1
|
Feng H, Gao H, Chen J, Zhao R, Huang Y. Emerging phospholipid-targeted affinity materials for extracellular vesicle isolation and molecular profiling. J Chromatogr A 2025; 1741:465639. [PMID: 39742681 DOI: 10.1016/j.chroma.2024.465639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Extracellular vesicles (EVs) carrying lipids, proteins, nucleic acids and small molecular metabolites have emerged as an attractive paradigm for understanding and interfering physiological and pathological processes. To this end, selective and efficient separation approaches are highly demanded to obtain target EVs from complicated biosamples. With increasing knowledges on EV lipids, recent years have witnessed rapid advances of phospholipid-targeted affinity materials and platforms for high-performance isolation and analysis of EVs. In view of this, this review is contributed to introduce recent progresses in lipid membrane-targeted affinity strategies for EV isolation and molecular detection in biofluids. Affinity ligands including lipids, peptides, small molecules and aptamers and their molecular interactions with lipids are discussed in focus. The design, construction and mechanism of actions of affinity interfaces are summarized. The EV separation performances in complex biosamples and downstream proteomic, lipidomic and metabolic profiling are introduced. Finally, the perspectives and challenges for the development of next-generation phospholipid-targeted EV separation platforms are discussed.
Collapse
Affiliation(s)
- Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Liu X, Zhang J, Chen Z, He X, Yan C, Lv H, Chen Z, Liu Y, Wang L, Song C. Branched hybridization chain reaction and tetrahedral DNA-based trivalent aptamer powered SERS sensor for ultra-highly sensitive detection of cancer-derived exosomes. Biosens Bioelectron 2025; 267:116737. [PMID: 39243449 DOI: 10.1016/j.bios.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Exosomes have emerged as a promising noninvasive biomarker for early cancer diagnosis due to their ability to carry specific bioinformation related to cancer cells. However, accurate detection of trace amount of cancer-derived exosomes in complex blood remains a significant challenge. Herein, an ultra-highly sensitive SERS sensor, powered by the branched hybridization chain reaction (bHCR) and tetrahedral DNA-based trivalent aptamer (triApt-TDN), has been proposed for precise detection of cancer-derived exosomes. Taking gastric cancer SGC-7901 cells-derived exosomes as a test model, the triApt-TDNs were constructed by conjugating aptamers specific to mucin 1 (MUC1) protein with tetrahedral DNAs and subsequently immobilized on the surface of silver nanorods (AgNRs) arrays to create SERS-active sensing chips capable of specifically capturing exosomes overexpressing MUC1 proteins. The bHCR was further initiated by the trigger aptamers (tgApts) bound to exosomes, and as a result the SERS tags were assembled into AuNP network structures with abundant SERS hotspots. By optimizing the sensing conditions, the SERS sensor showed good performance in ultra-highly sensitive detection of target exosomes within 60 min detection time, with a broad response ranging of 1.44 to 1.44 × 104 particles·μL-1 and an ultralow limit of detection capable of detecting a single exosome in 2 μL sample. Furthermore, the SERS sensor exhibited good uniformity, repeatability and specificity, and capability to distinguish between gastric cancer (GC) patients and healthy controls (HC) through the detection of exosomes in clinical human serums, indicating its promising clinical potential for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Zeyan Chen
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiyu He
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chenlong Yan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ying Liu
- Xuzhou College of Industrial Technology, Xuzhou, 221140, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
3
|
Yao X, He D, Wei P, Niu Z, Chen H, Li L, Fu P, Wang Y, Lou S, Qian S, Zheng J, Zuo G, Wang K. DNA Nanomaterial-Empowered Surface Engineering of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306852. [PMID: 38041689 DOI: 10.1002/adma.202306852] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Extracellular vesicles (EVs) are cell-secreted biological nanoparticles that are critical mediators of intercellular communication. They contain diverse bioactive components, which are promising diagnostic biomarkers and therapeutic agents. Their nanosized membrane-bound structures and innate ability to transport functional cargo across major biological barriers make them promising candidates as drug delivery vehicles. However, the complex biology and heterogeneity of EVs pose significant challenges for their controlled and actionable applications in diagnostics and therapeutics. Recently, DNA molecules with high biocompatibility emerge as excellent functional blocks for surface engineering of EVs. The robust Watson-Crick base pairing of DNA molecules and the resulting programmable DNA nanomaterials provide the EV surface with precise structural customization and adjustable physical and chemical properties, creating unprecedented opportunities for EV biomedical applications. This review focuses on the recent advances in the utilization of programmable DNA to engineer EV surfaces. The biology, function, and biomedical applications of EVs are summarized and the state-of-the-art achievements in EV isolation, analysis, and delivery based on DNA nanomaterials are introduced. Finally, the challenges and new frontiers in EV engineering are discussed.
Collapse
Affiliation(s)
- Xuxiang Yao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Dongdong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Pengyao Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Zitong Niu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Hao Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China
| | - Saiyun Lou
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
- Ningbo Second Hospital, Ningbo, 315010, P. R. China
| | - Sihua Qian
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Jianping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| |
Collapse
|
4
|
Luo X, Jiao Q, Pei S, Zhou S, Zheng Y, Shao W, Xu K, Zhong W. A Photoactivated Self-Assembled Nanoreactor for Inducing Cascade-Amplified Oxidative Stress toward Type I Photodynamic Therapy in Hypoxic Tumors. Adv Healthc Mater 2024:e2401787. [PMID: 39101321 DOI: 10.1002/adhm.202401787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Type I photodynamic therapy (PDT) generates reactive oxygen species (ROS) through oxygen-independent photoreactions, making it a promising method for treating hypoxic tumors. However, the superoxide anion (O2∙-) generated usually exhibits a low oxidation capacity, restricting the antitumor efficacy of PDT in clinical practice. Herein, a photoactivated self-assembled nanoreactor (1-NBS@CeO2) is designed through integration of type I PDT and cerium oxide (CeO2) nanozymes for inducing cascade-amplified oxidative stress in hypoxic tumors. The nanoreactor is constructed though co-assembly of an amphiphilic peptide (1-NBS) and CeO2, giving well-dispersed spherical nanoparticles with enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities. Following light irradiation, 1-NBS@CeO2 undergoes type I photoreactions to generated O2∙-, which is further catalyzed by the nanoreactors, ultimately forming hypertoxic hydroxyl radical (∙OH) through cascade-amplified reactions. The PDT treatment using 1-NBS@CeO2 results in elevation of intracellular ROS and depletion of GSH content in A375 cells, thereby inducing mitochondrial dysfunction and triggering apoptosis and ferroptosis of tumor cells. Importantly, intravenous administration of 1-NBS@CeO2 alongside light irradiation showcases enhances antitumor efficacy and satisfactory biocompatibility in vivo. Together, the self-assembled nanoreactor facilitates cascade-amplified photoreactions for achieving efficacious type I PDT, which holds great promise in developing therapeutic modules towards hypoxic tumors.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Pei
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuyao Zhou
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Zheng
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiyang Shao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
5
|
Tang X, Zhao S, Luo J, Wang B, Wu X, Deng R, Chang K, Chen M. Smart Stimuli-Responsive Spherical Nucleic Acids: Cutting-Edge Platforms for Biosensing, Bioimaging, and Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310732. [PMID: 38299771 DOI: 10.1002/smll.202310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.
Collapse
Affiliation(s)
- Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xianlan Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
6
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
7
|
Liu Q, Zheng J, Xie A, Chen M, Gong RY, Sheng Y, Chen HL, Qi CB. Exosome, a Rising Biomarkers in Liquid Biopsy: Advances of Label-Free and Label Strategy for Diagnosis of Cancer. Crit Rev Anal Chem 2024:1-12. [PMID: 38669199 DOI: 10.1080/10408347.2024.2339961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Cancer is commonly considered as one of the most severe diseases, posing a significant threat to human health and society due to various serious challenges. These challenges include difficulties in accurate diagnosis and a high propensity to form metastasis. Tissue biopsy remains the gold standard for diagnosing and subtyping cancer. However, concerns arise from its invasive nature and the potential risk of metastasis during these complex diagnostic procedures. Meanwhile, liquid biopsy has recently witnessed the rapid advancements with the emergence of three prominent detection biomarkers: circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. Whereas, the very low abundance of CTCs combined with the instability of ctDNA intensify the challenges and decrease the accuracy of these two biomarkers for cancer diagnosis. While exosomes have gained widespread recognition as a promising biomarker in liquid biopsy due to their relatively low-invasive detection method, excellent biostability, rich resources, high abundance, and ability to provide valuable information about cancer. Therefore, it is crucial to systematically summarize recent advancements mainly in exosome-based detection methods for early cancer diagnosis. Specifically, this review will primarily focus on label-based and label-free strategies for detecting cancer using exosomes. We anticipate that this comprehensive analysis will enhance readers' understanding of the significance and value of exosomes in the fields of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jing Zheng
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - An Xie
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Min Chen
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rui-Yue Gong
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuan Sheng
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hong-Lei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chu-Bo Qi
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
8
|
Deng Y, Zhou T, Hu K, Peng Y, Jia X, Yang J, Li G. An electrochemical biosensor designed with entropy-driven autocatalytic DNA circuits for sensitive detection of ovarian cancer-derived exosomes. Biosens Bioelectron 2024; 250:116060. [PMID: 38278121 DOI: 10.1016/j.bios.2024.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Intelligent artificial DNA circuits have emerged as a promising approach for modulating signaling pathways and signal transduction through rational design, which may contribute to comprehensively realizing biomolecular sensing of organisms. In this work, we have fabricated an electrochemical biosensor for the sensitive and accurate detection of ovarian cancer-derived exosomes by constructing an entropy-driven autocatalytic DNA circuit (EADC). Specifically, the robust EADC is prepared by the self-assembly of well-designed DNA probes, and upon stimulation of the presence of ovarian cancer cells-derived exosomes, numerous inputs can be produced to feedback and accelerate the reaction. The catalytic abilities of the generated input sequences play a pivotal role in EADC and dramatically enhance the signal amplification capability. Through the combination of the autocatalytic circuit and circular cleavage reactions, significantly changed electrochemical signals can be recorded for sensitive analysis of the exosomes with a remarkably low detection limit of 30 particles/μL. Moreover, the proposed enzyme-free biosensor shows exceptional performance in distinguishing patient samples from healthy samples, which exhibits promising prospects for the clinical diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Kai Hu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, PR China
| | - Ying Peng
- School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, PR China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, PR China.
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
9
|
Gao X, Cao K, Yang J, Liu L, Gao L. Recent advances in nanotechnology for programmed death ligand 1-targeted cancer theranostics. J Mater Chem B 2024; 12:3191-3208. [PMID: 38497358 DOI: 10.1039/d3tb02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Linhong Liu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
10
|
Cheng W, Yao Y, Li D, Duan C, Wang Z, Xiang Y. Asymmetrically split DNAzyme-based colorimetric and electrochemical dual-modal biosensor for detection of breast cancer exosomal surface proteins. Biosens Bioelectron 2023; 238:115552. [PMID: 37542978 DOI: 10.1016/j.bios.2023.115552] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Exosomal surface proteins are potentially useful for breast cancer diagnosis and awareness of risk. However, some detection techniques involving complex operations and expensive instrumentation are limited to advance to clinical applications. To solve this problem, we develop a dual-modal sensor combining naked-eye detection and electrochemical assay of exosomal surface proteins from breast cancer. Most of existing sensors rely on aptamers recognizing exosomes and generating amplified signals at the same time, which require well-designed aptamer probes to avoid difficulties in identifying exosomes. In our work, aptamers not bound by the exosomes can serve as complete templates to induce formation of G quadruplexes. The peroxidase activity of the G-quadruplex/hemin DNAzyme catalyze substrates can generate both color and electrochemical signals. The developed dual-modal sensor offers a remarkable capability to differentiate nonmetastatic, metastatic breast cancer patients, and healthy individuals through the analysis of exosomal surface proteins. The sensor's distinctive features, including its universality, simplicity, and cost-effectiveness, position it as a promising diagnostic tool in breast cancer research and clinical practice.
Collapse
Affiliation(s)
- Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
11
|
Niu R, Chen X, Sun Z, Wang L, Wang Z, Zhang C, Ding D, Yang J, Wang Y, Luo Y. A smart TESTER for reliable discrimination of cancer-derived small extracellular vesicles. Anal Chim Acta 2023; 1276:341636. [PMID: 37573115 DOI: 10.1016/j.aca.2023.341636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
Cancer-derived small extracellular vesicles (csEVs) are crucial liquid biopsy indicators that reflect the presence and progression of many malignancies. However, reliable discrimination of csEVs remains a great challenge owing to the interference from normal sEVs (nsEVs) and low abundance in the early stages of cancer. In this work, we developed a Two-Elements Selectively Triggered csEVs Recognization (TESTER) strategy for selective identification of csEVs from the complex clinical body fluid samples. This method was based on the MNAzyme-controlled synchronous recognition to EpCAM and CD63 proteins on the membrane of csEVs. Efficient recognition to csEVs via EpCAM aptamer and CD63 aptamer prompted the release of Partzyme A and Partzyme B probes to induce a MNAzyme structure formation, resulting in the cyclic cleavage of substrate chain to produce cascade fluorescence signal amplification. The detection threshold of the developed TESTER approach for csEVs in complicated biological samples was 72 particles μL-1, accomplishing the highly sensitive and selective quantification of csEVs. At the same time, we successfully constructed a new platform for bimolecular simultaneous recognition, which provides a good idea for the construction of bimolecular-activated detection switch in the future.
Collapse
Affiliation(s)
- Ruyan Niu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiaohui Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Chong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Dan Ding
- College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China.
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China.
| | - Yang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China; College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, PR China.
| |
Collapse
|
12
|
Zhou Y, Chen Q, Zhong S, Liu H, Koh K, Chen H. Ti 3C 2Tx MXene -facilitated non-selective trapping effect: Efficient SERS detection of exosomal PD-L1. Biosens Bioelectron 2023; 237:115493. [PMID: 37364303 DOI: 10.1016/j.bios.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Biosensors developed through a sandwich approach have demonstrated favorable detection performance for exosomal programmed cell death 1 ligand 1 (ExoPD-L1) detection. However, the reported PD-L1 antibodies, peptides, and aptamers utilized in these biosensors typically bind to the extracellular region, with overlapping binding sites that severely constrain the fabrication of biosensors. In this study, we present a simple approach to specifically identify and analyze ExoPD-L1 through the non-selective trapping effect of Ti3C2TX (X=-O, -F, -OH) MXene on exosomes via the formation of Ti-O-P complexation, and the selective capture of peptide-functionalized Au@MPBA (4-Mercaptophenylboronic acid) @SiO2 surface enhanced Raman scattering (SERS) tags on ExoPD-L1. The biosensor delivered a both hypersensitive and reliable performance in exosome detection with a low limit of detection (20.74 particles/mL) in the linear range of 102 to 5×106 particles/mL. Furthermore, the biosensor demonstrated excellent stability and interference resistance in detecting ExoPD-L1 in clinical serum samples, enabling the easy differentiation of breast cancer patients from healthy controls. This work provides new insights into the design of biosensors for exosome detection and can serve as a replicable template for sandwich immunoassay detection for other types of sensors, including but not limited to SERS.
Collapse
Affiliation(s)
- Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Suyun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hezhen Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
13
|
Tai Q, Yu H, Gao M, Zhang X. In Situ Capturing and Counting Device for the Specific Depletion and Purification of Cancer-Derived Exosomes. Anal Chem 2023; 95:13113-13122. [PMID: 37609888 DOI: 10.1021/acs.analchem.3c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
From metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance. Current methods for exosome separation and enrichment are either for large-scale samples or require complex pretreatment processes, lacking effective methods for trace-volume exosome capture in situ. Herein, we have developed an in situ exosome capturing and counting device based on the antibody-functionalized capillary. Specific antibodies targeting exosome biomarkers were immobilized to the inner wall of the capillary via biotin-streptavidin interaction for direct cancer exosome capturing. Subsequent exosome staining enabled imaging and enumeration. Acceptable linearity and reproducibility were achieved with our device, with the capturing and detective range between 3.3 × 104 and 3.3 × 108 particles, surpassing the nanoparticle tracking analysis by 2 orders of magnitude while requiring merely 30 μL sample. We demonstrated that MCF-7-derived exosomes induced epithelial-mesenchymal transition of epithelial cells MCF-10A, and our method was able to completely or partially reverse the transition by complete depletion or specific depletion of cancer exosomes without any preprocessing. Moreover, both whole exosomes and cancer-specific exosomes alone from mimic blood samples were successfully captured and counted, without obvious non-specific adsorption. In all, our approach realized the in situ depletion and number-counting of cancer-derived exosomes directly from the complex humoral environment, having the potential to provide a comprehensive tumor therapeutic and prognosis evaluation tool by targeted hemodialysis and counting of tumor-derived exosomes.
Collapse
Affiliation(s)
- Qunfei Tai
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hailong Yu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Khaksari S, Abnous K, Hadizadeh F, Ramezani M, Taghdisi SM, Mousavi Shaegh SA. Signal amplification strategies in biosensing of extracellular vesicles (EVs). Talanta 2023; 256:124244. [PMID: 36640707 DOI: 10.1016/j.talanta.2022.124244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed vesicles secreted from mammalian cells. EVs act as multicomponent delivery vehicles to carry a wide variety of biological molecular information and participate in intercellular communications. Since elevated levels of EVs are associated with some pathological states such as inflammatory diseases and cancers, probing circulating EVs holds a great potential for early diagnostics. To this end, several detection methods have been developed in which biosensors have attracted great attentions in identification of EVs due to their simple instrumentation, versatile design and portability for point-of-care applications. The concentrations of EVs in bodily fluids are extremely low (i.e. 1-100 per μl) at early stages of a disease, which necessitates the use of signal amplification strategies for EVs detection. In this way, this review presents and discusses various amplification strategies for EVs biosensors based on detection modalities including surface plasmon resonance (SPR), calorimetry, fluorescence, electrochemical and electrochemiluminescence (ECL). In addition, microfluidic systems employed for signal amplification are reviewed and discussed in terms of their design and integration with the detection methods.
Collapse
Affiliation(s)
- Sedighe Khaksari
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Laboratory of Microfluidics and Medical Microsystems, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran; Laboratory of Microfluidics and Medical Microsystems, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Colorimetric aptasensor based on spherical nucleic acid-induced hybridization chain reaction for sensitive detection of exosomes. Talanta 2023; 258:124453. [PMID: 36924637 DOI: 10.1016/j.talanta.2023.124453] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Exosomes are one of the most promising biomarkers for tumor diagnosis and prognosis. Therefore, the development of convenient and sensitive exosome sensing strategies is of great significance. Herein, we integrated aptamer-based spherical nucleic acids (SNAs) and hybridization chain reaction (HCR) into a colorimetric aptasensor platform and applied it to the detection of exosomes. In this design, the CD63-specific aptamer pre-immobilized on the microplate was used to capture target exosomes, while the SNAs conjugated with nucleolin-specific aptamer and trigger probe H1 were designed for amplifying signal. In the presence of target exosomes, the SNAs can be attached to the microplate by the bridge effect of exosomes, resulting in the trigger of HCR. This process is accompanied by the formation of abundant G-quadruplex/hemin DNAzyme, enabling the visual quantitative analysis of exosomes. Featured with the dual amplification of SNAs and HCR, the proposed aptasensor achieved a considerable detection limit of 50 particles/μL. The practicability of this method was further verified by testing the different clinical samples. Given the ability of the aptasensor to visually detect exosomes in scenarios lacking instruments and resources, we believe that the aptasensor can be serve as a potential on-site test for liquid biopsy.
Collapse
|
16
|
Wang M, Zhang Z, Li G, Jing A. Room-Temperature Self-Healing Conductive Elastomers for Modular Assembly as a Microfluidic Electrochemical Biosensing Platform for the Detection of Colorectal Cancer Exosomes. MICROMACHINES 2023; 14:617. [PMID: 36985024 PMCID: PMC10054614 DOI: 10.3390/mi14030617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Modular components for rapid assembly of microfluidics must put extra effort into solving leakage and alignment problems between individual modules. Here, we demonstrate a conductive elastomer with self-healing properties and propose a modular microfluidic component configuration system that utilizes self-healing without needing external interfaces as an alternative to the traditional chip form. Specifically, dual dynamic covalent bond crosslinks (imine and borate ester bonds) established between Polyurethane (PU) and 2-Formylbenzeneboronic acid (2-FPBA) are the key to a hard room-temperature self-healing elastomeric substrate PP (PU/2-FPBA). An MG (MXene/GO) conductive network with stable layer spacing (Al-O bonds) obtained from MXene and graphene oxide (GO) by in situ reduction of metals confers photothermal conductivity to PP. One-step liquid molding obtained a standardized modular component library of puzzle shapes from PP and MGPP (MG/PP). The exosomes were used to validate the performance of the constructed microfluidic electrochemical biosensing platform. The device has a wide detection range (50-105 particles/μL) and a low limit of detection (LOD) (42 particles/μL) (S/N = 3), providing a disposable, reusable, cost-effective, and rapid analysis platform for quantitative detection of colorectal cancer exosomes. In addition, to our knowledge, this is the first exploration of self-healing conductive elastomers for a modular microfluidic electrochemical biosensing platform.
Collapse
|
17
|
Cheng W, Sun Y, Zhao G, Khan A, Zhang J, Zhang Z, Yi Y, Kong D, Li J. A novel peptide-templated AgNPs nanoprobe for theranostics of prostate cancer. Biosens Bioelectron 2023; 223:114978. [PMID: 36586149 DOI: 10.1016/j.bios.2022.114978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Prostate specific membrane antigen (PSMA)-positive exosomes have the potential to serve as highly sensitive biomarkers for prostate cancer detection. Herein, a sensitive electrochemical biosensor for the ultrasensitive detection of PSMA-positive exosomes has been constructed based on a peptide-templated AgNPs nanoprobe. In this work, PSMA-specific binding peptides immobilized on a gold electrode were responsible for prostate cancer-derived exosomes capturing. Well-designed peptide (CCY- LWYIKC) serves a dual role: as a signal probe and as a recognizer in the exosomes-identification process. Specifically, LWYIKC bind to cholesterol at the exosome membranes, and CCY function as peptide templates to host a large number of silver nanoparticles, leading to a strong electrochemical signal. Thus, the concentration of exosomes can be quantified via electrochemical signal. This innovative method displayed a wide detection range of 102 to 108 particles/μL and a detection limit as low as 37 particles/μL. Notably, the method has shown outstanding performance when validated using clinical samples, suggesting its potential for clinical applications.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Ying Sun
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Guiping Zhao
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jianchun Zhang
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Zhaoli Zhang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Yongxiang Yi
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| | - Dehua Kong
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China.
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
18
|
Ashley J, Potts IG, Olorunniji FJ. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology. Chembiochem 2023; 24:e202200510. [PMID: 36342345 DOI: 10.1002/cbic.202200510] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.
Collapse
Affiliation(s)
- Jon Ashley
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Indiia G Potts
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Femi J Olorunniji
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
19
|
Liu Q, Yao J, Huang Z, Wang S, Jiang J, Cao Y, Bei Y, Zhao J. A Versatile Design-Enabled Analysis of Circulating Extracellular Vesicles in Disease Diagnosis. Adv Healthc Mater 2023:e2203119. [PMID: 36740726 DOI: 10.1002/adhm.202203119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Circulating extracellular vesicles (EVs) are considered as potential biomarkers for treatment and diagnosis of many diseases. Most of the existing methods for the EV analysis only have a single function and thus reveal limited information carried by EVs. Herein, a phosphatidylserine-targeting peptide-facilitated design that enables the versatile analysis of circulating EVs for varying requirement is proposed. In the design, DNA probes are inserted into the EV membrane through hydrophobic interactions, and accelerate the removal of protective shielding from DNA-gated metal-organic framework, thereby releasing a large number of methylene blue molecules to amplify the electrochemical signal. Electrochemical results demonstrate equally high sensitivities toward the quantification of EVs derived from different cell sources using an indiscriminative DNA probe. More importantly, the probe can be endowed with extended function for more accurate classification of cell-specific features through the identification of specific EV biomarkers, and demonstrates the potential use in the diagnosis of cardiovascular in a principle-of-proof study for clinical application. Therefore, the method provides a versatile design for the identification of EV features, and may address the needs of clinical diagnosis in the future.
Collapse
Affiliation(s)
- Qi Liu
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Zichen Huang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuning Wang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jizong Jiang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yihua Bei
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
20
|
DNA-functionalized covalent organic framework capsules for analysis of exosomes. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Wang D, Li R, Jiang J, Qian H, Xu W. Exosomal circRNAs: Novel biomarkers and therapeutic targets for gastrointestinal tumors. Biomed Pharmacother 2023; 157:114053. [PMID: 36462315 DOI: 10.1016/j.biopha.2022.114053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the high prevalence of gastrointestinal tumors, early diagnosis and treatment of these tumors is limited by the lack of effective and specific biomarkers and therapeutic targets. Exosomes carry active molecules to mediate cell-to-cell communication, especially in the tumor microenvironment, and are promising biomarkers and therapeutic targets for cancer. Circular RNAs (circRNAs) are stably enriched in exosomes and show a unique circular structure, high stability, conservation, and tissue specificity. Exosomal circRNAs play important roles in regulating cell proliferation, metastasis, angiogenesis, metabolism, and the immune microenvironment of gastrointestinal tumors and exhibit great potential as tumor biomarkers and anti-tumor targets or tools. This review briefly introduces the characteristics and functions of circRNAs and exosomes, and systematically describes the biological roles and mechanisms of exosomal circRNAs in gastrointestinal tumors. This article also summarizes the detection methodology of exosomal circRNAs and discusses their clinical significance as biomarkers and targets for gastrointestinal tumors.
Collapse
Affiliation(s)
- Dongli Wang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rong Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu 215600, China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
22
|
Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Li S, Ma Q. Electrochemical nano-sensing interface for exosomes analysis and cancer diagnosis. Biosens Bioelectron 2022; 214:114554. [PMID: 35834978 DOI: 10.1016/j.bios.2022.114554] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Exosomes are a class of the nanosized extracellular vesicles, which have emerged as representative liquid biopsy biomarkers. To date, the electrochemical nanosensors are of great significance in the exosome detection with the advantages of easy operation, high accuracy and reliable repeatability. Especially, the growing field of nano interface has provided the electrochemical sensing platforms for the accurate exosomes analysis. The incorporation of multiple nanomaterials can take advantages and synergistic properties of functional units. So, based on the integration of with nanomaterial-based signal transduction and specific biorecognition, the nano-sensing interface provides excellent electrochemical features owing to rapid mass transport and excellent conductivity. The nano-sensing interface with a wide variety of morphologies and structure also provides the large active surface area for the immobilization of bio-capturing agents. Furthermore, through the design of nanostructured electrode array, the efficiency of transducer can be greatly improved. It should be noticed that the elaboration of a proper sensor requires the profound knowledge of the nano-sensing interface. Therefore, this article presents a review of the recent advance in exosomes detection based on the electrochemical nano-sensing interface, including electrochemical analysis principles, exosome sensing mechanisms, nano-interface construction strategies, as well as the typical diagnosis application. In particular, the article is focused on the exploration of the various electrochemical sensing performance of nano-interface in the exosome detection. We have also prospected the future trend and challenge of the electrochemical nano-sensing interface for exosomes analysis in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Shijie Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
24
|
Tang Q, Xiao X, Li R, He H, Li S, Ma C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022; 27:molecules27196673. [PMID: 36235208 PMCID: PMC9571663 DOI: 10.3390/molecules27196673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women, its incidence is secret, and more than half of the patients are diagnosed in the middle and advanced stages, so it is necessary to develop simple and efficient detection methods for breast cancer diagnosis to improve the survival rate and quality of life of breast cancer patients. Exosomes are extracellular vesicles secreted by all kinds of living cells, and play an important role in the occurrence and development of breast cancer and the formation of the tumor microenvironment. Exosomes, as biomarkers, are an important part of breast cancer fluid biopsy and have become ideal targets for the early diagnosis, curative effect evaluation, and clinical treatment of breast cancer. In this paper, several traditional exosome detection methods, including differential centrifugation and immunoaffinity capture, were summarized, focusing on the latest research progress in breast cancer exosome detection. It was summarized from the aspects of optics, electrochemistry, electrochemiluminescence and other aspects. This review is expected to provide valuable guidance for exosome detection of clinical breast cancer and the establishment of more reliable, efficient, simple and innovative methods for exosome detection of breast cancer in the future.
Collapse
Affiliation(s)
- Qin Tang
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinying Xiao
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ranhao Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Shanni Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| |
Collapse
|
25
|
Huang R, He L, Jin L, Li Z, He N, Miao W. Recent advancements in DNA nanotechnology-enabled extracellular vesicles detection and diagnosis: A mini review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Zhou S, Cheing GLY, Cheung AKK. Role of exosomes and exosomal microRNA in muscle–Kidney crosstalk in chronic kidney disease. Front Cell Dev Biol 2022; 10:951837. [PMID: 36158193 PMCID: PMC9490178 DOI: 10.3389/fcell.2022.951837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive damage of kidneys that can no longer serve the blood-filtering function, and is a life-threatening condition. Skeletal muscle wasting is a common complication of CKD. Yet the relationship between kidney and skeletal muscle in CKD remains unclear. Exosomes, a type of small membrane-bound vesicles released from cells to the extracellular environment, have increasingly received attention due to their potential as mediators of crosstalk between kidneys and different organs, including skeletal muscle. This mini-review summarizes the recent findings that point to the role of exosomes in the cross-talk between kidney and skeletal muscle in CKD. Understanding of the contents and the mechanism of exosome release may prone exosomes be the potential therapeutic targets for CKD.
Collapse
Affiliation(s)
- Sijie Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong KongSAR, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gladys Lai Ying Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong KongSAR, China
- *Correspondence: Alex Kwok Kuen Cheung, ; Gladys Lai Ying Cheing,
| | - Alex Kwok Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong KongSAR, China
- *Correspondence: Alex Kwok Kuen Cheung, ; Gladys Lai Ying Cheing,
| |
Collapse
|
27
|
Rolling circle amplification assisted dual signal amplification colorimetric biosensor for ultrasensitive detection of leukemia-derived exosomes. Talanta 2022; 245:123444. [DOI: 10.1016/j.talanta.2022.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
|
28
|
Exosomes as Crucial Players in Pathogenesis of Systemic Lupus Erythematosus. J Immunol Res 2022; 2022:8286498. [PMID: 35910853 PMCID: PMC9328965 DOI: 10.1155/2022/8286498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects multiple systems. Its clinical manifestation varies across patients, from skin mucosa to multiorgan damage to severe central nervous system involvement. The exosome has been shown to play an important role in the pathogenesis of autoimmune diseases, including SLE. We review the recent knowledge of exosomes, including their biology, functions, mechanism, and standardized extraction and purification methods in SLE, to highlight potential therapeutic targets for SLE.
Collapse
|
29
|
Cao Y, Yu X, Zeng T, Fu Z, Zhao Y, Nie B, Zhao J, Yin Y, Li G. Molecular Characterization of Exosomes for Subtype-Based Diagnosis of Breast Cancer. J Am Chem Soc 2022; 144:13475-13486. [PMID: 35802880 DOI: 10.1021/jacs.2c00119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer is very heterogeneous and the most frequently diagnosed cancer worldwide, and precise therapy targeting specific subtypes may improve the survival rates of breast cancer patients. In this study, we designed a biomimetic vesicle by camouflaging catalytic DNA machinery with a breast cancer cell membrane, which enabled the molecular classification of circulating exosomes for subtype-based diagnosis through homotypic recognition. In addition, the vesicles specifically targeted and fused with breast cancer exosomes with phenotypic homology and manipulated the DNA machinery to amplify electrochemical signaling using exosomal RNA as an endogenous trigger. The biomimetic vesicles prepared with MCF-7 cancer cell-derived membranes were shown to recognize estrogen receptor-positive breast cancer exosomes and exhibited a low detection limit of 557 particles mL-1 with microRNA-375 used as the endogenous biomarker. Furthermore, the biomimetic vesicles prepared with MDA-MB-231 cancer cell-derived membranes displayed satisfactory performance in a homotypic analysis of triple-negative breast cancer exosomes with a potential therapeutic target, PD-L1 mRNA, used as the endogenous biomarker. Most importantly, cross-validation experiments confirmed the high accuracy and selectivity of this homotypic recognition-driven analysis for molecular subtyping of breast cancer. When applied to clinical samples of breast cancer patients, the vesicles demonstrated feasibility and reliability for evaluating the molecular features of cancer cell-derived exosomes and enabled stage-specific monitoring of breast cancer patients because the electrochemical signals showed a positive correlation with disease progression. Therefore, this work may provide new ideas for the precise diagnosis and personalized treatment of breast cancer patients throughout the whole disease process.
Collapse
Affiliation(s)
- Ya Cao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, P. R. China.,Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaomeng Yu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, P. R. China.,Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yingyan Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Beibei Nie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jing Zhao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, P. R. China.,Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
30
|
Yu X, Chen X, Sun Z, Niu R, Deng Y, Wang L, Zhu Y, Zhang L, Zhang H, Wang K, Yang J, Gu W, Liu G, Luo Y. Ultracentrifugation-Free Enrichment and Quantification of Small Extracellular Vesicles. Anal Chem 2022; 94:10337-10345. [DOI: 10.1021/acs.analchem.1c05491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingle Yu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Ruyan Niu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yun Deng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Kang Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Guoxiang Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, Chongqing 402260, P.R. China
| |
Collapse
|
31
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Li H, Huang T, Lu L, Yuan H, Zhang L, Wang H, Yu B. Ultrasensitive Detection of Exosomes Using an Optical Microfiber Decorated with Plasmonic MoSe 2-Supported Gold Nanorod Nanointerfaces. ACS Sens 2022; 7:1926-1935. [DOI: 10.1021/acssensors.2c00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongtao Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
- Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Tianqi Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Liang Lu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Hao Yuan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Lei Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, People’s Republic of China
- Institute of Urology, Anhui Medical University Hefei, 230031, People’s Republic of China
| | - Benli Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| |
Collapse
|
34
|
Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment. NANOMATERIALS 2022; 12:nano12132196. [PMID: 35808031 PMCID: PMC9268500 DOI: 10.3390/nano12132196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a toxic plasticizer and androgen antagonist. Its accumulation in water exceeds national drinking water standards and it must be continuously and effectively regulated. Currently, methods used to detect DEHP are still unsatisfactory because they usually have limited detection sensitivity and require complex operating procedures. A competition-induced fluorescence detection method was developed for the selective detection of DEHP in an aquatic environment. An aptamer with walking function was used as the recognition element for DEHP, and its quantification was induced by competition to change the fluorescence signal. The detection range was 0.01~100 µg/L, and the detection limit was 1.008 μg/L. This high-sensitivity DEHP detection capability and simplified process facilitates real-time fields and other monitoring tasks.
Collapse
|
35
|
Huang Y, Kanada M, Ye J, Deng Y, He Q, Lei Z, Chen Y, Li Y, Qin P, Zhang J, Wei J. Exosome-mediated remodeling of the tumor microenvironment: From local to distant intercellular communication. Cancer Lett 2022; 543:215796. [PMID: 35728740 DOI: 10.1016/j.canlet.2022.215796] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are membrane-enveloped nanoscale particles that carry various bioactive signaling molecules secreted by cells. Their biological roles depend on the original cell type from which they are derived and their inclusions. Exosomes, a class of EVs, are released by almost all eukaryotic cell types, including tumor cells. Tumor cell-derived exosomes mediate signal transduction between tumor cells and surrounding non-tumor cells. This intercellular communication actively contributes to the remodeling of the tumor microenvironment (TME) to enable tumor growth, invasion, and metastasis. This review summarizes the latest progress in the exploration of exosome-mediated cell-cell communication implicated in TME remodeling and underlying mechanisms. We focus on the role of cell-cell interactions mediated by tumor cell-derived exosomes in promoting invasion and metastasis, and their potential as a therapeutic intervention target against distant metastasis. We also discuss the clinical translational significance of tumor-derived exosomes for early diagnosis, efficacy and progression evaluations.
Collapse
Affiliation(s)
- Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Masamitsu Kanada
- Department of Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.
| |
Collapse
|
36
|
Yu Y, Wang Z, Wu S, Zhu C, Meng X, Li C, Cheng S, Tao W, Wang F. Glutathione-Sensitive Nanoglue Platform with Effective Nucleic Acids Gluing onto Liposomes for Photo-Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25126-25134. [PMID: 35608168 DOI: 10.1021/acsami.2c04022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liposomal spherical nucleic acids possess a high density of nucleic acids, e.g., DNA, on a liposomal core. There are two approaches to conjugate DNA onto the zwitterionic liposomes, i.e., covalent and noncovalent conjugation, otherwise using cationic liposomes. However, complex and expensive DNA chemical modification methods need to seek a novel and easy-operating approach to decorating DNA onto liposomes. Inspired by the nanoparticle solution as nanoglues for gels and biological tissues, we use MnO2 nanosheets to "glue" DNA onto liposomes without DNA modification. In tumor cells with a high glutathione concentration, MnO2-based nanoglues are degraded, generating water-soluble Mn2+ ions, further "unglue" DNA (i.e., DNAzyme), and liposomes. Using the intelligent liposomal nanoglue (DNAzyme/MnO2/Lip) combining glutathione-sensitive MnO2 nanosheets, gene silencing agent DNAzyme, and photosensitizer Chlorin e6 (Ce6) in liposomes, effective photo-gene therapy was demonstrated.
Collapse
Affiliation(s)
- Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Zhenfeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Sichen Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Chunmeng Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Xianshe Meng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Wei Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
37
|
Mei-Ling L, Yi L, Mei-Ling Z, Ying Z, Xiao-Jing H. Y-shaped DNA nanostructures assembled-spherical nucleic acids as target converters to activate CRISPR-Cas12a enabling sensitive ECL biosensing. Biosens Bioelectron 2022; 214:114512. [DOI: 10.1016/j.bios.2022.114512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|
38
|
Chen H, Bian F, Guo J, Zhao Y. Aptamer-Functionalized Barcodes in Herringbone Microfluidics for Multiple Detection of Exosomes. SMALL METHODS 2022; 6:e2200236. [PMID: 35466594 DOI: 10.1002/smtd.202200236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Indexed: 05/04/2023]
Abstract
Tumor-derived exosomes are vital for clinical dynamic and accurate tumor diagnosis, thus developing sensitive and multiple exosomes detection technology has attracted remarkable attention of scientists. Here, a novel herringbone microfluidic device with aptamer-functionalized barcodes integration for specific capture and multiple detection of tumor-derived exosomes is presented. The barcodes with core-shell constructions are obtained by partially replicating the periodically ordered hexagonal close-packaged colloidal crystal beads. As their inverse opal hydrogel shell possesses rich interconnected pores, the barcodes could provide abundant surface area for functionalization of DNA aptamers to realize specific recognition of target exosomes. Besides, the encoded structure colors of the barcodes can be maintained stably during the detection events as their hardish cores are with sufficient mechanical strength. It is demonstrated that by embedding these barcodes in herringbone groove microfluidic device with designed patterns, the specific capture efficiency and synergetic detection of multiple tumor-derived exosomes in peripheral blood can be significantly improved due to enhanced resistance of turbulent flow. These features make the aptamer-functionalized barcodes and herringbone microfluidics integrated platform promising for exosomes extraction and dynamic tumor diagnosis.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jiahui Guo
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
39
|
Cheng Y, Xie Q, He M, Chen B, Chen G, Yin X, Kang Q, Xu Y, Hu B. Sensitive detection of exosomes by gold nanoparticles labeling inductively coupled plasma mass spectrometry based on cholesterol recognition and rolling circle amplification. Anal Chim Acta 2022; 1212:339938. [DOI: 10.1016/j.aca.2022.339938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
40
|
Deng Y, Peng Y, Wang L, Wang M, Zhou T, Xiang L, Li J, Yang J, Li G. Target-triggered cascade signal amplification for sensitive electrochemical detection of SARS-CoV-2 with clinical application. Anal Chim Acta 2022; 1208:339846. [PMID: 35525596 PMCID: PMC9020774 DOI: 10.1016/j.aca.2022.339846] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/26/2022]
|
41
|
Wang Y, Wang Y, Hu F, Zeng L, Chen Z, Jiang M, Lin S, Guo W, Li D. Surface-Functionalized Terahertz Metamaterial Biosensor Used for the Detection of Exosomes in Patients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3739-3747. [PMID: 35298154 DOI: 10.1021/acs.langmuir.1c03286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their stability in bodily fluids, exosomes have attracted increased attention as colorectal cancer (CRC) biomarkers for early diagnosis. To validate the potential of the plasma exosomes as a novel biomarker for the monitoring of CRC, we demonstrated a terahertz (THz) metamaterials (MMs) biosensor for the detection of exosomes in this work. The biosensor with two resonant frequencies is designed using full wave electromagnetic simulation software based on the finite integration time domain (FITD) method and fabricated by a surface micromachining process. The biosensor surface is first modified using Au nanoparticles (AuNPs), and then, anti-KRAS and anti-CD147, which are specific to the exosomes, are modified on the AuNPs assembled with HS-poly(ethylene glycol)-COOH (HS-PEG-COOH). Exosomes used in the experiment are extracted via the instructions in the exosomes isolation and purification kit and identified by using transmission electron microscopy (TEM), Western blot (WB), and nanoparticle tracking analysis (NTA). The biosensor covered with plasma-derived exosomes of CRC patients has a different resonance frequency shift compared to that with healthy-control-derived exosomes. This study proposes an emerging and quick method for diagnosing the CRC.
Collapse
Affiliation(s)
- Yao Wang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yuanli Wang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
- Precision Medicine Laboratory, The First People's Hospital of Qinzhou, Qinzhou 535000, China
| | - Fangrong Hu
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lizhen Zeng
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhencheng Chen
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Mingzhu Jiang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
- Institute of Information Technology of Guilin, Guilin 541004, China
| | - Shangjun Lin
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Wei Guo
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Dongxia Li
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
42
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light-Harvesting Fluorescent Spherical Nucleic Acids Self-Assembled from a DNA-Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202115812. [PMID: 35064628 DOI: 10.1002/anie.202115812] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 01/07/2023]
Abstract
The ultralow concentration of nucleic acids in complex biological samples requires fluorescence probes with high specificity and sensitivity. Herein, a new kind of spherical nucleic acids (SNAs) is developed by using fluorescent π-conjugated polymers (FCPs) as a light-harvesting antenna to enhance the signal transduction of nucleic acid detection. Specifically, amphiphilic DNA-grafted FCPs are synthesized and self-assemble into FCP-SNA structures. Tuning the hydrophobicity of the graft copolymer can adjust the size and light-harvesting capability of the FCP-SNAs. We observe that more efficient signal amplification occurs in larger FCP-SNAs, as more chromophores are involved, and the energy transfer can go beyond the Förster radius. Accordingly, the optimized FCP-SNA shows an antenna effect of up to 37-fold signal amplification and the limit of detection down to 1.7 pM in microRNA detection. Consequently, the FCP-SNA is applied to amplified in situ nucleic acid detecting and imaging at the single-cell level.
Collapse
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin, 150001, Heilongjiang, P. R. China.,Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hanbing Xue
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yulin Zhu
- Department of Chemistry, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yan Zhao
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
43
|
Liang TT, Qin X, Xiang Y, Tang Y, Yang F. Advances in nucleic acids-scaffolded electrical sensing of extracellular vesicle biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light‐Harvesting Fluorescent Spherical Nucleic Acids Self‐Assembled from a DNA‐Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering Harbin Institute of Technology, Nangang District Harbin 150001 Heilongjiang P. R. China
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hanbing Xue
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yulin Zhu
- Department of Chemistry Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Li Lin
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yan Zhao
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
45
|
Su J, Chen S, Dou Y, Zhao Z, Jia X, Ding X, Song S. Smartphone-Based Electrochemical Biosensors for Directly Detecting Serum-Derived Exosomes and Monitoring Their Secretion. Anal Chem 2022; 94:3235-3244. [PMID: 35084842 DOI: 10.1021/acs.analchem.1c04910] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are potential biomarkers, which play an important role in early diagnosis and prognosis prediction of cancer-related diseases. Nevertheless, direct quantification of exosomes in biological fluid, especially in point-of-care tests (POCTs), remains extremely challenging. Herein, we developed a sensitive and portable electrochemical biosensor in combination with smartphones for quantitative analysis of exosomes. The improved double-antibody sandwich method-based poly-enzyme signal amplification was adopted to detect exosomes. We could detect as low as 7.23 ng of CD63-positive exosomes in 5 μL of serum within 2 h. Importantly, we demonstrated that the biosensor worked well with microliter-level serum and cell culture supernatant. The biosensor holds great potential for the detection of CD-63-expressing exosomes in early diagnosis of prostate disease because CD63-positive exosomes were less detected from the prostate patient serum. Also, the biosensor was used to monitor the secretion of exosomes with the drug therapy, showing a close relationship between the secretion of exosomes and the concentration of cisplatin. The biosensing platform provides a novel way toward POCT for the diagnosis and prognosis prediction of prostate disease and other diseases via biomarker expression levels of exosomes.
Collapse
Affiliation(s)
- Jing Su
- Center for Research and Interdisciplinary, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shixing Chen
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yanzhi Dou
- University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhihan Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaolong Jia
- Department of Urology, Ningbo First Hospital Ningbo, Hospital of Zhejiang University, 17 Ningbo, Ningbo 315010, Zhejiang Province, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiping Song
- Center for Research and Interdisciplinary, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
46
|
Kong Q, Cheng S, Hu X, You J, Zhang C, Xian Y. Ultrasensitive detection of tumor-derived small extracellular vesicles based on nonlinear hybridization chain reaction fluorescence signal amplification and immunomagnetic separation. Analyst 2022; 147:1859-1865. [DOI: 10.1039/d2an00242f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive nonlinear hybridization chain reaction signal amplification fluorescence assay for the detection of small extracellular vesicles.
Collapse
Affiliation(s)
- Qianqian Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jia You
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
47
|
Recent Advances in Exosome Analysis Assisted by Functional Nucleic Acid-based Signal Amplification Technologies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Kuang J, Fu Z, Sun X, Lin C, Yang S, Xu J, Zhang M, Zhang H, Ning F, Hu P. A colorimetric aptasensor based on a hemin/EpCAM aptamer DNAzyme for sensitive exosome detection. Analyst 2022; 147:5054-5061. [DOI: 10.1039/d2an01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exosomes are considered as potential biomarkers that can reflect information from their parent cell-associated cancer microenvironment.
Collapse
Affiliation(s)
- Jingjing Kuang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuezhi Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shenglong Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayao Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fanghong Ning
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
49
|
Exosomes in nasopharyngeal carcinoma. Clin Chim Acta 2021; 523:355-364. [PMID: 34666030 DOI: 10.1016/j.cca.2021.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with a unique geographical distribution, primarily prevalent in East Africa and Asia. Although there is an increased understanding of the pathogenesis and risk factors of NPC, prevention and treatment efforts remain limited. Various studies have indicated that exosomes are actively involved in NPC by delivering biomolecules such as non-coding RNAs and proteins to target cells. In this review, we summarize the biological functions of exosomes in NPC and highlight their prospects as diagnostic biomarkers. In NPC, exosomes can manipulate the tumor microenvironment, participate in chemotherapy and radiation resistance, induce immune suppression, promote pathological angiogenesis, and support metastasis, and thus they could also be promising biomarkers. Because exosomes have essential effects and unusual biological properties, they have a promising future in diagnostic monitoring and prognostic evaluation. Although there are technical issues associated with using exosomes in large-scale applications, they have unparalleled advantages in assisting the clinical management of NPC.
Collapse
|
50
|
Deng Y, Sun Z, Wang L, Wang M, Yang J, Li G. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front Med 2021; 16:157-175. [PMID: 34570311 DOI: 10.1007/s11684-021-0884-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Cancer imposes a severe threat to people's health and lives, thus pressing a huge medical and economic burden on individuals and communities. Therefore, early diagnosis of cancer is indispensable in the timely prevention and effective treatment for patients. Exosome has recently become an attractive cancer biomarker in noninvasive early diagnosis because of the unique physiology and pathology functions, which reflects remarkable information regarding the cancer microenvironment, and plays an important role in the occurrence and evolution of cancer. Meanwhile, biosensors have gained great attention for the detection of exosomes due to their superior properties, such as convenient operation, real-time readout, high sensitivity, and remarkable specificity, suggesting promising biomedical applications in the early diagnosis of cancer. In this review, the latest advances of biosensors regarding the assay of exosomes were summarized, and the superiorities of exosomes as markers for the early diagnosis of cancer were evaluated. Moreover, the recent challenges and further opportunities of developing effective biosensors for the early diagnosis of cancer were discussed.
Collapse
Affiliation(s)
- Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|