1
|
Wang L, Yu S, Wang J, Wang Q, Mao Y, Zheng L. Manganese-doped carbon nanospheres with robust peroxidase-like activity for the colorimetric detection of total antioxidant capacity. Food Chem 2025; 484:144349. [PMID: 40252442 DOI: 10.1016/j.foodchem.2025.144349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Total antioxidant capacity (TAC) assessment is vital for evaluating food nutritional quality, yet conventional methods face limitations in complex matrices, efficiency, and environmental robustness. To address this, we synthesized manganese-doped porous carbon nanospheres (Mn@CNS), which feature a high density of uniformly distributed diverse catalytic sites, creating an efficient peroxidase-like nanozyme for sensitive colorimetric detection of TAC. Kinetic analysis revealed that Mn@CNS had strong affinities for both 3,3',5,5'-tetramethylbenzidine and H2O2 substrates, with Km values of 0.15 mM and 14.63 mM, respectively. This allowed us to establish an effective colorimetric detection platform for the rapid and sensitive identification of ascorbic acid with a low detection limit of 0.17 μM. Furthermore, we used cysteine, glutathione, ferulic acid, caffeic acid, quercetin and (+)-α-tocopherol to validate the efficacy of Mn@CNS in antioxidant assessment. This assay has successfully evaluated TAC in real samples, highlighting its potential for the rapid, cost-effective, on-site detection of TAC.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sipeng Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ju Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Qiao C, Wang X, Luo H, Ma Y, Yang P, Huo D, Zhang S, Hou C. From discoloration to color enhancement: A novel approach to high-concentration tannic acid detection based on VCo-N-C bimetallic Nanozyme. Food Chem 2025; 481:144021. [PMID: 40154062 DOI: 10.1016/j.foodchem.2025.144021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The direct and rapid detection of high-concentration tannic acid (TA) was crucial for food quality monitoring. In this study, a TA detection system was developed based on a binary metal V and Co-enclosed carbon substrate (VCo-N-C) nanozyme with laccase-like activity, which innovatively shifted the conventional detection approach from the 3,3',5,5'-tetramethylbenzidine (TMB) discoloration principle to the 4-aminoantipyrine(4-AP) color enhancement principle. In the presence of VCo-N-C, 4-AP specifically bound to the oxidation products of TA, resulting in a brown-red compound. The sensing platform reduced the reaction time to 10 min and extended the detection range to 0.1-3000 mg/L (R2 > 0.99). Ultimately, the VCo-N-C&4-AP system was successfully applied to detect TA content in high-concentration actual samples such as brandy, white liquor, and tea beverages without the need of pretreatment. This study provided a new and powerful strategy for food quality control and monitoring.
Collapse
Affiliation(s)
- Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xinrou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Ping Yang
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Suyi Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| |
Collapse
|
3
|
Chen H, Huang B, Han L. Enhanced performance of bacterial laccase via microbial surface display and biomineralization for portable detection of phenolic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137957. [PMID: 40120271 DOI: 10.1016/j.jhazmat.2025.137957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Designing a portable device based on bacterial laccase (BLac) for on-site assay of phenolic contaminants presents significant challenges. Here, we achieved comprehensive performance enhancement of BLac by integrating biomineralization and microbial surface display technologies. The introduction of cell surface-displayed bacterial laccase (CSD-BLac) reduced costs and improved sensitivity compared to detection methods based on free Blac and whole-cell catalyst. Further, the biomineralization dramatically enhanced the catalytic efficiency (Vmax/Km) of mineralized CSD-BLac (M-CSD-BLac), making it 1.98 times higher than that of CSD-BLac. Mineralization conditions could significantly affect the activity of M-CSD-Blac. Moreover, the biomineralization layer also enhanced the resistance of M-CSD-BLac against high temperature, metal ions, ionic strength and storage time. Further, a portable assay device was developed for detection of phenolic pollutants by depositing M-CSD-BLac on a syringe filter membrane, which demonstrated easy operation, rapid detection (10 min), good reusability (20 cycles). The device not only could reliably differentiate three types of phenols but also quantitatively detect them with high sensitivity. For phenol, m-aminophenol, and p-nitrophenol, the limits of detection were 0.09, 0.28 and 0.17 μM, with detection ranges of 10-70, 20-80 and 15-110 μM, respectively. Additionally, the porous structure of M-CSD-BLac layer and the insertion of M-CSD-BLac into the filter membrane pores allowed effective filtration of smaller pigments from real samples, eliminating the need for additional pretreatment. This work not only proposes a strategy for elevating the activity and stability of laccase, but also stimulates the development of portable assay devices for on-site environmental monitoring.
Collapse
Affiliation(s)
- Haiying Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China.
| |
Collapse
|
4
|
Han X, Zhou J, Li Y, Zhao Y, Li Y, Hua Y, Dong T, Chai F. FeMo 6 integrated covalent organic frameworks: Peroxidase-mimetic colorimetric biosensors for multivariate sensing hydrogen peroxide and ascorbic acid in serum and beverages. Food Chem 2025; 479:143727. [PMID: 40073560 DOI: 10.1016/j.foodchem.2025.143727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
An efficient and readable sensor is desirable for food safety and diagnosis. Herein, a homogeneous mimicking enzyme was constructed by encapsulating polyoxometalate (NH₄)₃[FeMo₆O₁₈(OH)₆]·6H₂O (FeMo6) into the covalent organic framework (FeMo6@COF). Coordinating the spatial confinement effect of COF, FeMo6 exhibited superior peroxide-like activity to catalyze H2O2 to O2-• which achieved the "on-off" consecutive sensing of H2O2 and AA via a readable colorimetric mode, with the limit of detection (LOD) at 30 μM and 0.35 μM, respectively. A convenient smartphone assistant platform was established and realized rapid, portable, visual monitoring of AA with LOD of 0.06 μM, and satisfied recoveries with 96.88-104.65 % in human serum and 98.37-107.61 % in commercial beverages. Furthermore, a logic gate circuit was designed to illustrate the potential utilization of combining the intelligent facilities with the experiment. This strategy provides efficient, swift, convenient sensor FeMo6@COF with great potential contribution in food safety and diagnosis.
Collapse
Affiliation(s)
- Xinyu Han
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jihong Zhou
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yunjie Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuhan Zhao
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yanfei Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingjie Hua
- School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou 571158, PR China.
| | - Taowen Dong
- College of Automotive Engineering, Jilin University, Changchun 130012, China.
| | - Fang Chai
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
5
|
Wang X, Xu R, Wang Y, Li M, Wei H, Qin G, Li Y, Wei Y. Self-supplying of hydrogen peroxide nanozyme-based colorimetric sensing array as electronic tongue for biothiol detection and disease discrimination. Talanta 2025; 288:127727. [PMID: 39965379 DOI: 10.1016/j.talanta.2025.127727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Developing a highly reliably and sensitive nanozyme-based colorimetric sensor array for biothiols analysis is critical owing to they play an essential role in diagnosing disease. The required procedure of introducing hydrogen peroxide (H2O2) directly into the colorimetric reaction systems in traditional biothiols array analysis limits its applicability due to its poor stability and inhibition in biomolecular activity by using the high-concentration H2O2. Herein, we carried out a "green" and convenient approach to propose for the biothiol detection and disease discrimination through nanozymes-based colorimetric sensor technique without adding the high-concentration H2O2 for the first time. The copper peroxide nanodots (CPNs) and graphene oxide (GO) modified CPNs (GO@CPNs) are as sensing units to release H2O2 and Cu2+ under acidic conditions, which triggered a Fenton-like reaction, generating hydroxyl radical (•OH) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) accompanied by a change in TMB color from colorless to blue. Due to the synergistic effect of Cu2+ and GO, GO@CPNs showed increased the activity of peroxidase-like compared to CPNs. Therefore, the catalytic abilities of nanozymes-based colorimetric sensing array were inhibited to different degrees by different biothiols (i.e., glutathione (GSH), cysteine (Cys) and homocysteine (Hcy)) with a detection limit of 50 nM, which could be precisely distinguished by using pattern recognition method. Besides, the detection of a single biothiol at different concentrations and mixtures of biothiols has also been achieved. Moreover, the real biological samples (cells and human serum) can be accurately discriminated through array method, which demonstrated its potential application of medical diagnosis.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Ruoping Xu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yudan Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Meihong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Hong Wei
- Chenggong District People's Hospital, Kunming, Yunnan, 650500, People's Republic of China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China.
| | - Yupeng Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
6
|
Liu J, Wang Y, He M, Gao Y, Pan Q, Li J. Cerium-based metal-organic framework nanozyme with high oxidase-like activity at neutral pH for discrimination and detection of antioxidants. Biosens Bioelectron 2025:117608. [PMID: 40419415 DOI: 10.1016/j.bios.2025.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/06/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
Oxidase-mimicking nanozymes have witnessed extensive applications in biosensing, however, a huge shortcoming is their activity limited by acidic conditions. Herein, a Ce-MOF containing hexanuclear clusters was developed, which exhibited robust oxidase-like activity at neutral pH (0.97 U mg-1) with the extremely high affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (Km: 0.012 mM) and wide temperature adaptability (0-50 °C). Experiment screening and theoretical calculations revealed that the high activity was derived from unsaturated CeIV active sites and the redox cycling of unique Ce4+/Ce3+ node. These factors endow Ce-MOF generating more O2•- species and significantly reducing the energy barrier of the rate-controlling step in the catalytic process. Given the exceptional activity for two chromogenic substrates, a two-channel colorimetric array is constructed to successfully distinguish four antioxidants. The detection was operated within 2 min in ultrapure water at room temperature, showing excellent convenience and efficiency. This study carries significant implications for developing oxidase-mimics with high activity under neutral pH and constructing simple and practical platforms to identify antioxidants in complex samples.
Collapse
Affiliation(s)
- Junxue Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yufei Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Mingqin He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yan Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology and College of Science, Hainan University, Haikou, 570228, PR China.
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| |
Collapse
|
7
|
Ren Z, Deng Q, Wang Y, Yang Y, Wang H, Liu F, Jing W. Machine learning assisted nanozyme sensor array for accurate identification and discrimination of flavonoids in healthy tea. Food Chem 2025; 486:144612. [PMID: 40339423 DOI: 10.1016/j.foodchem.2025.144612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Identifying flavonoids in herbs is of great significance for elucidating their biological activity and pharmacological effects. However, distinguishing and detecting multiple flavonoids simultaneously remains a challenge. Here, an innovative citric acid-Cu (CA-Cu) nanozyme with peroxidase mimic (POD) and laccase mimic (LAC) activities was successfully synthesized. Due to the varying inhibitory effects of flavonoids on CA-Cu dual-enzyme mimicking activities, and the degree of inhibition increasing with prolonged reaction time, a nanozyme sensor array was constructed based on reaction kinetics and applied to the identification of five flavonoids. This technique further streamlines the building of sensing channels. Moreover, by integrating various machine learning algorithms with the sensor arrays, accurate identification and prediction of five flavonoids in multiple herb samples have been successfully achieved. Finally, the sensor array successfully achieved the differentiation and recognition of multiple healthy tea, demonstrating its feasibility in efficiently distinguishing and detecting flavonoids in complex samples.
Collapse
Affiliation(s)
- Zemin Ren
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Qingxu Deng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Yu Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yajun Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Hongbin Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Fufeng Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
8
|
Deng L, Zhang L, Qi R, Chen J, Song W, Lu X. Copper Nanoparticles Loaded on N-Doped Carbon Nanotubes with Enhanced Peroxidase-Like Performance for Gallic Acid Detection in Food. Inorg Chem 2025; 64:8439-8447. [PMID: 40228228 DOI: 10.1021/acs.inorgchem.5c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The accurate monitoring of gallic acid (GA) in foodstuffs is crucial for safeguarding human health. The application of nanozymes in colorimetric assays offers a promising route for assessing the GA level. However, the development of high-efficiency and cost-effective nanozymes for quick GA detection holds a substantial challenge. In this study, copper (Cu) nanoparticles (NPs) immobilized on N-doped carbon nanotubes (NCNTs) have been prepared, exhibiting exceptional peroxidase (POD)-like activity for GA detection in food. The anchoring of Cu nanoparticles with NCNTs enables their excellent antioxidant capacity. Then, the obtained Cu NPs/NCNTs show remarkable POD-like activity in catalyzing TMB oxidation, with the attributes of long-term storage stability and reproducibility. Electrochemical assays and radical scavenging experiments reveal a dual mechanism action (involving reactive oxygen species and electron transfer) for the POD-mimicking activity. Furthermore, the developed colorimetric catalytic platform is applied to detect GA in actual tea samples, demonstrating high reliability and potential utility for GA monitoring in the food industry.
Collapse
Affiliation(s)
- Li Deng
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Linfeng Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ruikai Qi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiaming Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
9
|
Xu J, Wang Y, Li Z, Liu F, Jing W. Machine learning assisted multi-signal nanozyme sensor array for the antioxidant phenolic compounds intelligent recognition. Food Chem 2025; 471:142826. [PMID: 39798372 DOI: 10.1016/j.foodchem.2025.142826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Identifying antioxidant phenolic compounds (APs) in food plays a crucial role in understanding their biological functions and associated health benefits. Here, a bifunctional Cu-1,3,5-benzenetricarboxylic acid (Cu-BTC) nanozyme was successfully prepared. Due to the excellent laccase-like behavior of Cu-BTC, it can catalyze the oxidation of various APs to produce colored quinone imines. In addition, Cu-BTC also exhibits excellent peroxidase-like behavior, which can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to form blue oxidized TMB and exhibits higher photothermal properties under near-infrared laser irradiation. Due to the strong reducibility of APs, this process can be inhibited. A dual-mode colorimetric/ photothermal sensor array was constructed, successfully achieving discriminant analysis of APs. Moreover, by integrating artificial neural network (ANN) algorithms with sensor arrays, precise identification and prediction of APs in black tea, coffee, and wine have been successfully accomplished. Finally, with the assistance of smartphones, a portable detection method for APs was developed.
Collapse
Affiliation(s)
- Jiahao Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Wenjie Jing
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
10
|
Feng M, Zhang X, Huang Y. Developing oxygen vacancy-rich CuMn 2O 4/carbon dots dual-function nanozymes via Chan-Lam coupling reaction for the colorimetric/fluorescent determination of D-penicillamine. Biosens Bioelectron 2025; 267:116864. [PMID: 39442436 DOI: 10.1016/j.bios.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Defect engineering is a promising approach to construct high performance nanozymes due to its ability to regulate their physical and chemical properties. However, how to construct defects to improve the activity of nanozymes remains a challenge. Herein, for the first time, the Chan-Lam coupling reaction is used to construct the oxygen vacancy (OV)-rich CuMn2O4/carbon dots (CDs) (OV-CuMn2O4/CDs) dual-function nanozymes with fluorescent (FL) and oxidase-like properties, via regulating the low-valent metal ions (Cu+ and Mn2+) and Ov contents in the spinel CuMn2O4 and in-situ growth of β-cyclodextrin (β-CD)-derived CDs. Expectedly, relative to CuMn2O4, the OV-CuMn2O4/CDs exhibited 35.8%, 8.5%, and 14.6% rise in the contents of Cu+, Mn2+ and Ov, respectively. Abundant Ov provides more O2 adsorption/activation sites, and the charge transfer between Ov and metal atoms increases the charge density around metal atoms. This produces more low-valent metals (like Cu+ and Mn2+) to promote the electron transfer from metal to O atoms and O-O bond cleavage. Thus, the oxidase-like activity of OV-CuMn2O4/CDs is 4.1 times that of CuMn2O4. Also, the in-situ growth of β-CD-derived carbon dots on CuMn2O4 endows OV-CuMn2O4/CDs selective target recognition. Thus, a sensitive and selective colorimetric and fluorescence dual-mode method was established for determining D-penicillamine (D-PA), with the limit of detection of 0.25 and 0.048 μM, respectively. The method was applied to D-PA determination in real samples. This work demonstrates the Chan-Lam coupling reaction can be used to construct high performance nanozymes for developing dual-mode sensor for the detection of targets.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Liu C, Huang Q. LTP-assisted fabrication of laccase-like Cu-MOF nanozyme-encoded array sensor for identification and intelligent sensing of bioactive components in food. Biosens Bioelectron 2025; 267:116784. [PMID: 39288708 DOI: 10.1016/j.bios.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nanozymes are potential candidates for constructing sensors due to their adjustable activity, high stability, and high cost-effectiveness. However, due to the lack of reasonable means, designing and preparing efficient nanozymes remains challenging. Herein, inspired by the property of natural laccase, we applied the novel and facile low-temperature plasma (LTP) technology to fabricate a series of different base-ligand Cu metal organic framework (MOF) nanozymes (namely, A-Cu, G-Cu, C-Cu and T-Cu nanozymes) with laccase-like activity successfully. Owing to the different catalytic capacities of four types of base-Cu-MOF nanozymes in the response to five common effective bioactive substances, we constructed the nanozyme-encoded array sensor for the identification of different bioactive compounds. As a result, the four-channel colorimetric sensor array was constructed, in which four laccase-like nanozymes were utilized as the sensing units, achieving high-throughput, high-sensitivity and rapid detection/identification of five common bioactive compounds in the concentration range of 1.5-150 μg mL-1 through different color output patterns. It is worth noting that the as-prepared sensor array can successfully distinguish the natural bioactive compounds in a variety of real samples. Furthermore, with the assistance of smartphones, we also designed a portable smart sensing approach for detecting the bioactive compounds effectively in food. This study has therefore not only provided an effective way for preparation highly effectively nanozymes, but also established a new sensing platform for intelligent sensing of bioactive components in food.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
12
|
Tang W, Chen S, Song Y, Tian M, Yan R, Mao B, Chai F. Controllable fabrication of high-quantum-yield bimetallic gold/silver nanoclusters as multivariate sensing probe for Hg 2+, H 2O 2, and glutathione based on AIE and peroxidase mimicking activity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136254. [PMID: 39471624 DOI: 10.1016/j.jhazmat.2024.136254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The grave threat posed by heavy metals and food hazards has increased the urgency of rapid and precise detection for food security and human health. Efficient multivariate sensing probes are imperatively required for sensing heavy metals and tumor markers, which are still facing great challenge in terms of multi-functional integration. Here, bimetallic gold-silver nanoclusters (NG-AuAgNCs) were developed with unique aggregation-induced-emission (AIE) property and peroxidase (POD) mimicking activity towards the efficient multivariate sensing via optimization of the precursors. The NG-AuAgNCs emitted at 614 nm and enable AIE feature with lifetime of 12.61 μs and high quantum yield of 40.5%. Possessing AIE and POD activity, the NG-AuAgNCs show great potential as fluorimetric and colorimetric dual-mode probe for multivariate sensing Hg2+, H2O2 and GSH, with good recoveries in real samples. The NG-AuAgNCs paper sensors further integrating with smartphone, achieved portable detection of Hg2+ with limit of detection (LOD) of 19 nM, while the colorimetric-mode presented consecutive response to H2O2 and GSH via a reversible oxidase tetramethylbenzidine process with LODs of 7.02 and 0.45 μM, respectively. This work not only demonstrates a multivariate probe for environment and human health, but also provides valuable insights for the function integration of the nanocluster via synthetic manipulation.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Siqi Chen
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ying Song
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Miaomiao Tian
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fang Chai
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
13
|
Jing W, Yang Y, Shi Q, Wang Y, Liu F. Machine Learning-Based Nanozyme Sensor Array as an Electronic Tongue for the Discrimination of Endogenous Phenolic Compounds in Food. Anal Chem 2024; 96:16027-16035. [PMID: 39325964 DOI: 10.1021/acs.analchem.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The detection of endogenous phenolic compounds (EPs) in food is of great significance in elucidating their bioactivity and health effects. Here, a novel bifunctional vanillic acid-Cu (VA-Cu) nanozyme with peroxidase-like and laccase-like activities was successfully prepared. The peroxidase mimic behavior of VA-Cu nanozyme can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to generate oxidized TMB (oxTMB). Owing to the high reducing power of EPs, this process can be inhibited, and the degree of inhibition increases with the increase of reaction time. Additionally, owing to the outstanding laccase mimic behavior of the VA-Cu, it can facilitate the oxidation of various EPs, resulting in the formation of colored quinone imines, and the degree of catalysis increases with the increase of reaction time. Based on the interesting experimental phenomena mentioned above, a six-channel nanozyme sensor array (2 enzyme-mimic activities × 3 time points = 6 sensing channels) was constructed, successfully achieving discriminant analysis of nine EPs. In addition, the combination of artificial neural network (ANN) algorithms and sensor arrays has successfully achieved accurate identification and prediction of nine EPs in black tea, honey, and grape juice. Finally, a portable method for identifying EPs in food has been proposed by combining it with a smartphone.
Collapse
Affiliation(s)
- Wenjie Jing
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yajun Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Qihao Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| |
Collapse
|
14
|
Yang Y, Liu J, Li W, Zheng Y, Xu W. Colorimetric/fluorescent dual-mode assay for antioxidant capacity of gallnuts based on CuCo nanozyme and AIE luminogen. Talanta 2024; 277:126345. [PMID: 38878507 DOI: 10.1016/j.talanta.2024.126345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/19/2024]
Abstract
In this work, we present a dual-mode assay system consisting of a nanozyme and a luminogen with the aggregation-induced emission (AIE) feature. In the assay system, the chosen nanozyme named CuCo-0 catalyzes the substrate to produce colorimetric signals, while the aggregates of H4ETTC (4,4',4″,4‴-(ethene-1,1,2,2-tetrayl) tetrakis ([1,1'-biphenyl]-4-carboxylic acid), a typical AIE luminogen, generate fluorescent signals. The peroxidase-like activity of the CuCo-0 nanozyme can be remarkably suppressed with sequential additions of antioxidants, leading to a dual-signal response characterized by enhanced fluorescence emission and reduced UV-vis absorbance. On this basis, a dual-mode assay capable of producing both colorimetric and fluorescent signals for the assessment of antioxidant capacity using gallic acid as a representative antioxidant was exploited. Good linearity can be obtained in the 0-60 μM range for both colorimetric analysis and fluorescent analysis, with detection limits of 1.3 μM and 0.35 μM, respectively. Furthermore, this dual-mode assay was successfully applied to real gallnut samples, yielding satisfactory results.
Collapse
Affiliation(s)
- Yiming Yang
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Junlei Liu
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Wenying Li
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| | - Yueqing Zheng
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| | - Wei Xu
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| |
Collapse
|
15
|
Liao Y, He Y, Zhang B, Ma Y, Zhao M, Xu R, Cui H. Preparation of hollow double-layer Pt@CeO 2 nanospheres as oxidase mimetics for the colorimetric-fluorescent-SERS triple-mode detection of glutathione in serum. Talanta 2024; 276:126234. [PMID: 38749161 DOI: 10.1016/j.talanta.2024.126234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/06/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Glutathione (GSH) is an essential antioxidant in the human body, but its detection is difficult due to the interference of complex components in serum. Herein, hollow double-layer Pt@CeO2 nanospheres were developed as oxidase mimetics, and the light-assisted oxidase mimetics effects were found. The oxidase activity was enhanced significantly by utilizing the synergistic effect of Schottky junction and the localized surface plasmon resonance (LSPR) of Pt under UV light. A novel GSH colorimetric-fluorescent-SERS sensing platform was established, with the sensing performance notably boosted by using the light-assisted oxidase mimetics effects. This platform boasts an exceptionally low detection limit (LOD) of 0.084 μM, while the detection time was shortened from 10 min to just 2 min. The anti-interference detection with high recovery rate (96.84%-107.4 %) in real serum made it be promising for practical application.
Collapse
Affiliation(s)
- Yiquan Liao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Yichang He
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Bin Zhang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China.
| | - Ruiqi Xu
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| |
Collapse
|
16
|
Lin Y, Cheng JH, Ma J, Zhou C, Sun DW. Elevating nanomaterial optical sensor arrays through the integration of advanced machine learning techniques for enhancing visual inspection of food quality and safety. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39015031 DOI: 10.1080/10408398.2024.2376113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.
Collapse
Affiliation(s)
- Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Chenyue Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Ireland
| |
Collapse
|
17
|
Chen Z, Li S, Guan Y, Wu C, Qian Y, Zhou H, Qian Y, Yue Y, Yue W. Ultrasmall CuMn-His Nanozymes with Multienzyme Activity at Neutral pH: Construction of a Colorimetric Sensing Array for Biothiol Detection and Disease Identification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34538-34548. [PMID: 38940445 DOI: 10.1021/acsami.4c04844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Biothiol assays offer vital insights into health assessment and facilitate the early detection of potential health issues, thereby enabling timely and effective interventions. In this study, we developed ultrasmall CuMn-Histidine (His) nanozymes with multiple enzymatic activities. CuMn-His enhanced peroxidase (POD)-like activity at neutral pH was achieved through hydrogen bonding and electrostatic effects. In addition, CuMn-His possesses laccase (LAC)-like and superoxide dismutase (SOD)-like activities at neutral pH. Based on three different enzyme mimetic activities of CuMn-His at neutral pH, the colorimetric sensing array without changing the buffer solution was successfully constructed. The array was successfully used for the identification of three biothiols, glutathione (GSH), cysteine (Cys), and homocysteine (Hcy). Subsequently, excellent application results were shown in complex serum and cellular level analyses. This study provides an innovative strategy for the development of ultrasmall bimetallic nanozymes with multiple enzymatic activities and the construction of colorimetric sensing arrays.
Collapse
Affiliation(s)
- Zihui Chen
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shuaiwen Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yue Guan
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Cuiping Wu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yiwen Qian
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Houcheng Zhou
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuqing Qian
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, People's Republic of China
| | - Yu Yue
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
18
|
Yang X, Bi Z, Yin C, Huang H, Li Y. A novel hybrid sensor array based on the polyphenol oxidase and its nanozymes combined with the machine learning based dual output model to identify tea polyphenols and Chinese teas. Talanta 2024; 272:125842. [PMID: 38428131 DOI: 10.1016/j.talanta.2024.125842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|
19
|
Feng M, Zhang X, Huang Y. Cationic regulation of specificity and activity of defective MCo 2O 4 nanozyme (M=Fe, Co, Ni, Cu) for colorimetric detection of caffeic acid. Talanta 2024; 271:125714. [PMID: 38306812 DOI: 10.1016/j.talanta.2024.125714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Spinel oxide has great promise in constructing highly active nanozymes due to its tunable crystal structure. However, it still faces the problems of poor specificity and insufficient enzyme activity, which limits its application in the field of analysis. Herein, a series of transition metal spinel oxides were synthesized by cation regulation strategy, and their enzymatic activity and catalytic mechanism were analyzed. Interestingly, FeCo2O4, Co3O4 and NiCo2O4 had oxidase-like activity and peroxidase-like activity, while CuCo2O4 had specific and high oxidase-like activity. Their oxidase-like activities follow the order of FeCo2O4 < Co3O4 < NiCo2O4 < CuCo2O4, which is consistent with their cation radius. The smaller the cation radius of tetrahedral site, the more beneficial it is to increase the oxidase-like activity. The high oxidase-like activity of CuCo2O4 may be attributed to the production of 1O2, •O2- and •OH. EPR results showed the presence of abundant oxygen vacancies in CuCo2O4. Upon the introduction of EDTA, TMB color reaction fades because of oxygen vacancies elimination by EDTA, indicating that oxygen vacancies played an important role in the reaction. Based on the inhibition effect of caffeic acid on the high oxidase-like activity of CuCo2O4, a simple and sensitive caffeic acid colorimetric sensing platform was developed. The linear range for the detection of caffeic acid is 0.02-15 μM, with a detection limit as low as 13 nM. The constructed sensor enables the detection of caffeic acid in caffeic acid tablets and actual water samples, providing a new strategy for the detection of caffeic acid and drug quality control.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
20
|
Li X, Fan W, Tang H, Li D, Xiao Y, Yang B, Zhao Y, Wu P. Neutral pH photoenzymatic activity of Au-doped g-C 3N 4 nanosheet for colorimetric detection of total antioxidant capacity in food samples. Food Chem 2024; 439:138158. [PMID: 38071846 DOI: 10.1016/j.foodchem.2023.138158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Total antioxidant capacity (TAC) is vital for food quality evaluation. The emergence of various nanozymes with TMB as substrate offered a new avenue for TAC detection due to simple operation and fast response, but a long-standing challenge is its low activity at physiological pH, which may account for the discrepancy between the measured TAC and the actual antioxidant capacity in vivo. Herein, Au doping was explored to break the pH limitation of g-C3N4 nanosheets (CNNS) photozyme. The catalytic activities of Au@CNNS at pH 4.0 and 7.4 were 14.9- and 6.2-fold higher than that of CNNS at pH 4. The neutral pH photozymatic activity (photosensitized oxidation of TMB, oxidase mimic) of Au@CNNS was explored for sensitivity TAC detection (LOD: 1.0 μM TE), which featured more convenient operations and higher sensitivity over the DPPH assay. The proposed Au@CNNS-based photozymatic colorimetric method was explored for accurate detection of TAC in drinks and juices.
Collapse
Affiliation(s)
- Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wentong Fan
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghu Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Dongdong Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Peng Wu
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
21
|
Wang L, Ji Y, Wang L, Cao J, Wang F, Li C. Fluorescent multichannel sensor array based on three carbon dots derived from Tibetan medicine waste for the quantification and discrimination of multiple heavy metal ions in water. Mikrochim Acta 2024; 191:254. [PMID: 38594554 DOI: 10.1007/s00604-024-06340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
A fluorescent multichannel sensor array has been established based on three carbon dots derived from Tibetan medicine waste for rapid quantification and discrimination of six heavy metal ions. Due to the chelation between metal ions and carbon dots (CDs), this fluorescence "turn off" mode sensing array can quantify six metal ions as low as "μM" level. Moreover, the six heavy metal ions display varying quenching effects on these three CDs owing to diverse chelating abilities between each other, producing differential fluorescent signals for three sensing channels, which can be plotted as specific fingerprints and converted into intuitive identification profiles via principal component analysis (PCA) and hierarchical cluster analysis (HCA) technologies to accurately distinguish Cu2+, Fe3+, Mn2+, Ag+, Ce4+, and Ni2+ with the minimum differentiated concentration of 5 μM. Valuably, this sensing array unveils good sensitivity, exceptional selectivity, ideal stability, and excellent anti-interference ability for both mixed standards and actual samples. Our contribution provides a novel approach for simultaneous determination of multiple heavy metal ions in environmental samples, and it will inspire the development of other advanced optical sensing array for simultaneous quantification and discrimination of multiple targets.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yang Ji
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Lu Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jia Cao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Chi Z, Gu J, Li H, Wang Q. Recent progress of metal-organic framework-based nanozymes with oxidoreductase-like activity. Analyst 2024; 149:1416-1435. [PMID: 38334683 DOI: 10.1039/d3an01995k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nanozymes, a class of synthetic nanomaterials possessing enzymatic catalytic properties, exhibit distinct advantages such as exceptional stability and cost-effectiveness. Among them, metal-organic framework (MOF)-based nanozymes have garnered significant attention due to their large specific surface area, tunable pore size and uniform structure. MOFs are porous crystalline materials bridged by inorganic metal ions/clusters and organic ligands, which hold immense potential in the fields of catalysis, sensors and drug carriers. The combination of MOFs with diverse nanomaterials gives rise to various types of MOF-based nanozyme, encompassing original MOFs, MOF-based nanozymes with chemical modifications, MOF-based composites and MOF derivatives. It is worth mentioning that the metal ions and organic ligands in MOFs are perfectly suited for designing oxidoreductase-like nanozymes. In this review, we intend to provide an overview of recent trends and progress in MOF-based nanozymes with oxidoreductase-like activity. Furthermore, the current obstacles and prospective outlook of MOF-based nanozymes are proposed and briefly discussed. This comprehensive analysis aims to facilitate progress in the development of novel MOF-based nanozymes with oxidoreductase-like activity while serving as a valuable reference for scientists engaged in related disciplines.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
23
|
Wang X, Liu H, Qiao C, Ma Y, Luo H, Hou C, Huo D. A dual-functional single-atom Fe nanozyme-based sensitive colorimetric sensor for tannins quantification in brandy. Food Chem 2024; 434:137523. [PMID: 37742553 DOI: 10.1016/j.foodchem.2023.137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Traditional methods of tannins detection suffer from complex pretreatment, long detection time, and limited sensitivity. Modern techniques like liquid chromatography require expertise, involve tedious result processing, and lack effective data visualization. Therefore, there is a need for an alternative detection method that simplifies pretreatment and detection steps, reduces analysis time, and provides visualized results. In this study, a novel colorimetric sensor based on single-atom Fe nanozyme (Fe@CN-20) was developed for tannins detection. Fe@CN-20 exhibited laccase-like and oxidase-like activities, enabling simultaneous oxidation of tannins and a substrate called TMB. Tannins competed with TMB, allowing quantification of tannins content. The Fe@CN-20/TMB system provided a detection range of 5-100 mg/L tannic acid, with a detection limit of 0.13 mg/L (S/N = 3). Analysis time was approximately 30 min. The platform successfully quantified tannins in brandy, showing less than 5% deviation compared to the standard method. The sensor was simple, sensitive, rapid, and provided strong visualization.
Collapse
Affiliation(s)
- Xinrou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
24
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
25
|
Liu J, Ma W, Wang Y, Gu Q, Pan Q, Zong S, Qin M, Li J. Enhanced oxidase-mimic constructed by luminescent carbon dots loaded on MIL-53(Fe)-NO 2 for dual-mode detection of gallic acid and biothiols in food and humans. Food Chem 2024; 433:137241. [PMID: 37660599 DOI: 10.1016/j.foodchem.2023.137241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Monitoring of gallic acid (GA) in food and biothiols in humans is crucial for body health. Nanozyme-mediated colorimetric strategy for evaluating them has been widely applied nowadays, however, the inferior efficient and susceptible single-signal recognition limit its further application. Herein, a sensitive biosensor was first constructed for bimodal detection of GA and biothiols based on CDs@MIL-53(Fe)-NO2, prepared through a facile and time-saving microwave treatment. Benefiting from the excellent fluorescent and electron transfer properties of CDs, CDs@MIL-53(Fe)-NO2 exhibited significant enhanced blue fluorescence and oxidase-like activity, which could oxide colorless 3,3',5,5'-tetramethylbenzidine without H2O2, and the blue product could quench the fluorescence of composite. The dual-mode assay based on such bifunctional nanozyme showed an extremely sensitivity towards GA/l-cysteine/homocysteine with the detection limit of 62/65/124 nM and 17/16/27 nM in colorimetric/fluorescent modes, respectively. The practicability in real samples and portability based on a smartphone of the analysis has been investigated with reliable results.
Collapse
Affiliation(s)
- Junxue Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wenyan Ma
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yufei Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, China
| | - Qinfen Gu
- The Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology and College of Science, Hainan University, Haikou 570228, China
| | - Siyu Zong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Minghao Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
26
|
Yang X, Bi Z, Yin C, Zhang S, Song D, Huang H, Li Y. A colorimetric sensor array based on peroxidase activity nanozyme for the highly efficient differential sensing of tea polyphenols and Tieguanyin adulteration. Food Chem 2024; 432:137265. [PMID: 37657343 DOI: 10.1016/j.foodchem.2023.137265] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Tieguanyin (TGY) is one of top ten famous teas in China, but in the process of brand building there is the phenomenon of falsehood, thus harming the interests of consumers. To solve theadulterate problem of TGY, a colorimetric sensor array (CSA) based onperoxidase activity of nanozyme was constructed. Nanozymes can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to 3,3',5,5'-tetramethyl -[1,1'-bis(cyclohexyl)]-2,2',5,5'-tetraene-4,4'-diimine (oxTMB), while the tea polyphenols (TPs) can inhibit this process, and the degree of inhibition varies significantly with the reaction time. We selected two nanozymesand three reaction time points to construct CSA. It can successfully distinguish TPsin TGY. The discriminative analysiscan achieve: (1)distinction between TGY and adulterated tea, (2)discrimination of TGY in various seasons and seasonal adulteration in different degrees. The method constructed in this work is promising for both the class and quality differentiation of TGY and other teas with TPs as the main activity.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Shuyi Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
27
|
Jing W, Shi Q, Zheng M, Yang Y, Qiang S, Jia Z, Zhu T, Zhao Y, Qu Y, Lu F, Liu F, Dai Y. Smartphone-assisted nanozyme sensor array constructed based on reaction kinetics for the discrimination and identification of phenolic compounds. Anal Chim Acta 2024; 1287:342133. [PMID: 38182397 DOI: 10.1016/j.aca.2023.342133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
Although the research on nanozymes has attracted widespread attention in recent years, the development of highly active and multifunctional nanozymes remains a challenge. Here, a bifunctional AMP-Cu nanozyme with laccase- and catecholase-like activities was successfully prepared at room temperature with Cu2+ as the metal ion and adenosine-5'-monophosphate (AMP) as the ligand molecule. Based on the excellent catalytic performance of AMP-Cu, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six common phenolic compounds at low concentrations. This strategy simplifies the construction of sensor array and demonstrates the capacity to obtain multidimensional data from a single material. Finally, with the assistance of smartphones and homemade dark boxes, a portable on-site detection method for phenolic compounds was developed. This work would contribute to the development of portable sensors and the highly efficient identification of phenolic compounds in complex samples.
Collapse
Affiliation(s)
- Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin, 300383, PR China.
| | - Qihao Shi
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Mingqiang Zheng
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Yajun Yang
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Shan Qiang
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Zejun Jia
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Tongtong Zhu
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Yuman Zhao
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Yan Qu
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Fuping Lu
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Fufeng Liu
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Yujie Dai
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| |
Collapse
|
28
|
Tai S, Wang J, Sun F, Pan Q, Peng C, Wang Z. A colorimetric sensor array based on nanoceria crosslinked and heteroatom-doped graphene oxide nanoribbons for the detection and discrimination of multiple pesticides. Anal Chim Acta 2023; 1283:341929. [PMID: 37977774 DOI: 10.1016/j.aca.2023.341929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Nanozymes have demonstrated high potential in constructing colorimetric sensor array for pesticides. However, rarely array for pesticides constructed without bio-enzyme were reported. Herein, nanoceria crosslinked graphene oxide nanoribbons (Ce-GONRs) and heteroatom-doped graphene oxide nanoribbons (Ce-BGONRs and Ce-NGONRs) were prepared, demonstrating excellent peroxidase-like activities. A colorimetric sensor array was developed based on directly inhibiting the peroxidase-like activities of the above three nanozymes, which realized the discrimination and quantitative analysis of six pesticides. In the presence of pesticides including carbaryl (Car), fluroxypyr-mepthyl (Flu), thiophanate-methyl (Thio), thiram (Thir), diafenthiuron (Dia) and fomesafen (Fom), the peroxidase-like activities of three nanozymes were inhibited to different degrees, resulting in different fingerprint responses. The six pesticides in the concentration range of 0.1-50 μg/mL and two pesticides mixtures at varied ratios could be detected and discriminated, and minimum detection limit for pesticides was 0.022 μg/mL. In addition, this sensor array has been successfully applied for pesticides discrimination in lake water and apple samples. This work provided a new strategy of constructing simple and sensitive colorimetric sensor array for pesticides based on directly inhibiting the catalytic activities of nanozymes.
Collapse
Affiliation(s)
- Shengmei Tai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jun Wang
- Shandong Institute for Food and Drug Control, Xinluo Road 2749, Jinan, Shandong, 250101, China
| | - Fengxia Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Qiuli Pan
- Shandong Institute for Food and Drug Control, Xinluo Road 2749, Jinan, Shandong, 250101, China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
29
|
He Y, Feng M, Zhang X, Huang Y. Metal-organic framework (MOF)-derived flower-like Ni-MOF@NiV-layered double hydroxides as peroxidase mimetics for colorimetric detection of hydroquinone. Anal Chim Acta 2023; 1283:341959. [PMID: 37977784 DOI: 10.1016/j.aca.2023.341959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Nanozymes are one of the ideal substitutes for natural enzymes because of their excellent chemical stability and simple preparation methods. However, due to the limited catalytic ability of most reported nanozymes, constructing nanomaterials with low cost and high activity is gradually becoming an exploration focus in the field of nanozymes. Heteroatom doping of metal-organic frameworks is one of potential approaches to design nanozymes with high catalytic performance. Due to their multiple valence states properties, V-doped metal-organic framework (MOF)-derived LDH is expected to be a good enzyme-like catalyst. To our knowledge, the V-doped MOF-derived LDH as nanozyme is not explored before. RESULTS We report the in-situ synthesis of NiV-layered double hydroxides (LDHs) on nickel-based MOF, i.e. Ni-MOF@NiV-LDHs. The MOF surface is covered by 2D nanosheets. This unique structural design increases the specific surface area of the material, enables more exposure of catalytic active sites to participate in reactions and accelerates the electron transfer rate. The Ni-MOF@NiV-LDHs have high peroxidase-like activity able to catalyze TMB oxidation by H2O2 via the generation of •OH and O2•-. Relative to Ni-MOF, the Ni-MOF@NiV-LDHs shows 47-fold peroxidase-like activity rise. It had good affinity to TMB and H2O2, with the Michaelis-Menten constants of 0.12 mM and 0.007 mM, respectively. The hydroquinone (HQ) consumed the reactive oxygen species generated in the TMB + H2O2+Ni-MOF@NiV-LDHs system to inhibit the TMB oxidation. On this basis, a sensitive and rapid assay for determining HQ was developed, with a linear range of 0.50-70 μM and a LOD of 0.37 μM. SIGNIFICANCE This work provided some clues for the further development of novel nanozymes with high catalytic performance via a strategy of heteroatom doping. And the constructed colorimetric analysis method was successfully utilized for the determination of HQ in actual waters, which has the potential for practical application in the analysis of environmental pollutants.
Collapse
Affiliation(s)
- Yin He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Min Feng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
30
|
Li JX, Wang JL, Chai TQ, Yang FQ. One-pot synthesized copper-imidazole-2-carboxaldehyde complex material with oxidase-like activity for the colorimetric detection of glutathione and ascorbic acid. Heliyon 2023; 9:e22099. [PMID: 38027898 PMCID: PMC10663933 DOI: 10.1016/j.heliyon.2023.e22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Due to the copper (Cu) active sites, its complexes with oxidase-like activity have superior catalytic properties, which can catalyze a series of specific substrates like 3,3',5,5'-tetramethylbenzidine (TMB), producing colorimetric reactions for the detection of different reducing small-molecule compounds. Attribute to the competitive coordination effects between water molecules and central Cu ions, most of the Cu complexes can hardly be used in the pure aqueous reaction system. In this study, a Cu-based material (Cu-imidazole-2-carboxaldehyde, Cu-ICA) was prepared using copper ions and ICA through a one-step process in the water solution. After the morphology of the material being characterized, the mimetic enzyme behavior of the Cu-ICA was demonstrated through the TMB oxidation. Compared to the other reported oxidase-like mimics, Cu-ICA has better aqueous stability and oxidase-like activity, and shows a higher vmax. Furthermore, basing on the oxidase-like activity of Cu-ICA, a colorimetric method was developed for the ascorbic acid and glutathione detections with linear ranges of 0.5-5 μM and 0.5-4 μM, and limit of detection of 0.1304 μM and 0.097 μM, respectively. Owing to its excellent aqueous stability and oxidase-like activity, Cu-ICA has bright application prospects in the analysis of reducing small-molecule compounds.
Collapse
Affiliation(s)
- Jia-Xin Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| |
Collapse
|
31
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
32
|
Yang M, Yao J, Su B, Xin N, Zhou T, Zeng M, Wu C, Wei D, Sun J, Fan H. "Three-in-one" platform based on Fe-CDs nanozyme for dual-mode/dual-target detection and NIR-assisted bacterial killing. J Mater Chem B 2023. [PMID: 37318801 DOI: 10.1039/d3tb00515a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As nanozymes, carbon dots (CDs) have attracted increasing attention due to their remarkable properties. Besides general enzyme activity, their photoluminescence and photothermal properties have been explored rarely, whereas their synergistic effects might produce CDs-based nanozymes of high performance. Here, iron-doped CDs (Fe-CDs) with tunable fluorescence and enhanced peroxidase-like activity were designed to develop a novel "three-in-one" multifunctional platform to provide dual-mode/dual-target detection and near infrared (NIR)-assisted antibacterial ability. This proposed strategy for a H2O2 test exhibited a wide linear relationship with a low limit of detection (LOD) of 0.16 μM (colorimetric) and 0.14 μM (ratiometric fluorescent). Furthermore, due to the nature of cholesterol being oxidized to H2O2 by cholesterol oxidase, sensitive and selective detection of cholesterol was realized, and the LOD was 0.42 μM (colorimetric) and 0.27 μM (ratiometric fluorescent), surpassing that reported previously. This result suggested that Fe-CDs could be used for dual-mode quantification of large family of H2O2-producing metabolites, thereby paving the way for developing multi-mode sensing strategies based on nanozymes. Moreover, this platform showed synergistic effects for antibacterial application, indicating great prospects for bacterial killing as well as wound disinfection and healing. Hence, this platform could contribute to the construction of multifunctional CDs with high performance.
Collapse
Affiliation(s)
- Mei Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, 644000, P. R. China
| | - Jun Yao
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, P. R. China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| |
Collapse
|
33
|
Wang H, Wu F, Wu L, Guan J, Niu X. Nanozyme colorimetric sensor array based on monatomic cobalt for the discrimination of sulfur-containing metal salts. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131643. [PMID: 37236116 DOI: 10.1016/j.jhazmat.2023.131643] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The identification of sulfur-containing metal salts (SCMs) is of great interest because they play an important role in many biological processes and diseases. Here, we constructed a ternary channel colorimetric sensor array to detect multiple SCMs simultaneously, relying on monatomic Co embedded in nitrogen-doped graphene nanozyme (CoN4-G). Due to the unique structure, CoN4-G exhibits activity similar to native oxidases, capable of catalysing directly the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) by O2 molecules independent of H2O2. Density functional theory (DFT) calculations suggest that CoN4-G has no potential barrier in the whole reaction route, thus presenting higher oxidase-like catalytic activity. Based on different degrees of TMB oxidation, different colorimetric response changes are obtained as "fingerprints" on the sensor array. The sensor array can discriminate different concentrations of unitary, binary, ternary, and quaternary SCMs and has been successfully applied to detect six real samples (soil, milk, red wine and egg white). To advance the field detection of the above four types of SCMs, we creatively propose a smartphone-based autonomous detection platform with a linear range of 1.6-320 μM and a limit of detection of 0.0778-0.218 μM, which demonstrates the potential use of sensor arrays in the application of disease diagnosis and food and environment monitoring.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Fengling Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Lifang Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|