1
|
Li J, Zhang Y, Tian J, Ling G, Zhang P. Advances in magnetic microneedles: From fabrications to applications. Biomaterials 2025; 318:123143. [PMID: 40032442 DOI: 10.1016/j.biomaterials.2025.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Microneedles (MNs) are a new type of physically facilitated penetration technology that not only allows for transdermal drug delivery in a minimally invasive and painless manner, but also serves as a channel for biosignal sensing, demonstrating great potential for application in the medical field. Magnetic materials consist of magnetic elements and their compounds, which can be used for separation, diagnosis, drug delivery and other applications in the fields of medicine, biology and materials. Combining magnetic materials with microneedles can confer magnetic responsiveness to microneedles. Specific strategies for magnetic introduction, corresponding synthetic methods, related applications, and comparisons with other externally stimulus-responsive microneedles are reviewed in this paper on magnetic microneedles. In the end, the limitations of current research and the potential for development of magnetically responsive microneedles are discussed. We hope that the description of magnetic microneedle synthesis methods and related applications in this paper will provide readers with a better understanding of magnetic microneedle systems and inspire the development of novel magnetic microneedle products.
Collapse
Affiliation(s)
- Jiaweijie Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jingjing Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
2
|
Zhao J, Zhao J, Zhang X, Ling G, Zhang P. DNAzyme@MOF breaking pH limitation for the detection of dopamine in the interstitial fluid. Biosens Bioelectron 2025; 279:117367. [PMID: 40097322 DOI: 10.1016/j.bios.2025.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
The level of dopamine (DA) in the human body has a certain correlation with neurological diseases. However, most detection methods of DA are complex and expensive. In this study, laccase-like DNAzyme@MOF with improved pH stability was successfully prepared. DNAzyme@MOF could catalyze the chromogenic substrate to change the color of the solution for the detection of DA in ISF. The addition of DNAzyme made DNAzyme@MOF possess higher stability and enzyme-like activity. The operation process was simple, rapid, and intuitive. In addition, the in vivo DA content in skin interstitial fluid (ISF) was analyzed by an off-line method. The swelling hydrogel microneedles (MNs) were prepared to extract skin ISF. DA in skin ISF was recovered and detected by laccase-like DNAzyme@MOF. This study realized the minimally invasive detection of DA. The proposed detection method of biomarkers in ISF based on DNAzyme@MOF would provide a new dimension towards the future development for the detection of other biomarkers in ISF.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jinnan Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaoyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
3
|
Mohan A, Roy I. Exploring the diagnostic landscape: Portable aptasensors in point-of-care testing. Anal Biochem 2025; 700:115788. [PMID: 39884526 DOI: 10.1016/j.ab.2025.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Aptamers, discovered in the 1990s, have marked a significant milestone in the fields of therapeutics and diagnostics. This review provides a comprehensive survey of aptamers, focusing on their diagnostic applications. It especially encapsulates a decade of aptamer, encompassing research, patents, and market trends. The unique properties and inherent stability of aptamers are discussed, highlighting their potential for various clinical applications. It goes on to introduce biosensor design, emphasizing the advantages of aptamers over antibodies as conventional molecular recognition interface. The operation and design of aptasensors are examined, with a focus on single- and dual-site binding configurations and their respective recognition modes. Paper-based sensors are highlighted as cost-effective, user-friendly alternatives that are gaining widespread adoption, particularly in point-of-care platforms.
Collapse
Affiliation(s)
- Anu Mohan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
4
|
Abouali H, Keyvani F, Hosseini SA, Srikant S, Poudineh M. Continuous High-Throughput Plasma Separation for Blood Biomarker Sensing Using a Hydrodynamic Microfluidic Device. Adv Healthc Mater 2025; 14:e2404193. [PMID: 39972640 PMCID: PMC11973946 DOI: 10.1002/adhm.202404193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Continuous, cost-effective, high-throughput with admissible yield and purity of blood plasma separation is widely needed for biomarker detection in the clinic. The existing gold standard technique (centrifugation) and microfluidic technologies fall short of meeting these criteria. In this study, a microfluidic device design is demonstrated based on passive hydrodynamic principles to achieve admissible yield and purity plasma samples. Through computational and experimental assessments, it is shown that side channels with varying lengths are required to improve the plasma extraction rate. The optimized side channels in this device design use the formed cell-free layer regions in the expanded areas to extract plasma consistently and efficiently. These Hydrodynamic Continuous, High-Throughput Plasma Separator (HCHPS) microfluidic devices achieve a purity in the range of 47% to 64% with whole blood and maintaining a yield of 10% to 18%, with half hemolysis compared to gold standard centrifugation. These devices also separate the plasma from diluted blood with a purity in the range of 62% to 97% with a similar yield range. Additionally, whole human blood spiked with lactate was processed through the HCHPS device, and the separated plasma is collected and analyzed using two biosensing approaches, a bead-based fluorescence, and an electrochemical aptamer biosensing, confirming the quality of plasma for downstream biomarker detection.
Collapse
Affiliation(s)
- Hesam Abouali
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Seied Ali Hosseini
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Sanjana Srikant
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| |
Collapse
|
5
|
Kordyl O, Styrna Z, Wojtyłko M, Dlugaszewska J, Kaminska D, Murias M, Mlynarczyk DT, Jadach B, Skotnicka A, Michniak-Kohn B, Osmałek T. Optimization of LCD-Based 3D Printing for the Development of Clotrimazole-Coated Microneedle Systems. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1580. [PMID: 40271758 PMCID: PMC11990237 DOI: 10.3390/ma18071580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Fungal infections pose a significant global health problem, affecting 20-25% of the population and contributing to over 3.75 million deaths annually. Clotrimazole (CLO) is a widely used topical antifungal drug, but its efficacy is limited by poor penetration through the stratum corneum. Microneedle (MN) systems, composed of micron-scale structures arranged on a patch, offer a promising strategy to overcome the outermost skin barrier and enhance drug penetration into deeper layers. However, optimizing MN design, particularly in terms of size, shape, and fabrication technology, is essential for efficient drug delivery. This study aimed to develop CLO-coated MN systems using an Liquid Crystal Display (LCD)-based 3D printing technique and a thin-film dip-coating method. A comprehensive optimization of printing parameters, including anti-aliasing, layer thickness, curing time, and printing angle, was conducted to ensure the desired mechanical properties. The optimized MNs were coated with either suspension or ethanol-based CLO-hydrogels, with ethanol hydrogel demonstrating superior characteristics. Additionally, the study investigated how microneedle geometry and coating formulation influenced drug release. Antifungal activity against reference and clinical origin Candida albicans strains varied significantly depending on the coating formulation. Finally, the acute toxicity test confirmed no significant toxic effects on Aliivibrio fischeri, indicating the potential biocompatibility and safety of the developed MN-based drug delivery system.
Collapse
Affiliation(s)
- Oliwia Kordyl
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland; (Z.S.); (M.W.)
| | - Zuzanna Styrna
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland; (Z.S.); (M.W.)
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland; (Z.S.); (M.W.)
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland; (J.D.); (D.K.)
| | - Dorota Kaminska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland; (J.D.); (D.K.)
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland;
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Division of Industrial Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland;
| | - Agnieszka Skotnicka
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland;
| | - Bozena Michniak-Kohn
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland; (Z.S.); (M.W.)
| |
Collapse
|
6
|
Wang W, He Y, He S, Deng L, Wang H, Cao Z, Feng Z, Xiong B, Yin Y. A Brief Review of Aptamer-Based Biosensors in Recent Years. BIOSENSORS 2025; 15:120. [PMID: 39997022 PMCID: PMC11852377 DOI: 10.3390/bios15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Aptamers have recently become novel probes for biosensors because of their good biocompatibility, strong specificity, and high sensitivity. Biosensors based on peptides or nucleic acid aptamers are used in implantable and wearable devices owing to their ease of synthesis and economic efficiency. Simultaneously, amphoteric ionic peptides are being explored as antifouling layers for biosensors resistant to interference from extraneous proteins in serum. Thus, this paper reviews recently developed aptamer-based biosensors and introduces peptide- and nucleic acid-based biosensors, while focusing on the three primary classes of biosensors: electrochemical sensors, fluorescent or colorimetric biosensors, and electroluminescent sensors. Furthermore, we summarize their general construction strategies, describe specific electrochemical sensors that use peptides as an antipollution layer, and elucidate their advantages.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
- Zhongke Jieyun (Beijing) Information Technology Co., Ltd., Beijing 101400, China
| | - Yumin He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suxiang He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410075, China;
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (B.X.)
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Zemeng Feng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (B.X.)
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
| |
Collapse
|
7
|
Liu H, Nail A, Meng D, Zhu L, Guo X, Li C, Li HJ. Recent progress in the 3D printing of microneedle patches for biomedical applications. Int J Pharm 2025; 668:124995. [PMID: 39586508 DOI: 10.1016/j.ijpharm.2024.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
3D-printed microneedles (MNs) have emerged as a transformative technology in drug delivery, diagnostics, and cosmetics, providing a minimally invasive alternative to traditional methods. This review highlights the advancements in 3D printing technologies, including fused deposition modeling (FDM), digital light processing (DLP), and stereolithography (SLA), which enable the precise fabrication of MNs with customizable geometries and functionalities. The unique ability of MNs to penetrate the stratum corneum facilitates enhanced delivery of therapeutic agents, biosensing capabilities, and improved patient compliance. Recent innovations in MNs design, such as biomimetic structures and optimized geometries, have significantly improved their mechanical properties and drug delivery efficiency. Furthermore, integrating sensing elements within MNs enables real-time monitoring of biomarkers, paving the way for personalized medicine. Despite the promising applications, challenges remain, including regulatory considerations, material biocompatibility, and manufacturing scalability. This review discusses the current state of 3D-printed MNs, their diverse applications, and future directions. By addressing existing limitations and exploring novel materials and hybrid fabrication techniques, 3D-printed MNs have the potential to revolutionize healthcare delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Aminov Nail
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Xiaohan Guo
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Cong Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Huan-Jun Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| |
Collapse
|
8
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
9
|
Zou S, Peng G, Ma Z. Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2014. [PMID: 39728549 DOI: 10.3390/nano14242014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules. During this functionalizing process, nanomaterials can either be the objects of surface modification or the materials used to modify other base surfaces. These surface-functionalizing strategies, involving the coordination of sensor structures and materials, as well as the associated modifying methods, are largely determinative in the performance of biosensing applications. This review introduces the current studies on biosensors with multiplexing potentials and focuses specifically on the roles of nanomaterials in the design and functionalization of these biosensors. A detailed description of the paradigms used for method selection has been set forth to assist understanding and accelerate the application of novel nanotechnologies in the development of biosensors.
Collapse
Affiliation(s)
- Shangjie Zou
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangdun Peng
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
11
|
Keyvani F, GhavamiNejad P, Saleh MA, Soltani M, Zhao Y, Sadeghzadeh S, Shakeri A, Chelle P, Zheng H, Rahman FA, Mahshid S, Quadrilatero J, Rao PPN, Edginton A, Poudineh M. Integrated Electrochemical Aptamer Biosensing and Colorimetric pH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309027. [PMID: 39250329 PMCID: PMC11538706 DOI: 10.1002/advs.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Current methods for therapeutic drug monitoring (TDM) have a long turnaround time as they involve collecting patients' blood samples followed by transferring the samples to medical laboratories where sample processing and analysis are performed. To enable real-time and minimally invasive TDM, a microneedle (MN) biosensor to monitor the levels of two important antibiotics, vancomycin (VAN) and gentamicin (GEN) is developed. The MN biosensor is composed of a hydrogel MN (HMN), and an aptamer-functionalized flexible (Flex) electrode, named HMN-Flex. The HMN extracts dermal interstitial fluid (ISF) and transfers it to the Flex electrode where sensing of the target antibiotics happens. The HMN-Flex performance is validated ex vivo using skin models as well as in vivo in live rat animal models. Data is leveraged from the HMN-Flex system to construct pharmacokinetic profiles for VAN and GEN and compare these profiles with conventional blood-based measurements. Additionally, to track pH and monitor patient's response during antibiotic treatment, an HMN is developed that employs a colorimetric method to detect changes in the pH, named HMN-pH assay, whose performance has been validated both in vitro and in vivo. Further, multiplexed antibiotic and pH detection is achieved by simultaneously employing the HMN-pH and HMN-Flex on live animals.
Collapse
Affiliation(s)
- Fatemeh Keyvani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahmoud Ayman Saleh
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Mohammad Soltani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Yusheng Zhao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Arash Shakeri
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Pierre Chelle
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Hanjia Zheng
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Fasih A. Rahman
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sarah Mahshid
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Praveen P. N. Rao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
12
|
Kim G, Ahn H, Chaj Ulloa J, Gao W. Microneedle sensors for dermal interstitial fluid analysis. MED-X 2024; 2:15. [PMID: 39363915 PMCID: PMC11445365 DOI: 10.1007/s44258-024-00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract
Collapse
Affiliation(s)
- Gwangmook Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Hyunah Ahn
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Joshua Chaj Ulloa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
13
|
Xue R, Deng F, Guo T, Epps A, Lovell NH, Shivdasani MN. Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications. BIOSENSORS 2024; 14:391. [PMID: 39194620 DOI: 10.3390/bios14080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro. Recent preclinical in vivo studies have also shown significant progress in the clinical translation of N-biosensor technology for in situ biomarker detection, enabling highly accurate diagnoses for cancer, diabetes, and infectious diseases. This article begins with an overview of current state-of-the-art benchtop N-biosensor designs, discusses their preclinical applications for sensitive diagnoses, and concludes by exploring the challenges and potential avenues for next-generation N-biosensor technology.
Collapse
Affiliation(s)
- Ruier Xue
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Epps
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Ausri IR, Sadeghzadeh S, Biswas S, Zheng H, GhavamiNejad P, Huynh MDT, Keyvani F, Shirzadi E, Rahman FA, Quadrilatero J, GhavamiNejad A, Poudineh M. Multifunctional Dopamine-Based Hydrogel Microneedle Electrode for Continuous Ketone Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402009. [PMID: 38847967 DOI: 10.1002/adma.202402009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/05/2024] [Indexed: 06/18/2024]
Abstract
Diabetic ketoacidosis (DKA), a severe complication of type 1 diabetes (T1D), is triggered by production of large quantities of ketone bodies, requiring patients with T1D to constantly monitor their ketone levels. Here, a skin-compatible hydrogel microneedle (HMN)-continuous ketone monitoring (HMN-CKM) device is reported. The sensing mechanism relies on the catechol-quinone chemistry inherent to the dopamine (DA) molecules that are covalently linked to the polymer structure of the HMN patch. The DA serves the dual-purpose of acting as a redox mediator for measuring the byproduct of oxidation of 3-beta-hydroxybutyrate (β-HB), the primary ketone bodies; while, also facilitating the formation of a crosslinked HMN patch. A universal approach involving pre-oxidation and detection of the generated catechol compounds is introduced to correlate the sensor response to the β-HB concentrations. It is further shown that real-time tracking of a decrease in ketone levels of T1D rat model is possible using the HMN-CKM device, in conjunction with a data-driven machine learning model that considers potential time delays.
Collapse
Affiliation(s)
- Irfani Rahmi Ausri
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Subhamoy Biswas
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michelle Dieu Thao Huynh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Erfan Shirzadi
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Fasih A Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
15
|
Bedir T, Kadian S, Shukla S, Gunduz O, Narayan R. Additive manufacturing of microneedles for sensing and drug delivery. Expert Opin Drug Deliv 2024; 21:1053-1068. [PMID: 39049741 DOI: 10.1080/17425247.2024.2384696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Microneedles (MNs) are miniaturized, painless, and minimally invasive platforms that have attracted significant attention over recent decades across multiple fields, such as drug delivery, disease monitoring, disease diagnosis, and cosmetics. Several manufacturing methods have been employed to create MNs; however, these approaches come with drawbacks related to complicated, costly, and time-consuming fabrication processes. In this context, employing additive manufacturing (AM) technology for MN fabrication allows for the quick production of intricate MN prototypes with exceptional precision, providing the flexibility to customize MNs according to the desired shape and dimensions. Furthermore, AM demonstrates significant promise in the fabrication of sophisticated transdermal drug delivery systems and medical devices through the integration of MNs with various technologies. AREAS COVERED This review offers an extensive overview of various AM technologies with great potential for the fabrication of MNs. Different types of MNs and the materials utilized in their fabrication are also discussed. Recent applications of 3D-printed MNs in the fields of transdermal drug delivery and biosensing are highlighted. EXPERT OPINION This review also mentions the critical obstacles, including drug loading, biocompatibility, and regulatory requirements, which must be resolved to enable the mass-scale adoption of AM methods for MN production, and future trends.
Collapse
Affiliation(s)
- Tuba Bedir
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Roger Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Moonla C, Reynoso M, Casanova A, Chang AY, Djassemi O, Balaje A, Abbas A, Li Z, Mahato K, Wang J. Continuous Ketone Monitoring via Wearable Microneedle Patch Platform. ACS Sens 2024; 9:1004-1013. [PMID: 38300831 DOI: 10.1021/acssensors.3c02677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ketone bodies (KBs), especially β-hydroxybutyrate (BHB), have gained tremendous attention as potential biomarkers as their presence in bodily fluids is closely associated with health and wellness. While a variety of blood fingerstick test strips are available for self-testing of BHB, there are major needs for wearable devices capable of continuously tracking changing BHB concentrations. To address these needs, we present here the first demonstration of a wearable microneedle-based continuous ketone monitoring (CKM) in human interstitial fluid (ISF) and illustrate its ability to closely follow the intake of ketone drinks. To ensure highly stable and selective continuous detection of ISF BHB, the new enzymatic microneedle BHB sensor relies on a gold-coated platinum working electrode modified with a reagent layer containing toluidine blue O (TBO) redox mediator, β-hydroxybutyrate dehydrogenase (HBD) enzyme, a nicotinamide adenine dinucleotide (NAD+) cofactor, along with carbon nanotubes (CNTs), chitosan (Chit), and a poly(vinyl chloride) (PVC) outer protective layer. The skin-worn microneedle sensing device operates with a miniaturized electrochemical analyzer connected wirelessly to a mobile electronic device for capturing, processing, and displaying the data. Cytotoxicity and skin penetration studies indicate the absence of potential harmful effects. A pilot study involving multiple human subjects evaluated continuous BHB monitoring in human ISF, against gold standard BHB meter measurements, revealing the close correlation between the two methods. Such microneedle-based CKM offers considerable promise for dynamic BHB tracking toward the management of diabetic ketoacidosis and personal nutrition and wellness.
Collapse
Affiliation(s)
- Chochanon Moonla
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Maria Reynoso
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ana Casanova
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - An-Yi Chang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Omeed Djassemi
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Aishwarya Balaje
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amal Abbas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|