skin, exhibiting excellent air/moisture permeability, and one-side sweat-wicking properties. Additionally, the bionic patch is endowed with a high-precision signal acquisition capabilities for sweat metabolites, including glucose, lactic acid, and pH; skin temperature, skin impedance, and electromyographic signals can be precisely measured through the in situ sensing electrodes and flexible circuit design. The achieved intelligent bionic skin patch holds great potential for applications in health management systems and rehabilitation engineering management. The design of the smart bionic patch not only provides high practical value for health management but also has great theoretical value for the development of the new generation of wearable electronic devices.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- College of Textile Science and Engineering, Key Laboratory of Eco-Textile Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
15
|
Tseng HS, Chen YL, Zhang PY, Hsiao YS. Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13384-13398. [PMID: 38454789 PMCID: PMC10958448 DOI: 10.1021/acsami.3c14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
Collapse
Affiliation(s)
- Hsueh-Sheng Tseng
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ying-Lin Chen
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
16
|
Tang C, Zhou K, Wang R, Li M, Liu W, Li C, Chen X, Lu Q, Chang Y. Wearable biosensors for human sweat glucose detection based on carbon black nanoparticles. Anal Bioanal Chem 2024; 416:1407-1415. [PMID: 38246908 DOI: 10.1007/s00216-024-05135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Wearable glucose biosensors enable noninvasive glucose monitoring, thereby enhancing blood glucose management. In this work, we present a wearable biosensor based on carbon black nanoparticles (CBNPs) for glucose detection in human sweat. The biosensor consists of CBNPs, Prussian blue (PB), glucose oxidase, chitosan, and Nafion. The fabricated biosensor has a linear range of 5 µM to 1250 µM, sensitivity of 14.64 µA mM-1 cm-2, and a low detection potential (-0.05 V, vs. Ag/AgCl). The detection limit for glucose was calculated as 4.83 µM. This reusable biosensor has good selectivity and stability and exhibits a good response to glucose in real sweat. These results demonstrate the potential of our CBNP-based biosensor for monitoring blood glucose in human sweat.
Collapse
Affiliation(s)
- Chaoli Tang
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Kai Zhou
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Rujing Wang
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China.
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Mengya Li
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenlong Liu
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyu Chen
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qinwen Lu
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yongjia Chang
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China.
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
17
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
18
|
Sun L, Chen LG, Wang HB. Fenton-like reaction triggered chemical redox-cycling signal amplification for ultrasensitive fluorometric detection of H 2O 2 and glucose. Analyst 2024; 149:546-552. [PMID: 38088105 DOI: 10.1039/d3an01682j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
An ultrasensitive fluorescent biosensor is reported for glucose detection based on a Fenton-like reaction triggered chemical redox-cycling signal amplification strategy. In this amplified strategy, Cu2+ oxidizes chemically o-phenylenediamine (OPD) to generate photosensitive 2,3-diaminophenazine (DAP) and Cu+/Cu0. On the one hand, the generated Cu0 catalyzes the oxidation of OPD. On the other hand, H2O2 reacts with Cu+ to produce hydroxyl radicals (˙OH) and Cu2+ through a Cu+-mediated Fenton-like reaction. The generated ˙OH and recycled Cu2+ ions take turns oxidizing OPD to produce more photoactive DAP, triggering a self-sustaining chemical redox-cycling reaction and a remarkable fluorescent enhancement. It is worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Benefiting from H2O2-triggered chemical redox-cycling signal amplification, the strategy was exploited for the development of an ultrasensitive fluorescent biosensor for glucose determination. Glucose content monitoring was realized with a linear range from 1 nM to 1 μM and a limit of detection of 0.3 nM. This study validates the practicability of the chemical redox-cycling signal amplification on the fluorescent bioanalysis of glucose in human serum samples. It is expected that the method offers new opportunities to develop ultrasensitive fluorescent analysis strategy.
Collapse
Affiliation(s)
- Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| |
Collapse
|
19
|
Ehtesabi H, Kalji SO. Carbon nanomaterials for sweat-based sensors: a review. Mikrochim Acta 2024; 191:77. [PMID: 38177621 DOI: 10.1007/s00604-023-06162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sweat is easily accessible from the human skin's surface. It is secreted by the eccrine glands and contains a wealth of physiological information, including metabolites and electrolytes like glucose and Na ions. Sweat is a particularly useful biofluid because of its easy and non-invasive access, unlike other biofluids, like blood. On the other hand, nanomaterials have started to show promise operation as a competitive substitute for biosensors and molecular sensors throughout the last 10 years. Among the most synthetic nanomaterials that are studied, applied, and discussed, carbon nanomaterials are special. They are desirable candidates for sensor applications because of their many intrinsic electrical, magnetic, and optical characteristics; their chemical diversity and simplicity of manipulation; their biocompatibility; and their effectiveness as a chemically resistant platform. Carbon nanofibers (CNFs), carbon dots (CDs), carbon nanotubes (CNTs), and graphene have been intensively investigated as molecular sensors or as components that can be integrated into devices. In this review, we summarize recent advances in the use of carbon nanomaterials as sweat sensors and consider how they can be utilized to detect a diverse range of analytes in sweat, such as glucose, ions, lactate, cortisol, uric acid, and pH.
Collapse
Affiliation(s)
- Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyed-Omid Kalji
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Song K, Liu C, Chen G, Zhao W, Tian S, Zhou Q. Paper-based ratiometric fluorescent sensing platform based on mixed quantum dots for the detection of glucose in urine. RSC Adv 2024; 14:1207-1215. [PMID: 38174288 PMCID: PMC10762332 DOI: 10.1039/d3ra07082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
A paper-based ratiometric fluorescent sensing platform has been developed for glucose detection based on a dual-emission fluorescent probe consisting of carbon quantum dots (C QDs) and CdTe QDs. When the two kinds of QDs are mixed, the fluorescence of C QDs is reversibly quenched by CdTe QDs. However, in the presence of glucose, the fluorescence of CdTe QDs is quenched by H2O2 catalyzed by glucose oxidase (GOx), which restores the fluorescence of C QDs. The proposed paper-based ratiometric fluorescent sensing platform exhibited good sensitivity and selectivity towards glucose. The working linear range was 0.1 mM to 50 mM with a limit of detection (LOD) of 0.026 mM. Additionally, the proposed paper-based sensor possesses viability for the determination of glucose in actual urine samples.
Collapse
Affiliation(s)
- Keke Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University Kaifeng 475000 China
| | - Chenying Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University Kaifeng 475000 China
| | - Guangbin Chen
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University Kaifeng 475000 China
| | - Wenhao Zhao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University Kaifeng 475000 China
| | - Shufang Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University Kaifeng 475000 China
| | - Qian Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University Kaifeng 475000 China
| |
Collapse
|
21
|
Wang F, Feng X, Gao Y, Ding X, Wang W, Zhang J. Green Synthesis of PtPdNiFeCu High-Entropy Alloy Nanoparticles for Glucose Detection. ACS OMEGA 2023; 8:47773-47780. [PMID: 38144105 PMCID: PMC10733955 DOI: 10.1021/acsomega.3c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
High-entropy alloys have long been used as a new type of alloy material and have attracted widespread concern because of their excellent performance, including their stable microstructure and particular catalytic properties. To design a safer preparation method, we report a novel approach targeting green synthesis, using tea polyphenols to prepare PtPdNiFeCu high-entropy alloy nanoparticles for glucose detection. The fabricated sensors were characterized by transmission electron microscopy and electrochemical experiments. Physical characterization showed that the nanoparticle has better dispersibility, and the average particle size is 7.5 nm. The electrochemical results showed that Tp-PtPdNiFeCu HEA-NPs had a high sensitivity of 1.264 μA mM-1 cm-2, a low detection limit of 4.503 μM, and a wide detection range of 0 - 10 mM. In addition, the sensor has better stability and selectivity for glucose detection.
Collapse
Affiliation(s)
- Fengxia Wang
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xin Feng
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yanting Gao
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xu Ding
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Wei Wang
- School
of Chemistry and Chemical Engineering, Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Ji Zhang
- Bioactive
Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
22
|
Shi X, Ling Y, Li Y, Li G, Li J, Wang L, Min F, Hübner R, Yuan S, Zhan J, Cai B. Complete Glucose Electrooxidation Enabled by Coordinatively Unsaturated Copper Sites in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202316257. [PMID: 37941302 DOI: 10.1002/anie.202316257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
The electrocatalytic oxidation of glucose plays a vital role in biomass conversion, renewable energy, and biosensors, but significant challenges remain to achieve high selectivity and high activity simultaneously. In this study, we present a novel approach for achieving complete glucose electrooxidation utilizing Cu-based metal-hydroxide-organic framework (Cu-MHOF) featuring coordinatively unsaturated Cu active sites. In contrast to traditional Cu(OH)2 catalysts, the Cu-MHOF exhibits a remarkable 40-fold increase in electrocatalytic activity for glucose oxidation, enabling exclusive oxidation of glucose into formate and carbonate as the final products. The critical role of open metal sites in enhancing the adsorption affinity of glucose and key intermediates was confirmed by control experiments and density functional theory simulations. Subsequently, a miniaturized nonenzymatic glucose sensor was developed showing superior performance with a high sensitivity of 214.7 μA mM-1 cm-2 , a wide detection range from 0.1 μM to 22 mM, and a low detection limit of 0.086 μM. Our work provides a novel molecule-level strategy for designing catalytically active sites and could inspire the development of novel metal-organic framework for next-generation electrochemical devices.
Collapse
Affiliation(s)
- Xiaoyue Shi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Yiqi Ling
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Youcong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guanhua Li
- Shenzhen Refresh Intelligent Technology Co. Ltd., Guangdong, 518000, P. R. China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Fanhong Min
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, P. R. China
| |
Collapse
|
23
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
24
|
Tianyi S, Yulong Z, Yanzhen J, Chen CJ, Liu JT. Micro interstitial fluid extraction and detection device integrated with the optimal extraction conditions for noninvasive glucose monitoring. Biosens Bioelectron 2023; 237:115515. [PMID: 37481866 DOI: 10.1016/j.bios.2023.115515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Interstitial fluid glucose sensors have promising prospects in noninvasive glucose monitoring. However, the commonly used method of extracting interstitial fluid, reverse iontophoresis (RI), still remains to be optimized to solve problems such as insufficient extraction flux and skin irritation. To find the optimal RI conditions, in this study we explored the effects of multiple factors such as current frequency, duration, duty cycle and their interactions on extraction with the design of experiments (DOE) method. A multifunctional extraction and detection device was designed to control extraction conditions and measure the surface water content of the extraction electrode in situ and real time. A micro glucose monitoring device (MicroTED) combined with a cheap and flexible paper-based electrode was developed under the determined optimal extraction conditions. In on-body continuous glucose monitoring tests carried out to verify the performance of the device, the optimized conditions can facilitate stable extraction of up to 1.0 mg without any skin discomfort. The mean Pearson correlation coefficient between the measurement results of MicroTED and commercial glucometer is above 0.9. In the Clarke error grid analysis, all data points fell within Clarke error grid areas A and B, demonstrating the feasibility of further clinical application of the device.
Collapse
Affiliation(s)
- Sun Tianyi
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Yulong
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yanzhen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Ayyanu R, Arul A, Song N, Anand Babu Christus A, Li X, Tamilselvan G, Bu Y, Kavitha S, Zhang Z, Liu N. Wearable sensor platforms for real-time monitoring and early warning of metabolic disorders in humans. Analyst 2023; 148:4616-4636. [PMID: 37712440 DOI: 10.1039/d3an01085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Nowadays, the prevalence of metabolic syndromes (MSs) has attracted increasing concerns as it is closely related to overweight and obesity, physical inactivity and overconsumption of energy, making the diagnosis and real-time monitoring of the physiological range essential and necessary for avoiding illness due to defects in the human body such as higher risk of cardiovascular disease, diabetes, stroke and diseases related to artery walls. However, the current sensing techniques are inconvenient and do not continuously monitor the health status of humans. Alternatively, the use of recent wearable device technology is a preferable method for the prevention of these diseases. This can enable the monitoring of the health status of humans in different health domains, including environment and structure. The use wearable devices with the purpose of facilitating rapid treatment and real-time monitoring can decrease the prevalence of MS and long-time monitor the health status of patients. This review highlights the recent advances in wearable sensors toward continuous monitoring of blood pressure and blood glucose, and further details the monitoring of abnormal obesity, triglycerides and HDL. We also discuss the challenges and future prospective of monitoring MS in humans.
Collapse
Affiliation(s)
- Ravikumar Ayyanu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Amutha Arul
- Department of Chemistry, Francis Xavier Engineering College, Tirunelveli 627003, India
| | - Ninghui Song
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - A Anand Babu Christus
- Department Chemistry, SRM Institute of Science and Technology, Ramapuram Campus, Ramapuram-600089, Chennai, Tamil Nadu, India
| | - Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - G Tamilselvan
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - S Kavitha
- Department of Chemistry, The M.D.T Hindu college (Affiliated to Manonmanium Sundaranar University), Tirunelveli-627010, Tamil Nadu, India
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China.
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
26
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
27
|
Fu J, Gao Q, Li S. Application of Intelligent Medical Sensing Technology. BIOSENSORS 2023; 13:812. [PMID: 37622898 PMCID: PMC10452530 DOI: 10.3390/bios13080812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
With the popularization of intelligent sensing and the improvement of modern medical technology, intelligent medical sensing technology has emerged as the times require. This technology combines basic disciplines such as physics, mathematics, and materials with modern technologies such as semiconductors, integrated circuits, and artificial intelligence, and has become one of the most promising in the medical field. The core of intelligent medical sensor technology is to make existing medical sensors intelligent, portable, and wearable with full consideration of ergonomics and sensor power consumption issues in order to conform to the current trends in cloud medicine, personalized medicine, and health monitoring. With the development of automation and intelligence in measurement and control systems, it is required that sensors have high accuracy, reliability, and stability, as well as certain data processing capabilities, self-checking, self-calibration, and self-compensation, while traditional medical sensors cannot meet such requirements. In addition, to manufacture high-performance sensors, it is also difficult to improve the material process alone, and it is necessary to combine computer technology with sensor technology to make up for its performance shortcomings. Intelligent medical sensing technology combines medical sensors with microprocessors to produce powerful intelligent medical sensors. Based on the original sensor functions, intelligent medical sensors also have functions such as self-compensation, self-calibration, self-diagnosis, numerical processing, two-way communication, information storage, and digital output. This review focuses on the application of intelligent medical sensing technology in biomedical sensing detection from three aspects: physical sensor, chemical sensor, and biosensor.
Collapse
Affiliation(s)
| | | | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (J.F.); (Q.G.)
| |
Collapse
|
28
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
29
|
Leung HMC, Forlenza GP, Prioleau TO, Zhou X. Noninvasive Glucose Sensing In Vivo. SENSORS (BASEL, SWITZERLAND) 2023; 23:7057. [PMID: 37631595 PMCID: PMC10458980 DOI: 10.3390/s23167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Blood glucose monitoring is an essential aspect of disease management for individuals with diabetes. Unfortunately, traditional methods require collecting a blood sample and thus are invasive and inconvenient. Recent developments in minimally invasive continuous glucose monitors have provided a more convenient alternative for people with diabetes to track their glucose levels 24/7. Despite this progress, many challenges remain to establish a noninvasive monitoring technique that works accurately and reliably in the wild. This review encompasses the current advancements in noninvasive glucose sensing technology in vivo, delves into the common challenges faced by these systems, and offers an insightful outlook on existing and future solutions.
Collapse
Affiliation(s)
- Ho Man Colman Leung
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | | - Xia Zhou
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
30
|
Yuan X, Ouaskioud O, Yin X, Li C, Ma P, Yang Y, Yang PF, Xie L, Ren L. Epidermal Wearable Biosensors for the Continuous Monitoring of Biomarkers of Chronic Disease in Interstitial Fluid. MICROMACHINES 2023; 14:1452. [PMID: 37512763 PMCID: PMC10385734 DOI: 10.3390/mi14071452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Oumaima Ouaskioud
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xu Yin
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengyi Ma
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Peng-Fei Yang
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
31
|
Yang L, Wang H, Abdullah AM, Meng C, Chen X, Feng A, Cheng H. Direct Laser Writing of the Porous Graphene Foam for Multiplexed Electrochemical Sweat Sensors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433119 DOI: 10.1021/acsami.3c02485] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Wearable electrochemical sensors provide means to detect molecular-level information from the biochemical markers in biofluids for physiological health evaluation. However, a high-density array is often required for multiplexed detection of multiple markers in complex biofluids, which is challenging with low-cost fabrication methods. This work reports the low-cost direct laser writing of porous graphene foam as a flexible electrochemical sensor to detect biomarkers and electrolytes in sweat. The resulting electrochemical sensor exhibits high sensitivity and low limit of detection for various biomarkers (e.g., the sensitivity of 6.49/6.87/0.94/0.16 μA μM-1 cm-2 and detection limit of 0.28/0.26/1.43/11.3 μM to uric acid/dopamine/tyrosine/ascorbic acid) in sweat. The results from this work open up opportunities for noninvasive continuous monitoring of gout, hydration status, and drug intake/overdose.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - He Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Abu Musa Abdullah
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chuizhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xue Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Anqi Feng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Gao N, Zhang Z, Xiao Y, Huang P, Wu FY. Integrated ratiometric luminescence sensing strategy based on encapsulation of guests in heterobinuclear lanthanide coordination polymer nanoparticles for glucose detection in human serum. Talanta 2023; 265:124854. [PMID: 37413722 DOI: 10.1016/j.talanta.2023.124854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Lanthanide coordination polymers (LnCPs) can be used as a host platform to encapsulate functional guest molecules for the construction of integrated sensing platforms. In this work, two guest molecules, rhodamine B (RhB) and glucose oxidase (GOx), were successfully encapsulated in a heterobinuclear lanthanide coordination polymer synthesized by self-assembly of Ce3+, Tb3+ and adenosine monophosphate (AMP) to form RhB&GOx@AMP-Tb/Ce. Both guest molecules show good storage stability and minimal leakage. The higher catalytic activity and stability of RhB&GOx@AMP-Tb/Ce is obtained due to the confinement effect compared to free GOx. RhB&GOx@AMP-Tb/Ce exhibits superior luminescence based on the internal tandem energy transfer process of the nanoparticles (Ce3+→Tb3+→RhB). Glucose can be oxidized in the presence of GOx to form gluconic acid and H2O2. Subsequently, Ce3+ in the AMP-Tb/Ce host structure can be oxidized by H2O2 to Ce4+, thereby interrupt the internal energy transfer process and cause ratiometric luminescence response. Benefiting from the synergistic effect, the smart integrated luminescent glucose probe exhibits a wide linear range (0.4-80 μM) and a low detection limit (74.3 nM) with high sensitivity, selectivity and simplicity, enabling the quantitative detection of glucose in human serum. This work describes a good strategy to construct an integrated luminescence sensor based on lanthanide coordination polymers.
Collapse
Affiliation(s)
- Nan Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhipeng Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yi Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
33
|
Hassan IU, Naikoo GA, Arshad F, Ba Omar F, Aljabali AAA, Mishra V, Mishra Y, El-Tanani M, Charbe NB, Chava SR, Serrano-Aroca Á, Tambuwala MM. Applications of trimetallic nanomaterials as Non-Enzymatic glucose sensors. Drug Dev Ind Pharm 2023; 49:393-404. [PMID: 37272678 DOI: 10.1080/03639045.2023.2221737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This article critically reviews recent research on the use of trimetallic nanomaterials for the fabrication of non-enzymatic glucose sensors (NEGS), also known as fourth-generation glucose sensors (FGGS). SIGNIFICANCE Diabetes is a prevalent chronic disease worldwide, and glucose monitoring is crucial for its management. However, conventional enzymatic glucose sensors suffer from several technological drawbacks, and there is a need to develop new-generation glucose sensors that can overcome these limitations. NEGS, particularly those composed of trimetallic nanocomposites, have demonstrated promising results in terms of improved shelf life, higher sensitivity, and simplicity of operation during glucose measurement. METHODS In this review, we discuss the different trimetallic nanomaterials developed and used by researchers in recent years for glucose detection, including their mechanisms of action. We also provide a brief discussion of the advantages and disadvantages of FGGS-based trimetallic nanomaterials, as well as the industrial challenges in this area of research. RESULTS Trimetallic nanomaterials for FGGS have shown excellent reproducibility and high stability, making them suitable for continuous glucose monitoring. The different types of trimetallic nanomaterials have varying sensing properties, and their performance can be tuned by controlling their synthesis parameters. CONCLUSION Trimetallic nanomaterials are a promising avenue for the development of FGGS, recent research has demonstrated their potential for glucose monitoring. However, there are still some challenges that need to be addressed before their widespread adoption, such as their long-term stability and cost-effectiveness. Further research in this area is needed to overcome these challenges and to develop commercially viable FGGS for diabetes management.
Collapse
Affiliation(s)
- Israr U Hassan
- College of Engineering, Dhofar University, Salalah, Oman
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Fatima Ba Omar
- College of Engineering, Dhofar University, Salalah, Oman
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of FL, Orlando, FL, USA
| | | | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, UK
| |
Collapse
|
34
|
Zhang S, Zhao W, Zeng J, He Z, Wang X, Zhu Z, Hu R, Liu C, Wang Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater Today Bio 2023; 20:100638. [PMID: 37128286 PMCID: PMC10148187 DOI: 10.1016/j.mtbio.2023.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The development of wearable non-invasive glucose sensors provides a convenient technical means to monitor the glucose concentration of diabetes patients without discomfortability and risk of infection. Apart from enzymes as typical catalytic materials, the active catalytic materials of the glucose sensor are mainly composed of polymers, metals, alloys, metal compounds, and various metals that can undergo catalytic oxidation with glucose. Among them, metallic nanomaterials are the optimal materials applied in the field of wearable non-invasive glucose sensing due to good biocompatibility, large specific surface area, high catalytic activity, and strong adsorption capacity. This review summarizes the metallic nanomaterials used in wearable non-invasive glucose sensors including zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) monometallic nanomaterials, bimetallic nanomaterials, metal oxide nanomaterials, etc. Besides, the applications of wearable non-invasive biosensors based on these metallic nanomaterials towards glucose detection are summarized in detail and the development trend of the wearable non-invasive glucose sensors based on metallic nanomaterials is also outlook.
Collapse
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- NingboTech University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junyan Zeng
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiang Wang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zehui Zhu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Runqing Hu
- NingboTech University, Ningbo, 315100, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- NingboTech University, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
35
|
VURAL B, ULUDAĞ İ, İNCE B, ÖZYURT C, ÖZTÜRK F, SEZGİNTÜRK MK. Fluid-based wearable sensors: a turning point in personalized healthcare. Turk J Chem 2023; 47:944-967. [PMID: 38173754 PMCID: PMC10760819 DOI: 10.55730/1300-0527.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/31/2023] [Accepted: 05/22/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management. Using noninvasive electrochemical sensors, biomarkers can be detected in tears, saliva, perspiration, and skin interstitial fluid (ISF). In this review, biofluids used for noninvasive wearable sensor detection under four main headings, saliva, sweat, tears, and ISF-based wearable sensors, were examined in detail. This report analyzes nearly 50 recent articles from 2017 to 2023. Based on current research, this review also discusses the evolution of wearable sensors, potential implementation challenges, and future prospects.
Collapse
Affiliation(s)
- Berfin VURAL
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - İnci ULUDAĞ
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Bahar İNCE
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Canan ÖZYURT
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Funda ÖZTÜRK
- Department of Chemistry, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Mustafa Kemal SEZGİNTÜRK
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| |
Collapse
|
36
|
Zhu W, Yu H, Pu Z, Guo Z, Zheng H, Li C, Zhang X, Li J, Li D. Effect of interstitial fluid pH on transdermal glucose extraction by reverse iontophoresis. Biosens Bioelectron 2023; 235:115406. [PMID: 37210841 DOI: 10.1016/j.bios.2023.115406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Reverse iontophoresis (RI) is a promising technology in the field of continuous glucose monitoring (CGM), offering significant advantages such as finger-stick-free operation, wearability, and non-invasiveness. In the glucose extraction process based on RI, the pH of the interstitial fluid (ISF) is a critical factor that needs further investigation, as it directly influences the accuracy of transdermal glucose monitoring. In this study, a theoretical analysis was conducted to investigate the mechanism by which pH affects the glucose extraction flux. Modeling and numerical simulations performed at different pH conditions indicated that the zeta potential was significantly impacted by the pH, thereby altering the direction and flux of the glucose iontophoretic extraction. A screen-printed glucose biosensor integrated with RI extraction electrodes was developed for ISF extraction and glucose monitoring. The accuracy and stability of the ISF extraction and glucose detection device were demonstrated with extraction experiments using different subdermal glucose concentrations ranging from 0 to 20 mM. The extraction results for different ISF pH values exhibited that at 5 mM and 10 mM subcutaneous glucose, the extracted glucose concentration was increased by 0.08212 mM and 0.14639 mM for every 1 pH unit increase, respectively. Furthermore, the normalized results for 5 mM and 10 mM glucose demonstrated a linear correlation, indicating considerable potential for incorporating a pH correction factor in the blood glucose prediction model used to calibrate glucose monitoring.
Collapse
Affiliation(s)
- Wangwang Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China; Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, China
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| | - Zijing Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Jun Li
- Langzhong People's Hospital, Sichuan, 637499, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
37
|
Wang Q, Sun D, Ma X, Huang R, Xu J, Xu X, Cai L, Xu L. Surface enhanced Raman scattering active substrate based on hydrogel microspheres for pretreatment-free detection of glucose in biological samples. Talanta 2023; 260:124657. [PMID: 37187030 DOI: 10.1016/j.talanta.2023.124657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Determining glucose in biological samples is tedious and time-consuming due to sample pretreatment. The sample is usually pretreated to remove lipids, proteins, hemocytes and other sugars that interfere with glucose detection. A surface-enhanced Raman scattering (SERS) active substrate based on hydrogel microspheres has been developed to detect glucose in biological samples. Due to the specific catalytic action of glucose oxidase (GOX), the high selectivity of detection is guaranteed. The hydrogel substrate prepared by microfluidic droplets technology protects the silver nanoparticles from the surrounding environment and improves the stability and reproducibility of the assay. In addition, the hydrogel microspheres have size-adjustable pores that selectively allow small molecules to pass through. The pores block the entry of large molecules, such as impurities, enabling glucose detection through glucose oxidase etching without sample pretreatment. This hydrogel microsphere-SERS platform is highly sensitive and enables reproducible detection of different glucose concentrations in biological samples. The use of SERS to detect glucose provides clinicians with new diagnostic methods for diabetes and a new application opportunity for SERS-based molecular detection techniques.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinqiu Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China.
| |
Collapse
|
38
|
Naikoo GA, Bano M, Arshad F, Hassan IU, BaOmar F, Alfagih IM, Tambuwala MM. Non-enzymatic glucose sensors composed of trimetallic CuO/Ag/NiO based composite materials. Sci Rep 2023; 13:6210. [PMID: 37069170 PMCID: PMC10110615 DOI: 10.1038/s41598-023-32719-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
The escalating risk of diabetes and its consequential impact on cardiac, vascular, ocular, renal, and neural systems globally have compelled researchers to devise cost-effective, ultrasensitive, and reliable electrochemical glucose sensors for the early diagnosis of diabetes. Herein, we utilized advanced composite materials based on nanoporous CuO, CuO/Ag, and CuO/Ag/NiO for glucose detection. The crystalline structure and surface morphology of the synthesized materials were ascertained via powder X-ray diffraction (P-XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The electro-catalytic properties of the manufactured electrode materials for glucose electro-oxidation in alkaline conditions were probed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Notably, the CuO/Ag/NiO electrode material exhibited exceptional performance as a non-enzymatic glucose sensor, displaying a linear range of 0.001-5.50 mM, an ultrahigh sensitivity of 2895.3 μA mM-1 cm-2, and a low detection limit of 0.1 μM. These results suggest that nanoporous CuO/Ag/NiO-based composite materials are a promising candidate for early diagnosis of hyperglycemia and treatment of diabetes. Furthermore, non-enzymatic glucose sensors may pave the way for novel glucometer markets.
Collapse
Affiliation(s)
- Gowhar A Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, 211, Salalah, Oman.
| | - Mustri Bano
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, 211, Salalah, Oman.
| | - Fareeha Arshad
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, 211, Salalah, Oman
| | - Israr U Hassan
- College of Engineering, Dhofar University, 211, Salalah, Oman
| | - Fatima BaOmar
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, 211, Salalah, Oman
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 4545, Saudi Arabia
| | - Murtaza M Tambuwala
- Lincoln Medical School - Universities of Nottingham and Lincoln, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, Lincolnshire, UK.
| |
Collapse
|
39
|
An enzyme-free Ti 3C 2/Ni/Sm-LDH-based screen-printed-electrode for real-time sweat detection of glucose. Anal Chim Acta 2023; 1250:340981. [PMID: 36898808 DOI: 10.1016/j.aca.2023.340981] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Here, we report the fabrication of an enzyme-free glucose sensor benefiting from nickel-samarium nanoparticles-decorated MXene layered double hydroxide (MXene/Ni/Sm-LDH). The electrochemical response of the MXene/Ni/Sm-LDH to glucose was studied via cyclic voltammetry (CV). The fabricated electrode has high electrocatalytic activity for glucose oxidation. The voltametric response of the MXene/Ni/Sm-LDH electrode to glucose was investigated by differential pulse voltammetry (DPV) that demonstrated an extended linear range of from 0.001 to 0.1 mM and 0.25-7.5 mM with a detection limit down to 0.24 μM (S/N = 3) and a sensitivity at 1673.54 μA mM-1 cm-2 1519.09 μA mM-1 cm-2 in concentrations of 0.01 mM and 1 mM respectively as well as good repeatability, high stability and applicability for the real sample analysis. Moreover, the as-fabricated sensor was applied to glucose detection in human sweat and showed promising results.
Collapse
|
40
|
Chmayssem A, Nadolska M, Tubbs E, Sadowska K, Vadgma P, Shitanda I, Tsujimura S, Lattach Y, Peacock M, Tingry S, Marinesco S, Mailley P, Lablanche S, Benhamou PY, Zebda A. Insight into continuous glucose monitoring: from medical basics to commercialized devices. Mikrochim Acta 2023; 190:177. [PMID: 37022500 DOI: 10.1007/s00604-023-05743-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.
Collapse
Affiliation(s)
- Ayman Chmayssem
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France
| | - Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, 38000, Grenoble, Biomics, France
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Pankaj Vadgma
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Seiya Tsujimura
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-5358, Japan
| | | | - Martin Peacock
- Zimmer and Peacock, Nedre Vei 8, Bldg 24, 3187, Horten, Norway
| | - Sophie Tingry
- Institut Européen Des Membranes, UMR 5635, IEM, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, UMR5292, Inserm U1028, CNRS, Univ. Claude-Bernard-Lyon I, 69675, Lyon 08, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, DTBS, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Pierre Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Abdelkader Zebda
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France.
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| |
Collapse
|
41
|
Cheng Y, Feng S, Ning Q, Li T, Xu H, Sun Q, Cui D, Wang K. Dual-signal readout paper-based wearable biosensor with a 3D origami structure for multiplexed analyte detection in sweat. MICROSYSTEMS & NANOENGINEERING 2023; 9:36. [PMID: 36999140 PMCID: PMC10042807 DOI: 10.1038/s41378-023-00514-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
In this research, we design and implement a small, convenient, and noninvasive paper-based microfluidic sweat sensor that can simultaneously detect multiple key biomarkers in human sweat. The origami structure of the chip includes colorimetric and electrochemical sensing regions. Different colorimetric sensing regions are modified with specific chromogenic reagents to selectively identify glucose, lactate, uric acid, and magnesium ions in sweat, as well as the pH value. The regions of electrochemical sensing detect cortisol in sweat by molecular imprinting. The entire chip is composed of hydrophilically and hydrophobically treated filter paper, and 3D microfluidic channels are constructed by using folding paper. The thread-based channels formed after the hydrophilic and hydrophobic modifications are used to control the rate of sweat flow, which in turn can be used to control the sequence of reactions in the differently developing colored regions to ensure that signals of the best color can be captured simultaneously by the colorimetric sensing regions. Finally, the results of on-body experiments verify the reliability of the proposed sweat sensor and its potential for the noninvasive identification of a variety of sweat biomarkers.
Collapse
Affiliation(s)
- Yuemeng Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), 200240 Shanghai, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 200011 Shanghai, China
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), 200240 Shanghai, China
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), 200240 Shanghai, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), 200240 Shanghai, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), 200240 Shanghai, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), 200240 Shanghai, China
| |
Collapse
|
42
|
Zheng H, Pu Z, Wu H, Li C, Zhang X, Li D. Reverse iontophoresis with the development of flexible electronics: A review. Biosens Bioelectron 2023; 223:115036. [PMID: 36580817 DOI: 10.1016/j.bios.2022.115036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Skin-centric diagnosis techniques, such as epidermal physiological parameter monitoring, have developed rapidly in recent years. The analysis of interstitial fluid (ISF), a body liquid with abundant physiological information, is a promising method to obtain health status because ISF is easily assessed by implanted or percutaneous measurements. Reverse iontophoresis extracts ISF by applying an electric field onto the skin, and it is a promising method to noninvasively obtain ISF, which, in turn, enables noninvasive epidermal physiological parameter monitoring. However, the development of reverse iontophoresis was relatively slow around the 2010s due to the rigidity and low biocompatibility of the applied devices. With the rapid development of flexible electronic technology in recent years, new progress has been made in the field of reverse iontophoresis, especially in the field of blood glucose monitoring and drug monitoring. This review summarizes the recent advances and discusses the challenges and opportunities of reverse iontophoresis.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
43
|
Muqaddas S, Javed M, Nadeem S, Asghar MA, Haider A, Ahmad M, Ashraf AR, Nazir A, Iqbal M, Alwadai N, Ahmad A, Ali A. Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors. ACS OMEGA 2023; 8:2272-2280. [PMID: 36687067 PMCID: PMC9850492 DOI: 10.1021/acsomega.2c06594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 05/09/2023]
Abstract
Electrochemical sensors are gaining significant demand for real-time monitoring of health-related parameters such as temperature, heart rate, and blood glucose level. A fiber-like microelectrode composed of copper oxide-modified carbon nanotubes (CuO@CNTFs) has been developed as a flexible and wearable glucose sensor with remarkable catalytic activity. The unidimensional structure of CNT fibers displayed efficient conductivity with enhanced mechanical strength, which makes these fibers far superior as compared to other fibrous-like materials. Copper oxide (CuO) nanoparticles were deposited over the surface of CNT fibers by a binder-free facile electrodeposition approach followed by thermal treatment that enhanced the performance of non-enzymatic glucose sensors. Scanning electron microscopy and energy-dispersive X-ray analysis confirmed the successful deposition of CuO nanoparticles over the fiber surface. Amperometric and voltammetric studies of fiber-based microelectrodes (CuO@CNTFs) toward glucose sensing showed an excellent sensitivity of ∼3000 μA/mM cm2, a low detection limit of 1.4 μM, and a wide linear range of up to 13 mM. The superior performance of the microelectrode is attributed to the synergistic effect of the electrocatalytic activity of CuO nanoparticles and the excellent conductivity of CNT fibers. A lower charge transfer resistance value obtained via electrochemical impedance spectroscopy (EIS) also demonstrated the superior electrode performance. This work demonstrates a facile approach for developing CNT fiber-based microelectrodes as a promising solution for flexible and disposable non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Sheza Muqaddas
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Mohsin Javed
- Department
of Chemistry, School of Science, University
of Management and Technology, Lahore54770, Pakistan
| | - Sohail Nadeem
- Department
of Chemistry, School of Science, University
of Management and Technology, Lahore54770, Pakistan
| | | | - Ali Haider
- Department
of Chemistry, Quaid-i-Azam University, Islamabad45320, Pakistan
| | - Muhammad Ahmad
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore54770, Pakistan
| | - Ahmad Raza Ashraf
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Arif Nazir
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Munawar Iqbal
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore54770, Pakistan
| | - Norah Alwadai
- Department
of Physics, College of Sciences, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Azhar Ahmad
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Abid Ali
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
- ,
| |
Collapse
|
44
|
Yang H, Hu Y, Yin X, Huang J, Qiao C, Hu Z, He C, Huo D, Hou C. A disposable and sensitive non-enzymatic glucose sensor based on a 3D-Mn-doped NiO nanoflower-modified flexible electrode. Analyst 2023; 148:153-162. [DOI: 10.1039/d2an01495e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, Mn-doped NiO nano-enzyme composites with high catalytic performance and excellent conductivity were grown on 3D CFC via hydrothermal and calcination methods to construct an efficient flexible glucose sensor.
Collapse
Affiliation(s)
- Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yian Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Xinxue Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jiaqing Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Zhikun Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Congjuan He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| |
Collapse
|
45
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
46
|
Shao B, Chen F, Wang J, Zhai W. Cavitation Regulated Sonochemical Synthesis of Flexible Self-Supported CuO@PDA/CC Electrode for Highly Sensitive Glucose Sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Wang Q, Jiao C, Wang X, Wang Y, Sun K, Li L, Fan Y, Hu L. A hydrogel-based biosensor for stable detection of glucose. Biosens Bioelectron 2022; 221:114908. [DOI: 10.1016/j.bios.2022.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
48
|
Wang J, Wang L, Li G, Yan D, Liu C, Xu T, Zhang X. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens 2022; 7:3102-3107. [PMID: 36218347 DOI: 10.1021/acssensors.2c01533] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the field of wearable sensing, small and precise sensors can greatly reduce the burden on the wearer and improve the sense of experience, which is the future direction of sensing development. Herein, we introduce an ultra-small wearable biosensor system that integrates an MS02 chip for real-time and highly accurate sweat detection. The whole system mainly includes flexible electrodes and a printed circle board (PCB). The size of the PCB is only 1.5 cm × 0.8 cm, which greatly minimizes the size of the sweat system and improves wearing comfort. Notably, this miniaturized system is comparable to a commercial electrochemical workstation, ensuring the reliability and accuracy of real-time analysis. The core processing MS02 chip, with a dimension of 1.2 mm × 1.1 mm, is used to perform electrochemical signal processing. By performing electrochemical characterization and measurements of the ultra-small wearable biosensor system, on-body monitoring of four biomarkers (glucose, lactate, Na+, and K+) in sweat of human volunteers has been successfully achieved. With the help of this electrochemical sensor system, mass of biochemical data from perspiration can be acquired to better understand the body's response to daily activities, which will facilitate the early prediction of abnormal physiological changes in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Guanhua Li
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Dan Yan
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
49
|
Ji G, Chen Z, Li H, Awuye DE, Guan M, Zhu Y. Electrospinning-Based Biosensors for Health Monitoring. BIOSENSORS 2022; 12:876. [PMID: 36291013 PMCID: PMC9599869 DOI: 10.3390/bios12100876] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 05/27/2023]
Abstract
In recent years, many different biosensors are being used to monitor physical health. Electrospun nanofiber materials have the advantages of high specific surface area, large porosity and simple operation. These properties play a vital role in biosensors. However, the mechanical properties of electrospun nanofibers are poor relative to other techniques of nanofiber production. At the same time, the organic solvents used in electrospinning are generally toxic and expensive. Meanwhile, the excellent performance of electrospun nanofibers brings about higher levels of sensitivity and detection range of biosensors. This paper summarizes the principle and application of electrospinning technology in biosensors and its comparison with other technologies.
Collapse
Affiliation(s)
- Guojing Ji
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Hui Li
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
- Wuhu Innovation New Materials Co., Ltd., Wuhu 241080, China
| | - Desire Emefa Awuye
- Department of Minerals and Materials Engineering, University of Mines and Technology, Tarkwa 03123, Ghana
| | - Mengdi Guan
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yingbao Zhu
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
50
|
Direct decoration of carbon nanohorns with binary nickel-cobalt sulfide nanosheets towards non-enzymatic glucose sensing in human fluids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|