1
|
Zhao C, Wang J, Hou L, He H, Ge C, Yang Y, Wang L, Xu Y, Li S. Finger-actuated microfluidic chip integrated with visual immunoassay for ultrasensitive detection of PSA in whole blood. Talanta 2025; 293:128127. [PMID: 40222096 DOI: 10.1016/j.talanta.2025.128127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Cumbersome preprocessing and specialized manual operations in clinical blood samples remain a significant challenge for achieving high sensitivity and accurate quantification in point-of-care testing. In this paper, a finger-driven integrated microfluidic chip based on visualization of single nanoparticle scattering was proposed for the detection of prostate-specific antigen (PSA) in the whole blood. To control on-chip fluid, a finger-driven module based on a Tesla valve was designed to unidirectionally regulate fluid mixing and separation in the microchannel. In addition, a membrane separation unit was designed to efficiently separate blood cells and serum, reducing interference from blood cells in the detection process. For quantitative PSA concentration detection, a Multi-functional core-satellite magnetic probe was constructed by using the principle of complementary base pairing of ligands on the surface of gold nanoparticles and magnetic beads. In the presence of target PSA, the constructed core-satellite nanostructure was decomposed, producing a characteristic fluorescence signal and releasing gold nanoparticles with green scattering spots under dark-field microscopy. By correlating the concentration with the number of green scattering spots, cancer risk levels were displayed intuitively using a traffic light system. This biosensor achieves an ultra-low detection limit of 0.5 pg/mL for PSA. Due to the ultra-sensitive ability in detection, the monitoring of PSA concentrations for patients during treatment was also demonstrated. Compared with other methods, this proposed microfluidic assay technology has the advantages of small sample volume, minimal operation, high sensitivity and accuracy. Overall, this biosensor provides a new approach for cancer recurrence monitoring and early diagnosis.
Collapse
Affiliation(s)
- Chaoshan Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Junju Wang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Liwei Hou
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Hong He
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Chuang Ge
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Shapingba, Chongqing, 400030, China
| | - Yuping Yang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, China
| | - Li Wang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Yi Xu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Huang Z, Zhang T, Feng J, Wang Y. The Dielectrophoretic Interactions of Curved Particles in a DC Electric Field. MICROMACHINES 2025; 16:596. [PMID: 40428722 PMCID: PMC12113738 DOI: 10.3390/mi16050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/17/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
In practical dielectrophoretic cell interaction experiments, cells do not always exhibit circular or rod-like shapes, making the study of dielectrophoretic interactions among irregularly shaped particles of significant importance. We established a mathematical model for curved particles to analyze their mutual dielectrophoretic interactions, incorporating particle deformability by varying their shear modulus, and employed the arbitrary Lagrangian-Eulerian method to describe particle motion and deformation. The results demonstrate that under the influence of a direct current electric field, curved particles undergo rotation, deformation, and mutual attraction due to dielectrophoresis, eventually forming a stable alignment parallel to the applied electric field. Adjusting the electric field strength effectively modulates the interaction intensity and movement velocity between particles. This study elucidates the fundamental principles governing dielectrophoretic interactions among deformable curved particles in DC electric fields, providing theoretical guidance for dielectrophoretic manipulation experiments involving biological cells, metallic particles, and other entities under DC electric fields.
Collapse
Affiliation(s)
- Zhiwei Huang
- Mechanical and Electrical Engineering College, Guangdong University of Science and Technology, Dongguan 523668, China
| | - Tong Zhang
- Mechanical and Electrical Engineering College, Guangdong University of Science and Technology, Dongguan 523668, China
| | | | | |
Collapse
|
3
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025; 97:8625-8640. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Abouali H, Keyvani F, Hosseini SA, Srikant S, Poudineh M. Continuous High-Throughput Plasma Separation for Blood Biomarker Sensing Using a Hydrodynamic Microfluidic Device. Adv Healthc Mater 2025; 14:e2404193. [PMID: 39972640 PMCID: PMC11973946 DOI: 10.1002/adhm.202404193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Continuous, cost-effective, high-throughput with admissible yield and purity of blood plasma separation is widely needed for biomarker detection in the clinic. The existing gold standard technique (centrifugation) and microfluidic technologies fall short of meeting these criteria. In this study, a microfluidic device design is demonstrated based on passive hydrodynamic principles to achieve admissible yield and purity plasma samples. Through computational and experimental assessments, it is shown that side channels with varying lengths are required to improve the plasma extraction rate. The optimized side channels in this device design use the formed cell-free layer regions in the expanded areas to extract plasma consistently and efficiently. These Hydrodynamic Continuous, High-Throughput Plasma Separator (HCHPS) microfluidic devices achieve a purity in the range of 47% to 64% with whole blood and maintaining a yield of 10% to 18%, with half hemolysis compared to gold standard centrifugation. These devices also separate the plasma from diluted blood with a purity in the range of 62% to 97% with a similar yield range. Additionally, whole human blood spiked with lactate was processed through the HCHPS device, and the separated plasma is collected and analyzed using two biosensing approaches, a bead-based fluorescence, and an electrochemical aptamer biosensing, confirming the quality of plasma for downstream biomarker detection.
Collapse
Affiliation(s)
- Hesam Abouali
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Seied Ali Hosseini
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Sanjana Srikant
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| |
Collapse
|
5
|
He H, Wang X, Tan H, Xiang S, Xu Y. The culture of A549 cells and its secreted cytokine IL-6 monitoring on the designed multifunctional microfluidic chip. Talanta 2025; 285:127395. [PMID: 39706033 DOI: 10.1016/j.talanta.2024.127395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
A multifunctional microfluidic chip integrated with perfusion cell culture and in situ SERS detection of cell secretion was designed and developed for the detection of IL-6 secretion from LPS-stimulation of A549 cells in this paper. Researching works were focused on A549 cell activity and secretion in the constructed LPS-stimulated A549 cells model. On the designed microchip, a bubble trap chamber was designed to remove the bubbles in the culture medium which could also be simultaneously preheated by a split hot plate. Then, a long-time perfusion culture process of 549 cells could be realized. Under the optimized conditions the A549 cells could be cultured and kept in good activity for more than 36 h. Subsequently, the model of interaction between LPS and A549 cells was established on the designed microchip. When LPS-stimulated A549 cells, the IL-6 which was one of the secretions formed in this process was detected quantitatively by SERS spectral technique. The silver-coated gold nano-stars were prepared and taken as a sensitive enhancing probe for the SERS detection of IL-6 secreted from LPS-stimulated A549 cells. The immunomagnetic beads, IL-6 antigen, and SERS probes were mixed and incubated in the microchip and form a sandwich structure which was captured by the permanent magnet in the detection zone for SERS detection. The reference material of IL-6 was used to establish the calibration curve, and the linear range and detection limit were 1-10000 pg/mL and 0.75 pg/mL, respectively. Then, the IL-6 secretion from LPS-stimulated A549 cells was detected hourly for 7 h by this established method. The process of LPS stimulation of A594 cells did not lead to a sustained increase in the SERS spectral signature of IL-6. Instead, IL6 secretion initially increased sharply, then decreased and eventually stabilized. It could be due to a potential mechanism that the cells self-regulated to mitigate the inflammatory effects in response to sustained stimulation. The proposed multifunctional microfluidic chip, characterized by high sensitivity and the ability to perform continuous hourly detection, exhibited significant application prospects in the study of external stimulation on cells.
Collapse
Affiliation(s)
- Hong He
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Xiaoli Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Haolan Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing, 401331, China
| | - Songtao Xiang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| |
Collapse
|
6
|
Chung YD, Tsai YC, Wang CH, Lee GB. Aptamer selection via versatile microfluidic platforms and their diverse applications. LAB ON A CHIP 2025; 25:1047-1080. [PMID: 39774569 DOI: 10.1039/d4lc00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, in vivo-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and in vivo-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.
Collapse
Affiliation(s)
- Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chi-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Zhao C, Gan M, Jiang Z, Lv Z, Feng W, Wang L, Li S. Formation of anisotropic nanoparticle structure for nanoplasmonic biosensing. Mikrochim Acta 2025; 192:136. [PMID: 39921699 DOI: 10.1007/s00604-025-06998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
A novel anisotropic nanoparticle structure consisting of a single gold nanorod and nanospheres is designed. The optical properties, especially the scattering under polarized light, are studied. The signal readout is conducted using dark-field microimaging techniques in a microfluidic chip. The formation of this novel structure is induced by the intermediate biomolecules. Therefore, it demonstrates potential applications in the ultrasensitive detection of biomarkers. As an example, the detection of vascular endothelial growth factor (VEGF165) is demonstrated, and the specificity is also investigated. This unique approach not only effectively reduces background interference but also provides a new approach for accurate sensing of targeted tumor markers.
Collapse
Affiliation(s)
- Chaoshan Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, No. 174, St. Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Minshan Gan
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, No. 174, St. Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Zhuoya Jiang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, No. 174, St. Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Zilan Lv
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Wei Feng
- National and Local Joint Engineering Research Center for Industrial Friction and Lubrication Technology, Guangzhou, 510663, China
| | - Li Wang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, No. 174, St. Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, No. 174, St. Shazhengjie, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
8
|
Zhang S, Zhang Y, Ning Z, Duan M, Lin X, Duan N, Wang Z, Wu S. Design and application of microfluidics in aptamer SELEX and Aptasensors. Biotechnol Adv 2024; 77:108461. [PMID: 39374797 DOI: 10.1016/j.biotechadv.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Aptamers are excellent recognition molecules obtained from systematic evolution of ligands by exponential enrichment (SELEX) that have been extensively researched for constructing aptasensors. However, in the process from SELEX to the construction of aptasensors, there are many disadvantages, such as tedious and repetitive operations, interference from external factors, and low efficiency, which seriously limits their application scope and development. Introducing the microfluidic technology can realize the integration and intelligence of SELEX and aptasensing, improve the efficiency of SELEX, and enhance the detection performance and convenience of aptasensing. Hence, in this review, the characteristics of various chips based on different driving forces are described firstly. And then summarizing the design of microfluidic devices based on different SELEX methods and showing the strategies of microfluidic aptasensors based on different detection modes. Finally, discussing the difficulties and challenges encountered when microfluidic is integrated with the SELEX and the aptasensors.
Collapse
Affiliation(s)
- Shikun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Ning
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Redondo-Fernández G, Cid-Barrio L, Fernández-Argüelles MT, de la Escosura-Muñiz A, Soldado A, Costa-Fernández JM. Controlled silver electrodeposition on gold nanoparticle antibody tags for ultrasensitive prostate specific antigen sensing using electrochemical and optical smartphone detection. Talanta 2024; 275:126095. [PMID: 38653118 DOI: 10.1016/j.talanta.2024.126095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
One of the current challenges in medicine is to achieve a rapid and unequivocal detection and quantification of extremely low levels of disease biomarkers in complex biological samples. Here, we present the development and analytical evaluation of a low-cost smartphone-based system designed for ultrasensitive detection of the prostate-specific antigen (PSA) using two detection alternatives: electrochemical or optical, by coupling the smartphone with a portable potentiostat or magnifying lenses. An antibody tagged with gold nanoparticles (AuNPs), and indium tin oxide coated polyethylene terephthalate platform (ITO-PET) have been used to develop a sandwich-type immunoassay. Then, a controlled silver electrodeposition on the AuNPs surface is carried out, enhancing their size greatly. Due to such strong nanoparticle-size amplification (from nm to μm), the final detection can be dual, by measuring current intensity or the number of silver-enlarged microstructures generated. The proposed strategies exhibited limit detections (LOD) of 102 and 37 fg/mL for electrochemical and optical detection respectively. The developed immunosensor reaches excellent selectivity and performance characteristics to quantify biomarkers at clinically relevant values without any pretreatment. These proposed procedures could be useful to check and verify possible recurrence after clinical treatment of tumors or even report levels of disease serum biomarkers in early stages.
Collapse
Affiliation(s)
- Guillermo Redondo-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - María T Fernández-Argüelles
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
10
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
11
|
Lin SH, Su TC, Huang SJ, Jen CP. Enhancing the efficiency of lung cancer cell capture using microfluidic dielectrophoresis and aptamer-based surface modification. Electrophoresis 2024; 45:1088-1098. [PMID: 38175846 DOI: 10.1002/elps.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Metastasis remains a significant cause to cancer-related mortality, underscoring the critical need for early detection and analysis of circulating tumor cells (CTCs). This study presents a novel microfluidic chip designed to efficiently capture A549 lung cancer cells by combining dielectrophoresis (DEP) and aptamer-based binding, thereby enhancing capture efficiency and specificity. The microchip features interdigitated electrodes made of indium-tin-oxide that generate a nonuniform electric field to manipulate CTCs. Following three chip design, scenarios were investigated: (A) bare glass surface, (B) glass modified with gold nanoparticles (AuNPs) only, and (C) glass modified with both AuNPs and aptamers. Experimental results demonstrate that AuNPs significantly enhance capture efficiency under DEP, with scenarios (B) and (C) exhibiting similar performance. Notably, scenario (C) stands out as aptamer-functionalized surfaces resisting fluid shear forces, achieving CTCs retention even after electric field deactivation. Additionally, an innovative reverse pumping method mitigates inlet clogging, enhancing experimental efficiency. This research offers valuable insights into optimizing surface modifications and understanding key factors influencing cell capture, contributing to the development of efficient cell manipulation techniques with potential applications in cancer research and personalized treatment options.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shuo Jie Huang
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
12
|
Ma T, Zhang Q, Yuan L, Li Z, Zhang L, Zhang J, Yan S, Xu X, Ying Y, Fu Y. Microwave-Enabled Fast Preparation of a Metal-Organic Framework Hybrid Membrane for Filtration-Enhanced Simultaneous Separation and Detection of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38696706 DOI: 10.1021/acsami.4c02721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Mycotoxin contamination in food and the environment seriously harms human health. Sensitive and timely detection of mycotoxins is crucial. Here, we report a dual-functional hybrid membrane with absorptivity and responsiveness for fluorescent-quantitative detection of mycotoxin aflatoxin B1 (AFB1). A biomineralization-inspired and microwave-accelerated fabrication method was established to prepare a hybrid membrane with a metal-organic framework (MOF) loaded in high density. The MOF presented high efficiency in capturing AFB1 and showed fluorescence intensity alteration simultaneously, enabling a dual adsorption-response mode. Deriving from the inherent porous structure of the hybrid membrane and the absorptive/responsive ability of the loaded MOF, a filtration-enhanced detection mode was elaborated to provide a 1.67-fold signal increase compared with the conventional soaking method. Therefore, the hybrid membrane exhibited a rapid response time of 10 min and a low detection limit of 0.757 ng mL-1, superior to most analogues in rapidity and sensitivity. The hybrid membrane also presented superior specificity, reproducibility, and anti-interference ability and even performed well in extreme environments such as strong acid or alkaline, satisfying the practical requirements for facile and in-field detection. Therefore, the membrane had strong applicability in chicken feed samples, with a detection recovery between 70.6% and 101%. The hybrid membrane should have significant prospects in the rapid and in-field inspection of mycotoxins for agriculture and food.
Collapse
Affiliation(s)
- Tongtong Ma
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lei Yuan
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhishang Li
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shugang Yan
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yibin Ying
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Deng M, Yang H, Zhang H, Li C, Chen J, Tang W, Wang X, Chen Z, Li J. Portable and Rapid Dual-Biomarker Detection Using Solution-Gated Graphene Field Transistors in the Accurate Diagnosis of Prostate Cancer. Adv Healthc Mater 2024; 13:e2302117. [PMID: 37922499 DOI: 10.1002/adhm.202302117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Indexed: 11/05/2023]
Abstract
Prostate-specific antigen (PSA) is the common serum-relevant biomarker for early prostate cancer (PCa) detection in clinical diagnosis. However, it is difficult to accurately diagnose PCa in the early stage due to the low specificity of PSA. Herein, a new solution-gated graphene field transistor (SGGT) biosensor with dual-gate for dual-biomarker detection is designed. The sensing mechanism is that the designed aptamers immobilized on the surface of the gate electrodes can capture PSA and sarcosine (SAR) biomolecules and induce the capacitance changes of the electric double layers of SGGT. The limit of detections of PSA and SAR biomarkers can reach 0.01 fg mL-1 , which is three-to-four orders of magnitude lower than previously reported assays. The detection time of PSA and SAR is ≈4.5 and ≈13 min, which is significantly faster than the detection time (1-2 h) of conventional methods. The clinical serum samples testing demonstrates that the biosensor can distinguish the PCa patients from the control group and the diagnosis accuracy can reach 100%. The SGGT biosensor can be integrated into the portable platform and the diagnostic results can directly display on the smartphone/Pad. Therefore, the integrated portable platform of the biosensor can distinguish cancer types through the dual-biomarker detection.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chaoqian Li
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Jingqiu Chen
- School of Computer Science and Information Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Tang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
14
|
Xing J, Han Q, Liu J, Yan Z. Electrochemical aptasensor fabricated by anchoring recognition aptamers and immobilizing redox probes on bipolar silica nanochannel array for reagentless detection of carbohydrate antigen 15-3. Front Chem 2023; 11:1324469. [PMID: 38192499 PMCID: PMC10773802 DOI: 10.3389/fchem.2023.1324469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Timely, convenient, and efficient detection of carbohydrate antigen 15-3 (CA15-3) levels in serum holds significant importance in early screening, diagnostic assistance and prognosis prediction of breast cancer. The development of efficient and convenient electrochemical aptasensors with immobilized redox probes for label-free detection of CA15-3 is highly desirable. In this work, a bipolar silica nanochannel array film (bp-SNA) with two distinct functional domains including nanochannels and an outer surface was employed for the immobilization of recognition ligands and electrochemical redox probes, enabling the construction of a probe-integrated aptasensor for reagentless electrochemical detection of CA15-3. Cost-effective and readily available indium tin oxide (ITO) was used as the supporting electrode for sequential growth of a negatively charged inner layer (n-SNA) followed by a positively charged outer layer (p-SNA). The preparation process of bp-SNA is convenient. Functionalization of amino groups on the outer surface of bp-SNA was modified by aldehyde groups for covalent immobilization of recognition aptamers, further establishing the recognition interface. Within the nanochannels of bp-SNA, the electrochemical redox probe, tri (2,2'-dipyridyl) cobalt (II) (Co(bpy)3 2+) was immobilized, which experienced a dual effect of electrostatic attraction from n-SNA and electrostatic repulsion from p-SNA, resulting in high stability of the immobilized probes. The constructed aptasensor allowed for reagentless electrochemical detection of CA15-3 ranged from 0.001 U/mL to 500 U/mL with a low detection limit (DL), 0.13 mU/mL). The application of the constructed aptasensor for CA15-3 detection in fetal bovine serum was also validated. This sensor offers advantages of a simple and readily obtainable supporting electrode, easy bp-SNA fabrication, high probe stability and good stability.
Collapse
Affiliation(s)
- Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Qianqian Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongii Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Zeng Z, Tian J, Ren Z, Yang Y, Gong Q, Sun R, Zhang X, Liu W, Chen C. Digital droplet immunoassay based on a microfluidic chip with magnetic beads for the detection of prostate-specific antigen. J Sep Sci 2023; 46:e2300471. [PMID: 37905470 DOI: 10.1002/jssc.202300471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. In this study, we report an integrated microfluidic chip designed for the immunodetection of prostate-specific antigens (PSAs). The microfluidic chip is based on the three-dimensional structure of quartz capillaries. The outlet channel extends to 1.8 cm, effectively facilitating the generation of uniform droplets ranging in size from 3 to 50 μm. Furthermore, we successfully immobilized the captured antibodies onto the surface of magnetic beads using an activator, and we constructed an immunosandwich complex by employing biotinylated antibodies. A key feature of this microfluidic chip is its integration of microfluidic droplet technology advantages, such as high-throughput parallelism, enzymatic signal amplification, and small droplet size. This integration results in an exceptionally sensitive PSA detection capability, with the detection limit reduced to 7.00 ± 0.62 pg/mL.
Collapse
Affiliation(s)
- Zhaokui Zeng
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jingjing Tian
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zixuan Ren
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Yang
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co.Ltd, Liuyang, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co.Ltd, Liuyang, China
| | - Wenfang Liu
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chuanpin Chen
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
16
|
Torres-Castro K, Acuña-Umaña K, Lesser-Rojas L, Reyes DR. Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit. MICROMACHINES 2023; 14:2117. [PMID: 38004974 PMCID: PMC10672873 DOI: 10.3390/mi14112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Blood is a complex sample comprised mostly of plasma, red blood cells (RBCs), and other cells whose concentrations correlate to physiological or pathological health conditions. There are also many blood-circulating biomarkers, such as circulating tumor cells (CTCs) and various pathogens, that can be used as measurands to diagnose certain diseases. Microfluidic devices are attractive analytical tools for separating blood components in point-of-care (POC) applications. These platforms have the potential advantage of, among other features, being compact and portable. These features can eventually be exploited in clinics and rapid tests performed in households and low-income scenarios. Microfluidic systems have the added benefit of only needing small volumes of blood drawn from patients (from nanoliters to milliliters) while integrating (within the devices) the steps required before detecting analytes. Hence, these systems will reduce the associated costs of purifying blood components of interest (e.g., specific groups of cells or blood biomarkers) for studying and quantifying collected blood fractions. The microfluidic blood separation field has grown since the 2000s, and important advances have been reported in the last few years. Nonetheless, real POC microfluidic blood separation platforms are still elusive. A widespread consensus on what key figures of merit should be reported to assess the quality and yield of these platforms has not been achieved. Knowing what parameters should be reported for microfluidic blood separations will help achieve that consensus and establish a clear road map to promote further commercialization of these devices and attain real POC applications. This review provides an overview of the separation techniques currently used to separate blood components for higher throughput separations (number of cells or particles per minute). We present a summary of the critical parameters that should be considered when designing such devices and the figures of merit that should be explicitly reported when presenting a device's separation capabilities. Ultimately, reporting the relevant figures of merit will benefit this growing community and help pave the road toward commercialization of these microfluidic systems.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
- Theiss Research, La Jolla, CA 92037, USA
| | - Katherine Acuña-Umaña
- Medical Devices Master’s Program, Instituto Tecnológico de Costa Rica (ITCR), Cartago 30101, Costa Rica
| | - Leonardo Lesser-Rojas
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), San José 11501, Costa Rica;
- School of Physics, Universidad de Costa Rica (UCR), San José 11501, Costa Rica
| | - Darwin R. Reyes
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| |
Collapse
|
17
|
Fan H, Luo SH, Zhu Y, Shi J, Yin F, Li J. trans-Cleavage of the CRISPR-Cas12a-aptamer system for one-step antigen detection. Chem Commun (Camb) 2023; 59:13151-13154. [PMID: 37846511 DOI: 10.1039/d3cc04532c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Rapid detection of prostate-specific antigen (PSA) is pivotal for the early screening of prostate cancer (PCa). Here, we devise a one-step, amplification-free fluorescent detection strategy for PSA, employing the trans-cleavage principle of a CRISPR-Cas12a-aptamer system. This method offers a linear range of 0.31-5 ng mL-1 and a detection limit of 0.16 ng mL-1. The high-confidence quantification of PSA is demonstrated through the analysis of real samples, effectively distinguishing between PCa patients and healthy individuals.
Collapse
Affiliation(s)
- Hongxuan Fan
- Shanghai Soong Ching Ling School, Shanghai 201700, China
| | - Shi-Hua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ying Zhu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, National Center for Translational Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Soleimani K, Beyranvand S, Souri Z, Ahmadian Z, Yari A, Faghani A, Shams A, Adeli M. Ferrocene/ β-cyclodextrin based supramolecular nanogels as theranostic systems. Biomed Pharmacother 2023; 166:115402. [PMID: 37660653 DOI: 10.1016/j.biopha.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-β-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.
Collapse
Affiliation(s)
- Khadijeh Soleimani
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zeinab Souri
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdollah Yari
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Azim Shams
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran.
| |
Collapse
|
19
|
Nan X, Zhang J, Wang X, Kang T, Cao X, Hao J, Jia Q, Qin B, Mei S, Xu Z. Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting. MICROMACHINES 2023; 14:1561. [PMID: 37630097 PMCID: PMC10456708 DOI: 10.3390/mi14081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Dielectrophoresis technology is applied to microfluidic chips to achieve microscopic control of cells. Currently, microfluidic chips based on dielectrophoresis have certain limitations in terms of cell sorting species, in order to explore a microfluidic chip with excellent performance and high versatility. In this paper, we designed a microfluidic chip that can be used for continuous cell sorting, with the structural design of a curved channel and curved double side electrodes. CM factors were calculated for eight human healthy blood cells and cancerous cells using the software MyDEP, the simulation of various blood cells sorting and the simulation of the joule heat effect of the microfluidic chip were completed using the software COMSOL Multiphysics. The effect of voltage and inlet flow velocity on the simulation results was discussed using the control variables method. We found feasible parameters from simulation results under different voltages and inlet flow velocities, and the feasibility of the design was verified from multiple perspectives by measuring cell movement trajectories, cell recovery rate and separation purity. This paper provides a universal method for cell, particle and even protein sorting.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Qikun Jia
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Bolin Qin
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Shixuan Mei
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| |
Collapse
|
20
|
He X, Xu J, Wang X, Ge C, Li S, Wang L, Xu Y. Enrichment and detection of VEGF 165 in blood samples on a microfluidic chip integrated with multifunctional units. LAB ON A CHIP 2023; 23:2469-2476. [PMID: 37092607 DOI: 10.1039/d3lc00225j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, a multifunctional microfluidic chip integrated with a centrifugal separation zone, aqueous two-phase system (ATPS) mixing zone and enrichment detection zone was proposed and fabricated. An automatic and efficient separation and quantitative analysis method for vascular endothelial growth factor 165 (VEGF165) in whole blood samples was established with the designed microfluidic chip. A blood sample was divided into blood cells and plasma in the centrifugation zone. In the ATPS mixing zone, plasma was mixed with PEG/KH2PO4 aqueous two-phase solution containing Apt-Au NP nanoprobes. In the enrichment detection zone, the mixture was separated on CN140 modified with a ZnO NP-anti VEGF165 nanostructure. The VEGF165 captured by Apt-Au NPs was distributed in the PEG phase, concentrated at the front of CN140 and combined with anti-VEGF165 to form a sandwich structure. The sensitive detection of VEGF165 was achieved through fluorescence resonance energy transfer between rhodamine B and Au NPs on the nanoprobe. Under the optimized rotation program, capillary and centrifugal forces propelled the fluid in the whole process of pretreatment and detection. The detection linear range was between 1 pg mL-1 and 50 ng mL-1, the detection limit of VEGF165 in blood was 0.22 pg mL-1 and the enrichment efficiency was 983. It was illustrated that a convenient and reliable way for detection of tumor markers based on the multifunctional microfluidic chip was provided and it has a potential value for early screening and prognosis of clinical cancer.
Collapse
Affiliation(s)
- Xinyu He
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Junyan Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Xiaoli Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Chuang Ge
- Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030 PR China
| | - Shunbo Li
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Li Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| |
Collapse
|
21
|
Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem 2023:10.1007/s00216-023-04627-5. [PMID: 36917265 PMCID: PMC10011785 DOI: 10.1007/s00216-023-04627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.
Collapse
Affiliation(s)
- Elizabeth C Wilkirson
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jiran Li
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xue Jiang
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Diego H Gonzalez
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
23
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Wu K, He X, Wang J, Pan T, He R, Kong F, Cao Z, Ju F, Huang Z, Nie L. Recent progress of microfluidic chips in immunoassay. Front Bioeng Biotechnol 2022; 10:1112327. [PMID: 36619380 PMCID: PMC9816574 DOI: 10.3389/fbioe.2022.1112327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Microfluidic chip technology is a technology platform that integrates basic operation units such as processing, separation, reaction and detection into microchannel chip to realize low consumption, fast and efficient analysis of samples. It has the characteristics of small volume need of samples and reagents, fast analysis, low cost, automation, portability, high throughout, and good compatibility with other techniques. In this review, the concept, preparation materials and fabrication technology of microfluidic chip are described. The applications of microfluidic chip in immunoassay, including fluorescent, chemiluminescent, surface-enhanced Raman spectroscopy (SERS), and electrochemical immunoassay are reviewed. Look into the future, the development of microfluidic chips lies in point-of-care testing and high throughput equipment, and there are still some challenges in the design and the integration of microfluidic chips, as well as the analysis of actual sample by microfluidic chips.
Collapse
Affiliation(s)
- Kaimin Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Xuliang He
- Zhuzhou People's Hospital, Zhuzhou, China
| | - Jinglei Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ran He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feizhi Kong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhenmin Cao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feiye Ju
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
25
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Chen C, Ran B, Liu B, Liu X, Jin J, Zhu Y. Numerical Study on a Bio-Inspired Micropillar Array Electrode in a Microfluidic Device. BIOSENSORS 2022; 12:878. [PMID: 36291015 PMCID: PMC9599680 DOI: 10.3390/bios12100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The micropillar array electrode (µAE) has been widely applied in microchip-based electrochemical detection systems due to a large current response. However, it was found that amplifying the current through further adjusting geometrical parameters is generally hindered by the shielding effect. To solve this problem, a bio-inspired micropillar array electrode (bµAE) based on the microfluidic device has been proposed in this study. The inspiration is drawn from the structure of leatherback sea turtles' mouths. By deforming a μAE to rearrange the micropillars on bilateral sides of the microchannel, the contact area between micropillars and analytes increases, and thus the current is substantially improved. A numerical simulation was then used to characterize the electrochemical performance of bµAEs. The effects of geometrical and hydrodynamic parameters on the current of bµAEs were investigated. Moreover, a prototypical microchip integrated with bµAE was fabricated for detailed electrochemical measurement. The chronoamperometry measurements were conducted to verify the theoretical performance of bµAEs, and the results suggest that the experimental data are in good agreement with those of the simulation model. This work presents a novel bµAE with great potential for highly sensitive electrochemical detection and provides a new perspective on the efficient configuration of the µAE.
Collapse
Affiliation(s)
- Chaozhan Chen
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Bin Ran
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Bo Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xiaoxuan Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
28
|
Luo Z, Qin D, Wu Y, Meng S, Mo W, Deng B. An electrochemiluminescence immunosensor based on ABEI-GO-AgNPs as a double-amplified luminophore for the ultra-sensitive detection of prostate-specific antigen. Colloids Surf B Biointerfaces 2022; 218:112718. [PMID: 35905591 DOI: 10.1016/j.colsurfb.2022.112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
A sandwich electrochemiluminescence (ECL) immunosensor based on an N-(4-aminobutyl)-N-ethylisoluminol-graphene oxide-Ag nanoparticle (ABEI-GO-AgNPs) complex and cysteine silver nanowires (AgCysNWs) was prepared to detect prostate-specific antigen (PSA). Our results showed that an ECL signal probe, ABEI-GO-AgNPs, with an ultrahigh specific surface area, favorable catalytic properties, and electrical conductivity was prepared by a one-step synthesis method. ABEI-GO-AgNPs with good biocompatibility immobilized secondary antibody (Ab2) via AgN bonds. Furthermore, AgCysNWs containing many -COOH groups were prepared and used to enrich primary antibody (Ab1), which could be used as an affinity probe for the selective capture of PSA. Lastly, through layer-by-layer assembly, we established an ECL immunosensing platform for the sensitive detection of PSA. Under the optimized conditions, the designed ECL immunosensor showed promising sensitivity and selectivity for the detection of PSA in the linear range of 5.5 × 10-7-5.5 ng/mL, with a detection limit of 1.2 × 10-7 ng/mL. The constructed ECL sensing platform possessed good specificity, reproducibility, and stability and could detect PSA in actual human serum samples.
Collapse
Affiliation(s)
- Zhi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuo Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Weiming Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
29
|
Hu Q, Hu S, Li S, Liu S, Liang Y, Cao X, Luo Y, Xu W, Wang H, Wan J, Feng W, Niu L. Boronate Affinity-Based Electrochemical Aptasensor for Point-of-Care Glycoprotein Detection. Anal Chem 2022; 94:10206-10212. [DOI: 10.1021/acs.analchem.2c01699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuhan Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Sijie Liu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wanjing Xu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Haocheng Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
30
|
Sheng F, Jia RP. The design basis and application in urology of the tumor-on-a-chip platform. Urol Oncol 2022; 40:331-342. [DOI: 10.1016/j.urolonc.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|