1
|
Li H, Zhang Z, Hao W, Shi H, Yin R, Xu J. Self-powered bio-chip for ultra-sensitive dual MiRNAs detection: A portable platform for cancer biomarker analysis. Int J Biol Macromol 2025; 315:144637. [PMID: 40419043 DOI: 10.1016/j.ijbiomac.2025.144637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and play a crucial role in various biological processes. However, existing methods for miRNA detection face challenges in terms of sensitivity, specificity and ease of use. These limitations highlight the need for innovative and highly sensitive detection platforms capable of accurately quantifying miRNAs. In this work, an integrated biochip based on a self-powered sensor system developed for the ultra-sensitive detection of miRNAs-21 and miRNA-20a. The system uses a bilirubin oxidase (BOD)-supported bio-cathode and a glucose oxidase (GOD)-supported bio-anode to form a closed loop that converts chemical energy into electrical energy. The complementary chains of target miRNAs are modified on the bio-anode using a bio-conjugate amplification strategy, enabling the system to generate an electrical signal proportional to the concentration of miRNAs. The sensor has a wide linear range of 5 fmol/L to 10 nmol/L for miRNA-20a and 1 fmol/L to 10 fmol/L for miRNA-21, with low detection limits of 0.176 fmol/L and 0.138 fmol/L, respectively. These detection limits are significantly lower than those achieved by existing technologies, making our biosensor a significant advancement in the field. In addition, the sensor system is integrated into a portable chip that transmits electrical signals in real time via Bluetooth to a mobile phone interface, enabling convenient and rapid analysis.
Collapse
Affiliation(s)
- Hui Li
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450000, China.
| | - Zongshan Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 451464, China
| | - Wantong Hao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Huixin Shi
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ruiyang Yin
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Chen Y, Li H, Xu J, Yin XB, Zhang M. Amine Functionalization and Structural Design for Constructing Tubular MoS 2-Based Composites through an APTES-Assisted Self-Templating Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40390163 DOI: 10.1021/acs.langmuir.5c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
MoS2-based composites have attracted considerable attention in catalysis owing to their exceptional catalytic properties. However, challenges such as severe nanosheets (NSs) aggregation and inherent difficulties in functionalization have significantly hindered their practical application. Herein, one-dimensional (1D) APTES microtubes decorated with MoS2 NSs (APTES@MoS2) were synthesized through a self-template-directed synthesis approach. Comprehensive analysis confirmed that APTES@MoS2 microtubes exhibited abundant amine groups as well as high active sites for noble metal recovery. Utilizing APTES@MoS2 as capturing agents, their intrinsic self-reduction properties and chemical stability were exploited to evaluate their efficacy in recovering Ag+, Au3+, and Pd2+ ions. The resultant APTES@MoS2-Au, Ag, and Pd composites demonstrated exceptional catalytic efficacy in the conversion of 4-nitrophenol (4-NP). Moreover, the MoO3@APTES precursors can be used as versatile templates to obtain a series of tubular structured composites such as APTES, APTES@SiO2, APTES@PDA, and APTES@NiMoO4 microtubes, greatly widening the application of MoO3@APTES precursors. This study introduces a novel approach to fabricate economically viable, ultra-active molybdenum disulfide (MoS2)-engineered nanohybrids, demonstrating considerable promise for advanced applications in electrochemical energy transduction systems and biomedical diagnostic technologies.
Collapse
Affiliation(s)
- Yan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huanhuan Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
3
|
Ju P, Wen S, Wang S, Zhou C, Wang J, Xiao L, Ma F, Wang S. A novel separated OPECT aptasensor based on MOF-derived BiVO 4/Bi 2S 3 type-II heterojunction for rapid detection of bacterial quorum sensing signal molecules. Talanta 2025; 287:127635. [PMID: 39874793 DOI: 10.1016/j.talanta.2025.127635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection. This study proposes a CAU-17-derived BiVO4/Bi2S3 gated organic photoelectrochemical transistor (OPECT), and applies it to the detection of a typical quorum sensing signal molecule, N-(3-oxodecanoyl)-l-homoserine lactone (3-O-C10-HL). A strategy of signal amplification and separate detection process was employed. Specifically, BiVO4/Bi2S3 type-II heterojunction photoanode was fabricated and successfully utilized for effective gating of the poly (ethylene dioxythiophene): poly (styrene sulfonate) channel. Using the previously screened 3-O-C10-HL adaptor, rapid and sensitive recognition of 3-O-C10-HL was achieved by effectively enhancing the response of the photoanode and regulating the overall performance of the device. The designed device demonstrated excellent specificity and sensitivity with a detection limit of 2.85 pM. This work not only provides an effective OPECT biosensing approach for detecting 3-O-C10-HL, but also reveals the application potential of semiconductor MOFs-derived materials in future optoelectronics.
Collapse
Affiliation(s)
- Peng Ju
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Siyu Wen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Shiliang Wang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Chuan Zhou
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, 510663, PR China; Guangdong Kenuo Surveying Engineering Co., Ltd., Guangzhou, 510663, PR China.
| | - Jinquan Wang
- Ningbo Hangzhou Bay Bridge Development Co., Ltd, Ningbo, 315327, PR China
| | - Long Xiao
- Ningbo Hangzhou Bay Bridge Development Co., Ltd, Ningbo, 315327, PR China
| | - Fubin Ma
- Key Laboratory of Advanced Marine Materials, CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, PR China.
| | - Shuai Wang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China.
| |
Collapse
|
4
|
Zheng H, Guo J, Wang H, Wang Y, Zhou W, Liu K, Ma Q, Qi Y. A zeolitic imidazolate framework-90 enhanced ultrasensitive ATP sensing platform with HCR and CRISPR-Cas12a dual signal amplification for live bacteria detection. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138612. [PMID: 40378737 DOI: 10.1016/j.jhazmat.2025.138612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/20/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Bacteria are prevalent environmental pollutants. Live bacteria can proliferate and spread under appropriate conditions, presenting higher risks compared to non-viable counterparts. However, detecting live bacteria remains a challenge. Adenosine triphosphate (ATP), an energy currency in organisms, offers a reliable biomarker for the live bacteria sensing. Herein, we developed a zeolitic imidazolate framework-90 (ZIF-90) enhanced ATP sensing platform to detect live bacteria. The nanosystem which based on ZIF-90, encapsulating the DNA decorated magnetic beads (MB@S1) through self-assembly. When the S. aureus aptamers on ZIF-90 bonded to bacteria, the skeleton structure of ZIF-90 was disrupted by ATP leakage from live bacteria, leading to the release of MB@S1. Then, the MB@S1 initiated the hybridization chain reaction (HCR) and they were transduced by CRISPR-Cas12a to amplify the signal twice. The proposed ZIF-90 blocking sensing strategy (ZIF-90 strategy) exhibited remarkable sensitivity with the limit of detection (LOD) down to 0.223 pM for ATP detection, about 500 folds lower than the traditional ATP aptamer blocking sensing strategy (aptamer strategy). Furthermore, we used a smartphone for on-site analysis, realizing the quantification of live S. aureus with the LOD of 2.0 CFU/mL. Therefore, the approach possessed great application potential for public health, environment monitoring, bioanalysis and food safety.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jiayu Guo
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Han Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Yurou Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Wenxiang Zhou
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ke Liu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
5
|
Liu X, Yang D, Liu B, Tang D. Progress in Signal Amplification and Microstructure Manufacturing for Photoelectrochemical Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:383-405. [PMID: 40372815 DOI: 10.1146/annurev-anchem-070524-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Photoelectrochemical (PEC) sensing based on chemical or biological recognition has received a tremendous amount of attention in recent years, providing analytical chemists a plethora of opportunities. However, emerging techniques and unknown processes in this field remain unexplored. We summarize the recently reported PEC sensing methods. First, we briefly describe the basic principles and technical characteristics of PEC sensing. Next, we highlight the application of various materials, nucleic acids, and other strategies for amplifying PEC signals. Finally, we discuss the current state of knowledge regarding the realization of miniaturized equipment during PEC sensor manufacturing. Summarizing the technological advances and research breakthroughs in PEC sensing over time can help increase the quality of follow-up research.
Collapse
Affiliation(s)
- Xu Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, China;
| | - Di Yang
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, China;
| | - Bingqian Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, China;
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (Ministry of Education), Department of Chemistry, Fuzhou University, Fuzhou, China;
| |
Collapse
|
6
|
Liu S, Wei Y, Chen T, Li P, Wu J, Tan X, Huang KJ. A dual-mode nanoplatform based on Cu 2O@Au-Pt nanoenzyme and CHA-HCR DNA framework circuit for sensitive detection of CD122 and CD17. Int J Biol Macromol 2025; 309:142740. [PMID: 40185434 DOI: 10.1016/j.ijbiomac.2025.142740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
A Cu2O@Au-Pt nanoenzyme is prepared and integrated with a DNA nanocircuit to construct an electrochemical/colorimetric dual-mode sensing platform for the sensitive detection of CD122 and CD17, which are biomarkers for immune-related diseases.When CD122 is present, it triggers a catalyzed hairpin assembly (CHA) reaction, forming a double-stranded structure recognized by the DNA framework's "arms" (C-DNA), with methylene blue (MB) adsorbing onto it as an electron receptor. Methylene blue (MB) is adsorbed onto the double-stranded structure and introduced as a cathodic electron receptor. In the presence of the target CD17, it acts as a bridging molecule to engage in a hybridization chain reaction (HCR), producing HCR products that are specifically recognized by the other set of "arms" within the C-DNA, which captures abundant MB and generates a heightened response signal. MB can be electrochemically reduced to its reduced state to cause a change in solution color and an increase in RGB Blue values. This method offers a detection range of 0.0001-10,000 pM, with detection limits for CD122 and CD17 of 23.9 and 36.0 aM (S/N = 3) using the electrochemical method, and 26.2 and 26.6 aM (S/N = 3) in the colorimetric mode, respectively. This study presents a novel, reliable multi-target detection strategy for disease biomarkers.
Collapse
Affiliation(s)
- Shiyu Liu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yashu Wei
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, , Nanning 530021, China
| | - Ting Chen
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Peiyuan Li
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jiawen Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
7
|
Li H, Zhang Z, Hao W, Shi H, Yin R, Xu J. Self-powered chip based on exonuclease-driven amplification for portable cancer biomarker detection. Anal Chim Acta 2025; 1344:343729. [PMID: 39984216 DOI: 10.1016/j.aca.2025.343729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Currently, sensitive detection of microRNA (miRNA) in clinical diagnosis remains a challenge consideration of its extremely similar sequences and low concentration characteristics. In this work, a signal-enhanced biosensor constructed for ultra-sensitive miRNA detection based on two-dimensional (2D) transition metal sulfide materials and target induced -DNAzyme cycle and exonuclide-assisted cascade signal amplification strategy. As expected, miRNA-21 concentration has a good linear relationship with open circuit voltage of self-powered biosensor in the range of 1 fM-100 pM, and the detection limit is low as 0.03 fM. The results indicate that 2D materials have great potential in the construction of electrochemical sensors due to their large active surface area, high electron mobility and excellent electrocatalytic performance. In addition, the DNAzyme triggerd by chain substitution reaction can specifically identify the target and amplify the detection signal cyclically. Finally, the self-powered sensing platform with commercial chips, ensuring stable performance and minimal signal fluctuations during long-term continuous monitoring, enabling portable and real-time target monitoring.
Collapse
Affiliation(s)
- Hui Li
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| | - Zongshan Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 451464, China
| | - Wantong Hao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Huixin Shi
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Ruiyang Yin
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
8
|
Yu F, Wang Y, Wang CY, Zhu GY, Bai LP, Guo K, Jiang ZH, Zhang W. A novel and sensitive trefoil-structured biosensor based on nanoporous gold for simultaneous determination of microRNA-21 and microRNA-16. Biosens Bioelectron 2025; 272:117093. [PMID: 39778244 DOI: 10.1016/j.bios.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Although electrochemical biosensors have been developed to detect multiple microRNAs (miRNAs) simultaneously through loading different capture probes, high surface-induced perturbation and competition among probes have reduced the detection sensitivity. To address these challenges, a trefoil DNA capture probe (TDCP) was designed for microRNA-21 (miR-21) and microRNA-16 (miR-16) detection simultaneously. The TDCP exhibits a stable structure, low spatial resistance, and integral rigidity, which decreases high surface-induced perturbations and competition to improve the accessibility of the target miRNA. Meanwhile, the two capture domains in the TDCP are positioned apart, which increases the local concentration of target reactions and enhances hybridization efficiency. Two catalytic hairpin assembly (CHA) footholds were incorporated into the TDCP design to simplify the experimental process and reduce incubation time. As a result, the linear ranges of miR-21 and miR-16 were from 1 fM to 10 nM, with a limit of detection (LOD) of 0.059 fM and 0.084 fM, respectively. Additionally, miR-16 could also be used as an endogenous standard in biological samples, which corrects the bias in miR-21 detection arising from sample pre-processing and miRNA extraction. This strategy enhanced the accuracy and reproducibility of the trefoil biosensor. In tests of six A549 samples, the relative standard deviation (RSD) decreased from 40.13% to 14.38%, meeting clinical detection requirements. Overall, the trefoil biosensor provides novel possibilities for highly sensitive, reproducible, and accurate miRNA detection, with potential applications in early cancer diagnosis.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yue Wang
- State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Keying Guo
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China.
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
9
|
Nie P, Chen K, Cao G, Xu E, Wang P, Xue Q. Integrating lanthanide coordination polymer ratiometric fluorescence biosensors with a concatenated DNA circuit for locus-specific N6-methyladenosine quantification. Chem Commun (Camb) 2025; 61:4515-4518. [PMID: 39992289 DOI: 10.1039/d4cc06742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Herein, we developed a lanthanide coordination polymer (LnCP) ratiometric fluorescent biosensor integrated with a click chemistry-powered concatenated DNA circuit for accurate and sensitive monitoring of locus-specific m6A in cancer cells and tissues.
Collapse
Affiliation(s)
- Ping Nie
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ke Chen
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Guohui Cao
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
- College of Chemical Engineering and Technology, College of Technology and Data, Yantai Nanshan University, Yantai, 265713, P. R. China
| | - Ensheng Xu
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Pin Wang
- Neurology of Department, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, P. R. China.
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
10
|
Zhao X, Lai X, Yan B, Cao P, Peng Y, Zhang R, Chen X, Chen D, Pei H, Wang Y, Wu Q, Qiao B. A novel photoelectrochemical biosensor for sensitive detection of nucleic acids based on recombinase polymerase amplification and 3D-array titania nanorods. Int J Biol Macromol 2025; 296:139528. [PMID: 39778823 DOI: 10.1016/j.ijbiomac.2025.139528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Nucleic acids detection is essential for diagnosing pathogens; however, traditional methods usually face challenges such as low sensitivity, lengthy reaction times, and strict temperature requirements. This study develops a novel photoelectrochemical (PEC) biosensor that integrates recombinase polymerase amplification (RPA) with a 3D-array titania (TiO2) nanorods nanorod electrode, addressing the challenge of achieving sensitive detection of RPA-amplified nucleic acids products, thereby enabling earlier and more reliable pathogen detection. The biosensor utilizes a triple-binding mode involving FITC antibodies, target nucleic acids, and an HRP-streptavidin sandwich structure, significantly improving the bio-functionalization of the electrode surface. The isothermal RPA process amplifies DNA at 37 °C within 20 min, while the TiO2 nanorods ensure efficient photoelectric conversion. The oxidation of 4-chloro-1-naphthol (4-CN) generates a signal-reducing benzo-4-chlorohexadienone (4-CD), enabling precise and sensitive detection. This PEC-RPA biosensor successfully detects Orientia tsutsugamushi (Ot) nucleic acids with a detection limit of 15 copies/μL within 60 min, demonstrating robust performance. The study provides a promising strategy for advancing pathogen nucleic acids diagnostic platforms and offers a versatile approach adaptable for detecting diverse pathogens.
Collapse
Affiliation(s)
- Xuan Zhao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China; Department of Clinical Laboratory, Affiliated Cancer Hospital, Hainan Medical University, Haikou 570311, PR China
| | - Xiangde Lai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Bingdong Yan
- College of Science, Qiongtai Normal University, Haikou 571127, PR China
| | - Peipei Cao
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, PR China
| | - Yanan Peng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rui Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Xinping Chen
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Hainan Medical University, Haikou 570311, PR China
| | - Delun Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hua Pei
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China
| | - Yuanyuan Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Bin Qiao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China.
| |
Collapse
|
11
|
Gao Y, Fan X, Zhang X, Guan Q, Xing Y, Song W, Song D. Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation. Anal Chem 2025; 97:2402-2410. [PMID: 39837806 DOI: 10.1021/acs.analchem.4c05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge. Herein, a combinatorial DNA logic operation-guided multiplex PEC sensor is constructed to facilely distinguish and simultaneously monitor two core biomarkers that are essential for identifying asymptomatic Alzheimer patients and predicting the progression of the disease. The aptamers of amyloid-β oligomers (AβO) and Tau441 protein are simply integrated at the high-performance In-TBAPy photocathode. In the presence of AβO and Tau441 protein, the aptamer-target affinity complexes are formed and subsequently detached from the electrode surface, resulting in an increase of photocurrent. Through programming concatenated DNA molecular circuits, a 2-target input OR logic gate not only simplifies the manufacturing process of the multiplex PEC sensor but also realizes rapid and intelligent multiple-target recognition. As a conceptual prototype for the development of more sophisticated and complicated logic devices, the proposed DNA molecular logic system may open a new horizon for rapid disease diagnosis and POC analysis.
Collapse
Affiliation(s)
- Yao Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Xue Fan
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Qinglin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yongheng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Wenbo Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Qu X, Han Y, Huang Q, Miao P. Intramolecular DNA Wheel Construction for Highly Sensitive Electrochemical Detection of miRNA. NANO LETTERS 2025; 25:1414-1419. [PMID: 39814677 PMCID: PMC11783588 DOI: 10.1021/acs.nanolett.4c05127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
Accurate and reliable quantification of disease-related biomolecules is essential for clinical diagnosis. In this study, a novel electrochemical approach is developed based on a target triggered DNA nanostructural switch from a hairpin dimer to a double-stranded wheel. During the process, electrochemical species get closer to the electrode interface, and the multiple intramolecular strand displacements are beneficial to low abundant target analysis. In addition, the use of nicking endonuclease mitigates background interference. This strategy enables highly sensitive and selective quantification of the target miRNA. A linear relationship is established between the peak current intensity and the logarithm of miRNA concentration within the range from 0.1 to 20 fM. This method also demonstrates high accuracy in the analysis of clinical samples, holding great potential for DNA nanotechnology in diagnostic applications.
Collapse
Affiliation(s)
- Xiaolin Qu
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
- Shandong
Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai 264200, China
| | - Yiwei Han
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
| | - Qiuyan Huang
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
- University
of Science and Technology of China, Hefei 230026, China
| | - Peng Miao
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
- University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Yang L, Lu H, Zhang X, Zhu L, Xiong X, Xiao T, Zhu L. One-step cascade amplification system based on entropy-driven catalysis and DNAzyme triggered DNA walker for label-free detection of acetamiprid. Food Chem 2025; 463:141497. [PMID: 39368201 DOI: 10.1016/j.foodchem.2024.141497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Herein, an electrochemical aptasensor for highly sensitive detection of acetamiprid (ACE) was constructed based on a one-step cascade amplification strategy. This innovative strategy integrated DNA walker containing DNAzyme sequence into entropy-driven catalysis (EDC) system. The trigger strand was released by aptamer-specific binding to ACE, initiating the EDC amplification circuit and delivering DNA walker strands. The dangling DNA walker continuously bound and cleaved hairpin substrate to form G-quadruplex fragments with the assistance of Mg2+. The G-quadruplex fragments folded and captured hemin to form multitudinous G-quadruplex/hemin complexes in the presence of K+, generating significantly enhanced current, enabling enzyme-free, label-free and highly sensitive detection of ACE, with a linear detection range of 100 fM to 50 nM and a detection limit of 68.36 fM (S/N = 3). The constructed aptasensor achieved the reliable detection of ACE in vegetable soil and cucumber samples, demonstrating its potential application prospects in environmental protection and food supervision.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Hao Lu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| |
Collapse
|
14
|
Zhao J, Kong D, Zhang G, Zhang S, Wu Y, Dai C, Chen Y, Yang Y, Liu Y, Wei D. An Efficient CRISPR/Cas Cooperative Shearing Platform for Clinical Diagnostics Applications. Angew Chem Int Ed Engl 2024; 63:e202411705. [PMID: 39394860 DOI: 10.1002/anie.202411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The CRISPR/Cas system is a powerful genome editing tool and possesses widespread applications in molecular diagnostics, therapeutics and genetic engineering. But easy folding of the target sequences causes remarkable deterioration of the recognition and shear efficiency in the case of single Cas-CRISPR RNA (crRNA) duplex. Here, we develop a CRISPR/Cas cooperative shearing (CRISPR-CS) system. Compared with traditional CRISPR/Cas system, two CRISPR/Cas-crRNA duplexes simultaneously recognize different sites in the target sequence, increasing recognition possibility and shearing efficiency. Cooperative shearing cuts more methylene blue-ssDNA reporters on the electrode, enabling unamplified nucleic acid electrochemical assay in less than 5 minutes with a detection limit of 9.5×10-20 M, 2 to 9 orders of magnitude lower than those of other electrochemical assays. The CRISPR-CS platform detects monkeypox, human papilloma virus and amyotrophic lateral sclerosis with an accuracy up to 98.1 %, demonstrating the potential application of the efficient cooperative shearing.
Collapse
Affiliation(s)
- Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Guanghui Zhang
- Department of Laboratory Medicine, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, 518102, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
15
|
Zhang Z, Xu J, Zhang L, Zhang G, Li H. Advanced design of target-driven self-powered sensor assisted by cascade catalytic strategy. Anal Chim Acta 2024; 1332:343359. [PMID: 39580171 DOI: 10.1016/j.aca.2024.343359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/25/2024]
Abstract
In this work, a self-powered microsensor platform based on enzyme biofuel cells (EBFCs) was developed for intelligent monitoring of disease markers miRNA-451. The cascade catalysis system constructed by using the strategy of enzyme-like ZIF-8 nanocapsule incorporation with biological enzymes, which could simultaneously take into account the specificity of biological enzymes and the high activity of nano-enzymes, significantly promoted the electron transfer between glucose and the bio-anode surface, and improved the sensitivity and stability of the sensing system. Meanwhile, the target-triggered hybridization chain reaction (HCR) amplification strategy to achieve exponential signal amplification based on accurate recognition, and jointly improve the detection sensitivity. As expected, the micro-sensor platform has a wide linear range of 0.5-1.0 fmol/L with a low limit of detection (LOD) of 0.13 fmol/L (S/N = 3) and exhibits excellent selectivity, reproducibility and stability in interference assays under optimal detection conditions. The designed self-powered system is simple to construct, easy to transport and the data transmission mode is intelligent and controllable, which is expected to be used in basic biochemical research, clinical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Zongshan Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 451464, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Lei Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 451464, China
| | - Gaoli Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 451464, China
| | - Hui Li
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450000, China
| |
Collapse
|
16
|
Yang F, Zhang Y, Huang T, Qin Z, Xu S, Weng L, Huang H, Li S, Zhang D. G-quadruplex embedded in semi-CHA reaction combined with invasive reaction for label-free detection of single nucleotide polymorphisms. Talanta 2024; 280:126686. [PMID: 39128314 DOI: 10.1016/j.talanta.2024.126686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
G-quadruplex/thioflavin T (G4/THT) is one of the ideal label-free fluorescent light-emitting elements in the field of biosensors due to its good programmability and adaptability. However, the unsatisfactory luminous efficiency of single-molecule G4/THT limits its more practical applications. Here, we developed a G4 embedded semi-catalytic hairpin assembly (G4-SCHA) reaction by rationally modifying the traditional CHA reaction, and combined with the invasive reaction, supplemented by magnetic separation technology, for label-free sensitive detection of single nucleotide polymorphisms (SNPs). The invasive reaction enabled specific recognition of single-base mutations in DNA sequences as well as preliminary signal cycle amplification. Then, magnetic separation was used to shield the false positive signals. Finally, the G4-SCHA was created for secondary amplification and label-free output of the signal. This dual-signal amplified label-free biosensor has been shown to detect mutant targets as low as 78.54 fM. What's more, this biosensor could distinguish 0.01 % of the mutant targets from a mixed sample containing a large number of wild-type targets. In addition, the detection of real and complex biological samples also verified the practical application value of this biosensor in the field of molecular design breeding. Therefore, this study improves a label-free fluorescent light-emitting element, and then proposes a simple, efficient and universal label-free SNP biosensing strategy, which also provides an important reference for the development of other G4/THT based biosensors.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Tuo Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Ziyue Qin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
17
|
Xu J, Luo X, Cao C, Ling G, Zheng Y, Zhang W. A portability self-powered sensor facilitates sensitive Cd 2+ detection: Dual mechanism and three quantitative mode. Food Chem 2024; 459:140380. [PMID: 39003862 DOI: 10.1016/j.foodchem.2024.140380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xinqi Luo
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chengyuan Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ge Ling
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yue Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
18
|
Liu B, Li X, Li Y, Zhang F, Xie J, Xu Y, Xu E, Zhang Q, Liu S, Xue Q. An advanced 3D DNA nanoplatform for spatiotemporally confined enhanced dual-mode biosensing MicroRNA in cancer cell. Biosens Bioelectron 2024; 263:116619. [PMID: 39094291 DOI: 10.1016/j.bios.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Dual-mode signal output platforms have demonstrated considerable promise due to their improved anti-interference capability and inherent signal self-correction. Nevertheless, traditional discrete-distributed signal probes often encounter significant drawbacks, including limited mass transfer efficiency, diminished signal strength, and instability in intricate biochemical environments. In response to these challenges, a scalable and hyper-compacted 3D DNA nanoplatform resembling "periodic focusing heliostat" has been developed for synergistically enhanced fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) biosensing of miRNA in cancer cells. Our approach utilized a distinctive assembly strategy integrating gold nanostars (GNS) as fundamental "heliostat units" linked by palindromic DNA sequences to facilitate each other hand-in-hand cascade alignment and condensed into large scale nanostructures. This configuration was further augmented by the incorporation of gold nanoparticles (GNP) via strong Au-S bonds, resulting in a sturdy framework for improved signal transduction. The initiation of this assembly process was mediated by the hybridization of dsDNA to miRNA-21, which served as a primer for polymerization and nicking reactions, thus generating a multifunctional T2 probe. This probe is intricately designed with three distinct parts: a 3'-palindromic end for structural integrity, a central region for capturing SERS-active probes (Cy3-P2), and a 5'-segment for attaching fluorescence reporters. Upon integration T2 into the GNS-based heliostat unit, it promotes palindromic arm-induced aggregation and plasma exciton coupling between plasma nanoparticles and signal transduction tags. This clustered arrangement creates a high-density "hot spot" array that maximizes the local electromagnetic fields necessary for enhanced SERS and FL response. This superstructure supports enhanced aggregation-induced signal amplification for both SERS and FL, offering exceptional sensitivity with LOD as low as 0.0306 pM and 0.409 pM. The efficacy of this method was demonstrated in the evaluation of miRNA-21 in various cancer cell lines.
Collapse
Affiliation(s)
- Bingxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Yanli Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Fengqi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Jiajing Xie
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Yihan Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Ensheng Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Qi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
19
|
Tao B, Guo J, Miao F. Bifunctional SnO 2/NiO/rGO nanocomposite electrode for hydrogen evolution reaction and detection of winter wheat cold-resistant RNA. Mikrochim Acta 2024; 191:705. [PMID: 39467859 DOI: 10.1007/s00604-024-06778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
A convenient, non-toxic, and low-cost tin dioxide (SnO2)/nickel oxide (NiO)/reduced graphene oxide (rGO) nanocatalytic electrode was investigated, which can effectively promote the hydrogen evolution reaction and can also be used to construct a sensitive winter wheat cold-tolerant RNA sensor. Due to the good synergy and photocurrent generation between SnO2 and NiO, which accelerates the electron transfer and catalyzes the hydrolysis reaction, the resultant data for the hydrogen evolution reaction in alkaline environment of this material are very impressive, with cathodic current densities of up to 10 mA cm-2. The marvelous heterostructures and photovoltaic properties form a signal amplification system, which enables the nanocomposites to have an excellent linear sensitivity in low-concentration RNA solutions. The single-stranded complementary RNA of the target RNA was immobilized on the surface of the nanocomposites, which enabled the materials to recognize the target RNA under enzyme-free conditions. The test results showed that the modified electrode materials had good single detection performance in a wide linear range from 0.1 nM to 2 mM, with the limit of detection (LOD) of 0.078 nM. The developed nanocomposite electrode has good performance in hydrogen evolution and winter wheat cold-resistant RNA detection, and is a bifunctional device with superior performance.
Collapse
Affiliation(s)
- Bairui Tao
- College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
| | - Jiaxin Guo
- College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Fengjuan Miao
- College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
20
|
Zhao S, Zhang Q, Luo R, Sun J, Zhu C, Zhou D, Gong X. Amplification-free miRNA detection with CRISPR/Cas12a system based on fragment complementary activation strategy. Chem Sci 2024:d4sc05647g. [PMID: 39449688 PMCID: PMC11495492 DOI: 10.1039/d4sc05647g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
CRISPR/Cas12a systems have been repurposed as powerful tools for developing next-generation molecular diagnostics due to their trans-cleavage ability. However, it was long considered that the CRISPR/Cas12a system could only recognize DNA targets. Herein, we systematically investigated the intrinsic trans-cleavage activity of the CRISPR/Cas12a system (LbCas12a) and found that it could be activated through fragmented ssDNA activators. Remarkably, we discovered that the single-stranded DNA (ssDNA) activators in the complementary crRNA-distal domain could be replaced by target miRNA sequences without the need for pre-amplification or specialized recognition mechanisms. Based on these findings, we proposed the "Fragment Complementary Activation Strategy" (FCAS) and designed reverse fluorescence-enhanced lateral flow test strips (rFLTS) for the direct detection of miRNA-10b, achieving a limit of detection (LOD) of 5.53 fM and quantifying the miRNA-10b biomarker in clinical serum samples from glioma patients. Moreover, for the first time, we have developed the FCAS-based CRISPR/Cas12a system for miRNA in situ imaging, effectively recognizing tumor cells. The FCAS not only broadens the scope of CRISPR/Cas12a system target identification but also unlocks the potential for in-depth studies of CRISPR technology in many diagnostic settings.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) Tianjin 300072 China +86-022-27403906
| | - Qiuting Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) Tianjin 300072 China +86-022-27403906
| | - Ran Luo
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) Tianjin 300072 China +86-022-27403906
| | - Jiudi Sun
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) Tianjin 300072 China +86-022-27403906
| | - Cheng Zhu
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin 300072 China
| | - Dianming Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease Tianjin 300011 China +86-022-24755561
| | - Xiaoqun Gong
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) Tianjin 300072 China +86-022-27403906
| |
Collapse
|
21
|
He M, Hou Z, Yin F, Cheng W, Xiang Y, Wang Z. Simultaneous detection of breast cancer biomarkers HER2 and miRNA-21 based on duplex-specific nuclease signal amplification. J Mater Chem B 2024; 12:9930-9937. [PMID: 39263860 DOI: 10.1039/d4tb01845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The detection of a single biomarker is prone to false negative or false positive results. Simultaneous analysis of two biomarkers can greatly improve the accuracy of diagnosis. In this work, we designed a new method for coinstantaneous detection of two breast cancer biomarkers miRNA-21 and HER2 using the properties of duplex-specific nuclease (DSN). Cy5-labeled DNA1 and FAM-labeled DNA2 are used as signal probes to distinguish the two signals. When the sample contains the targets HER2 and miRNA-21, HER2 binds to the HER2 aptamer on the double-stranded DNA2, while miRNA-21 binds to the complementary DNA1. Then, DSN enzyme is added to cut the DNA probes adsorbed on the HER2 aptamer and miRNA-21, releasing the fluorescent groups, which can be readsorbed to the empty sites, thus repeating the cutting of the probes and producing an exponential signal amplification with two distinct fluorescent signals. The detection limits of miRNA-21 and HER2 are 1.12 pM and 0.36 ng mL-1, respectively, with linear ranges of 5 pM to 50 pM and 1 ng mL-1 to 15 ng mL-1. The method was validated in real biological samples, providing a new approach for synchronous analysis of important markers in breast cancer.
Collapse
Affiliation(s)
- Miao He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Feifan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China.
| |
Collapse
|
22
|
Jia Y, Zhao S, Wang A, Huang J, Yang J, Yang L. Target-induced multiregion MNAzyme nanowires for ultrasensitive homogeneous detection of microRNAs. Int J Biol Macromol 2024; 277:134175. [PMID: 39067728 DOI: 10.1016/j.ijbiomac.2024.134175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
A target-induced multiregion MNAzyme nanowire system is designed for the ultrasensitive and homogeneous detection of microRNAs (miRNAs). miRNA-21 and miRNA-375 are chosen as analytes, and a miRNA-induced primer exchange reaction (PER) is utilized to construct a long DNA strand with repetitive sequences. This innovative design enables the efficient anchoring of numerous MNAzymes. This unique architecture significantly boosts the effective local concentration of MNAzymes, thereby enhancing the sensitivity and efficiency of miRNA detection. Notably, the limit of detection (LOD) achieved with our target-induced multiregion MNAzyme nanowire approach is over an order of magnitude lower than most other MNAzyme-based methods, while the MNAzyme reaction time is reduced from several hours to 50 min. The method has demonstrated successful applications in quantitatively determining the expression levels of two miRNAs in cell lysates of MCF-7, HeLa and MCF-10 A cells, highlighting its potential for assaying miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Yaxue Jia
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Siqi Zhao
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Jing Huang
- Laboratory Department of The First Hospital of Jilin University, Changchun, P. R. China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China.
| |
Collapse
|
23
|
Cui Q, Zhou M, Wen Q, Li L, Xiong C, Adeli M, Cheng L, Xu X, Ren X, Cheng C. Pyridine-Bridged Covalent Organic Frameworks with Adjustable Band Gaps as Intelligent Artificial Enzymes for Light-Augmented Biocatalytic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401673. [PMID: 38721983 DOI: 10.1002/smll.202401673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Indexed: 10/01/2024]
Abstract
One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
24
|
Yang R, Ji J, Ding L, Yuan X, Qu L, Wu Y, Li Y. CRISPR-Enhanced Photocurrent Polarity Switching for Dual-lncRNA Detection Combining Deep Learning for Cancer Diagnosis. Anal Chem 2024; 96:13278-13284. [PMID: 39092917 DOI: 10.1021/acs.analchem.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Abnormal expression in long noncoding RNAs (lncRNAs) is closely associated with cancers. Herein, a novel CRISPR/Cas13a-enhanced photocurrent-polarity-switching photoelectrochemical (PEC) biosensor was engineered for the joint detection of dual lncRNAs, using deep learning (DL) to assist in cancer diagnosis. After target lncRNA-activated CRISPR/Cas13a cleaves to induce DNAzyme bidirectional walkers with the help of cofactor Mg2+, nitrogen-doped carbon-Cu/Cu2O octahedra are introduced into the biosensor, producing a photocurrent in the opposite direction of CdS quantum dots (QDs). The developed PEC biosensor shows high specificity and sensitivity with limits of detection down to 25.5 aM for lncRNA HOTAIR and 53.1 aM for lncRNA MALAT1. More importantly, this platform for the lncRNA joint assay in whole blood can successfully differentiate cancers from healthy people. Furthermore, the DL model is applied to explore the potential pattern hidden in data of the established technology, and the accuracy of DL cancer diagnosis can acquire 93.3%. Consequently, the developed platform offers a new avenue for lncRNA joint detection and early intelligent diagnosis of cancer.
Collapse
Affiliation(s)
- Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Qiu Z, Lei Y, Lin X, Zhu J, Tang D, Chen Y. Foldable paper-based photoelectrochemical biosensor based on etching reaction of CoOOH nanosheets-coated laser-induced PbS/CdS/graphene for sensitive detection of ampicillin. Talanta 2024; 275:126085. [PMID: 38615458 DOI: 10.1016/j.talanta.2024.126085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Timely and rapid detection of antibiotic residues in the environment is conducive to safeguarding human health and promoting an ecological virtuous cycle. A foldable paper-based photoelectrochemical (PEC) sensor was successfully developed for the detection of ampicillin (AMP) based on glutathione/zirconium dioxide hollow nanorods/aptamer (GSH@ZrO2 HS@apt) modified cellulose paper as a reactive zone with laser direct-writing lead sulfide/cadmium sulfide/graphene (PbS/CdS/LIG) as photoelectrode and cobalt hydroxide (CoOOH) as a photoresist material. Initially, AMP was introduced into the paper-based reaction zone as a biogate aptamer, which specifically recognized the target and then left the ZrO2 HS surface, releasing glutathione (GSH) encapsulated inside. Subsequently, the introduction of GSH into the reaction region and etching of CoOOH nanosheets to expose the PbS/CdS/LIG photosensitive material increased photocurrent. Under optimal conditions, the paper-based PEC biosensor showed a linear response to AMP in the range of 5.0 - 2 × 104 pM with a detection limit of 1.36 pM (S/N = 3). In addition, the constructed PEC sensing platform has excellent selectivity, high stability and favorable reproducibility, and can be used to assess AMP residue levels in various real water samples (milk, tap water, river water), indicating its promising application in environmental antibiotic detection.
Collapse
Affiliation(s)
- Zhenli Qiu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yufen Lei
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xintong Lin
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jinman Zhu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & FujianProvince), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
26
|
Wang G, Li L, Zhao H, Yang H, Zhang L, Zhao P, Cui K, Yu J. Host-Guest Interaction Mediated Perovskite@Metal-Organic Framework Z-Scheme Heterojunction Enabled Paper-Based Photoelectrochemical Sensing. Anal Chem 2024; 96:12165-12172. [PMID: 38989981 DOI: 10.1021/acs.analchem.4c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Exploring the high-performance photoelectronic properties of perovskite quantum dots (QDs) is desirable for paper-based photoelectrochemical (PEC) sensing;however, challenges remain in improving their stability and fundamental performance. Herein, a novel Z-scheme heterostructure with host-guest interaction by the confinement of CH3NH3PbBr3 QDs within Cu3(BTC)2 metal-organic framework (MOF) crystal (MAPbBr3@Cu3(BTC)2) is successfully constructed on the paper-based PEC device for ultrasensitive detection of Ochratoxin A (OTA), with the assistance of the exciton-plasmon interaction (EPI) effect. The host-guest interaction is estabilished by encapsulating MAPbBr3 QDs as guests within Cu3(BTC)2 MOF as a host, which prevents MAPbBr3 QDs from being damaged in the polar system, offering access to long-term stability with high-performance PEC properties. Benefiting from the precise alignment of energy levels, the photogenerated charge carriers can migrate according to the Z-scheme charge-transfer pathway under the driving force of the internal electric field, achieving a high photoelectric conversion efficiency. Upon OTA recognition, the EPI effect is activated to modulate the exciton response in MAPbBr3 QDs by accelerating radiative decay, finally achieving sensitive OTA sensing with a detection limit of 0.017 pg mL-1. We believe this work renders new insight into designing host-guest Z-scheme heterojunctions in constructing the paper-based PEC sensing platforms for environmental monitoring.
Collapse
Affiliation(s)
- Guofu Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Hongbo Zhao
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, People's Republic of China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, People's Republic of China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
27
|
Feng ZY, Jiang JC, Meng LY. Carbon-based photoelectrochemical sensors: recent developments and future prospects. Dalton Trans 2024; 53:11192-11215. [PMID: 38864748 DOI: 10.1039/d4dt00534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Owing to the considerable potential of photoelectrochemical (PEC) sensors, they have gained significant attention in the analysis of biological, environmental, and food markers. However, the limited charge mass transfer efficiency and rapid recombination of electron hole pairs have become obstacles in the development of PEC sensors. In this case, considering the unique advantages of carbon-based materials, they can be used as photosensitizers, supporting materials and conductive substrates and coupled with semiconductors to prepare composite materials, solving the above problems. In addition, there are many types of carbon materials, which can have semiconductor properties and form heterojunctions after coupling with semiconductors, effectively promoting the separation of electron hole pairs. Herein, we aimed to provide a comprehensive analysis of reports on carbon-based PEC sensors by introducing their research and application status and discussing future development trends in this field. In particular, the types and performance improvement strategies of carbon-based electrodes and the working principles of carbon-based PEC sensors are explained. Furthermore, the applications of carbon-based photoelectric sensors in environmental monitoring, biomedicine, and food detection are highlighted. Finally, the current limitations in the research on carbon-based PEC sensors are emphasized and the need to enhance the sensitivity and selectivity through material modification, structural design, improved device performance, and other strategies are emphasized.
Collapse
Affiliation(s)
- Zhi-Yuan Feng
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
| | - Jin-Chi Jiang
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
| | - Long-Yue Meng
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
- Department of Environmental Science, College of Geography and Ocean Science, Yanbian University, Park Road 977, Yanji, 133002, PR China.
| |
Collapse
|
28
|
Negahdary M. Role of miRNA-21 in cancer and its application in electrochemical bioanalysis. Bioanalysis 2024; 16:997-1000. [PMID: 38949192 PMCID: PMC11581167 DOI: 10.1080/17576180.2024.2368340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Masoud Negahdary
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX77840-3006, USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX77840-3006, USA
| |
Collapse
|
29
|
Guo A, Song M, Chen Q, Zhang Z, Feng Y, Hu X, Liu M. Enhanced Label-Free Photoelectrochemical Strategy for Pollutant Detection: Using Surface Oxygen Vacancies-Enriched BiVO 4 Photoanode. Anal Chem 2024; 96:9944-9952. [PMID: 38843071 DOI: 10.1021/acs.analchem.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Label-free photoelectrochemical sensors have the advantages of high sensitivity and a simple electrode structure. However, its performance is greatly limited due to the photoactive materials' weak photoactivity and poor stability. Herein, a robust homogeneous photoelectrochemical (PEC) aptasensor has been constructed for atrazine (ATZ) based on photoetching (PE) surface oxygen vacancies (Ov)-enriched Bismuth vanadate (BiVO4) (PE-BVO). The surface of the Ov improves the carrier separation ability of BiVO4, thus providing a superior signal substrate for the sensor. A thiol molecular layer self-assembled on PE-BVO acts as a blocker, while 2D graphene acts as a signal-on probe after release from the aptamer-graphene complex. The fabricated sensor has a wide linear detection range of 0.5 pM to 10.0 nM and a low detection limit of 0.34 pM (S/N = 3) for ATZ. In addition, it can efficiently work in a wide pH range (3-13) and high ionic strength (∼6 M Na+), which provides promising opportunities for detecting environmental pollutants under complex conditions.
Collapse
Affiliation(s)
- Aijiao Guo
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Menglin Song
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qichen Chen
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ye Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
30
|
Kong L, Zong C, Chen X, Xv H, Lv M, Li C. CRISPR/Cas12a trans-cleavage mediated photoelectrochemical biosensor based on zeolitic imidazolate framework-67 for ATP determination. Mikrochim Acta 2024; 191:403. [PMID: 38888689 DOI: 10.1007/s00604-024-06474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.
Collapse
Affiliation(s)
- Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Chengxue Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Xiaodong Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Huijuan Xv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Mengwei Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.
| |
Collapse
|
31
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
32
|
Peng J, Liu T, Guan L, Xu Z, Xiong T, Zhang Y, Song J, Liu X, Yang Y, Hao X. A highly sensitive Lock-Cas12a biosensor for detection and imaging of miRNA-21 in breast cancer cells. Talanta 2024; 273:125938. [PMID: 38503125 DOI: 10.1016/j.talanta.2024.125938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The expression levels of microRNA (miRNA) vary significantly in correlation with the occurrence and progression of cancer, making them valuable biomarkers for cancer diagnosis. However, their quantitative detection faces challenges due to the high sequence homology, low abundance and small size. In this work, we established a strand displacement amplification (SDA) approach based on miRNA-triggered structural "Lock" nucleic acid ("Lock" DNA), coupled with the CRISPR/Cas12a system, for detecting miRNA-21 in breast cancer cells. The "Lock" DNA freed the CRISPR-derived RNA (crRNA) from the dependence on the target sequence and greatly facilitated the extended detection of different miRNAs. Moreover, the CRISPR/Cas12a system provided excellent amplification ability and specificity. The designed biosensor achieved high sensitivity detection of miRNA-21 with a limit of detection (LOD) of 28.8 aM. In particular, the biosensor could distinguish breast cancer cells from other cancer cells through intracellular imaging. With its straightforward sequence design and ease of use, the Lock-Cas12a biosensor offers significant advantages for cell imaging and early clinical diagnosis.
Collapse
Affiliation(s)
- Jiawei Peng
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Liu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Liwen Guan
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ziyue Xu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Xiong
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yu Zhang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Jiaxin Song
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xuexia Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, PR China; School of Forensic Medicine, Wannan Medical College, Wuhu Anhui, 241002, PR China.
| | - Yifei Yang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
33
|
Zhang X, Zhu L, Yang L, Liu G, Qiu S, Xiong X, Huang K, Xiao T, Zhu L. A sensitive and versatile electrochemical sensor based on hybridization chain reaction and CRISPR/Cas12a system for antibiotic detection. Anal Chim Acta 2024; 1304:342562. [PMID: 38637031 DOI: 10.1016/j.aca.2024.342562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
A sensitive electrochemical platform was constructed with NH2-Cu-MOF as electrochemical probe to detect antibiotics using CRISPR/Cas12a system triggered by hybridization chain reaction (HCR). The sensing system consists of two HCR systems. HCR1 occurred on the electrode surface independent of the target, generating long dsDNA to connect signal probes and producing a strong electrochemical signal. HCR2 was triggered by target, and the resulting dsDNA products activated the CRISPR/Cas12a, thereby resulting in effective and rapid cleavage of the trigger of HCR1, hindering the occurrence of HCR1, and reducing the number of NH2-Cu-MOF on the electrode surface. Eventually, significant signal change depended on the target was obtained. On this basis and with the help of the programmability of DNA, kanamycin and ampicillin were sensitively detected with detection limits of 60 fM and 10 fM (S/N = 3), respectively. Furthermore, the sensing platform showed good detection performance in milk and livestock wastewater samples, demonstrating its great application prospects in the detection of antibiotics in food and environmental water samples.
Collapse
Affiliation(s)
- Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Guoyu Liu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Qiu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke Huang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
34
|
Liao YY, Guo YZ, Liu JL, Shen ZC, Chai YQ, Yuan R. Single-Atom Iron Doped Carbon Dots with Highly Efficient Electrochemiluminescence for Ultrasensitive Detection of MicroRNAs. Anal Chem 2024; 96:7516-7523. [PMID: 38691765 DOI: 10.1021/acs.analchem.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.
Collapse
Affiliation(s)
- Ye-Yu Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yu-Zhuo Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhao-Chen Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
35
|
Shi S, Kan A, Lu L, Zhao W, Jiang W. An acid-responsive DNA hydrogel-mediated cascaded enzymatic nucleic acid amplification system for the sensitive imaging of alkaline phosphatase in living cells. Analyst 2024; 149:3026-3033. [PMID: 38618891 DOI: 10.1039/d4an00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Alkaline phosphatase (ALP) is a class of hydrolase that catalyzes the dephosphorylation of phosphorylated species in biological tissues, playing an important role in many physiological and pathological processes. Sensitive imaging of ALP activity in living cells is contributory to the research on these processes. Herein, we propose an acid-responsive DNA hydrogel to deliver a cascaded enzymatic nucleic acid amplification system into cells for the sensitive imaging of intracellular ALP activity. The DNA hydrogel is formed by two kinds of Y-shaped DNA monomers and acid-responsive cytosine-rich linkers. The amplification system contained Bst DNA polymerase (Bst DP), Nt.BbvCI endonuclease, a Recognition Probe (RP, containing a DNAzyme sequence, a Nt.BbvCI recognition sequence, and a phosphate group at the 3'-end), and a Signal Probe (SP, containing a cleavage site for DNAzyme, Cy3 and BHQ2 at the two ends). The amplification system was trapped into the DNA hydrogel and taken up by cells, and the cytosine-rich linkers folded into a quadruplex i-motif in the acidic lysosomes, leading to the collapse of the hydrogel and releasing the amplification system. The phosphate groups on RPs were recognized and removed by the target ALP, triggering a polymerization-nicking cycle to produce large numbers of DNAzyme sequences, which then cleaved multiple SPs, restoring Cy3 fluorescence to indicate the ALP activity. This strategy achieved sensitive imaging of ALP in living HeLa, MCF-7, and NCM460 cells, and realized the sensitive detection of ALP in vitro with a detection limit of 2.0 × 10-5 U mL-1, providing a potential tool for the research of ALP-related physiological and pathological processes.
Collapse
Affiliation(s)
- Shaochuan Shi
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| | - Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Lu Lu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Weichong Zhao
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| |
Collapse
|
36
|
Zhang Z, Li J, Chen C, Tong Y, Liu D, Li C, Lu H, Huang L, Feng W, Sun X. Exploring T7 RNA polymerase-assisted CRISPR/Cas13a amplification for the detection of BNP via electrochemiluminescence sensing platform. Anal Chim Acta 2024; 1300:342409. [PMID: 38521567 DOI: 10.1016/j.aca.2024.342409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Brain natriuretic peptide (BNP) is considered to be an important biomarker of heart failure (HF) attracting attention. However, its low concentration and short half-life in blood lead to a low-sensitivity detection of BNP, which is a challenge that has to be overcome. In this work, we propose a highly specific, highly sensitive T7 RNA polymerase-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system to detect BNP via an electrochemiluminescence (ECL) sensing platform and incorporate exonuclease III (Exo III)-hairpin and dumbbell-shaped hybridization chain reaction (HCR) technologies. In this detection scheme, the ECL sensing platform possesses low background signal and high sensitivity. Firstly, the T7 promoter-initiated T7 RNA polymerase acts as a signal amplification technique to generate large amounts of RNAs that can activate CRISPR/Cas13a activity. Secondly, CRISPR/Cas13a is able to trans-cleave the surrounding trigger strand to produce DNA1. Thirdly, DNA1 is involved in the co-amplification reaction of Exo III and hairpin DNA, which subsequently triggers a dumbbell-shaped HCR technology. Eventually, a large number of Ru (II) molecules are inserted into the interstitial space of the dumbbell-shaped HCR to generate a strong ECL signal. The CRISPR/Cas13a possesses outstanding specificity for a single base and increased sensitivity. The tightly conformed dumbbell-shaped HCR provides higher sensitivity than the traditional linear HCR amplification technique. Ultimately, the clever combination of several amplification reactions enables the limit of detection (LOD) as low as 3.2 fg/mL. It showed promise for clinical sample testing, with recovery rates ranging from 98.4% to 103% in 5% human serum samples. This detection method offered a valuable tool for early HF detection, emphasizing the synergy of amplification strategies and specificity conferred by CRISPR/Cas13a technology.
Collapse
Affiliation(s)
- Zaiyong Zhang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Jinglong Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Chunlin Chen
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Yuwei Tong
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Dehui Liu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Cuizhi Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Huan Lu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China.
| | - Li Huang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Wanling Feng
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Xiaoting Sun
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| |
Collapse
|
37
|
Liu J, Wan Z, Wang X, Suo Z, Liu Y, Wei M. A dual-signal ratiometric electrochemical aptasensor based on Thi/Au/ZIF-8 and catalytic hairpin assembly for ultra-sensitive detection of aflatoxin B1. Mikrochim Acta 2024; 191:256. [PMID: 38598148 DOI: 10.1007/s00604-024-06323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
A dual-signal ratiometric electrochemical aptasensor has been developed for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Zhigang Wan
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen, 518045, Guangdong, China
| | - Xinwei Wang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng, 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
38
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
39
|
Song Y, Ya Y, Cen X, Tang D, Shi J, Wu Y, Luo H, Huang KJ, Tan X, Yan F. Multiple signal amplification strategy induced by biomarkers of lung cancer: A self-powered biosensing platform adapted for smartphones. Int J Biol Macromol 2024; 264:130661. [PMID: 38458292 DOI: 10.1016/j.ijbiomac.2024.130661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Lung cancer is a major malignant cancer with low survival rates, and early diagnosis is crucial for effective treatment. Herein, a biosensing platform that is self-powered derived from a capacitor-coupled EBFC has been developed for ultra-sensitive real-time identification of microRNA-21 (miRNA-21) with the assistance of a mobile phone. The flexible substrate of the platform is prepared on a carbon paper modified with graphdiyne and gold nanoparticles. The biosensor employs DNAzyme-mediated dual strand displacement amplification, which enhances the signal output intensity of the EBFC and improves selectivity. The coupling of the capacitor with the EBFC significantly amplifies the sensing signal, causing a 10.6-fold surge in current respond and further improving the sensitivity of the sensing platform. The established detection approach demonstrates a linear relationship varied from 0.0001 to 10,000 pM, with a sensitivity down to 32.3 aM as the minimum detectable limit, which has been effectively utilized for detecting miRNA-21 in practical samples. This sensing system provides strong support for the construction of portable detection devices, and the strategy of the platform construction provides an effective method for ultra-sensitive and accurate detection of miRNA, holding great potential in clinical diagnosis, prognosis evaluation, and drug screening for cancer.
Collapse
Affiliation(s)
- Yujie Song
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaotian Cen
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - YeYu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Feiyan Yan
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
40
|
Ye J, Huang W, Jia X, Song H, Zhou Y, Yuan R, Xu W. Short-stranded DNA segment-modulated LAMP/H + as signal transducer to guide CHA-cooperated amplifiable electrochemical biosensing. Anal Chim Acta 2024; 1295:342329. [PMID: 38355233 DOI: 10.1016/j.aca.2024.342329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Modulating loop-mediated isothermal amplification (mLAMP) by short-stranded DNA segment trigger (T) to generate byproducts H+ ions (mLAMP/H+) as signal transducer is intriguing for developing catalytic hairpin assembly (CHA)-cooperated amplifiable electrochemical biosensors. This would be a big challenge for traditional LAMP that is basically suitable for amplifying long-stranded oligonucleotides up to 200-300 nt. To address this inherent limitation of traditional LAMP, many researchers have put in efforts to explore improvements in this that would allow LAMP to be used for a wider range of target species amplification. RESULTS Here in this work, we are inspired to explore two-step loop-mediated amplification, firstly forming T-activated double-loop dumbbell structure (DLDS) intermediate by a recognition hairpin and a hairpin precursor, and next DLDS-guided mLAMP process with the aid of two primers to yield mLAMP/H+ during successive DNA incorporation via nucleophilic attacking interaction. To manipulate the mLAMP/H+-directed transduction of input T, a pH-responsive triplex strand is designed with the ability of self-folding in Hoogsteen structure at slightly acidic conditions, resulting in the dehybridization of a fuel strand (FS) to participate in CHA between two hairpins on the modified electrode surface, in which FS is repetitively displaced and recycled to fuel the progressive CHA events. In the as-assembled dsDNA complexes, numerous electroactive ferrocene labels are immobilized in the electrode sensing interface, thereby generating significantly amplified electrochemical current signal that can sense the presented and varied T. SIGNIFICANCE It is clear that we have creatively constructed a unique electrochemical biosensor for disease detection. Benefited from the rational combination of mLAMP and CHA, our electrochemical strategy is highly sensitive, specific and simplified, and would provide a new paradigm to construct various mLAMP/H+-based biosensors for other short-stranded DNA or microRNAs markers.
Collapse
Affiliation(s)
- Jingjing Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Weixiang Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xinyue Jia
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Honglin Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yifu Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
41
|
Zhang H, Zhang M, Yu Z, Zhou Y, Hu Y, Gao L, Cao L, Yin H, Ai S. MXene-Enhanced Bi 2S 3/CdIn 2S 4 Heterojunction Photosensitive Gate for DEHP Detection in a Signal-On OPECT Aptamer Biosensor. Anal Chem 2024; 96:1948-1956. [PMID: 38265884 DOI: 10.1021/acs.analchem.3c04111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Organic electrochemical transistors with signal amplification and good stability are expected to play a more important role in the detection of environmental pollutants. However, the bias voltage at the gate may have an effect on the activity of vulnerable biomolecules. In this work, a novel organic photoelectrochemical transistor (OPECT) aptamer biosensor was developed for di(2-ethylhexyl) phthalate (DEHP) detection by combining photoelectrochemical analysis with an organic electrochemical transistor, where MXene/Bi2S3/CdIn2S4 was employed as a photoactive material, target-dependent DNA hybridization chain reaction was used as a signal amplification unit, and Ru(NH3)63+ was selected as a signal enhancement molecule. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based OPECT biosensor modulated by the MXene/Bi2S3/CdIn2S4 photosensitive material achieved a high current gain of nearly a thousand times at zero bias voltage. The developed signal-on OPECT sensing platform realized sensitive and specific detection of DEHP, with a detection range of 1-200 pM and a minimum detection limit of 0.24 pM under optimized experimental conditions, and its application to real water samples was also evaluated with satisfactory results. Hence, the construction of this OPECT biosensing platform not only provides a promising tool for the detection of DEHP but also reveals the great potential of the OPECT application for the detection of other environmental toxins.
Collapse
Affiliation(s)
- Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Miao Zhang
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Zhengkun Yu
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Yixin Hu
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| |
Collapse
|
42
|
Chen Z, Ge C, Zhu X, Sun P, Sun Z, Derkach T, Zhou M, Wang Y, Luan M. A novel nanoprobe for visually investigating the controversial role of miRNA-34a as an oncogene or tumor suppressor in cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:667-675. [PMID: 38230518 DOI: 10.1039/d3ay02270f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.
Collapse
Affiliation(s)
- Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaokai Zhu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zeyuan Sun
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Tetiana Derkach
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaoguang Wang
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
43
|
Gao L, Zhou Y, Cao L, Cao Y, Zhang H, Zhang M, Yin H, Ai S. Photoelectrochemical sensor for histone deacetylase Sirt1 detection based on Z-scheme heterojunction of CuS-BiVO 4 photoactive material and the cyclic etching of MnO 2 by NADH. Talanta 2024; 268:125307. [PMID: 37866306 DOI: 10.1016/j.talanta.2023.125307] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
A novel photoelectrochemical (PEC) biosensor was constructed for histone deacetylase Sirt1 detection based on the Z-Scheme heterojunction of CuS-BiVO4 and reduced nicotinamide adenine dinucleotide (NADH) induced cyclic etching of MnO2 triggered by Sirt1 enzyme catalytic histone deacetylation event. Based on the Z-Scheme heterojunction, the photoactivity of the CuS-BiVO4 was improved greatly due to the highly effective separation of the photogenerated electron-hole pairs. In the presence of MnO2 nanosheets on the CuS-BiVO4/ITO electrode surface, the photocurrent decreased due to the inhibition effect of MnO2. However, this inhibition effect was eliminated by the incubation of MnO2/CuS-BiVO4/ITO with NADH, where NADH was produced in the deacetylation process of acetylated peptide catalyzed by Sirt1 with NAD+. The formed NADH etched MnO2, resulting in an increased photocurrent. In this process, NADH was oxidized to produce NAD+, which further involved the deacetylation process. Based on this cycle, the photocurrent of the biosensor was improved greatly and the sensitive and selective detection of Sirt1 was achieved. The biosensor presented a wide linear range from 0.005 to 10 nM with the low detection limit of 3.38 pM (S/N = 3). In addition, the applicability of the developed method was evaluated by investigating the effect of sodium butyrate and perfluorohexane sulfonate on Sirt1 activity.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China.
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Yaoyuan Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Miao Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| |
Collapse
|
44
|
Cao D, Wu W, Fang J, Leng D, Liu L, Wei Q, Cao W. Dual-mode self-powered photoelectrochemical and colorimetric determination of procalcitonin accomplished by multienzyme-expressed Ni 4Cu 2 bimetallic hollow nanospheres and spherical nanoflower-MoS 2/Cu 2ZnSnS 4/Bi 2S 3. Anal Chim Acta 2024; 1288:342056. [PMID: 38220266 DOI: 10.1016/j.aca.2023.342056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
Bacterial infections, viral infections and autoimmune diseases pose a considerable threat to human health. Procalcitonin (PCT) has emerged as a biomarker for the detection of these diseases. To ensure accurate and reliable results, we propose a dual-mode approach that incorporates self-validation and self-correction mechanisms. Herein, we develop a dual-mode self-powered photoelectrochemical (PEC) and colorimetric sensor to determine PCT. The self-powered PEC sensor was constructed with a photoanode of spherical nanoflower-MoS2/Cu2ZnSnS4/Bi2S3 material and a photocathode of CuInS2 material. Ni4Cu2 bimetallic hollow nanospheres (BHNs) possess superoxide dismutase and catalase performance, which facilitate superoxide anion radical (·O2-) and H2O2 circulating generation, promoting the separation of photogenerated electrons and holes to amplify photocurrent signal. Thus Ni4Cu2 BHNs is used as a marker material for PEC sensor. Meanwhile, in colorimetric mode, Ni4Cu2 BHNs converts blue oxTMB to a colourless TMB for colorimetric detection of PCT. Based on this principle, dual-mode determination of PCT with high sensitivity is achieved. The dual-mode method not only demonstrates outstanding properties and practicability, but also presents an effective, highly efficient and reliable method for detecting PCT.
Collapse
Affiliation(s)
- Dongmei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenrui Wu
- Qilu Pharmaceutical Co., LTD, Jinan, 250105, PR China
| | - Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dongquan Leng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
45
|
Liu B, Zhao D, Chen J, Shi M, Yuan K, Sun H, Meng HM, Li Z. DNA Logical Device Combining an Entropy-Driven Catalytic Amplification Strategy for the Simultaneous Detection of Exosomal Multiplex miRNAs In Situ. Anal Chem 2024; 96:1733-1741. [PMID: 38227423 DOI: 10.1021/acs.analchem.3c04883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Exosomal miRNAs are considered promising biomarkers for cancer diagnosis, but their accuracy is severely compromised by the low content of miRNAs and the large amount of exosomal miRNAs released from normal cells. Here, we presented a dual-specific miRNA's logical recognition triggered by an entropy-driven catalysis (EDC)-enhanced system in exosomes for accurate detection of liver cancer-cell-derived exosomal miR-21 and miR-122. Taking advantage of the accurate analytical performance of the logic device, the excellent membrane penetration of gold nanoparticles, and the outstanding amplification ability of the EDC reaction, this method exhibits high sensitivity and selectivity for the detection of tumor-derived exosomal miRNAs in situ. Moreover, due to its excellent performance, this logic device can effectively distinguish liver cancer patients from healthy donors by determining the amount of cancer-cell-derived exosomal miRNAs. Overall, this strategy has great potential for analyzing various types of exosomes and provides a viable tool to improve the accuracy of cancer diagnosis.
Collapse
Affiliation(s)
- Bojun Liu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhao
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Chen
- Zhengzhou Key Laboratory of Criminal Science and Technology, Department of Criminal Science and Technology, Zhengzhou Police College, Zhengzhou 450053, China
| | - Mingqing Shi
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzhi Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
46
|
Yang F, Li S, Wu J, Liu S. 2-Aminopurine-based quencher-free DNA tweezers with fluorescence properties well tuned by surrounding bases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:576-582. [PMID: 38189219 DOI: 10.1039/d3ay01973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Reversible structural changes in DNA nanomachines have great potential in the field of bioanalysis. Here, we demonstrate an assembly strategy for quencher-free and tunable DNA tweezers based on 2-aminopurine (2-AP), avoiding the tedious fluorescence labelling step. The conformational state of the tweezers could be controlled by specific oligonucleotides (fuel or anti-fuel). Taking advantage of the local environmental sensitivity of 2-AP, the structural changes of the tweezers were easily tracked, and multiple cyclic switching of the tweezers between the open and closed states was achieved. In addition, the influence of oligonucleotide structure on the fluorescence properties of 2-AP was deeply explored. We figured out that the fluorescence of 2-AP was highly quenched by the base-stacking of natural bases in DNA oligonucleotides. Moreover, by comprehensively regulating the type of bases surrounding the inserted 2-AP site, a sensitive fluorescence response towards dynamic change can be obtained. This principle of quencher-free nanodevices based on 2-AP provides a convenient method for monitoring the structural changes of DNA nanomachines.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Jialiang Wu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
47
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
48
|
Qin Y, Liu S, Meng S, Liu D, You T. Split aptamer-based sandwich-type ratiometric biosensor for dual-modal photoelectrochemical and electrochemical detection of 17β-estradiol. Anal Chim Acta 2024; 1285:342030. [PMID: 38057051 DOI: 10.1016/j.aca.2023.342030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND As one of the most potent environmental estrogens, 17β-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application. It is clear that there is an urgent need to establish simple, sensitive and accurate methods for the determination of E2. RESULTS A split aptamer-based sandwich-type ratiometric biosensor based on split aptamer was developed by coupling photoelectrochemical and electrochemical assays for E2 detection. For analysis, the two fragments of split aptamer recognized E2 by forming sandwich structure, which triggered hybridization chain reaction (HCR) to produce double-stranded DNA (dsDNA) with CdTe quantum dots (QDs) labeled hairpin DNA. The resultant dsDNA can further absorb methylene blue (MB) to sensitize CdTe QDs for an enlarged photocurrent (IPEC) and output a redox current of IMB, and both of them acted as response signals for detection; [Fe(CN)6]3-/4- probe produced redox current of I[Fe(CN)6]3-/4- as reference signal. Using IMB/I[Fe(CN)6]3-/4- and IPEC/I[Fe(CN)6]3-/4- as yardsticks, the developed split aptamer-based sandwich-type ratiometric biosensor provides two linear ranges of 0.1-5000 pg mL-1 for IMB/I[Fe(CN)6]3-/4- and 0.1-10000 pg mL-1 for IPEC/I[Fe(CN)6]3-/4- with detection limits of 0.06 pg mL-1 and 0.02 pg mL-1, respectively. SIGNIFICANCE These results of the biosensor are benefiting from the coupling of photoelectrochemical (PEC) and electrochemical (EC) assays as well as the unique cooperative recognition mechanism of split aptamer. This method not only enabled the biosensor to be successfully applied to the determination of E2 in lake water, but also broadens the prospects for the realization of sensitive and accurate detection of E2.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuda Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuyun Meng
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dong Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
49
|
Meng J, Xu Z, Zheng S, Yang H, Wang T, Wang H, Zhang Y. Development of a regenerable dual-trigger tripedal DNA walker electrochemical biosensor for sensitive detection of microRNA-155. Anal Chim Acta 2024; 1285:342026. [PMID: 38057049 DOI: 10.1016/j.aca.2023.342026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Since microRNAs (miRNAs) are valuable biomarkers for disease diagnosis and prognosis, the pursuit of enhanced detection sensitivity through signal amplification strategies has emerged as a prominent focus in low-abundance miRNA detection research. DNA walkers, as dynamic DNA nanodevice, have gained significant attention for their applications as signal amplification strategies. To overcome the limitations of unipedal DNA walkers with a restricted signal amplification efficiency, there is a great need for multi-pedal DNA walkers that offer improved walking and signal amplification capabilities. Here, we employed a combination of catalytic hairpin assembly (CHA) and APE1 enzymatic cleavage reactions to construct a tripedal DNA walker, driving its movement to establish a cascade signal amplification system for the electrochemical detection of miRNA-155. The biosensor utilizes tumor cell-endogenous microRNA-155 and APE1 as dual-trigger for DNA walker formation and walking movement, leading to highly efficient and controllable signal amplification. The biosensor exhibited high sensitivity, with a low detection limit of 10 pM for microRNA-155, and successfully differentiated and selectively detected microRNA-155 from other interfering RNAs. Successful detection in 20 % serum samples indicates its potential clinical application. In addition, we harnessed strand displacement reactions to create a gentle yet efficient electrode regeneration strategy, to addresses the time-consuming challenges during electrode modification processes. We have successfully demonstrated the stability of current signals even after multiple cycles of electrode regeneration. This study showcased the high-efficiency amplification potential of multi-pedal DNA walkers and the effectiveness and versatility of strand displacement in biosensing applications. It opens a promising path for developing regenerable electrochemical biosensors. This regenerable strategy for electrochemical biosensors is both label-free and cost-effective, and holds promise for detecting various disease-related RNA targets beyond its current application.
Collapse
Affiliation(s)
- Jinting Meng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihao Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shasha Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongqun Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianfu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
50
|
Liu X, Cheng H, Zhao Y, Wang Y, Ge L, Huang Y, Li F. Immobilization-free dual-aptamer-based photoelectrochemical platform for ultrasensitive exosome assay. Talanta 2024; 266:125001. [PMID: 37517342 DOI: 10.1016/j.talanta.2023.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Exosomes, involved in cancer-specific biological processes, are promising noninvasive biomarkers for early diagnosis of cancer. Herein, an immobilization-free dual-aptamer-based photoelectrochemical (PEC) biosensor was proposed for the enrichment and quantification of cancer exosome based on photoactive bismuch oxyiodide/gold/cadmium sulfide (BiOI/Au/CdS) composites, nucleic acid-based recognition and signal amplification. In this biosensor, the recognition of exosome by two aptamers would trigger the deoxyribonucleotidyl transferase (TdT) enzyme-aided polymerization, leading to the enrichment of alkaline phosphatase (ALP) on Fe3O4 surface. After magnetic separation, ALP could catalyze the generation of ascorbic acid (AA) as electron donor and initiate the following redox cycle reaction for further signal amplification. Furthermore, all the above processes were performed in solution, the recognition and signal amplification efficiency would be superior than the heterogeneous strategy owing to the avoidance of steric hindrance effect. As a result, the proposed PEC biosensor was capable of enriching and detecting of cancer exosomes with high sensitivity and selectivity. The linear range of the biosensor was from 1.0 × 102 particles·μL-1 to 1.0 × 106 particles·μL-1 and the detection limit was estimated to be 21 particles·μL-1. Therefore, the proposed PEC biosensor holds great promise in quantifying tumor exosome for nondestructive early clinical cancer diagnosis and various other bioassay applications.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Hao Cheng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yiping Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|