1
|
Fan X, Wang L, Wang H, Huang L, Lin J, Gao X, Xi F. Nanochannel-confined Ni(OH) 2-CeO 2 composite nanozyme boosts electrochemiluminescence of luminol-dissolved oxygen for immunosensing. Biosens Bioelectron 2025; 280:117451. [PMID: 40209648 DOI: 10.1016/j.bios.2025.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
An immunosensing platform was developed based on the enhanced electrochemiluminescence (ECL) of luminol-dissolved oxygen (O2) by nanochannel-confined Ni(OH)2-CeO2 composite nanozyme, which is able to sensitively detect cytokine. The mesoporous silica nanochannel array film (SNF), decorated on a cost-effective ITO electrode, features ultrasmall (2∼3 nm) nanochannels, enabling the confinement of in situ synthesized Ni(OH)2-CeO2 composite nanozyme via a continuous electrodeposition process. Ni(OH)2-CeO2 exhibits dual peroxidase (POD) and oxidase (OXD) enzyme-like activities, serving as an efficient oxygen reduction reaction (ORR) catalyst to produce reactive oxygen species (ROS) and catalyze luminol oxidation. Compared to nanozymes synthesized on flat electrodes, nanochannel-confined nanozyme demonstrates superior ECL enhancement. The combination of Ni(OH)2 and CeO2 exhibits strong synergistic catalytic performance, boosting ECL of luminol-O2 under neutral conditions by 33.7 orders compared to electrode without confined nanozyme. Using tumor necrosis factor-alpha (TNF-α) as a proof-of-concept demonstration, immunosensor is fabricated by immobilization recognition antibodies on the SNF outer surface. TNF-α binding induces immunocomplex formation, reducing ECL signal by increasing interfacial resistance and hindering luminol diffuse. This enables sensitive TNF-α detection over a wide linear range (10 fg/mL to 10 ng/mL) with an ultralow detection limit of 8 fg/mL. The immunosensor demonstrates good selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Xue Fan
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lujie Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hongxin Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Liuyi Huang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiahui Lin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xia Gao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Li P, Zhao J, Liang D, Peng C, Zhu J, Yeom B, Wang Z, Zhao Y, Ma W. Construction of Biomimetic Nanochannel, Property Regulation, and Biomarker Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501740. [PMID: 40296334 DOI: 10.1002/smll.202501740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/03/2025] [Indexed: 04/30/2025]
Abstract
The significance of biomimetic nanochannel in the field of biosensors is gaining increasing recognition. The controllable construction of biomimetic nanochannels and their performance modulation have demonstrated great importance and obtained wide interest. The nanochannels offer high sensitivity, enabling sensors to swiftly identify target biomarkers in complex biological samples, with detection limits reaching the picomolar level. Furthermore, they demonstrate exceptional selectivity and reproducibility, making them ideal tools for biomarker detection. In recent years, biosensors utilizing biomimetic nanochannel have shown remarkable performance in detecting a wide range of biomarkers. This review aims to explore the opportunities and challenges associated with biomimetic nanochannel technology in biosensor applications, focusing on the construction and performance modulation of these nanochannels, as well as their applications in detecting nucleic acids, proteins, organisms, and small molecules. Providing forward-looking insights into this cutting-edge field is aspired, with particular emphasis on technological advancements, addressing current challenges, and discussing future trends.
Collapse
Affiliation(s)
- Peizhi Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Dan Liang
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Zhu
- School of materials science and engineering, Nankai University, Tianjin, 300071, China
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuan Zhao
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Li X, Yang X, Liu B, Luo J, Chen H, Chen J, Wang B, Hu Y, Su Z, Qin X. One-pot synthesis of multifunctional sliver nanoparticles with controlled size for sensitive colorimetric and electrochemiluminescent immunoassay of SARS-CoV-2. Anal Chim Acta 2025; 1342:343684. [PMID: 39919859 DOI: 10.1016/j.aca.2025.343684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Silver nanoparticles (AgNPs) have great potential in a broad range of applications because of their biochemical functionality, unique physical and optical properties. However, it is still a great challenge to synthesize small-size AgNPs with good stability and high performance for biosensors. In this work, triethanolamine and polyacrylic acid modified AgNPs (TEOA@AgNPs-PAA) with controllable size and high catalytic activity for sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are reported. Monodisperse TEOA@AgNPs-PAA are prepared by the one-pot synthesis using the TEOA and PAA as reducing agent and surfactant, respectively. The size of TEOA@AgNPs-PAA (the average size of 8.65 nm) is 6 times smaller than that of the TEOA@AgNPs (52 ± 1.5 nm) without PAA. The as-prepared TEOA@AgNPs-PAA possess catalytic activity and present mimicking property of horseradish peroxidase, which are employed to fabricate colorimetric biosensors by catalyzing the reaction between H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB for sensitive detection of SARS-CoV-2 spiking proteins. Significantly, the small-size TEOA@AgNPs-PAA can catalyze electroreduction process of K2S2O8 to enhance the cathodic ECL signal, and their surface cap abundant TEOA molecules, which can also act as a coreactant to enhance the anodic ECL of Ru(bpy)32+. Under optimal conditions, the fabricate immunosensors for anodic and cathodic ECL determination of SARS-CoV-2 present the detection limits of 9.2 fg/mL and 14.3 fg/mL (S/N = 3), respectively. This work exhibits a promising novel strategy for the development of multifunctional AgNPs as an efficient sensing platform for the clinical diagnosis and biosensing application.
Collapse
Affiliation(s)
- Xiangyu Li
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaolan Yang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Liu
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiali Luo
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Huquan Chen
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jin Chen
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Birui Wang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yue Hu
- Bairuopu Town Center Health Center, Changsha, 410206, China
| | - Zhaohong Su
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoli Qin
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Wu X, Chen Y, Wang X, Si Z, Du Q, Gao P. Dual Ionic Signal Detection: Modulation of Surface Charge of Nanofluidic Iontronics by Dual-Split Gate Voltages. Anal Chem 2025; 97:2658-2666. [PMID: 39870458 DOI: 10.1021/acs.analchem.4c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nanofluidic iontronics, including the field-effect ionic diode (FE-ID) and field-effect ionic transistor (FE-IT), represent emerging nanofluidic logic devices that have been employed in sensitive analyses. Making analyte recognitions in predefined nanofluidic devices has been verified to improve the sensitivity and selectivity using a single ionic signal, such as ionic current amplification, rectification, and Coulomb blockade. However, the detection of analytes in complex systems generally necessitates more diverse signals beyond just ionic currents. Here, we demonstrated that dual ionic signals, steady ionic switching ratio, and transient response time (ts) act as detection signals modulated by dual-split gate voltages along the nanochannel for the detection of charged analytes. With an increase in gate voltage, the switching ratio decreases in both FE-ID and FE-IT, whereas the response time exhibits an exponential increase specifically in the FE-ID. Moreover, the response time shows no significant correlation with the external transmembrane voltage in the FE-IT. These results contribute to the optimization of reconfigurable iontronics through gate voltage modulation, providing a theoretical foundation for multiple ionic signal detection.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yajie Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhixiao Si
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
5
|
Gao J, Zhang S, Xi F. Homogeneous Aptasensor with Electrochemical and Electrochemiluminescence Dual Detection Channels Enabled by Nanochannel-Based Probe Enrichment and DNase I Cleavage for Tumor Biomarker Detection. Molecules 2025; 30:746. [PMID: 39942852 PMCID: PMC11820527 DOI: 10.3390/molecules30030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase I cleavage for selective detection of the tumor biomarker, carbohydrate antigen 125 (CA125). A two-dimensional (2D) composite probe was prepared by assembling the CA125-specific aptamer and the cationic probe tris(2,2'-bipyridyl)Ru(II) (Ru(bpy)32+), which exhibited both EC and ECL properties, onto graphene oxide (GO) nanosheets (Ru(bpy)32+/Apt@GO). A vertically ordered mesoporous silica film (VMSF) with ultrasmall, uniform, and vertically aligned nanochannel arrays was rapidly grown on the inexpensive and disposable indium tin oxide (ITO) electrode, forming the detection interface. Due to the size exclusion effect of the ultrasmall nanochannels in VMSF, the Ru(bpy)32+/Apt@GO probe was unable to penetrate the nanochannels, resulting in no detectable Ru(bpy)32+ signal on the electrode. Upon specific recognition of CA125 by the aptamer, an aptamer-CA125 complex was formed and subsequently detached from GO. DNase I then cleaved the aptamer-CA125 complex, releasing CA125 and allowing Ru(bpy)32+ to dissociate into the solution. This enzymatic cleavage enabled CA125 to re-enter the binding cycle, amplifying the release of Ru(bpy)32+ into the solution. The electrostatic adsorption of the cationic Ru(bpy)32+ by VMSF significantly enhanced both the EC and ECL signals. The constructed aptasensor exhibited a linear EC detection range for CA125 from 0.1 U/mL to 100 ng/mL, with a limit of detection (LOD) of 91 mU/mL. For ECL detection, CA125 was detected over a range from 0.001 to 100 U/mL, with a LOD as low as 0.4 mU/mL. The developed aptasensor demonstrated excellent selectivity and was successfully applied to the dual-mode EC/ECL detection of CA125 in fetal bovine serum samples.
Collapse
Affiliation(s)
- Jiong Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China;
| | - Shiyue Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
6
|
Zang H, Wang DM, Dai WJ, Chen L, Wang YT, Wang Q, Wang Q, Chen GX, Li JJ, Xie JL, Zou HY, Huang CZ, Li YF, Zhen SJ. Highly Active Oxygen Evolution Reaction of NiMoO 4 Sub-1 nm Nanowires Boosts Luminol Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407321. [PMID: 39530620 DOI: 10.1002/smll.202407321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In recent years, there has been an increasing research focus on the luminol-H2O electrochemiluminescence (ECL) system due to its ability to address the instability and toxicity of H2O2, which are common issues associated with the conventional luminol-H2O2 ECL system. To enhance the ECL efficiency of the luminol-H2O system, researchers have developed electrocatalytic materials with exceptional oxygen evolution reaction (OER) properties to facilitate water electrolysis into O2 to produce reactive oxygen species (ROS) and act as co-reactant promoters. However, most of these materials are characterized by their nanoscale or microscale dimensions, resulting in relatively large sizes and low specific surface areas, which hinder the application of the luminol-H2O system. To address this challenge, nickel molybdate sub-1 nm nanowires (NiMoO4 S1 NWs) with a large specific surface area is synthesized that can offer many active sites to enhance the performance of the OER to boost the ECL of luminol. This study demonstrates that the large amount of ROS generated by the OER of NiMoO4 S1 NWs play a crucial role in enhancing the ECL intensity of luminol. Finally, a NiMoO4 S1 NWs-based ECL biosensor for the highly sensitive detection of the nucleocapsid proteins of SARS-CoV-2 is successfully constructed.
Collapse
Affiliation(s)
- Hao Zang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Dong Mei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Wen Jie Dai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Lin Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Yi Ting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qiang Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qi Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Gao Xu Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Jia Jia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Jia Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Hong Yan Zou
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
7
|
He K, Wang H, Luo T, Yan F, Guo J. Amino-functionalized vertically ordered mesoporous silica film on electrochemically polarized screen-printed carbon electrodes for the construction of gated electrochemical aptasensors and sensitive detection of carcinoembryonic antigens. Front Chem 2024; 12:1490940. [PMID: 39587993 PMCID: PMC11586170 DOI: 10.3389/fchem.2024.1490940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Disposable electrochemical biosensors with high sensitivity are very fit for point-of-care testing in clinical diagnosis. Herein, amino-functionalized, vertically ordered mesoporous silica films (NH2-VMSF) attached to an electrochemically polarized screen-printed carbon electrode (p-SPCE) are prepared using a simple electrochemical method and then utilized to construct a gated electrochemical aptasensor for rapid and sensitive determination of carcinoembryonic antigen (CEA). After being treated with the electrochemical polarization procedure, p-SPCE has plentiful oxygen-containing groups and improved catalytic ability, which help promote the stability of NH2-VMSF on SPCE without the use of an adhesive layer and simultaneously generate a highly electroactive sensing interface. Owing to the numerous uniform and ultrasmall nanopores of NH2-VMSF, CEA-specific aptamer anchored on the external surface of NH2-VMSF/p-SPCE serves as the gatekeeper, allowing the specific recognition and binding of CEA and eventually impeding the ingress of electrochemical probes [Fe(CN)6 3-/4-] through the silica nanochannels. The declined electrochemical responses of Fe(CN)6 3-/4- can be used to quantitatively detect CEA, yielding a wide detection range (100 fg/mL to 100 ng/mL) and a low limit of detection (24 fg/mL). Moreover, the proposed NH2-VMSF/p-SPCE-based electrochemical aptasensor can be applied to detect the amount of CEA in spiked human serum samples, which extends the biological application of a disposable NH2-VMSF/p-SPCE sensor by modulating the biological recognition species.
Collapse
Affiliation(s)
- Ke He
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongxin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tao Luo
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Guo
- Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Fan X, Wu J, Zhang T, Liu J. Electrochemical/Electrochemiluminescence Sensors Based on Vertically-Ordered Mesoporous Silica Films for Biomedical Analytical Applications. Chembiochem 2024; 25:e202400320. [PMID: 38874487 DOI: 10.1002/cbic.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Vertically-ordered mesoporous silica films (VMSF, also named as silica isoporous membranes) have shown tremendous potential in the field of electroanalytical sensors due to their unique features in terms of controllable and ultrasmall nanopores, high molecular selectivity and permeability, and mechanical stability. This review will present the recent progress on the biomedical analytical applications of VMSF, focusing on the small biomolecules, diseases-related biomarkers, drugs and cancer cells. Finally, conclusions with recent developments and future perspective of VMSF in the relevant fields will be envisioned.
Collapse
Affiliation(s)
- Xue Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jiyang Liu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
9
|
Lu S, Wu J, Luo T, Liu J, Xi F, Zhang W. Solid-phase electrochemiluminescence immunosensing platform based on bipolar nanochannel array film for sensitive detection of carbohydrate antigen 125. Front Chem 2024; 12:1493368. [PMID: 39525961 PMCID: PMC11549670 DOI: 10.3389/fchem.2024.1493368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Development of simple solid-phase electrochemiluminescence (ECL) immunosensor with convenient fabrication for high-performance detection of tumor biomarkers is crucial. Herein, a solid-phase ECL immunoassay was constructed based on a bipolar silica nanochannel film (bp-SNA) modified electrode for highly sensitive detection of carbohydrate antigen 125 (CA 125). Inexpensive and readily available indium tin oxide (ITO) electrode was used as the supporting electrode for the growth of bp-SNA. bp-SNA consists of a bilayer SNA film with different functional groups and charge properties, including negatively charged inner layer SNA (n-SNA) and positively charged outer layer SNA (p-SNA). The nanochannels of bp-SNA were used for the immobilization of ECL emitter tris(bipyridine)ruthenium(II), while the outer surface was utilized for constructing the immunorecognition interface. Due to the dual electrostatic interaction composed of electrostatic attraction from n-SNA and electrostatic repulsion from p-SNA, ECL emitter could be stably confined within bp-SNA, providing stable and high ECL signals to the modified electrode. After amino groups on the outer surface of bp-SNA were derivatized with aldehyde groups, recognition antibodies could be covalently immobilized, and an immunosensor was obtained after blocking nonspecific sites. When CA 125 binds to the antibodies on the recognition interface, the formed complex reduces the diffusion of the co-reactant tripropylamine (TPrA) to the supporting electrode, decreasing the ECL signal. Based on this mechanism, the constructed immunosensor can achieve sensitive ECL detection of CA 125. The linear detection range is from 0.01 to 100 U/mL, with a detection limit of 4.7 mU/mL. CA 125 detection in serum is also achieved. The construction immunosensor has advantages including simple and convenient fabrication, high stability of the immobilized emitter, and high selectivity, making it suitable for CA 125 detection.
Collapse
Affiliation(s)
- Shaolong Lu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tao Luo
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junjie Liu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fengna Xi
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenhao Zhang
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
10
|
Li W, Yu R, Xi F. Enhanced Electrochemiluminescence of Luminol and-Dissolved Oxygen by Nanochannel-Confined Au Nanomaterials for Sensitive Immunoassay of Carcinoembryonic Antigen. Molecules 2024; 29:4880. [PMID: 39459248 PMCID: PMC11510663 DOI: 10.3390/molecules29204880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Simple development of an electrochemiluminescence (ECL) immunosensor for convenient detection of tumor biomarker is of great significance for early cancer diagnosis, treatment evaluation, and improving patient survival rates and quality of life. In this work, an immunosensor is demonstrated based on an enhanced ECL signal boosted by nanochannel-confined Au nanomaterial, which enables sensitive detection of the tumor biomarker-carcinoembryonic antigen (CEA). Vertically-ordered mesoporous silica film (VMSF) with a nanochannel array and amine groups was rapidly grown on a simple and low-cost indium tin oxide (ITO) electrode using the electrochemically assisted self-assembly (EASA) method. Au nanomaterials were confined in situ on the VMSF through electrodeposition, which catalyzed both the conversion of dissolved oxygen (O2) to reactive oxygen species (ROS) and the oxidation of a luminol emitter and improved the electrode active surface. The ECL signal was enhanced fivefold after Au nanomaterial deposition. The recognitive interface was fabricated by covalent immobilization of the CEA antibody on the outer surface of the VMSF, followed with the blocking of non-specific binding sites. In the presence of CEA, the formed immunocomplex reduced the diffusion of the luminol emitter, resulting in the reduction of the ECL signal. Based on this mechanism, the constructed immunosensor was able to provide sensitive detection of CEA ranging from 1 pg·mL-1 to 100 ng·mL-1 with a low limit of detection (LOD, 0.37 pg·mL-1, S/N = 3). The developed immunosensor exhibited high selectivity and good stability. ECL determination of CEA in fetal bovine serum was achieved.
Collapse
Affiliation(s)
- Weibin Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
| | - Ruliang Yu
- College of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fengna Xi
- College of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
11
|
Feng J, Zheng Y, Luo T, Xi F, Lai H. Graphitic carbon nitride nanosheet supported silica nanochannel film for enhanced electrochemiluminescence sensing of 2,4,6-trichlorophenol and prochloraz. RSC Adv 2024; 14:28976-28983. [PMID: 39268050 PMCID: PMC11391344 DOI: 10.1039/d4ra03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The development of simple, rapid, and sensitive methods for detecting pesticide in environmental and food samples holds significant importance. Electrochemiluminescence (ECL) sensing platforms with high resistance to interference and contamination, and reduced consumption of ECL emitters, are highly desirable for such applications. In this work, we present an ECL sensing platform based on a graphitic carbon nitride nanosheets (CNNS) supported vertically ordered mesoporous silica film (VMSF) modified glassy carbon electrode (GCE) for the highly sensitive detection of the environmental pollutant 2,4,6-trichlorophenol (TCP) and the broad-spectrum insecticide prochloraz. Two-dimensional (2D) CNNS were synthesized by exfoliating bulk graphitic carbon nitride (g-C3N4) using concentrated sulfuric acid, serving as a novel conductive and adhesive layer for the growth of a stable VMSF on GCE via an electrochemical assistance self-assembly (EASA) method to prepare VMSF/CNNS/GCE. The electrostatic enrichment capability of VMSF nanochannels for the positively charged ECL emitter tris(2,2'-bipyridyl)ruthenium(ii) (Ru(bpy)3 2+) realized stable and significantly enhanced ECL signals at a low concentration of Ru(bpy)3 2+ (10 μM). Based on the quenching effect of TCP on the ECL signal of Ru(bpy)3 2+, highly sensitive ECL detection of TCP was achieved by the VMSF/CNNS/GCE with a linear range from 10 nM to 0.7 mM and a low detection limit (DL) of 2.2 nM. As the metabolic end product of prochloraz is TCP, indirect ECL detection of prochloraz was also accomplished by measuring the produced TCP. Combined with anti-fouling and anti-interference abilities, as well as signal amplification of VMSF, the developed VMSF/CNNS/GCE sensor enabled the sensitive ECL detection of TCP in pond water and prochloraz in orange peel extract.
Collapse
Affiliation(s)
- Junqi Feng
- Guangxi Medical University Cancer Hospital, Guangxi Medical University Nanning 530021 China
| | - Yanyan Zheng
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Tao Luo
- Guangxi Medical University Cancer Hospital, Guangxi Medical University Nanning 530021 China
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Hao Lai
- Guangxi Medical University Cancer Hospital, Guangxi Medical University Nanning 530021 China
| |
Collapse
|
12
|
Zhang T, Gong J, Han Q, Hu W, Yan F, Liu J. Nanogold amplified electrochemiluminescence/electrochemistry in bipolar silica nanochannel array for ultrasensitive detection of SARS-CoV-2 pseudoviruses. Talanta 2024; 277:126319. [PMID: 38805946 DOI: 10.1016/j.talanta.2024.126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The prompt and accurate point-of-care test (POCT) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected persons or virus-containing environmental samples is of great importance. The present work reports a highly integrated electrochemiluminescence/electrochemical (ECL/EC) sensor for determination of SARS-CoV-2 pseudoviruses, in which bio-recognition element (SARS-CoV-2 IgG antibody), bifunctional probe (tris (2,2'-bipyridyl) ruthenium (Ru(bpy)32+)), and amplification material (gold nanoparticles (Au NPs)) are designed into bipolar silica nanochannel array (bp-SNA). bp-SNA consisting of homogeneous two-layer mesoporous silica films bears inner silanol groups and outer amino groups, generating a solid "electrostatic nanocage" for stable confinement of Ru(bpy)32+ and Au NPs inside the nanochannels and further providing functional sites for covalent modification of SARS-CoV-2 IgG antibody. Owing to the preconcentration capacity of bp-SNA and amplified effect of Au NPs, ECL or EC signals of Ru(bpy)32+ can be remarkably promoted and thereby increase the analytical performance, which can be diminished by immunorecognization of target SARS-CoV-2 pseudoviruses on the sensing interface. The developed integrated ECL/EC sensor based on Ru@AuNPs/bp-SNA modified solid indium tin oxide electrode enables the sensitive analysis of SARS-CoV-2 pseudoviruses by ECL mode with a linear range of 50 TU mL-1-5000 TU mL-1, as well as the EC mode with a linear range of 100 TU mL-1-5000 TU mL-1. Moreover, the designed sensor showed satisfactory results in the analyses of saliva and pond water samples. When flexible electrode substate (polyethylene terephthalate) is employed, Ru@AuNPs/bp-SNA has great potential to integrate with KN95 face masks for direct detection of SARS-CoV-2 pseudoviruses produced from breathing, talking and coughing processes, which could provide an efficient platform for POCT diagnosis.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jiawei Gong
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qianqian Han
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wei Hu
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jiyang Liu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
13
|
Abdelhamid MAA, Khalifa HO, Ki MR, Pack SP. Nanoengineered Silica-Based Biomaterials for Regenerative Medicine. Int J Mol Sci 2024; 25:6125. [PMID: 38892312 PMCID: PMC11172759 DOI: 10.3390/ijms25116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The paradigm of regenerative medicine is undergoing a transformative shift with the emergence of nanoengineered silica-based biomaterials. Their unique confluence of biocompatibility, precisely tunable porosity, and the ability to modulate cellular behavior at the molecular level makes them highly desirable for diverse tissue repair and regeneration applications. Advancements in nanoengineered silica synthesis and functionalization techniques have yielded a new generation of versatile biomaterials with tailored functionalities for targeted drug delivery, biomimetic scaffolds, and integration with stem cell therapy. These functionalities hold the potential to optimize therapeutic efficacy, promote enhanced regeneration, and modulate stem cell behavior for improved regenerative outcomes. Furthermore, the unique properties of silica facilitate non-invasive diagnostics and treatment monitoring through advanced biomedical imaging techniques, enabling a more holistic approach to regenerative medicine. This review comprehensively examines the utilization of nanoengineered silica biomaterials for diverse applications in regenerative medicine. By critically appraising the fabrication and design strategies that govern engineered silica biomaterials, this review underscores their groundbreaking potential to bridge the gap between the vision of regenerative medicine and clinical reality.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
| |
Collapse
|
14
|
Xu Y, Li G, Xu W, Li Z, Qu H, Cheng J, Li H. Recent Advances of Food Hazard Detection Based on Artificial Nanochannel Sensors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11900-11916. [PMID: 38709250 DOI: 10.1021/acs.jafc.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Food quality and safety are related to the health and safety of people, and food hazards are important influencing factors affecting food safety. It is strongly necessary to develop food safety rapid detection technology to ensure food safety. As a new detection technology, artificial nanochannel-based electrochemical and other methods have the advantages of being real-time, simple, and sensitive and are widely used in the detection of food hazards. In this paper, we review artificial nanochannel sensors as a new detection technology in food safety for different types of food hazards: biological hazards (bacteria, toxins, viruses) and chemical hazards (heavy metals, organic pollutants, food additives). At the same time, we critically discuss the advantages and disadvantages of artificial nanochannel sensor detection, as well as the restrictions and solutions of detection, and finally look forward to the challenges and development prospects of food safety detection technology based on the limitations of artificial nanochannel detection. We expect to provide a theoretical basis and inspiration for the development of rapid real-time detection technology for food hazards and the production of portable detection equipment in the future.
Collapse
Affiliation(s)
- Yuan Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ziheng Li
- Hubei Central China Normal University Overseas Study Service Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing Cheng
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haibing Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
15
|
Duan L, Zhang C, Xi F, Su D, Zhang W. Direct and Sensitive Electrochemical Determination of Total Antioxidant Capacity in Foods Using Nanochannel-Based Enrichment of Redox Probes. Molecules 2024; 29:2423. [PMID: 38893298 PMCID: PMC11173714 DOI: 10.3390/molecules29112423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Simple and sensitive determination of total antioxidant capacity (TAC) in food samples is highly desirable. In this work, an electrochemical platform was established based on a silica nanochannel film (SNF)-modified electrode, facilitating fast and highly sensitive analysis of TAC in colored food samples. SNF was grown on low-cost and readily available tin indium oxide (ITO) electrode. Fe3+-phenanthroline complex-Fe(III)(phen)3 was applied as the probe, and underwent chemical reduction to form Fe2+-phenanthroline complex-Fe(II)(phen)3 in the presence of antioxidants. Utilizing an oxidative voltage of +1 V, chronoamperometry was employed to measure the current generated by the electrochemical oxidation of Fe(II)(phen)3, allowing for the assessment of antioxidants. As the negatively charged SNF displayed remarkable enrichment towards positively charged Fe(II)(phen)3, the sensitivity of detection can be significantly improved. When Trolox was employed as the standard antioxidant, the electrochemical sensor demonstrated a linear detection range from 0.01 μM to 1 μM and from 1 μM to 1000 μM, with a limit of detection (LOD) of 3.9 nM. The detection performance is better that that of the conventional colorimetric method with a linear de range from 1 μM to 40 μM. Owing to the anti-interfering ability of nanochannels, direct determination of TAC in colored samples including coffee, tea, and edible oils was realized.
Collapse
Affiliation(s)
- Lixia Duan
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China; (L.D.); (D.S.)
| | - Chaoyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Danke Su
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China; (L.D.); (D.S.)
| | - Wenhao Zhang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China; (L.D.); (D.S.)
| |
Collapse
|
16
|
Zhang K, Wu H, Zhang X, Dong H, Chen S, Xu Y, Xu F. Bacterial nanocellulose membrane with opposite surface charges for large-scale and large-area osmotic energy harvesting and ion transport. Int J Biol Macromol 2024; 260:129461. [PMID: 38237827 DOI: 10.1016/j.ijbiomac.2024.129461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
How to optimize ion-exchange membrane materials has been the key for researchers recently working on the use of reverse electrodialysis to harvest osmotic energy. Based on the considerations of improving membrane performance and conversion to large-area industrial production, this work first proposes an easy-industrialized strategy to treat bacterial cellulose membranes by hot pressing and hot pressing with etherification modification, and then to obtain anion-selective and cation-selective membrane pairs (PBC-M and NBC-M) with opposite charges. The PBC-M obtained by multi-step treatment has excellent hydrophobicity, good surface charge density, and more favorable nanochannel size for the functioning of double layer. The maximum output power density of 44.1 mW m-2 was obtained in artificial river water and seawater simulated salinity gradient power generation. Applied to a larger test area, the power output of the system where a single membrane is located can reach 2.2 × 10-3 mW, which is ahead of similar experimental products. The two membranes prepared can also be used in combination, which provides a new idea for full cell design. It's important to open up a new route for optimizing nanofluidic channel design, regulating ion flux transport, and advancing the large-scale industrialization of biomass nanofluidic membrane RED system.
Collapse
Affiliation(s)
- Kejian Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Hongqin Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Xiao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Huilin Dong
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Shen Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
17
|
Yu R, Zhao Y, Liu J. Solid Electrochemiluminescence Sensor by Immobilization of Emitter Ruthenium(II)tris(bipyridine) in Bipolar Silica Nanochannel Film for Sensitive Detection of Oxalate in Serum and Urine. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:390. [PMID: 38470721 PMCID: PMC10934855 DOI: 10.3390/nano14050390] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Convenient and highly sensitive detection of oxalate ions in body fluids is of crucial significance for disease prevention, diagnosis, and monitoring of treatment effectiveness. Establishing a simple solid-state electrochemiluminescence (ECL) sensing system for highly sensitive detection of oxalate ions is highly desirable. In this work, a solid ECL sensor was fabricated by immobilizing the commonly used emitter ruthenium(II)tris(bipyridine) (Ru(bpy)32+) on a double-layered bipolar silica nanochannel array film (bp-SNA)-modified electrode, enabling sensitive detection of oxalate ions in serum or urine samples. Cost-effective and readily available indium tin oxide (ITO) was used as the supporting electrode. Convenient fabrication of multiple negatively charged SNA (n-SNA)-modified ITO electrodes was achieved through the one-step Stöber solution growth method. Subsequently, a positive outer layer film (p-SNA) was rapidly prepared using an electrochemical-assisted self-assembly method. The double-layered bipolar silica nanochannel array film achieved stable immobilization of Ru(bpy)32+ on the electrode surface, facilitated by the electrostatic adsorption of Ru(bpy)32+ by n-SNA and the electrostatic repulsion by p-SNA. Utilizing oxalate ions as a co-reactant for Ru(bpy)32+, combined with the electrostatic enrichment of oxalate ions by p-SNA, the constructed sensor enabled highly sensitive detection of oxalate ions ranging from 1 nM to 25 μM and from 25 μM to 1 mM, with a detection limit (LOD) of 0.8 nM. The fabricated ECL sensor exhibited high selectivity and good stability, making it suitable for ECL detection of oxalate ions in serum and urine samples.
Collapse
Affiliation(s)
| | | | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (Y.Z.)
| |
Collapse
|
18
|
Zhou Y, Wang H, Xi F, Lu C. Sensitive Electrochemical Detection of Carcinoembryonic Antigen Based on Biofunctionalized Nanochannel Modified Carbonaceous Electrode. Molecules 2024; 29:858. [PMID: 38398610 PMCID: PMC10892148 DOI: 10.3390/molecules29040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The convenient construction of carbon-based electrochemical immunosensors with high performance is highly desirable for the efficient detection of tumor biomarkers. In this work, an electrochemical immunosensor was fabricated by integrating a biofunctionalized mesoporous silica nanochannel film with a carbon-based electrode, which can enable the sensitive determination of carcinoembryonic antigen (CEA) in serum. The commonly used carbonaceous electrode, glassy carbon electrode (GCE), was employed as the supporting electrode and was pre-treated through electrochemical polarization to achieve the stable binding of a vertically ordered mesoporous silica film with amino groups (NH2-VMSF) without the use of any adhesive layer. To fabricate the immunorecognition interface, antibodies were covalently immobilized after the amino groups on the outer surface of NH2-VMSF was derivatized to aldehyde groups. The presence of amino sites within the high-density nanochannels of NH2-VMSF can facilitate the migration of negatively charged redox probes (Fe(CN)63-/4-) to the supporting electrode through electrostatic adsorption, leading to the generation of electrochemical signals. In the presence of CEA, the formation of immunocomplexes on the recognitive interface can reduce the electrochemical signal of Fe(CN)63-/4- on the supporting electrode. Based on this principle, the sensitive electrochemical detection of CEA was achieved. CEA can be determined to range from 0.01 ng mL-1 to 100 ng mL-1 with a limit of detection of 6.3 pg mL-1. The fabricated immunosensor exhibited high selectivity, and the detection of CEA in fetal bovine serum was achieved.
Collapse
Affiliation(s)
- Yucheng Zhou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China;
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| | - Hongxin Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Chao Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China;
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
19
|
Zhang X, Huang H, Chen S, Xu Y, Xu F. Mono-component bacterial cellulose heterogeneous membrane mediated by ionic liquids for osmotic energy harvesting. Int J Biol Macromol 2024; 258:128984. [PMID: 38151089 DOI: 10.1016/j.ijbiomac.2023.128984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The massive reserves of osmotic energy existing in estuary will be highly desired as promising energy source that avails to solve the problem of energy shortage and environment deterioration. The ion transport membrane is core component optimized through composite membrane heterostructure to maximize the osmotic energy harvesting but suffer from gaps and resistance increase, which limit their practical applications. Here we demonstrate mono-component heterogeneous regenerated bacterial cellulose (RBC) membranes fabricated by subtle regenerated technique through Ionic Liquids (ILs). Such membranes obtain heterogeneous nature by the difference in fiber intertwining states due to the different treatment conditions on both sides. It achieves osmotic energy conversion with maximum power density of 0.70 W·m-2at 100-fold, which provides ingenious strategy for excellent performance and low-cost osmotic energy harvesting. By minimizing pores and maximizing the surface charges, energy barriers can be lowered, ion permeable and selective transport channels for energy harvesting device can be increased, as supported by the numerical simulation. This is the first time the construction strategy for mono-component heterogeneous membrane mediated by ILs for osmotic energy harvesting is proposed, which averts gaps between the layers of different materials effectively and provides theoretical guidance for subsequent in-depth research on mono-component ion-selective heterogeneous membrane.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Haocun Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
20
|
Zhou Y, Luo X, Yan F, Mou Y. Electrostatic Nanocage-Confined Probe for Electrochemical Detection of CA19-9 in Human Serum. ACS OMEGA 2023; 8:48491-48498. [PMID: 38144141 PMCID: PMC10733950 DOI: 10.1021/acsomega.3c08370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023]
Abstract
Prompt and accurate detection of CA19-9 in human serum has great clinical significance for the early diagnosis and disease monitoring of cancer. Herein, we develop a convenient and antifouling electrochemical sensor for CA19-9 determination by immobilization of both an electrochemical redox probe [methylene blue (MB)] and immunorecognition element (CA19-9 antibody) on an electrostatic nanocage consisting of bipolar silica nanochannel array (bp-SNA). bp-SNA is composed of a negatively charged inner layer (n-SNA) and positively charged outer layer (p-SNA), which could be stably prepared on indium tin oxide (ITO) in several seconds using a two-step electrochemically assisted self-assembly approach and display asymmetric surface charges for confinement and enrichment of cationic MB into the inner n-SNA layer through electrostatic interaction. Modification of the CA19-9 antibody on the top surface of bp-SNA confers the sensing interface with specific recognition capacity. An antibody-antigen complex formed at the as-prepared immunosensor causes the decreased electrochemical signals of MB, achieving sensitive determination of CA19-9 with a wider linear dynamic range from 10 μU/mL to 50 U/mL and a low detection limit (3 μU/mL). Furthermore, accurate and feasible analysis of the CA19-9 amount in human serum samples by our proposed probe-integrated electrochemical immunosensor is realized.
Collapse
Affiliation(s)
- Yucheng Zhou
- Medical
College of Soochow University, Suzhou 215006, China
- General
Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic
Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xuan Luo
- Key
Laboratory of Surface & Polymer Materials of Zhejiang Province,
Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher
Education Zone, Hangzhou 310018, China
| | - Fei Yan
- Key
Laboratory of Surface & Polymer Materials of Zhejiang Province,
Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher
Education Zone, Hangzhou 310018, China
| | - Yiping Mou
- Medical
College of Soochow University, Suzhou 215006, China
- General
Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic
Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
21
|
Xing J, Han Q, Liu J, Yan Z. Electrochemical aptasensor fabricated by anchoring recognition aptamers and immobilizing redox probes on bipolar silica nanochannel array for reagentless detection of carbohydrate antigen 15-3. Front Chem 2023; 11:1324469. [PMID: 38192499 PMCID: PMC10773802 DOI: 10.3389/fchem.2023.1324469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Timely, convenient, and efficient detection of carbohydrate antigen 15-3 (CA15-3) levels in serum holds significant importance in early screening, diagnostic assistance and prognosis prediction of breast cancer. The development of efficient and convenient electrochemical aptasensors with immobilized redox probes for label-free detection of CA15-3 is highly desirable. In this work, a bipolar silica nanochannel array film (bp-SNA) with two distinct functional domains including nanochannels and an outer surface was employed for the immobilization of recognition ligands and electrochemical redox probes, enabling the construction of a probe-integrated aptasensor for reagentless electrochemical detection of CA15-3. Cost-effective and readily available indium tin oxide (ITO) was used as the supporting electrode for sequential growth of a negatively charged inner layer (n-SNA) followed by a positively charged outer layer (p-SNA). The preparation process of bp-SNA is convenient. Functionalization of amino groups on the outer surface of bp-SNA was modified by aldehyde groups for covalent immobilization of recognition aptamers, further establishing the recognition interface. Within the nanochannels of bp-SNA, the electrochemical redox probe, tri (2,2'-dipyridyl) cobalt (II) (Co(bpy)3 2+) was immobilized, which experienced a dual effect of electrostatic attraction from n-SNA and electrostatic repulsion from p-SNA, resulting in high stability of the immobilized probes. The constructed aptasensor allowed for reagentless electrochemical detection of CA15-3 ranged from 0.001 U/mL to 500 U/mL with a low detection limit (DL), 0.13 mU/mL). The application of the constructed aptasensor for CA15-3 detection in fetal bovine serum was also validated. This sensor offers advantages of a simple and readily obtainable supporting electrode, easy bp-SNA fabrication, high probe stability and good stability.
Collapse
Affiliation(s)
- Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Qianqian Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongii Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
22
|
Li F, Han Q, Xi F. The Fabrication of a Probe-Integrated Electrochemiluminescence Aptasensor Based on Double-Layered Nanochannel Array with Opposite Charges for the Sensitive Determination of C-Reactive Protein. Molecules 2023; 28:7867. [PMID: 38067596 PMCID: PMC10708393 DOI: 10.3390/molecules28237867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The effective and sensitive detection of the important biomarker, C-reactive protein (CRP), is of great significance in clinical diagnosis. The development of a convenient and highly sensitive electrochemiluminescence (ECL) aptasensor with an immobilized emitter probe is highly desirable. In this work, a probe-integrated ECL aptamer sensor was constructed based on a bipolar silica nanochannel film (bp-SNF) modified electrode for the highly sensitive ECL detection of CRP. The bp-SNF, modified on an ITO electrode, consisted of a dual-layered SNF film, including the negatively charged inner SNF (n-SNF) and the outer SNF with a positive charge and amino groups (p-SNF). The ECL emitter, tris(bipyridine) ruthenium (II) (Ru(bpy)32+), was stably immobilized in a nanochannel of bp-SNF using the dual electrostatic interactions with n-SNF attracting and p-SNF repelling. The amino groups on the outer surface of bp-SNF were aldehyde derivatized, allowing for the covalent immobilization of recognitive aptamers (5'-NH2-CGAAGGGGATTCGAGGGGTGATTGCGTGCTCCATTTGGTG-3'), leading to the recognition interface. When CRP bound to the aptamer on the recognition interface, the formed complex increased the interface resistance and reduced the diffusion of the co-reactant tripropylamine (TPA) into the nanochannels, leading to a decrease in the ECL signal. Based on this mechanism, the constructed aptamer sensor could achieve a sensitive ECL detection of CRP ranging from 0.01 to 1000 ng/mL, with a detection limit (DL) of 8.5 pg/mL. The method for constructing this probe-integrated ECL aptamer sensor is simple, and it offers a high probe stability, good selectivity, and high sensitivity.
Collapse
Affiliation(s)
- Feng Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianqian Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
23
|
Li D, Xu S, Jin H, Wang J, Yan F. Copper Nanoparticles Confined in a Silica Nanochannel Film for the Electrochemical Detection of Nitrate Ions in Water Samples. Molecules 2023; 28:7515. [PMID: 38005239 PMCID: PMC10673492 DOI: 10.3390/molecules28227515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The nitrate ion (NO3-) is a typical pollutant in environmental samples, posing a threat to the aquatic ecosystem and human health. Therefore, rapid and accurate detection of NO3- is crucial for both the aquatic sciences and government regulations. Here we report the fabrication of an amino-functionalized, vertically ordered mesoporous silica film (NH2-VMSF) confining localized copper nanoparticles (CuNPs) for the electrochemical detection of NO3-. NH2-VMSF-carrying amino groups possess an ordered perpendicular nanochannel structure and ultrasmall nanopores, enabling the confined growth of CuNPs through the electrodeposition method. The resulting CuNPs/NH2-VMSF-modified indium tin oxide (ITO) electrode (CuNPs/NH2-VMSF/ITO) combines the electrocatalytic reduction ability of CuNPs and the electrostatic attraction capacity of NH2-VMSF towards NO3-. Thus, it is a rapid and sensitive electrochemical method for the determination of NO3- with a wide linear detection range of 5.0-1000 μM and a low detection limit of 2.3 μM. Direct electrochemical detection of NO3- in water samples (tap water, lake water, seawater, and rainwater) with acceptable recoveries ranging from 97.8% to 109% was performed, demonstrating that the proposed CuNPs/NH2-VMSF/ITO sensor has excellent reproducibility, regeneration, and anti-interference abilities.
Collapse
Affiliation(s)
- Dewang Li
- Donghai Laboratory, Zhoushan 316021, China; (D.L.); (H.J.)
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Haiyan Jin
- Donghai Laboratory, Zhoushan 316021, China; (D.L.); (H.J.)
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Jinqing Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
| | - Fei Yan
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
24
|
Huang Z, Luo X, Yan F, Zhou B. Homogeneous Electrochemical Aptasensor for Sensitive Detection of Zearalenone Using Nanocomposite Probe and Silica Nanochannel Film. Molecules 2023; 28:7241. [PMID: 37959660 PMCID: PMC10647457 DOI: 10.3390/molecules28217241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Developing rapid and efficient analytical methods is of great importance for food safety Herein, we present a novel homogeneous electrochemical aptasensor for ultrasensitive quantitative determination of zearalenone (ZEN) based on a nanocomposite probe and silica nanochannel film. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV-Vis characterization techniques confirm that graphene oxide (GO) bears an aromatic conjugated structure, along with hydroxyl and carboxyl groups, facilitating the subsequent adsorption of cationic redox hexa-ammine-ruthenium (III) (Ru(NH3)63+) and anionic ZEN aptamer, to form a Ru(NH3)63+-ZEN aptamer-GO nanocomposite probe in a homogeneous solution. Vertically-ordered mesoporous silica films (VMSF) bearing silanol groups can be simply grown on the solid indium tin oxide (ITO) electrode surface and enable the selective preconcentration of Ru(NH3)63+, eventually leading to signal amplification. Since the detachment of Ru(NH3)63+ from the GO surface by the recognized ZEN aptamer in the presence of ZEN, more free Ru(NH3)63+ is released in solution and produces enhanced redox signals at the VMSF modified ITO electrode, allowing quantitative detection of ZEN. On the basis of the above sensing strategy, the proposed homogeneity, due to the assistance of graphene, as well as of the signal amplification and anti-fouling effects of VMSF, accurate analysis of ZEN can be realized in maize and Chinese chestnut samples.
Collapse
Affiliation(s)
- Zhongnan Huang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development, Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China;
| | - Xuan Luo
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Bo Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development, Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China;
| |
Collapse
|
25
|
Guo Q, Fan X, Yan F, Wang Y. Highly sensitive electrochemical immunosensor based on electrodeposited platinum nanostructures confined in silica nanochannels for the detection of the carcinoembryonic antigen. Front Chem 2023; 11:1271556. [PMID: 37927568 PMCID: PMC10623118 DOI: 10.3389/fchem.2023.1271556] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
In this study, we report a highly sensitive electrochemical immunosensor for carcinoembryonic antigen (CEA) detection based on the electrodeposited platinum nanoparticles (Pt NPs) confined in the ultrasmall nanochannels of vertically ordered mesoporous silica film (VMSF). VMSF bearing amine groups (NH2-VMSF) can be prepared on the indium tin oxide electrode surface via a one-step co-condensation route using an electrochemically assisted self-assembly method, which renders a strong electrostatic effect for [PtCl6]2- and leads to the spatial confinement of Pt NPs inside the silica nanochannels after electrodeposition. The external surface of NH2-VMSF is functionalized with CEA antibodies using glutaraldehyde as a coupling agent, resulting in an electrochemical immunosensing interface with good specificity for CEA detection. Under optimal experimental conditions, high affinity between the CEA antibody and CEA produces a steric hindrance effect for the accessibility of the electrochemical probe ([Fe(CN)6]3-) in the bulk solution to the underlying indium tin oxide surface, eventually resulting in the attenuated electrochemical signal and enabling the detection of the CEA with a wide linear range of 0.01 pg/mL∼10 ng/mL and a pretty low limit of detection of 0.30 fg/mL. Owing to the signal amplification ability of Pt NPs and the anti-biofouling property of NH2-VMSF, the as-prepared electrochemical immunosensor based on the Pt NPs@NH2-VMSF displays an accurate analysis of the CEA in human serum samples, holding significant promise for health monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Qinping Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xue Fan
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fei Yan
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yinquan Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
Chang Q, Gu X, He L, Xi F. A highly sensitive immunosensor based on nanochannel-confined nano-gold enhanced electrochemiluminescence for procalcitonin detection. Front Chem 2023; 11:1274424. [PMID: 37876852 PMCID: PMC10591179 DOI: 10.3389/fchem.2023.1274424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive detection of procalcitonin (PCT) in serum is crucial for the timely diagnosis and treatment of rheumatoid arthritis. In this work, an electrochemiluminescence (ECL) detection platform is developed based on in-situ growth of Au nanoparticles (AuNPs) in nanochannels and an analyte-gated detection signal, which can realize ECL determination of PCT with high sensitivity. Vertically ordered mesoporous silica films with amine groups and uniform nanochannel array (NH2-VMSF) is easily grown on the supporting indium tin oxide (ITO) electrode through electrochemical assisted self-assembly method (EASA). Anchored by the amino groups, AuNPs were grown in-situ within the nanochannels to catalyze the generation of reactive oxygen species (ROS) and amplify the ECL signal of luminol. An immuno-recognitive interface is constructed on the outer surface of NH2-VMSF, through covalent immobilization of PCT antibodies. In the presence of PCT, the immunocomplex will hinder the diffusion of luminol and co-reactants, leading to a gating effect and decreased ECL signals. Based on this principle, the immunosensor can detect PCT in the range from 10 pg/mL to 100 ng mL-1 with a limit of detection (LOD) of 7 pg mL-1. The constructed immunosensor can also be used for detecting PCT in serum. The constructed sensor has advantages of simple fabrication and sensitive detection, demonstrating great potential in real sample analysis.
Collapse
Affiliation(s)
- Qiang Chang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhui Gu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liming He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
27
|
Zhang Y, Zhang S, Liu J, Qin D. Label-Free Homogeneous Electrochemical Aptasensor Based on Size Exclusion/Charge-Selective Permeability of Nanochannel Arrays and 2D Nanorecognitive Probe for Sensitive Detection of Alpha-Fetoprotein. Molecules 2023; 28:6935. [PMID: 37836778 PMCID: PMC10574445 DOI: 10.3390/molecules28196935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The labeling-free and immobilization-free homogeneous aptamer sensor offers advantages including simple operation, low cost, and high sensitivity, demonstrating great potential in rapid detection of tumor biomarkers in biological samples. In this work, a labeling-free and immobilization-free homogeneous aptamer sensor was conveniently fabricated by combining size exclusion and charge-selective penetration of a nanochannel-modified electrode and two-dimensional (2D) nanorecognition probe which can realize selective and highly sensitive detection of alpha-fetoprotein (AFP) in serum. Vertically ordered mesoporous silica film (VMSF) with ultra-small, uniform, and vertically aligned nanochannels was easily grown on the simple, low-cost, and disposable indium tin oxide (ITO) electrode. Through π-π interaction and electrostatic force, the AFP aptamer (Apt) and electrochemical probe, tris(bipyridine)ruthenium(II) (Ru(bpy)32+), were coloaded onto graphene oxide (GO) through simple incubation, forming a 2D nanoscale recognition probe (Ru(bpy)32+/Apt@GO). Owing to the size exclusion effect of VMSF towards the 2D nanoscale probe, the electrochemical signal of Ru(bpy)32+/Apt@GO could not be detected. In the presence of AFP, the specific binding of AFP to the aptamer causes the dissociation of the aptamer and Ru(bpy)32+ from GO, resulting in their presence in the solution. The efficient electrostatic enrichment towards Ru(bpy)32+ by negatively charged VMSF allows for high electrochemical signals of free Ru(bpy)32+ in the solution. Linear determination of AFP ranged from 1 pg/mL to 1000 ng/mL and could be obtained with a low limit of detection (LOD, 0.8 pg/mL). The high specificity of the adapter endowed the constructed sensor with high selectivity. The fabricated probe can be applied in direct determination of AFP in serum.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatology, Taiyuan Third People’s Hospital, Taiyuan 030012, China
| | - Shiyue Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongyuan Qin
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
28
|
Zhang H, Zhang C, Qu H, Xi F. Immunosensor with Enhanced Electrochemiluminescence Signal Using Platinum Nanoparticles Confined within Nanochannels for Highly Sensitive Detection of Carcinoembryonic Antigen. Molecules 2023; 28:6559. [PMID: 37764335 PMCID: PMC10535133 DOI: 10.3390/molecules28186559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid, highly sensitive, and accurate detection of tumor biomarkers in serum is of great significance in cancer screening, early diagnosis, and postoperative monitoring. In this study, an electrochemiluminescence (ECL) immunosensing platform was constructed by enhancing the ECL signal through in situ growth of platinum nanoparticles (PtNPs) in a nanochannel array, which can achieve highly sensitive detection of the tumor marker carcinoembryonic antigen (CEA). An inexpensive and readily available indium tin oxide (ITO) glass electrode was used as the supporting electrode, and a layer of amino-functionalized vertically ordered mesoporous silica film (NH2-VMSF) was grown on its surface using an electrochemically assisted self-assembly method (EASA). The amino groups within the nanochannels served as anchoring sites for the one-step electrodeposition of PtNPs, taking advantage of the confinement effect of the ultrasmall nanochannels. After the amino groups on the outer surface of NH2-VMSF were derivatized with aldehyde groups, specific recognition antibodies were covalently immobilized followed by blocking nonspecific binding sites to create an immunorecognition interface. The PtNPs, acting as nanocatalysts, catalyzed the generation of reactive oxygen species (ROS) with hydrogen peroxide (H2O2), significantly enhancing the ECL signal of the luminol. The ECL signal exhibited high stability during continuous electrochemical scanning. When the CEA specifically bound to the immunorecognition interface, the resulting immune complexes restricted the diffusion of the ECL emitters and co-reactants towards the electrode, leading to a reduction in the ECL signal. Based on this immune recognition-induced signal-gating effect, the immunosensor enabled ECL detection of CEA with a linear range of 0.1 pg mL-1 to 1000 ng mL-1 with a low limit of detection (LOD, 0.03 pg mL-1). The constructed immunosensor demonstrated excellent selectivity and can achieve CEA detection in serum.
Collapse
Affiliation(s)
- Huihua Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chaoyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Hui Qu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
29
|
Zhang C, Zhou X, Yan F, Lin J. N-Doped Graphene Quantum Dots Confined within Silica Nanochannels for Enhanced Electrochemical Detection of Doxorubicin. Molecules 2023; 28:6443. [PMID: 37764222 PMCID: PMC10536127 DOI: 10.3390/molecules28186443] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we describe a fast and highly sensitive electrochemical sensor for doxorubicin (DOX) detection based on the indium tin oxide (ITO) modified with a binary material consisting of vertically-ordered mesoporous silica films (VMSFs) and N-doped graphene quantum dots (NGQDs). VMSFs, with high permeability and efficient molecular transport capacity, is attached to the ITO electrode via a rapid and controllable electrochemical method, which can serve as a solid template for the confinement of numerous NGQDs through facile electrophoresis. By virtue of the excellent charge transfer capacity, π-π and electrostatic preconcentration effects of NGQDs, as well as the electrostatic enrichment ability of VMSF, the presented NGQDs@VMSF/ITO shows amplified electrochemical signal towards DOX with a positive charge, resulting in good analytical performance in terms of a wide linear range (5 nM~0.1 μM and 0.1~1 μM), high sensitivity (30.4 μA μM-1), and a low limit of detection (0.5 nM). Moreover, due to the molecular sieving property of VMSF, the developed NGQDs@VMSF/ITO sensor has good selectivity and works well in human serum and urine samples, with recoveries of 97.0~109%, thus providing a simple and reliable method for the direct electrochemical analysis of DOX without complex sample pretreatment procedures.
Collapse
Affiliation(s)
- Chaoyan Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Xiaoyu Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Jing Lin
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
30
|
Zeng Z, Zhao Y, Yang L, Xi F, Su D. Vertically ordered mesoporous silica film-assisted electrochemical cytosensor for the sensitive detection of HeLa cells. Front Chem 2023; 11:1222067. [PMID: 37727833 PMCID: PMC10506308 DOI: 10.3389/fchem.2023.1222067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Designing fast and simple quantitative methods on cheap and disposable electrodes for the early detection of HeLa cells is highly desirable for clinical diagnostics and public health. In this work, we developed a label-free and sensitive electrochemical cytosensor for HeLa cell detection based on the gated molecular transport across vertically ordered mesoporous silica films (VMSFs) on the disposable indium tin oxide (ITO) electrode. As high affinity for a folate receptor existed on the membrane of HeLa cancer cells, folic acid (FA) functionalized VMSF could regulate the transport of electrochemical probe (Fe(CN)6 3-) by the specific recognition and adhesion of HeLa cells toward the VMSF surface. In addition, VMSF, served as a solid skeleton, is able to effectively prevent the direct contact of cells with the underlying electrode, remaining the underlying electrode activity and favoring the diffusion of Fe(CN)6 3-. Once specific adhesion of HeLa cells to the VMSF surface happens, Fe(CN)6 3- redox probe exhibits impeded transport in the silica nanochannels, ultimately resulting in the decreased electrochemical responses and realizing the quantitative determination of HeLa cells with a broad linear range (101-105 cells/mL) and a low limit of detection (4 cells/mL). The proposed electrochemical cytosensor shows a great potential application for the early diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Zisan Zeng
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Yang Zhao
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Luoxing Yang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Danke Su
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Yan Z, Zhang S, Liu J, Xing J. Homogeneous Electrochemical Aptamer Sensor Based on Two-Dimensional Nanocomposite Probe and Nanochannel Modified Electrode for Sensitive Detection of Carcinoembryonic Antigen. Molecules 2023; 28:5186. [PMID: 37446848 DOI: 10.3390/molecules28135186] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A rapid and convenient homogeneous aptamer sensor with high sensitivity is highly desirable for the electrochemical detection of tumor biomarkers. In this work, a homogeneous electrochemical aptamer sensor is demonstrated based on a two-dimensional (2D) nanocomposite probe and nanochannel modified electrode, which can realize sensitive detection of carcinoembryonic antigen (CEA). Using π-π stacking and electrostatic interaction, CEA aptamer (Apt) and cationic redox probe (hexaammineruthenium(III), Ru(NH3)63+) are co-loaded on graphite oxide (GO), leading to a 2D nanocomposite probe (Ru(NH3)63+/Apt@GO). Vertically ordered mesoporous silica-nanochannel film (VMSF) is easily grown on the supporting indium tin oxide (ITO) electrode (VMSF/ITO) using the electrochemical assisted self-assembly (EASA) method within 10 s. The ultrasmall nanochannels of VMSF exhibits electrostatic enrichment towards Ru(NH3)63+ and size exclusion towards 2D material. When CEA is added in the Ru(NH3)63+/Apt@GO solution, DNA aptamer recognizes and binds to CEA and Ru(NH3)63+ releases to the solution, which can be enriched and detected by VMSF/ITO electrodes. Based on this mechanism, CEA can be an electrochemical detection ranging from 60 fg/mL to 100 ng/mL with a limit of detection (LOD) of 14 fg/mL. Detection of CEA in human serum is also realized. The constructed homogeneous detection system does not require the fixation of a recognitive aptamer on the electrode surface or magnetic separation before detection, demonstrating potential applications in rapid, convenient and sensitive electrochemical sensing of tumor biomarkers.
Collapse
Affiliation(s)
- Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Shiyue Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
32
|
Guo Y, Nie Y, Wang P, Li Z, Ma Q. MoS 2 QDs-MXene heterostructure-based ECL sensor for the detection of miRNA-135b in gastric cancer exosomes. Talanta 2023; 259:124559. [PMID: 37080077 DOI: 10.1016/j.talanta.2023.124559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Exosomes play an important role in the proliferation, adhesion and migration of cancer cells. In this study, we have developed a novel electrochemiluminescence (ECL) sensor based on MoS2 QDs-MXene heterostructure and Au NPs@biomimetic lipid layer to detect exosomal miRNA. MoS2 QDs-MXene heterostructure had been prepared as the luminescence probe. Ti3C2Tx MXene nanosheets possessed the large specific surface area, excellent flexibility and superior conductivity. MoS2 QDs on the MXene nanosheets worked as the radiation center to generate strong ECL signal. Meanwhile, Au NPs with biomimetic lipid layer have been modified on the electrode, which retained the lipid dynamics and excellent antifouling property. When miRNA-135b was recognized on the Au NPs@biomimetic lipid layer, MoS2 QDs-MXene heterostructure was linked on the electrode and further extended the outer Helmholtz plane. As a result, the self-luminous Faraday cage-mode sensing system has been used to detect miRNA-135b from 30 fM to 20 nM with a detection limit of 10 fM. Furthermore, gastric cancer exosomal miRNA in the ascites of clinical patients has been detected successfully. The sensing system can be served as a versatile platform with huge application potential in the field of exosome detection.
Collapse
Affiliation(s)
- Yuchen Guo
- Department of Gastrocolorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China.
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
33
|
Zhang T, Xu S, Lin X, Liu J, Wang K. Label-Free Electrochemical Aptasensor Based on the Vertically-Aligned Mesoporous Silica Films for Determination of Aflatoxin B1. BIOSENSORS 2023; 13:661. [PMID: 37367026 DOI: 10.3390/bios13060661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Herein we report a highly specific electrochemical aptasenseor for AFB1 determination based on AFB1-controlled diffusion of redox probe (Ru(NH3)63+) through nanochannels of AFB1-specific aptamer functionalized VMSF. A high density of silanol groups on the inner surface confers VMSF with cationic permselectivity, enabling electrostatic preconcentration of Ru(NH3)63+ and producing amplified electrochemical signals. Upon the addition of AFB1, the specific interaction between the aptamer and AFB1 occurs and generates steric hindrance effect on the access of Ru(NH3)63+, finally resulting in the reduced electrochemical responses and allowing the quantitative determination of AFB1. The proposed electrochemical aptasensor shows excellent detection performance in the range of 3 pg/mL to 3 μg/mL with a low detection limit of 2.3 pg/mL for AFB1 detection. Practical analysis of AFB1 in peanut and corn samples is also accomplished with satisfactory results by our fabricated electrochemical aptasensor.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
34
|
Zhang T, Yang L, Yan F, Wang K. Vertically-Ordered Mesoporous Silica Film Based Electrochemical Aptasensor for Highly Sensitive Detection of Alpha-Fetoprotein in Human Serum. BIOSENSORS 2023; 13:628. [PMID: 37366993 DOI: 10.3390/bios13060628] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Convenient and rapid detection of alpha fetoprotein (AFP) is vital for early diagnosis of hepatocellular carcinoma. In this work, low-cost (0.22 USD for single sensor) and stable (during 6 days) electrochemical aptasensor was developed for highly sensitive and direct detection of AFP in human serum with the assist of vertically-ordered mesoporous silica films (VMSF). VMSF has silanol groups on the surface and regularly ordered nanopores, which could provide binding sites for further functionalization of recognition aptamer and also confer the sensor with excellent anti-biofouling capacity. The sensing mechanism relies on the target AFP-controlled diffusion of Fe(CN)63-/4- redox electrochemical probe through the nanochannels of VMSF. The resulting reduced electrochemical responses are related to the AFP concentration, allowing the linear determination of AFP with a wide dynamic linear range and a low limit of detection. Accuracy and potential of the developed aptasensor were also demonstrated in human serum by standard addition method.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Luoxiang Yang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
35
|
Huang Y, Ding Z, Li Y, Xi F, Liu J. Magnetic Nanozyme Based on Loading Nitrogen-Doped Carbon Dots on Mesoporous Fe 3O 4 Nanoparticles for the Colorimetric Detection of Glucose. Molecules 2023; 28:4573. [PMID: 37375128 DOI: 10.3390/molecules28124573] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The simple and accurate monitoring of blood glucose level is of great significance for the prevention and control of diabetes. In this work, a magnetic nanozyme was fabricated based on loading nitrogen-doped carbon dots (N-CDs) on mesoporous Fe3O4 nanoparticles for the colorimetric detection of glucose in human serum. Mesoporous Fe3O4 nanoparticles were easily synthesized using a solvothermal method, and N-CDs were then prepared in situ and loaded on the Fe3O4 nanoparticles, leading to a magnetic N-CDs/Fe3O4 nanocomposite. The N-CDs/Fe3O4 nanocomposite exhibited good peroxidase-like activity and could catalyze the oxidation of the colorless enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxide (ox-TMB) in the presence of hydrogen peroxide (H2O2). When the N-CDs/Fe3O4 nanozyme was combined with glucose oxidase (Gox), Gox catalyzed the oxidization of glucose, producing H2O2 and leading to the oxidation of TMB under the catalysis of the N-CDs/Fe3O4 nanozyme. Based on this mechanism, a colorimetric sensor was constructed for the sensitive detection of glucose. The linear range for glucose detection was from 1 to 180 μM, and the limit of detection (LOD) was 0.56 μM. The recovered nanozyme through magnetic separation showed good reusability. The visual detection of glucose was also realized by preparing an integrated agarose hydrogel containing the N-CDs/Fe3O4 nanozyme, glucose oxidase, and TMB. The colorimetric detection platform has an enormous potential for the convenient detection of metabolites.
Collapse
Affiliation(s)
- Yunxi Huang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China
| | - Zhanling Ding
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yutong Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
36
|
Zhou X, Han Q, Zhou J, Liu C, Liu J. Reagentless Electrochemical Detection of Tumor Biomarker Based on Stable Confinement of Electrochemical Probe in Bipolar Silica Nanochannel Film. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101645. [PMID: 37242061 DOI: 10.3390/nano13101645] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The development of simple and probe-integrated aptamer sensors for the electrochemical detection of tumor biomarkers is of great significance for the diagnosis of tumors and evaluation of prognosis. In this work, a probe-integrated aptamer sensor is demonstrated based on the stable confinement of an electrochemical probe in a bipolar nanochannel film, which can realize the reagentless electrochemical detection of the tumor biomarker carcinoembryonic antigen (CEA). To realize the stable immobilization of a large amount of the cationic electrochemical probe methylene blue (MB), a two-layer silica nanochannel array (SNF) with asymmetric charge was grown on the supporting electrode from bipolar SNF (bp-SNF). The inner SNF is negatively charged (n-SNF), and the outer-layer SNF is positively charged (p-SNF). The dual electrostatic interaction including the electrostatic adsorption from n-SNF and the electrostatic repulsion from p-SNF achieve the stable confinement of MB in bp-SNF. The recognitive interface is fabricated by the covalent immobilization of the CEA aptamer on the outer surface of bp-SNF, followed by the blocking of non-specific binding sites. Owing to the stable and abundant immobilized probes and highly specific aptamer interface, the developed aptamer sensor enables the sensitive detection of CEA in the range of 1 pg/mL to 1 μg/mL with a low limit of detection (LOD, 0.22 pg/mL, S/N = 3). Owing to the high selectivity and stability of the developed biosensor, reagentless electrochemical detection of CEA in serum was realized.
Collapse
Affiliation(s)
- Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qianqian Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinming Zhou
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
37
|
Zhang X, Du Y, Feng R, Ren X, Wu T, Jia Y, Zhang N, Li F, Wei Q, Ju H. An electrochemiluminescence insulin sensing platform based on the molecular recognition properties of cucurbit[7]uril. Biosens Bioelectron 2023; 227:115170. [PMID: 36827794 DOI: 10.1016/j.bios.2023.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The establishment of new mechanisms for target identification and signal amplification continues to drive innovation in electrochemiluminescence (ECL) sensing platforms. In this paper, a novel ECL insulin sensing platform was constructed by utilizing the molecular recognition properties of cucurbit[7]uril. Specifically, the macrocyclic host molecule cucurbit[7]uril was immobilized on the surface of the sensing platform as an identification probe, which could selectively capture insulin according to the inherent properties of the protein N-terminal. Introducing the rigid molecule cucurbit[7]uril into the sensing interface could reduce the influence of the environmental parameters on the sensing system, which provides a reliable guarantee for the accurate detection of insulin. Furthermore, gold nanoclusters were modified by utilizing the molecular recognition properties of cucurbit[7]uril, and used as anode signal probes for ECL sensing platform. The macrocyclic molecules cucurbit[7]uril passivated the surface of the nanoclusters, inhibited the non-radiative relaxation and improved the physical stability of the luminophore, leading to a significant increase in the sensitivity and stability of the ECL probe. The ECL sensing platforms exhibited a linear range from 50.00 fg/mL to 100.0 ng/mL, with a detection limit of 5.44 fg/mL. This study revealed the critical role of cucurbit[7]uril in target recognition and signal amplification, extending the scope of supramolecular applications in ECL.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yu Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
38
|
Wei Y, Qi H, Zhang C. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem Commun (Camb) 2023; 59:3507-3522. [PMID: 36820650 DOI: 10.1039/d2cc06930j] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This Feature Article simply introduces principles and mechanisms of electrochemiluminescence (ECL) biosensors for the determination of biomarkers and highlights recent advances of ECL biosensors on key aspects including new ECL reagents and materials, new biological recognition elements, and emerging construction biointerfacial strategies with illustrative examples and a critical eye on pitfalls and discusses challenges and perspectives of ECL biosensors for health analysis.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| |
Collapse
|
39
|
Nunez FA, Castro ACH, Daher IP, Cunha-Neto E, Kalil J, Boscardin SB, Lanfredi AJC, de Oliveira VL, Alves WA. ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains. BIOSENSORS 2023; 13:371. [PMID: 36979583 PMCID: PMC10046366 DOI: 10.3390/bios13030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Freddy A. Nunez
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo 09210-580, Brazil
| | - Ana C. H. Castro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo 09210-580, Brazil
| | - Isabela P. Daher
- Laboratorio de Imunologia, INCOR, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo 05508-900, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, INCOR, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil
- LIM-19, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, INCOR, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil
- LIM-19, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil
| | - Silvia B. Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo 05508-900, Brazil
| | - Alexandre J. C. Lanfredi
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Paulo 09210-580, Brazil
| | - Vivian L. de Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo 09210-580, Brazil
- Laboratorio de Imunologia, INCOR, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil
- LIM-19, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo 09210-580, Brazil
| |
Collapse
|
40
|
Chen D, Luo X, Xi F. Probe-integrated electrochemical immunosensor based on electrostatic nanocage array for reagentless and sensitive detection of tumor biomarker. Front Chem 2023; 11:1121450. [PMID: 36970409 PMCID: PMC10036603 DOI: 10.3389/fchem.2023.1121450] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Sensitive detection of tumor biomarkers is crucial for early diagnosis and prognosis evaluation of cancer. Owing to no need of labelled antibody, formation of sandwich immunocomplexes and additional solution-based probe, probe-integrated electrochemical immunosensor for reagentless detection of tumor biomarkers is highly desirable. In this work, sensitive and reagentless detection of a tumor biomarker is realized based on fabrication of a probe-integrated immunosensor by confining redox probe in electrostatic nanocage array modified electrode. Indium tin oxide (ITO) electrode is employed as the supporting electrode because it is cheap and easily available. The silica nanochannel array consisted of two layers with opposite charges or different pore diameters was designated as bipolar films (bp-SNA). In this work, Electrostatic nanocage array is equipped on ITO electrode by growth of bp-SNA with two layered nanochannel array having different charge properties including a negatively charged silica nanochannel array (n-SNA) and a positively charged amino-modified SNA (p-SNA). Each SNA can be easily grown with 15 s using electrochemical assisted self-assembly method (EASA). Methylene blue (MB) is applied as the model electrochemical probe with positive charge to be confined in electrostatic nanocage array with stirring. The combination of the electrostatic attraction from n-SNA and the electrostatic repulsion from p-SNA endows MB with highly stable electrochemical signal during continuous scanning. When the amino groups of p-SNA are modified using the bifunctional glutaraldehyde (GA) to introduce aldehydes, the recognitive antibody (Ab) of the most commonly used tumor biomarker, carcinoembryonic antigen (CEA), can be covalently immobilized. After the non-specific sites are blocked, the immunosensor is successfully fabricated. As the formation of antigen-antibody complex decreases electrochemical signal, the immunosensor can achieve reagentless detection of CEA ranged from 10 pg/mL to 100 ng/mL with a low limit of detection (LOD, 4 pg/mL). Determination of CEA in human serum samples is realized with high accuracy.
Collapse
Affiliation(s)
- Dong Chen
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, China
| | - Xuan Luo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
41
|
Silica nanochannel array on co-electrodeposited graphene-carbon nanotubes 3D composite film for antifouling detection of uric acid in human serum and urine samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
42
|
Huang J, Zhang T, Zheng Y, Liu J. Dual-Mode Sensing Platform for Cancer Antigen 15-3 Determination Based on a Silica Nanochannel Array Using Electrochemiluminescence and Electrochemistry. BIOSENSORS 2023; 13:bios13030317. [PMID: 36979529 PMCID: PMC10046297 DOI: 10.3390/bios13030317] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023]
Abstract
An electrochemiluminescence-electrochemistry (ECL-EC) dual-mode sensing platform based on a vertically-ordered mesoporous silica films (VMSF) modified electrode was designed here for the sensitive and selective determination of cancer antigen 15-3 (CA 15-3), a specific biomarker of breast cancer. VMSF was assembled through a rapid electrochemically assisted self-assembly (EASA) method and plays a crucial role in signal amplification via a strong electrostatic interaction with the positively charged bifunctional probe Ru(bpy)32+. To construct the biorecognition interface, epoxy functional silane was linked to the surface of VMSF for further covalent immobilization of the antibody. As a benefit from the specific combination of antigen and antibody, a non-conductive immunocomplex layer was formed in the presence of CA 15-3, leading to the hinderance of the mass and electron transfer of the probes. Based on this strategy, the dual-mode determination of CA 15-3 ranging from 0.1 mU/mL to 100 mU/mL with a LOD of 9 μU/mL for ECL mode, and 10 mU/mL to 200 U/mL with a LOD of 5.4 mU/mL for EC mode, was achieved. The proposed immunosensor was successfully employed for the detection of CA 15-3 in human serum without tedious pretreatment.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yanyan Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiyang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
43
|
Zhang Q, Liu S, Zhang X, Du C, Si S, Chen J. A high-frequency QCM biosensing platform for label-free detection of the SARS-CoV-2 spike receptor-binding domain: an aptasensor and an immunosensor. Analyst 2023; 148:719-723. [PMID: 36723047 DOI: 10.1039/d3an00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, high-frequency quartz crystal microbalance biosensing platforms were constructed using an aptamer and antibody as bioreceptors for fast and label-free detection of the SARS-CoV-2 RBD.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Shuping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
44
|
Tamiya E, Osaki S, Tsuchihashi T, Ushijima H, Tsukinoki K. Point-of-Care Diagnostic Biosensors to Monitor Anti-SARS-CoV-2 Neutralizing IgG/sIgA Antibodies and Antioxidant Activity in Saliva. BIOSENSORS 2023; 13:167. [PMID: 36831933 PMCID: PMC9953869 DOI: 10.3390/bios13020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine. The ranges of antibody concentrations post-vaccination were: serum IgG: 81-15,000 U/mL, salivary IgG: 3.4-330 U/mL, and salivary IgA: 58-870 ng/mL. A sharp increase in salivary IgG levels was observed after the second vaccination. sIgA levels also showed an increasing trend. A correlation with trends in serum IgG levels was observed, indicating the possibility of using saliva to routinely assess vaccine efficacy. The electrochemical immunosensor assay developed in this study based on the gold-linked electrochemical immunoassay, and the antioxidant activity measurement based on luminol electrochemiluminescence (ECL), can be performed using portable devices, which would prove useful for individual-based diagnosis using saliva samples.
Collapse
Affiliation(s)
- Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Shuto Osaki
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | - Hiromi Ushijima
- BioDevice Technology Ltd., 2-3 Asahidai, Nomi 923-1211, Ishikawa, Japan
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-0003, Kanagawa, Japan
| |
Collapse
|
45
|
Deng X, Lin X, Zhou H, Liu J, Tang H. Equipment of Vertically-Ordered Mesoporous Silica Film on Electrochemically Pretreated Three-Dimensional Graphene Electrodes for Sensitive Detection of Methidazine in Urine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020239. [PMID: 36677991 PMCID: PMC9861598 DOI: 10.3390/nano13020239] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 05/27/2023]
Abstract
Direct, rapid, and sensitive detection of drugs in complex biological samples is essential for drug abuse control and health risk assessment. In this work, an electrochemical sensor was fabricated based on equipment of vertically-ordered mesoporous silica film (VMSF) on an electrochemically pre-treated three-dimensional graphene electrode (p-3DG), which can achieve direct and sensitive determination of methylthiopyridazine (TR) in urine. Three-dimensional graphene (3DG) with a continuous and interpenetrating graphene network was used as the supporting electrode and simple electrochemical polarization was employed to pre-treat 3DG to improve surface hydrophilicity and electrocatalytic performance. VMSF was easily grown using an electrochemical assisted self-assembly method within 10 s and was stably bound to the p-3DG surface. The nanochannel array on the as-prepared VMSF/p-3DG sensor enriched positively charged TR, leading to significantly improved electrochemical signal. Combined with the high electric activity of p-3DG and the enrichment of nanochannels, VMSF/p-3DG realized sensitive determination of TR ranging from 50 nM to 10 μM with a low detection limit (DL, 30 nM). Owing to the anti-fouling and anti-interference performance of VMSF, the common electroactive molecules including ascorbic acid (AA) and uric acid (UA) did not interfere with the detection. In addition, the detection of TR in buffer and urine exhibited similar sensitivity. Accurate detection of TR in urine was realized.
Collapse
Affiliation(s)
- Xiaochun Deng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xueting Lin
- The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huaxu Zhou
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang 538001, China
| |
Collapse
|
46
|
Huang L, Su R, Xi F. Sensitive detection of noradrenaline in human whole blood based on Au nanoparticles embedded vertically-ordered silica nanochannels modified pre-activated glassy carbon electrodes. Front Chem 2023; 11:1126213. [PMID: 36874060 PMCID: PMC9974660 DOI: 10.3389/fchem.2023.1126213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Sensitive determination of noradrenaline (NE), the pain-related neurotransmitters and hormone, in complex whole blood is of great significance. In this work, an electrochemical sensor was simply constructed on the pre-activated glassy carbon electrode (p-GCE) modified with vertically-ordered silica nanochannels thin film bearing amine groups (NH2-VMSF) and in-situ deposited Au nanoparticles (AuNPs). The simple and green electrochemical polarization was employed to pre-activate GCE to realize the stable binding of NH2-VMSF on the surface of electrode without the use of any adhesive layer. NH2-VMSF was conveniently and rapidly grown on p-GCE by electrochemically assisted self-assembly (EASA). With amine group as the anchor sites, AuNPs were in-situ electrochemically deposited on the nanochannels to improve the electrochemical signals of NE. Owing to signal amplification from gold nanoparticles, the fabricated AuNPs@NH2-VMSF/p-GCE sensor can achieve electrochemical detection of NE ranged from 50 nM to 2 μM and from 2 μM to 50 μM with a low limit of detection (LOD) of 10 nM. The constructed sensor exhibited high selectivity and can be easily regenerated and reused. Owing to the anti-fouling ability of nanochannel array, direct electroanalysis of NE in human whole blood was also realized.
Collapse
Affiliation(s)
| | - Ruobing Su
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
47
|
Anti-Biofouling Electrochemical Sensor Based on the Binary Nanocomposite of Silica Nanochannel Array and Graphene for Doxorubicin Detection in Human Serum and Urine Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248640. [PMID: 36557774 PMCID: PMC9786716 DOI: 10.3390/molecules27248640] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
A disposable and portable electrochemical sensor was fabricated by integrating vertically-ordered silica mesoporous films (VMSF) and electrochemically reduced graphene (ErGO) on a screen-printed carbon electrode (SPCE). Such VMSF/ErGO/SPCEs could be prepared by a simple and controllable electrochemical method. Stable growth of VMSF on SPCE could be accomplished by the introduction of an adhesive ErGO nanolayer owing to its oxygen-containing groups and two-dimensional (2D) planar structure. An outer VMSF layer acting as a protective coating is able to prevent the leakage of the inner ErGO layer from the SPCE surface. Thanks to the electrostatic permselectivity and anti-fouling capacity of VMSF and to the good electroactive activity of ErGO, binary nanocomposites of VMSF and ErGO endow the SPCE with excellent analytical performance, which could be used to quantitatively detect doxorubicin (DOX) in biological samples (human serum and urine) with high sensitivity, good long-term stability, and low sample amounts.
Collapse
|
48
|
Disposable Electrochemical Sensors for Highly Sensitive Detection of Chlorpromazine in Human Whole Blood Based on the Silica Nanochannel Array Modified Screen-Printed Carbon Electrode. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238200. [PMID: 36500293 PMCID: PMC9735719 DOI: 10.3390/molecules27238200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Rapid and highly sensitive quantitative analysis of chlorpromazine (CPZ) in human whole blood is of great importance for human health. Herein, we utilize the screen-printed carbon electrodes (SPCE) as the electrode substrates for growth of highly electroactive and antifouling nanocomposite materials consisting of vertically ordered mesoporous silica films (VMSF) and electrochemically reduced graphene oxide (ErGO) nanosheets. The preparation of such VMSF/ErGO/SPCE could be performed by using an electrochemical method in a few seconds and the operation is controllable. Inner ErGO layer converted from graphene oxide (GO) in the growth process of VMSF provides oxygen-containing groups and two-dimensional π-conjugated planar structure for stable fabrication of outer VMSF layer. Owing to the π-π enrichment and excellent electrocatalytic abilities of ErGO, electrostatic preconcentration and antifouling capacities of VMSF, and inherent disposable and miniaturized properties of SPCE, the proposed VMSF/ErGO/SPCE sensor could be applied for quantitative determination of CPZ in human whole blood with high accuracy and sensitivity, good stability, and low sample consumption.
Collapse
|
49
|
A Background-Free SERS Strategy for Sensitive Detection of Hydrogen Peroxide. Molecules 2022; 27:molecules27227918. [PMID: 36432018 PMCID: PMC9695938 DOI: 10.3390/molecules27227918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2) with an ultralow detection limit (1 × 10-10 mol/L), using a Raman-silent strategy. The Au microparticles (Au-RSMPs) resembling rose-stones are devised as SERS substrates with a high enhancement effect, and 4-mercaptophenylboronic acid (4-MPBA) is selected as an H2O2-responsive Raman reporter. Upon the reaction with H2O2, the phenylboronic group of 4-MPBA was converted to a phenol group, which subsequently reacted with 4-diazonium-phenylalkyne (4-DP), an alkyne-carrying molecule via the azo reaction. The formed product exhibits an intense and sharp SERS signal in the Raman-silent region, avoiding interference of impurities and biomolecules. As a proof-of-concept demonstration, we show that this SERS sensor possesses significant merits towards the determination of H2O2 in terms of broad linear range, low limit of detection, and high selectivity, showing promise for the quantitative analysis of H2O2 in complicated biological samples.
Collapse
|
50
|
Ma N, Luo X, Wu W, Liu J. Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223981. [PMID: 36432268 PMCID: PMC9696649 DOI: 10.3390/nano12223981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 05/05/2023]
Abstract
Sensitive determination of C-reactive protein (CRP) is of great significance because it is an early indicator of inflammation in cardiovascular disease and acute myocardial infarction. A disposable electrode with an integrated three-electrode system (working, reference, and counter electrodes) has great potential in the detection of biomarkers. In this work, an electrochemical immunosensing platform was fabricated on disposable and integrated screen-printed carbon electrode (SPCE) by introducing nanochannel arrays and gated electrochemical signals, which can achieve the sensitive detection of CRP in serum. To introduce active reactive groups for the fabrication of immuno-recognitive interface, vertically-ordered mesoporous silica-nanochannel film (VMSF) with rich amino groups (NH2-VMSF) was rapidly grown by electrochemical assisted self-assembly (EASA). The electrochemically reduced graphene oxide (ErGO) synthesized in situ during the growth of NH2-VMSF was used as a conductive adhesive glue to achieve stable bonding of the nanochannel array (NH2-VMSF/ErGO/SPCE). After the amino group on the outer surface of NH2-VMSF reacted with bifunctional glutaraldehyde (GA/NH2-VMSF/ErGO/SPCE), the converted aldehyde surface was applied for covalent immobilization of the recognitive antibody (Ab) followed with the blocking of the non-specific sites. The fabricated immunosensor, Ab/GA/NH2-VMSF/ErGO/SPCE, enables sensitive detection of CRP in the range from 10 pg/mL to 100 ng/mL with low limit of detection (LOD, 8 pg/mL, S/N = 3). The immunosensor possessed high selectivity and can realize reliable determination of CRP in human serum.
Collapse
Affiliation(s)
- Ning Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Luo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weidong Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.W.); or (J.L.)
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (W.W.); or (J.L.)
| |
Collapse
|