1
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Hu K, Xiao M, Chen S, Huang Y, Hou Z, Li X, Yang L. Innovative applications of natural polysaccharide polymers in intravesical therapy of bladder diseases. Carbohydr Polym 2025; 354:123307. [PMID: 39978897 DOI: 10.1016/j.carbpol.2025.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Natural polysaccharide polymers, characterized by their remarkable biocompatibility, biodegradability, and structural versatility, hold great promise for intravesical therapy in treating of bladder diseases. Conditions such as bladder cancer and interstitial cystitis compromise drug efficacy by affecting the permeability of the bladder wall. Traditional therapeutic approaches are often hindered by physiological challenges, including rapid drug clearance and the intrinsic permeability barrier of the bladder. Polysaccharides like hyaluronic acid (HA) and chitosan (CS) have emerged as promising materials for intravesical drug delivery systems (IDDS), owing to their ability to repair tight junctions in the bladder wall, mitigate inflammation, and enhance permeability. This review provides a comprehensive overview of the mechanisms through which polysaccharide-based natural polymers regulate bladder wall permeability and highlights their advancements in delivery platforms, including nanoparticles, hydrogels, floating systems, and composite materials. By improving drug retention, enhancing bioavailability, and promoting patient adherence, these materials offer a solid foundation for the development of innovative therapeutic strategies for bladder diseases.
Collapse
Affiliation(s)
- Ke Hu
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miaomiao Xiao
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Yuanbing Huang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
3
|
Zhang Y, Ding X, Yang Z, Wang J, Li C, Zhou G. Emerging Microfluidic Building Blocks for Cultured Meat Construction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8771-8793. [PMID: 39884858 DOI: 10.1021/acsami.4c19276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cultured meat aims to produce meat mass by culturing cells and tissues based on the muscle regeneration mechanism, and is considered an alternative to raising and slaughtering livestock. Hydrogel building blocks are commonly used as substrates for cell culture in tissue engineering and cultured meat because of their high water content, biocompatibility, and similar three-dimensional (3D) environment to the cellular niche in vivo. With the characteristics of precise manipulation of fluids, microfluidics exhibits advantages in the fabrication of building blocks with different structures and components, which have been widely applied in tissue regeneration. Microfluidic building blocks show promising prospects in the field of cultured meat; however, few reviews on the application of microfluidic building blocks in cultured meat have been published. This review outlines the recent status and prospects of the use of microfluidic building blocks in cultured meat. Starting with the introduction of cells and materials for cultured meat tissue construction, we then describe the diverse structures of the fabricated building blocks, including microspheres, microfibers, and microsphere-microfiber hybrid systems. Next, the stacking strategies for tissue construction are highlighted in detail. Finally, challenges and future prospects for developing microfluidic building blocks for cultured meat are discussed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zijiang Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Yu Y, Su Z, Peng Y, Zhong Y, Wang L, Xin M, Li M. Recent advances in modifications, biotechnology, and biomedical applications of chitosan-based materials: A review. Int J Biol Macromol 2025; 289:138772. [PMID: 39675610 DOI: 10.1016/j.ijbiomac.2024.138772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a natural polysaccharide with recognized biocompatibility, non-toxicity, and cost-effectiveness, is primarily sourced from crustacean exoskeletons. Its inherent limitations such as poor water solubility, low thermal stability, and inadequate mechanical strength have hindered its widespread application. However, through modifications, chitosan can exhibit enhanced properties such as water solubility, antibacterial and antioxidant activities, adsorption capacity, and film-forming ability, opening up avenues for diverse applications. Despite these advancements, realizing the full potential of modified chitosan remains a challenge across various fields. The purpose of this review article is to conduct a comprehensive evaluation of the chemical modification techniques of chitosan and their applications in biotechnology and biomedical fields. It aims to overcome the inherent limitations of chitosan, such as low water solubility, poor thermal stability, and inadequate mechanical strength, thereby expanding its application potential across various domains. This review is structured into two main sections. The first part delves into the latest chemical modification techniques for chitosan derivatives, encompassing quaternization, Schiff base formation, acylation, carboxylation, and alkylation reactions. The second part provides an overview of the applications of chitosan and its derivatives in biotechnology and biomedicine, spanning areas such as wastewater treatment, the textile and food industries, agriculture, antibacterial and antiviral activities, drug delivery systems, wound dressings, dental materials, and tissue engineering. Additionally, the review discusses the challenges associated with these modifications and offers insights into potential future developments in chitosan-based materials. This review is anticipated to offer theoretical insights and practical guidance to scientists engaged in biotechnology and biomedical research.
Collapse
Affiliation(s)
- Ying Yu
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Zhongwen Su
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yonggang Peng
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yujing Zhong
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Lin Wang
- College of Chemistry and Environment, Ankang University, Qinba Chinese Medicine Resources R&D Center, Ankang 725000, Shaanxi, China.
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| |
Collapse
|
5
|
Wang X, Zhang X, Gong C, Yang J, Chen J, Guo W. Functionalized GelMA/CMCS Composite Hydrogel Incorporating Magnesium Phosphate Cement for Bone Regeneration. Biomedicines 2025; 13:257. [PMID: 40002671 PMCID: PMC11852312 DOI: 10.3390/biomedicines13020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Bone regeneration remains a challenging issue in tissue engineering. The use of hydrogels as scaffolds for bone tissue repair has gained attention due to their biocompatibility and ability to mimic the extracellular matrix. This study aims to develop a functionalized GelMA/CMCS composite hydrogel incorporating magnesium phosphate cement (MPC) for enhanced bone regeneration. Methods: These composites were developed by incorporating potassium magnesium phosphate hexahydrate (KMgPO4·6H2O, MPC) powders into methacrylated gelatin/carboxymethyl chitosan (GelMA-C) hydrogels. The material's mechanical properties, antibacterial performance, and cytocompatibility were evaluated. In vitro experiments involved cell viability and osteogenic differentiation assays using rBMSCs as well as angiogenic potential assays using HUVECs. The hydrogel was also assessed for its potential in promoting bone repair in a rat (Sprague-Dawley) model of bone defect. Results: The developed GelMA-CM composite demonstrated improved mechanical properties, biocompatibility, and osteogenic potential compared to individual GelMA or CMCS hydrogels. Incorporation of MPC facilitated the sustained release of ions which promoted osteogenic differentiation of pre-osteoblasts. In vivo results indicated accelerated bone healing in the rat bone defect model. Conclusions: The functionalized GelMA-CM composite could be a viable candidate for clinical applications in bone regeneration therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (X.W.); (X.Z.); (C.G.); (J.Y.); (J.C.)
| |
Collapse
|
6
|
Liu H, Zhen Z, Chen F, Chen J, Chen W. Advancements in Iron Oxide Nanoparticles for Multimodal Imaging and Tumor Theranostics. Curr Med Chem 2025; 32:301-321. [PMID: 39005127 DOI: 10.2174/0109298673301359240705063544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
The emergence of nanomedicine offers renewed promise in the diagnosis and treatment of diseases. Due to their unique physical and chemical properties, iron oxide nanoparticles (IONPs) exhibit widespread application in the diagnosis and treatment of various ailments, particularly tumors. IONPs have magnetic resonance (MR) T1/T2 imaging capabilities due to their different sizes. In addition, IONPs also have biocatalytic activity (nanozymes) and magnetocaloric effects. They are widely used in chemodynamic therapy (CDT), magnetic hyperthermia treatment (MHT), photodynamic therapy (PDT), and drug delivery. This review outlines the synthesis, modification, and biomedical applications of IONPs, emphasizing their role in enhancing diagnostic imaging (including single-mode and multimodal imaging) and their potential in cancer therapies (including chemotherapy, radiotherapy, CDT, and PDT). Furthermore, we briefly explore the challenges in the clinical application of IONPs, such as surface modification and protein adsorption, and put forward opinions on the clinical transformation of IONPs.
Collapse
Affiliation(s)
- He Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiming Zhen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengxi Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Lopretti Correa MI, Batista-Menezes D, de Rezende SC, Santamaria-Echart A, Barreiro MF, Vega-Baudrit JR. Biorefinery of Lignocellulosic and Marine Resources for Obtaining Active PVA/Chitosan/Phenol Films for Application in Intelligent Food Packaging. Polymers (Basel) 2024; 17:82. [PMID: 39795485 PMCID: PMC11723199 DOI: 10.3390/polym17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
This study focuses on the extraction of phenolic compounds from the fermentation of Phanerochaete chrysosporium and Gloeophyllum trabeum. The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their physical, chemical, and mechanical properties for antimicrobial packaging applications. Homogeneous chitosan microspheres loaded with lignin-derived phenols were obtained, showing controlled release of antimicrobial compounds. The incorporation of phenolic microspheres into PVA/chitosan films resulted in significant improvements in mechanical properties: the films exhibited an elastic modulus of 36.14 ± 3.73 MPa, tensile strength of 12.01 ± 1.14 MPa, and elongation at break of 65.19 ± 5.96%. Thermal tests revealed that chitosan-containing films had enhanced thermal stability, with decomposition temperatures (T10) reaching 116.77 °C, compared to 89.28 °C for pure PVA. In terms of antimicrobial activity, PVA/chitosan/phenol films effectively reduced Lactobacillus growth and milk acidity, maintaining quality for up to 96 h at room temperature, outperforming controls with acetic acid and H2O2. The films also inhibit yeast growth for one week. In conclusion, phenols can be effective antimicrobial agents in dairy, but their use should be monitored. Additionally, PVA/chitosan-phenol films offer biodegradability, antimicrobial properties, and sustainability for diverse applications.
Collapse
Affiliation(s)
- Mary Isabel Lopretti Correa
- Laboratory of Nuclear Techniques Applied to Biochemistry and Biotechnology, Nuclear Research Center, Faculty of Sciences, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay;
| | - Diego Batista-Menezes
- National Nanotechnology Laboratory, National Center for High Technology, Pavas, San José 10109, Costa Rica;
| | - Stephany Cunha de Rezende
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.C.d.R.); (A.S.-E.); (M.-F.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Arantzazu Santamaria-Echart
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.C.d.R.); (A.S.-E.); (M.-F.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.C.d.R.); (A.S.-E.); (M.-F.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Jose Roberto Vega-Baudrit
- National Nanotechnology Laboratory, National Center for High Technology, Pavas, San José 10109, Costa Rica;
- Escuela de Química, Universidad Nacional, Heredia 40101, Costa Rica
| |
Collapse
|
8
|
Thai NB, Beaman HT, Perlman M, Obeng EE, Du C, Monroe MBB. Chitosan Poly(vinyl alcohol) Methacrylate Hydrogels for Tissue Engineering Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:7818-7827. [PMID: 38380883 PMCID: PMC11653253 DOI: 10.1021/acsabm.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
A major challenge in tissue engineering scaffolds is controlling scaffold degradation rates during healing while maintaining mechanical properties to support tissue formation. Hydrogels are three-dimensional matrices that are widely applied as tissue scaffolds based on their unique properties that can mimic the extracellular matrix. In this study, we develop a hybrid natural/synthetic hydrogel platform to tune the properties for tissue engineering scaffold applications. We modified chitosan and poly(vinyl alcohol) (PVA) with photo-cross-linkable methacrylate functional groups and then synthesized a library of chitosan PVA methacrylate hydrogels (ChiPVAMA) with two different photoinitiators, Irgacure 2959 (I2959) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). ChiPVAMA hydrogels showed tunability in degradation rates and mechanical properties based on both the polymer content and photoinitiator type. This tunability could enable their application in a range of tissue scaffold applications. In a 2D scratch wound healing assay, all hydrogel samples induced faster wound closure compared to a gauze clinical wound dressing control. NIH/3T3 cells encapsulated in hydrogels showed a high viability (∼92%) over 14 days, demonstrating the capacity of this system as a supportive cell scaffold. In addition, hydrogels containing a higher chitosan content demonstrated a high antibacterial capacity. Overall, ChiPVAMA hydrogels provide a potential tissue engineering scaffold that is tunable, degradable, and suitable for cell growth.
Collapse
Affiliation(s)
- Nghia
Le Ba Thai
- Department
of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute,
and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Henry T. Beaman
- Department
of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute,
and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Megan Perlman
- Department
of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute,
and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Ernest E. Obeng
- Department
of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute,
and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Changling Du
- Department
of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute,
and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Mary Beth B. Monroe
- Department
of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute,
and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
9
|
Manohar D, Babu RS, Vijaya B, Nallakumar S, Gobi R, Anand S, Nishanth DS, Anupama A, Rani MU. A review on exploring the potential of PVA and chitosan in biomedical applications: A focus on tissue engineering, drug delivery and biomedical sensors. Int J Biol Macromol 2024; 283:137318. [PMID: 39549801 DOI: 10.1016/j.ijbiomac.2024.137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Polymers have been integral to the advancement of biomedicine, owing to their exceptional versatility and functionality. Among these, polyvinyl alcohol (PVA) and chitosan both natural polymers stand out for their remarkable biocompatibility, biodegradability, and unique properties. This review article provides a comprehensive examination of the diverse applications of PVA and chitosan in three pivotal areas: tissue engineering, drug delivery, and biosensors. In tissue engineering, the discussion centres on how PVA and chitosan are engineered into scaffolds that not only support cell growth and differentiation but also promote tissue regeneration by closely mimicking the extracellular matrix. These scaffolds offer the necessary mechanical strength and adaptability for various biomedical applications. For drug delivery, the article delves into the development of sophisticated controlled release systems and targeted drug carriers, highlighting the polymers' customizable properties and their mucoadhesive nature, which make them highly effective across multiple drug delivery methods. Furthermore, the potential of PVA and chitosan in biosensor technology is explored, particularly their ability to interact with biomolecules and their intrinsic conductivity attributes that are essential for creating sensitive, reliable, and biocompatible sensors for medical diagnostics. By synthesizing recent research findings and suggesting future research directions, this review underscores the versatility and critical role of PVA and chitosan in pushing the boundaries of biomedical innovation. It offers valuable insights for researchers and scientists dedicated to advancing healthcare through the application of these natural polymers.
Collapse
Affiliation(s)
- D Manohar
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Ravi Shanker Babu
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - B Vijaya
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Santhosh Nallakumar
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Ravichandhran Gobi
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - S Anand
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - D S Nishanth
- Department of Biotechnology, School of Bio Science and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Arpita Anupama
- Department of Biotechnology, School of Bio Science and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - M Usha Rani
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India.
| |
Collapse
|
10
|
Alshahhoud A, Rikab MS, Issa N, Manadili A, Alsayed Tolaibah Y. A Comparison Between Three Types of Scaffolds for Pulp Regeneration: A Histological Study on Dogs. Clin Exp Dent Res 2024; 10:e70031. [PMID: 39444253 PMCID: PMC11499569 DOI: 10.1002/cre2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVES This study aims to compare the application of three types of normal scaffolds-native chitosan, enzymatically modified chitosan, and blood clot (BC)-on pulp regeneration in the teeth of experimental dogs through histological examination, to determine the quantity and type of new tissues formed within the root canal. MATERIALS AND METHODS The research sample consisted of 32 root canals from 20 premolars of two male local experimental dogs. The sample was randomly divided into a control group, in which no intervention was performed on the teeth, and three experimental groups based on the type of scaffold used: the BC group, the native chitosan combined with BC (NCS + BC) group, and the enzymatically modified chitosan combined with BC (EMCS + BC) group. Mechanical and chemical cleaning of the canals was performed, followed by the application of the studied scaffolds within the root canals. After 3 months, the teeth were extracted and prepared for histological study, where two variables were studied: the percentage of total vital tissue (soft and hard; VT%) and the percentage of soft vital tissue only (ST%). A one-way ANOVA and Bonferroni tests were used to determine significant differences between the groups at a 95% confidence level. RESULTS The VT% values were significantly higher in the EMCS + BC group compared to both the NCS + BC and BC groups. The ST% values were also significantly higher in the EMCS + BC group compared to the BC group. However, no significant differences in ST% values were observed between the NCS + BC group and either the BC or EMCS + BC groups. CONCLUSIONS Within the limitations of this study, we conclude that the application of enzymatically modified chitosan scaffolds combined with BC yields superior results in pulp regeneration, which contributes to the formation of pulp-like tissue and cells resembling odontoblasts, as well as apex closure with tissue resembling bone tissue.
Collapse
Affiliation(s)
- Aliaa Alshahhoud
- Department of Endodontics and Operative Dentistry, Faculty of DentistryDamascus UniversityDamascusSyria
| | - Mhd. Salem Rikab
- Department of Endodontics and Operative Dentistry, Faculty of DentistryDamascus UniversityDamascusSyria
| | - Nizar Issa
- Department of Biology, Faculty of ScienceDamascus UniversityDamascusSyria
| | - Ahmad Manadili
- Department of Pathology, Faculty of DentistryDamascus UniversityDamascusSyria
| | | |
Collapse
|
11
|
Celikci N, Ziba CA, Dolaz M, Tümer M. Comparison of composite resins containing UV light-sensitive chitosan derivatives in stereolithography (SLA)-3D printers. Int J Biol Macromol 2024; 281:136057. [PMID: 39448286 DOI: 10.1016/j.ijbiomac.2024.136057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
This study produced composite resins by combining acrylate, chitosan (CH), carboxymethyl chitosan (CMCH), hydroxypropyl chitosan (HPCH), and hydroxyethyl chitosan (HECH) to create materials suitable for use in 3D stereolithography (SLA) printers. Tripropylene glycol diacrylate (TPGDA), urethane acrylate (UA), and photoinitiator (Diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide (TPO)) were mixed. CH and its derivatives were added separately to the resin to obtain composite resins. The mechanical test results are clear; the optimum TPGDA: UA ratio was 1:1, the cure time was 60 s, and the TPO ratio was 1 %. The optimum viscosity of the resin is 340-350 cP. Hydrophobic/hydrophilic properties of cured composite resins were examined. The addition of CH and its derivatives to the resin caused a decrease in compressive strength. Adding up to 2.5 % CH, CMCH, and HECH to the resin significantly increased the tensile strength of the resin, giving it flexibility. The gel content of cured composite resins was between 97.72 % and 96.11 %. The cured composite resins demonstrated high chemical and solvent resistance to HCl, NaOH, and HF but exhibited limited resistance to toluene and chloroform. The accelerated UV aging test results show that adding CH derivatives to the resin makes the composite resin more prone to photooxidative aging.
Collapse
Affiliation(s)
- Nuran Celikci
- Department of Material Science and Engineering, Institute of Science and Technology, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Cengiz Ayhan Ziba
- Department of Chemical Technologies, Afsin Vocational School, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Dolaz
- Department of Environmental Engineering, Faculty of Engineering, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic; Department of Environmental Engineering, Faculty of Engineering and Architecture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Tümer
- Chemistry Department, Faculty of Science, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
12
|
Yoo D, Oh M, Kim M, Lee D. In Vivo Evaluation of Demineralized Bone Matrix with Cancellous Bone Putty Formed Using Hydroxyethyl Cellulose as an Allograft Material in a Canine Tibial Defect Model. Animals (Basel) 2024; 14:2997. [PMID: 39457927 PMCID: PMC11503819 DOI: 10.3390/ani14202997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Demineralized bone matrix (DBM) is a widely used allograft material for bone repair, but its handling properties and retention at defect sites can be challenging. Hydroxyethyl cellulose (HEC) has shown promise as a biocompatible carrier for bone graft materials. This study aimed to evaluate the efficacy of DBM combined with cancellous bone putty formed using HEC as an allograft material for bone regeneration in a canine tibial defect model. Experiments were conducted using dogs with proximal tibial defects. Four groups were compared: empty (control group), DBM + HEC (DH), DBM + cancellous bone + HEC (DCH), and DBM + cancellous bone + calcium phosphate + HEC (DCCH). Radiographic, micro-computed tomography (CT), and histomorphometric evaluations were performed 4 and 8 weeks postoperatively to assess bone regeneration. The Empty group consistently exhibited the lowest levels of bone regeneration throughout the study period, indicating that DBM and cancellous bone with HEC significantly enhanced bone regeneration. At week 4, the DCCH group showed the fastest bone regeneration on radiography and micro-computed tomography. By week 8, the DCH group showed the highest area ratio of new bone among all experimental areas, followed by the DH and DCCH groups. This study demonstrated that HEC significantly enhances the handling, mechanical properties, and osteogenic potential of DBM and cancellous bone grafts, making it a promising carrier for clinical applications in canine allograft models. When mixed with allograft cancellous bone, which has high porosity and mechanical strength, it becomes a promising material offering a more effective and reliable option for bone repair and regeneration.
Collapse
Affiliation(s)
- Donghyeok Yoo
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Minha Oh
- Mbiologic LLC., 18017 Sky Park Circle, Irvine, CA 92614, USA
| | - Minkyung Kim
- Keunmaum Animal Medical Center, Haeundaegu, Busan 28096, Republic of Korea
| | - Dongbin Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
13
|
Mei Z, Vincent L, Szczepanski CR, Godeau RP, Kuzhir P, Godeau G. Investigation of 9 True Weevil ( Curculionidae Latreille, 1802) Species for Chitin Extraction. Biomimetics (Basel) 2024; 9:608. [PMID: 39451814 PMCID: PMC11505005 DOI: 10.3390/biomimetics9100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Chitin, the second most abundant biopolymer after cellulose, is an important resource for biosourced materials. The global demand for chitin is rapidly increasing, however, the majority of industrial chitin is sourced from crustacean shells, which may be less accessible in regions without seafood waste. Therefore, it is crucial to explore alternative chitin sources, such as those derived from beetles and other arthropods. This study investigated chitin extraction from nine species of Curculionidae (true weevils), which are recognized as crop pests. The extraction process and yields were described, and the isolated chitin was characterized by SEM, IR spectroscopy, elemental analysis, XRD, and ash and water content measurements. This work highlights the potential of Curculionidae as an alternative chitin source.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Luc Vincent
- Université Côte d’Azur, CNRS UMR 7272 ICN, Parc Valrose, 06108 Nice, France
| | - Caroline R. Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
| | - René-Paul Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Pavel Kuzhir
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Guilhem Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
- Université Côte d’Azur, IMREDD, 06200 Nice, France
| |
Collapse
|
14
|
Wei X, Xiong H, Zhou Y, Chen X, Yang W. Tracking epithelial-mesenchymal transition in breast cancer cells based on a multiplex electrochemical immunosensor. Biosens Bioelectron 2024; 258:116372. [PMID: 38735081 DOI: 10.1016/j.bios.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Epithelial-mesenchymal transition (EMT) promotes tumor cell infiltration and metastasis. Tracking the progression of EMT could potentially indicate early cancer metastasis. A key characteristic of EMT is the dynamic alteration in the molecular levels of E-cadherin and N-cadherin. Traditional assays have limited sensitivity and multiplexing capabilities, relying heavily on cell lysis. Here, we developed a multiplex electrochemical biosensor to concurrently track the upregulation of N-cadherin expression and reduction of E-cadherin in breast cancer cells undergoing EMT. Small-sized gold nanoparticles (Au NPs) tagged with redox probes (thionin or amino ferrocene) and bound to two types of antibodies were used as distinguishable signal tags. These tags specifically recognized E-cadherin and N-cadherin proteins on the tumor cell surface without cross-reactivity. The diphenylalanine dipeptide (FF)/chitosan (CS)/Au NPs (FF-CS@Au) composites with high surface area and good biocompatibility were used as the sensing platforms for efficiently fixing cells and recording the dynamic changes in electrochemical signals of surface proteins. The electrochemical immunosensor allowed for simultaneous monitoring of E- and N-cadherins on breast cancer cell surfaces in a single run, enabling tracking of the EMT dynamic process for up to 60 h. Furthermore, the electrochemical detection results are consistent with Western blot analysis, confirming the reliability of the methodology. This present work provides an effective, rapid, and low-cost approach for tracking the EMT process, as well as valuable insights into early tumor metastasis.
Collapse
Affiliation(s)
- Xue Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hanzhi Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yunfan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
15
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
16
|
Ahmad K, Zhang Y, Chen P, Yang X, Hou H. Chitosan interaction with stomach mucin layer to enhances gastric retention and mucoadhesive properties. Carbohydr Polym 2024; 333:121926. [PMID: 38494203 DOI: 10.1016/j.carbpol.2024.121926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged stay in the gastrointestinal tract. In this article, the current advancement and mucoadhesive properties of chitosan concerning the stomach mucin layer and its interactions have been briefly addressed. Chitosan a biocompatible polysaccharide exhibited promising mucoadhesive properties attributed to its cationic nature and ability to establish bonds with mucin glycoproteins. The mucoadhesion mechanism is ascribed to the electrostatic interactions between the positively charged amino (NH2) groups of chitosan and the sialic acid residues in mucin glycoprotein which carry a negative charge. The article provides a succinct overview of prior uses, current trends, and recent advancements in chitosan-based gastric-targeted delivery systems. We look forward to further innovations and emerging research related to chitosan-based methods of delivery that may increase the chitosan suitability for use in novel therapeutic approaches.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Peng Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Xia Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
17
|
Zhao Y, Li X, Sun N, Mao Y, Ma T, Liu X, Cheng T, Shao X, Zhang H, Huang X, Li J, Huang N, Wang H. Injectable Double Crosslinked Hydrogel-Polypropylene Composite Mesh for Repairing Full-Thickness Abdominal Wall Defects. Adv Healthc Mater 2024; 13:e2304489. [PMID: 38433421 DOI: 10.1002/adhm.202304489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Abdominal wall defects are common clinical diseases, and mesh repair is the standard treatment method. The most commonly used polypropylene (PP) mesh in clinical practice has the advantages of good mechanical properties, stable performance, and effective tissue integration effect. However, direct contact between abdominal viscera and PP mesh can lead to severe abdominal adhesions. To prevent this, the development of a hydrogel-PP composite mesh with anti-adhesive properties may be an effective measure. Herein, biofunctional hydrogel loaded with rosmarinic acid is developed by modifying chitosan and Pluronic F127, which possesses suitable physical and chemical properties and commendable in vitro biocompatibility. In the repair of full-thickness abdominal wall defects in rats, hydrogels are injected onto the surface of PP mesh and applied to intraperitoneal repair. The results indicate that the use of hydrogel-PP composite mesh can alleviate abdominal adhesions resulting from traditional PP mesh implantation by decreasing local inflammatory response, reducing oxidative stress, and regulating the fibrinolytic system. Combined with the tissue integration ability of PP mesh, hydrogel-PP composite mesh has great potential for repairing full-thickness abdominal wall defects.
Collapse
Affiliation(s)
- Yixin Zhao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaopei Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ni Sun
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yan Mao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Teng Ma
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Xiangping Liu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Tao Cheng
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Xiangyu Shao
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Haifeng Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xianggang Huang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junsheng Li
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Ningping Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
18
|
Nosheen S, Mukhtar H, Haider S, Khan R, Sharif F. Tissue engineered multifunctional chitosan-modified polypropylene hernia mesh loaded with bioactive phyto-extracts. Int J Biol Macromol 2024; 271:132282. [PMID: 38750855 DOI: 10.1016/j.ijbiomac.2024.132282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Surface modified tissue engineered polypropylene / PP hernia meshes were fabricated by incorporating Bacterial cellulose / BC and chitosan / CS and phytochemical extracts. Under current practice, hernia and other traumatic injuries to the abdominal organs are clinically treated with surgical meshes. Often the foreign body reaction and infections result in relapse in patients which dictates additional reparative surgical procedures and pain. To improve the outcome of clinical restorative procedures new biomaterials with improved characteristics are required. The functionalized meshes were physically and chemically characterized using SEM, mechanical testing, FTIR and XRD. The antimicrobial activity was qualitatively and quantitatively tested using E. coli and S. aureus strains of bacteria. In vitro biocompatibility and wound healing effect of the modified meshes were performed using NIH3T3 fibroblast cell lines. Furthermore, tissue engineering potential of the meshes was evaluated using confocal fluorescent microscopy. In vivo implantation of the meshes was performed in male wistar rats for 21 days. Therefore, PP meshes with sustained drug delivery system augmented with anti-inflammatory and anti-microbial characteristics were developed. The coatings hereby not only increased the tensile strength of meshes but also prevented the modified meshes from causing infection. Current study resulted in CS-BC bioactive PP meshes loaded with phytochemicals which showed anti-inflammatory, antibacterial and wound healing potential. These meshes can be valuable to lessen the post-surgical complications of implanted PP mesh and thus reduce rejection and recurrence.
Collapse
Affiliation(s)
- Sadaf Nosheen
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan, 54000; Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIB), GC University, Katchery Road, Lahore, Pakistan, 54000
| | - Hamid Mukhtar
- Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIB), GC University, Katchery Road, Lahore, Pakistan, 54000
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh 11421, Saudi Arabia
| | - Rawaiz Khan
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan, 54000; Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK.
| |
Collapse
|
19
|
Qin H, Teng Y, Dai R, Wang A, Liu J. Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy. Front Immunol 2024; 15:1395187. [PMID: 38799466 PMCID: PMC11116596 DOI: 10.3389/fimmu.2024.1395187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Glycan-based scaffolds are unique in their high specificity, versatility, low immunogenicity, and ability to mimic natural carbohydrates, making them attractive candidates for use in cancer treatment. These scaffolds are made up of glycans, which are biopolymers with well biocompatibility in the human body that can be used for drug delivery. The versatility of glycan-based scaffolds allows for the modulation of drug activity and targeted delivery to specific cells or tissues, which increases the potency of drugs and reduces side effects. Despite their promise, there are still technical challenges in the design and production of glycan-based scaffolds, as well as limitations in their therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yibin Teng
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Dai
- Department of Pharmacy, Peking Union Medical University Hospital, Beijing, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
21
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
22
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
23
|
Elsayed Mahmoud D, Billa N. Physicochemical modifications in microwave-irradiated chitosan: biopharmaceutical and medical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:898-915. [PMID: 38284331 DOI: 10.1080/09205063.2024.2306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Biopharmaceutical and biomedical applications of chitosan has evolved exponentially in the past decade, owing to its unique physicochemical properties. However, further applications can be garnered from modified chitosan, specifically, depolymerized chitosan, with potentially useful applications in drug delivery or biomedicine. The use of microwave irradiation in depolymerization of chitosan appears to be more consequential than other methods, and results in modification of key physicochemical properties of chitosan, including molecular weight, viscosity and degree of deacetylation. In-depth review of such microwave-depolymerized chitosan and subsequent potential biopharmaceutical or biomedical applications has not been presented before. Herein, we present a detailed review of key physicochemical changes in chitosan following various depolymerization approaches, with focus on microwave irradiation and how these changes impact relevant biopharmaceutical or biomedical applications.
Collapse
Affiliation(s)
- Doaa Elsayed Mahmoud
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Xiong Y, Zhang Q, Li J, Zhang N, Cheng X, Dong Q, Bao H. Light-sensitive PEG hydrogel with antibacterial performance for pacemaker pocket infection prevention. Mater Today Bio 2024; 25:100987. [PMID: 38486799 PMCID: PMC10938169 DOI: 10.1016/j.mtbio.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Prevention of cardiovascular implantable electronic devices (CIED) infection is crucial for successful outcomes. In this study, we report an adhesive and antibacterial hydrogel coating for CIED infection treatment, by immobilizing polyethylene glycol (PEG) and 2'-O-hydroxypropyl trimethyl ammonium chloride chitosan (HAC) on Ti surface. Initial alkali and APTES treatment caused the formation of -NH2 to enhance the adhesion of the hydrogel coating to Ti implants, followed by immobilizing a photo-cross-linkable PEG/2'-O-HTACCS hydrogel on Ti/OH/NH2 surface. Surface characterization of Ti/OH/NH2 sample and adhesion testing of hydrogel on Ti/OH/NH2 surface confirm successful immobilization of hydrogel onto the Ti/OH/NH2 surface. In vitro and in vivo antimicrobial results exhibited that the photo-cross-linkable PEG/HAC composite hydrogel has excellent antimicrobial capabilities against both Grampositive (S. aureus and S. epidermidis) and Gram-negative (P. aeruginosa and E. coli) bacteria. The outcome of this study demonstrates the photo-cross linked PEG/HAC coating hydrogels can be easily formed on the Ti implants, and has great potential in preventing CIED pocket infection.
Collapse
Affiliation(s)
- Yurong Xiong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, China
| | - Qingyun Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, China
| | - Juan Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, China
| | - Nan Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, China
| | - Quanbin Dong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, China
| |
Collapse
|
25
|
Escobar Jaramillo M, Covarrubias C, Patiño González E, Ossa Orozco CP. Optimization by mixture design of chitosan/multi-phase calcium phosphate/BMP-2 biomimetic scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2024; 152:106423. [PMID: 38290393 DOI: 10.1016/j.jmbbm.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
The modulation of cell behavior during culture is one of the most important aspects of bone tissue engineering because of the necessity for a complex mechanical and biochemical environment. This study aimed to improve the physicochemical properties of chitosan/multi-phase calcium phosphate (MCaP) scaffolds using an optimized mixture design experiment and evaluate the effect of biofunctionalization of the obtained scaffolds with the bone morphogenetic protein BMP-2 on stem cell behavior. The present study evaluated the compressive strength, elastic modulus, porosity, pore diameter, and degradation in simulated body fluids and integrated these responses using desirability. The properties of the scaffolds with the best desirability (18.4% of MCaP) were: compressive strength of 23 kPa, elastic modulus of 430 kPa, pore diameter of 163 μm, porosity of 92%, and degradation of 20% after 21 days. Proliferation and differentiation experiments were conducted using dental pulp stem cells after grafting BMP-2 onto scaffolds via the carbodiimide route. These experiments showed that MCaP promoted cell proliferation and increased alkaline phosphatase activity, whereas BMP-2 enhanced cell differentiation. This study demonstrates that optimizing the composition of a mixture of chitosan and MCaP improves the physicochemical and biological properties of scaffolds, indicating that this solution is viable for application in bone tissue engineering.
Collapse
Affiliation(s)
- Mateo Escobar Jaramillo
- Grupo de Investigación en Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia.
| | - Cristian Covarrubias
- Laboratorio de Nanobiomateriales, Universidad de, Chile, Santiago de Chile, Chile
| | - Edwin Patiño González
- Grupo de Bioquímica Estructural de Macromoléculas, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Claudia Patricia Ossa Orozco
- Grupo de Investigación en Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia
| |
Collapse
|
26
|
Stangel-Wójcikiewicz K, Murawski M, Schwarz T, Skotniczny K, Fuchs A, Wolski J, Radwan-Pragłowska J, Janus Ł, Piątkowski M, Kot M, Wróbel A, Wojtysiak D, Urbaniec P. Pelvic Organ Prolapse Reconstruction with the Chitosan-Based Novel Haemostatic Agent in Ovine Model-Preliminary Report. Int J Mol Sci 2024; 25:3801. [PMID: 38612610 PMCID: PMC11011902 DOI: 10.3390/ijms25073801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This prospective study aimed to assess the feasibility of chitosan biomaterial and subcutaneous gel implantation in an ovine model, with implications for women with genital prolapse. Twenty-four ewes were divided into four groups (n = 6 per group): chitosan type B, chitosan type C, chitosan unmodified injections, and polypropylene mesh. Ovine models were chosen due to their morphological resemblance to human reproductive organs. Animals were sacrificed after 90 days for macroscopic, pathomorphological, and immunohistochemical analysis. In the chitosan type B group, IL-6 and IL-10 levels decreased after 28 days, while chitosan type C and injection groups exhibited higher IL-6 than IL-10 levels. The polypropylene group displayed the highest IL-6 and lowest IL-10 levels. Histological examination of the polypropylene group revealed no degenerative changes or inflammation, whereas chitosan injection induced local inflammation. Other groups exhibited no degenerative changes. Ewes implanted with chitosan displayed reduced inflammation compared to polypropylene-implanted ewes. Chitosan implantation facilitated vaginal tissue healing, in contrast to polypropylene mesh, which led to extrusion. While chitosan holds promise as an alternative to polypropylene mesh, further research is imperative for comprehensive evaluation. This study suggests the potential of a chitosan biomaterial in pelvic organ prolapse treatment, warranting additional investigation.
Collapse
Affiliation(s)
- Klaudia Stangel-Wójcikiewicz
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, ul. Kopernika 23, 31-501 Kraków, Poland; (K.S.-W.); (K.S.)
| | - Maciej Murawski
- Department of Animal Nutrition, Biotechnology and Fisheries, Faculty of Animal Science, University of Agriculture in Kraków, ul. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Tomasz Schwarz
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Kraków, ul. Mickiewicza 21, 31-120 Kraków, Poland; (T.S.); (D.W.)
| | - Krzysztof Skotniczny
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, ul. Kopernika 23, 31-501 Kraków, Poland; (K.S.-W.); (K.S.)
| | - Agnieszka Fuchs
- Department of Gynecological Endocrinology and Gynecology, Faculty of Medicine, Jagiellonian University Medical College, ul. Kopernika 23, 31-501 Kraków, Poland; (A.F.); (J.W.)
| | - Jan Wolski
- Department of Gynecological Endocrinology and Gynecology, Faculty of Medicine, Jagiellonian University Medical College, ul. Kopernika 23, 31-501 Kraków, Poland; (A.F.); (J.W.)
| | - Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland; (Ł.J.); (M.P.)
| | - Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland; (Ł.J.); (M.P.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland; (Ł.J.); (M.P.)
| | - Marta Kot
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, ul. Wielicka 265, 30-663 Kraków, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, ul. Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Dorota Wojtysiak
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Kraków, ul. Mickiewicza 21, 31-120 Kraków, Poland; (T.S.); (D.W.)
| | | |
Collapse
|
27
|
Zeshan M, Amjed N, Ashraf H, Farooq A, Akram N, Zia KM. A review on the application of chitosan-based polymers in liver tissue engineering. Int J Biol Macromol 2024; 262:129350. [PMID: 38242400 DOI: 10.1016/j.ijbiomac.2024.129350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Chitosan-based polymers have enormous structural tendencies to build bioactive materials with novel characteristics, functions, and various applications, mainly in liver tissue engineering (LTE). The specific physicochemical, biological, mechanical, and biodegradation properties give the effective ways to blend these biopolymers with synthetic and natural polymers to fabricate scaffolds matrixes, sponges, and complexes. A variety of natural and synthetic biomaterials, including chitosan (CS), alginate (Alg), collagen (CN), gelatin (GL), hyaluronic acid (HA), hydroxyapatite (HAp), polyethylene glycol (PEG), polycaprolactone (PCL), poly(lactic-co-glycolic) acid (PGLA), polylactic acid (PLA), and silk fibroin gained considerable attention due to their structure-properties relationship. The incorporation of CS within the polymer matrix results in increased mechanical strength and also imparts biological behavior to the designed PU formulations. The significant and growing interest in the LTE sector, this review aims to be a detailed exploration of CS-based polymers biomaterials for LTE. A brief explanation of the sources and extraction, properties, structure, and scope of CS is described in the introduction. After that, a full overview of the liver, its anatomy, issues, hepatocyte transplantation, LTE, and CS LTE applications are discussed.
Collapse
Affiliation(s)
- Muhammad Zeshan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nyla Amjed
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Humna Ashraf
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
28
|
Wei C, Xing S, Li Y, Koosha M, Wang S, Chen H, Zhai Y, Wang L, Yang X, Fakhrullin R. Gelatin/carboxymethyl chitosan/aloe juice hydrogels with skin-like endurance and quick recovery: Preparation, characterization, and properties. Int J Biol Macromol 2024; 261:129720. [PMID: 38296139 DOI: 10.1016/j.ijbiomac.2024.129720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Gelatin-based hydrogels have gained considerable attention due to their resemblance to the extracellular matrix and hydrophilic three-dimensional network structure. Apart from providing an air-permeable and moist environment, these hydrogels optimize the inflammatory microenvironment of the wounds. These properties make gelatin-based hydrogels highly competitive in the field of wound dressings. In this study, a series of composite hydrogels were prepared using gelatin (Gel) and carboxymethyl chitosan (CMCh) as primary materials, glutaraldehyde as a crosslinker, and aloe vera juice as an anti-inflammatory component. The properties of the hydrogel, including its rheological properties, microscopic structures, mechanical properties, swelling ratios, thermal stability, antibacterial properties, and biocompatibility, were investigated. The results demonstrate that the gelatin-based hydrogels exhibit good elasticity and rapid self-healing ability. The hydrogels exhibited slight shear behavior, which is advantageous for skin care applications. Furthermore, the inclusion of aloe vera juice into the hydrogel resulted in a dense structure, improved mechanical properties and enhanced swelling ratio. The Gel/CMCh/Aloe hydrogels tolerate a compressive strength similar to that of human skin. Moreover, the hydrogels displayed excellent cytocompatibility with HFF-1 cells, and exhibited antibacterial activity against E. coli and S. aureus. Lomefloxacin was used as a model drug to study the releasing behavior of the Gel/CMCh/aloe hydrogels. The results showed that the drug was released rapidly at the initial stage, and could continue to be released for 12 h, the maximum releasing rate exceeded 20 %. These findings suggest that the gelatin-based hydrogels hold great promise as effective wound dressings.
Collapse
Affiliation(s)
- Chunyan Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Mojtaba Koosha
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | - Shoujuan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Hua Chen
- Interventional department of Shandong Provincial Cancer Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
| | - Yuan Zhai
- Interventional department of Shandong Provincial Cancer Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
| | - Ling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Xiaodeng Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| |
Collapse
|
29
|
Han GY, Kwack HW, Kim YH, Je YH, Kim HJ, Cho CS. Progress of polysaccharide-based tissue adhesives. Carbohydr Polym 2024; 327:121634. [PMID: 38171653 DOI: 10.1016/j.carbpol.2023.121634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Wook Kwack
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Yo-Han Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine-A Review. Molecules 2024; 29:883. [PMID: 38398635 PMCID: PMC10892962 DOI: 10.3390/molecules29040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Daniel J. Yelle
- Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA;
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland;
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
31
|
Lahoti VC, Lahoti P, Gundreddy LM, Puppala R, Sandeep V, Kethineni B. Comparative Evaluation of Amniotic Membrane Derivative, Chitosan with Mineral Trioxide Aggregate, Diode Laser, and Ferric Sulfate as Pulpotomy Agents in Human Primary Molars: An In Vivo Study. Int J Clin Pediatr Dent 2024; 17:153-157. [PMID: 39184892 PMCID: PMC11339475 DOI: 10.5005/jp-journals-10005-2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Aim The aim of the present study was to compare the clinical and radiographic success of amniotic membrane derivative (AMD), chitosan with mineral trioxide aggregate (C-MTA), diode laser (DL), and ferric sulfate (FS) as pulpotomy agents in human primary molars. Materials and methods In this present study, pulpotomies were performed on 48 primary molars in 30 children aged between 4 and 8 years (12 teeth in each group). Following the pulpotomy procedure, teeth were evaluated clinically and radiographically at 1st, 3rd, 6th, and 9 monthly intervals. Results After 9 months of follow-up, the clinical success was 91.6% for AMD and C-MTA and 83.3% for DL and FS. Radiographic success was 91.6, 91.6, 75, and 83.3% for AMD, C-MTA, DL, and FS groups, respectively. There is no statistically significant difference between the four groups (p > 0.05). Interpretation and conclusion Results of our study showed that both AMD and C-MTA were equally successful compared to traditional agents like laser and ferric sulfate as pulpotomy agents. Clinical significance Amniotic membrane derivative (AMD) and C-MTA are alternative biomimetic pulpotomy agents that can be used in pediatric primary tooth pulpotomies. How to cite this article Lahoti VC, Lahoti P, Gundreddy LM, et al. Comparative Evaluation of Amniotic Membrane Derivative, Chitosan with Mineral Trioxide Aggregate, Diode Laser, and Ferric Sulfate as Pulpotomy Agents in Human Primary Molars: An In Vivo Study. Int J Clin Pediatr Dent 2024;17(2):153-157.
Collapse
Affiliation(s)
- Vibha Chadak Lahoti
- Private Practitioner, Dr Lahotis Multispeciality Dental Care, Maharashtra, India
| | - Pratik Lahoti
- Private Practitioner, Dr Lahotis Multispeciality Dental Care, Maharashtra, India
| | | | - Ravinder Puppala
- Private Practitioner, Profile Dental Care, Hyderabad, Telangana, India
| | - Valasingam Sandeep
- Department of Pediatric Dentistry, GPR Dental College and Hospital, Kurnool, Andhra Pradesh, India
| | - Balaji Kethineni
- Private Practitioner, Sree Balaji Super Speciality Hospital, Hyderabad, Telangana, India
| |
Collapse
|
32
|
Kohar R, Ghosh M, Sawale JA, Singh A, Rangra NK, Bhatia R. Insights into Translational and Biomedical Applications of Hydrogels as Versatile Drug Delivery Systems. AAPS PharmSciTech 2024; 25:17. [PMID: 38253917 DOI: 10.1208/s12249-024-02731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Hydrogels are a network of crosslinked polymers which can hold a huge amount of water in their matrix. These might be soft, flexible, and porous resembling living tissues. The incorporation of different biocompatible materials and nanostructures into the hydrogels has led to emergence of multifunctional hydrogels with advanced properties. There are broad applications of hydrogels such as tissue culture, drug delivery, tissue engineering, implantation, water purification, and dressings. Besides these, it can be utilized in the field of medical surgery, in biosensors, targeted drug delivery, and drug release. Similarly, hyaluronic acid hydrogels have vast applications in biomedicines such as cell delivery, drug delivery, molecule delivery, micropatterning in cellular biology for tissue engineering, diagnosis and screening of diseases, tissue repair and stem cell microencapsulation in case of inflammation, angiogenesis, and other biological developmental processes. The properties like swellability, de-swellability, biodegradability, biocompatibility, and inert nature of the hydrogels in contact with body fluids, blood, and tissues make its tremendous application in the field of modern biomedicines nowadays. Various modifications in hydrogel formulations have widened their therapeutic applicability. These include 3D printing, conjugation, thiolation, multiple anchoring, and reduction. Various hydrogel formulations are also capable of dual drug delivery, dental surgery, medicinal implants, bone diseases, and gene and stem cells delivery. The presented review summarizes the unique properties of hydrogels along with their methods of preparation and significant biomedical applications as well as different types of commercial products available in the market and the regulatory guidance.
Collapse
Affiliation(s)
- Ramesh Kohar
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Maitrayee Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Jyotiram A Sawale
- Department of Pharmacognosy, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, 415539, Maharashtra, India
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
33
|
Chen Y, Chen Y, Xie Z, Yang Y, Chen S, Han T, Li M, Guo Z, Sun N, Wang C. A Biomimetic Nanogenerator to Enhance Bone Regeneration by Restoring Electric Microenvironments. ACS Biomater Sci Eng 2024; 10:525-536. [PMID: 38099722 DOI: 10.1021/acsbiomaterials.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Piezoelectric materials have received increasing attention in bone regeneration due to their prominent role in bioelectricity in bone homeostasis. This study aimed to develop bioactive barium titanate-chitosan-graphene oxide piezoelectric nanoparticles (BCG-NPs) to improve biocompatibility and stimulate bone repair. Butterfly loops, hysteresis loops, and in vitro microcurrent studies on BCG-NPs confirmed their good piezoelectric properties. BCG-NPs exhibited enhanced alkaline phosphatase activity, mineralized nodule formation, and expression of osteogenic-associated proteins and genes in human umbilical cord Wharton's jelly-derived mesenchymal stem cells by creating microelectric environments in response to noninvasive ultrasound stimulation. Further, BCG-NPs upregulated intracellular calcium ions via electrical stimulation. They acted synergistically with piezo-type mechanosensitive ion channel component 1 and calcium-permeable cation channel transient receptor potential vanilloid 4 to activate osteogenic differentiation. In conclusion, ultrasound-assisted BCG-NPs created a microelectric environment that putatively promoted bone repair in a noninvasive manner.
Collapse
Affiliation(s)
- Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Zhe Xie
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Yuchen Yang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Siyuan Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Miaomiao Li
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Zhengnong Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Nuo Sun
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| |
Collapse
|
34
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
35
|
Sun D, Chang Q, Lu F. Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. J Tissue Eng 2024; 15:20417314241265202. [PMID: 39071896 PMCID: PMC11283672 DOI: 10.1177/20417314241265202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
37
|
Paul S, Schrobback K, Tran PA, Meinert C, Davern JW, Weekes A, Klein TJ. Photo-Cross-Linkable, Injectable, and Highly Adhesive GelMA-Glycol Chitosan Hydrogels for Cartilage Repair. Adv Healthc Mater 2023; 12:e2302078. [PMID: 37737465 PMCID: PMC11468424 DOI: 10.1002/adhm.202302078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Hydrogels provide a promising platform for cartilage repair and regeneration. Although hydrogels have shown some efficacy, they still have shortcomings including poor mechanical properties and suboptimal integration with surrounding cartilage. Herein, hydrogels that are injectable, cytocompatible, mechanically robust, and highly adhesive to cartilage are developed. This approach uses GelMA-glycol chitosan (GelMA-GC) that is crosslinkable with visible light and photoinitiators (lithium acylphosphinate and tris (2,2'-bipyridyl) dichlororuthenium (II) hexahydrate ([RuII(bpy)3 ]2+ and sodium persulfate (Ru/SPS)). Ru/SPS-cross-linked hydrogels have higher compressive and tensile modulus, and most prominently higher adhesive strength with cartilage, which also depends on inclusion of GC. Tensile and push-out tests of the Ru/SPS-cross-linked GelMA-GC hydrogels demonstrate adhesive strength of ≈100 and 46 kPa, respectively. Hydrogel precursor solutions behave in a Newtonian manner and are injectable. After injection in focal bovine cartilage defects and in situ cross-linking, this hydrogel system remains intact and integrated with cartilage following joint manipulation ex vivo. Cells remain viable (>85%) in the hydrogel system and further show tissue regeneration potential after three weeks of in vitro culture. These preliminary results provide further motivation for future research on bioadhesive hydrogels for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Sattwikesh Paul
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- Department of Surgery and RadiologyFaculty of Veterinary Medicine and Animal ScienceBangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU)Gazipur1706Bangladesh
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Karsten Schrobback
- School of Biomedical SciencesCentre for Genomics and Personalised HealthTranslational Research InstituteQueensland University of Technology (QUT)37 Kent StreetWoolloongabbaQLD4102Australia
| | - Phong Anh Tran
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Christoph Meinert
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Chief Executive Officer of Gelomics Pty LtdBrisbaneQueensland4059Australia
| | - Jordan William Davern
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
| | - Angus Weekes
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Travis Jacob Klein
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
38
|
Grande-Tovar CD, Castro JI, Tenorio DL, Zapata PA, Florez-López E, Valencia-Llano CH. Chitosan-Polyvinyl Alcohol Nanocomposites for Regenerative Therapy. Polymers (Basel) 2023; 15:4595. [PMID: 38232016 PMCID: PMC10708655 DOI: 10.3390/polym15234595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Tissue accidents provide numerous pathways for pathogens to invade and flourish, causing additional harm to the host tissue while impeding its natural healing and regeneration. Essential oils (EOs) exhibit rapid and effective antimicrobial properties without promoting bacterial resistance. Clove oils (CEO) demonstrate robust antimicrobial activity against different pathogens. Chitosan (CS) is a natural, partially deacetylated polyamine widely recognized for its vast antimicrobial capacity. In this study, we present the synthesis of four membrane formulations utilizing CS, polyvinyl alcohol (PVA), and glycerol (Gly) incorporated with CEO and nanobioglass (n-BGs) for applications in subdermal tissue regeneration. Our analysis of the membranes' thermal stability and chemical composition provided strong evidence for successfully blending polymers with the entrapment of the essential oil. The incorporation of the CEO in the composite was evidenced by the increase in the intensity of the band of C-O-C in the FTIR; furthermore, the increase in diffraction peaks, as well as the broadening, provide evidence that the introduction of CEO perturbed the crystal structure. The morphological examination conducted using scanning electron microscopy (SEM) revealed that the incorporation of CEO resulted in smooth surfaces, in contrast to the porous morphologies observed with the n-BGs. A histological examination of the implanted membranes demonstrated their biocompatibility and biodegradability, particularly after a 60-day implantation period. The degradation process of more extensive membranes involved connective tissue composed of type III collagen fibers, blood vessels, and inflammatory cells, which supported the reabsorption of the composite membranes, evidencing the material's biocompatibility.
Collapse
Affiliation(s)
- Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Jorge Ivan Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Diego López Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (D.L.T.); (C.H.V.-L.)
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| | - Edwin Florez-López
- Grupo de Investigación en Química y Biotecnología QUIBIO, Universidad Santiago de Cali, Calle 5 No. 62-00, Cali 760035, Colombia;
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (D.L.T.); (C.H.V.-L.)
| |
Collapse
|
39
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
40
|
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023; 16:012003. [PMID: 37944186 PMCID: PMC10658349 DOI: 10.1088/1758-5090/ad0b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.
Collapse
Affiliation(s)
- Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Anwita Sarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Irem Deniz Derman
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, United States of America
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
41
|
Ghalayani Esfahani A, Sartori M, Bregoli C, Fiocchi J, Biffi CA, Tuissi A, Giavaresi G, Presentato A, Alduina R, De Luca A, Cabrini A, De Capitani C, Fini M, Gruppioni E, Lavorgna M, Ronca A. Bactericidal Activity of Silver-Doped Chitosan Coatings via Electrophoretic Deposition on Ti 6Al 4V Additively Manufactured Substrates. Polymers (Basel) 2023; 15:4130. [PMID: 37896373 PMCID: PMC10610813 DOI: 10.3390/polym15204130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities.
Collapse
Affiliation(s)
- Arash Ghalayani Esfahani
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Chiara Bregoli
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Jacopo Fiocchi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Carlo Alberto Biffi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Ausonio Tuissi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Angela De Luca
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Alessia Cabrini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Cristina De Capitani
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Milena Fini
- Scientific Directorate, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy;
| | - Emanuele Gruppioni
- INAIL Centro Protesi, Via Rabuina 14, Vigorso di Budrio, 40054 Bologna, Italy;
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Alfredo Ronca
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| |
Collapse
|
42
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
43
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
44
|
Zhuikova YV, Zhuikov VA, Makhina TK, Efremov YM, Aksenova NA, Timashev PS, Bonartseva GA, Varlamov VP. Preparation and characterization of poly(3-hydroxybutyrate)/chitosan composite films using acetic acid as a solvent. Int J Biol Macromol 2023; 248:125970. [PMID: 37494998 DOI: 10.1016/j.ijbiomac.2023.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Poly(3-hydroxybutyrate) and chitosan are among the most widely used polymers for biomedical applications due to their biocompatibility, renewability and low toxicity. The creation of composite materials based on biopolymers belonging to different classes makes it possible to overcome the disadvantages of each of the components and to obtain a material with specific properties. Solving this problem is associated with difficulties in the selection of conditions and solvents for obtaining the composite material. In our study, acetic acid was used as a common solvent for hydrophobic poly(3-hydroxybutyrate) and chitosan. Mechanical, thermal, physicochemical and surface properties of the composites and homopolymers were investigated. The composite films had less crystallinity and hydrophobicity than poly(3-hydroxybutyrate), and the addition of chitosan caused an increase in moisture absorption, a decrease in contact angle and changes in mechanical properties of the poly(3-hydroxybutyrate). The inclusion of varying amounts of chitosan controlled the properties of the composite, which will be important in the future for its specific biomedical applications.
Collapse
Affiliation(s)
- Yulia V Zhuikova
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| | - Vsevolod A Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana K Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nadezhda A Aksenova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare" Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Valery P Varlamov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Shnayder NA, Ashhotov AV, Trefilova VV, Novitsky MA, Medvedev GV, Petrova MM, Narodova EA, Kaskaeva DS, Chumakova GA, Garganeeva NP, Lareva NV, Al-Zamil M, Asadullin AR, Nasyrova RF. High-Tech Methods of Cytokine Imbalance Correction in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:13333. [PMID: 37686139 PMCID: PMC10487844 DOI: 10.3390/ijms241713333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
An important mechanism for the development of intervertebral disc degeneration (IDD) is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected result, or give a short period of time. This explains the relevance of high-tech medical care, which is part of specialized care and includes the use of new resource-intensive methods of treatment with proven effectiveness. The aim of the review is to update knowledge about new high-tech methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches to IDD management in patients resistant to previously used therapies, including: cell therapy (stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl oxidase; corticostatin; etc.).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - Maxim A. Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - German V. Medvedev
- R.R. Vreden National Medical Research Center for Traumatology and Orthopedics, 195427 Saint-Petersburg, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Daria S. Kaskaeva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia;
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
46
|
Dutta D, Graupner N, Müssig J, Brüggemann D. Assembly of Rolled-Up Collagen Constructs on Porous Alumina Textiles. ACS NANOSCIENCE AU 2023; 3:286-294. [PMID: 37601922 PMCID: PMC10436369 DOI: 10.1021/acsnanoscienceau.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 08/22/2023]
Abstract
Developing new techniques to prepare free-standing tubular scaffolds has always been a challenge in the field of regenerative medicine. Here, we report a new and simple way to prepare free-standing collagen constructs with rolled-up architecture by self-assembling nanofibers on porous alumina (Al2O3) textiles modified with different silanes, carbon or gold. Following self-assembly and cross-linking with glutaraldehyde, collagen nanofibers spontaneously rolled up on the modified Al2O3 textiles and detached. The resulting collagen constructs had an inner diameter of approximately 2 to 4 mm in a rolled-up state and could be easily detached from the underlying textiles. Mechanical testing of wet collagen scaffolds following detachment yielded mean values of 3.5 ± 1.9 MPa for the tensile strength, 41.0 ± 20.8 MPa for the Young's modulus and 8.1 ± 3.7% for the elongation at break. No roll-up was observed on Al2O3 textiles without any modification, where collagen did not assemble into fibers, either. Blends of collagen and chitosan were also found to roll into fibrous constructs on silanized Al2O3 textiles, while fibrinogen nanofibers or blends of collagen and elastin did not yield such structures. Based on these differences, we hypothesize that textile surface charge and protein charge, in combination with the porous architecture of protein nanofibers and differences in mechanical strain, are key factors in inducing a scaffold roll-up. Further studies are required to develop the observed roll-up effect into a reproducible biofabrication process that can enable the controlled production of free-standing collagen-based tubes for soft tissue engineering.
Collapse
Affiliation(s)
- Deepanjalee Dutta
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Nina Graupner
- The Biological Materials Group, Biomimetics, Faculty 5, HSB - City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Jörg Müssig
- The Biological Materials Group, Biomimetics, Faculty 5, HSB - City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
47
|
Zamora I, Alfonso Morales G, Castro JI, Ruiz Rojas LM, Valencia-Llano CH, Mina Hernandez JH, Valencia Zapata ME, Grande-Tovar CD. Chitosan (CS)/Hydroxyapatite (HA)/Tricalcium Phosphate (β-TCP)-Based Composites as a Potential Material for Pulp Tissue Regeneration. Polymers (Basel) 2023; 15:3213. [PMID: 37571109 PMCID: PMC10421191 DOI: 10.3390/polym15153213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
This research focused on developing new materials for endodontic treatments to restore tissues affected by infectious or inflammatory processes. Three materials were studied, namely tricalcium phosphate β-hydroxyapatite (β-TCP), commercial and natural hydroxyapatite (HA), and chitosan (CS), in different proportions. The chemical characterization using infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the composition of the composite. Scanning electron microscopy (SEM) demonstrated that the design and origin of the HA, whether natural or commercial, did not affect the morphology of the composites. In vitro studies using Artemia salina (A. salina) indicated that all three experimental materials were biocompatible after 24 h, with no significant differences in mortality rate observed among the groups. The subdermal implantation of the materials in block form exhibited biocompatibility and biodegradability after 30 and 60 days, with the larger particles undergoing fragmentation and connective tissue formation consisting of collagen type III fibers, blood vessels, and inflammatory cells. The implanted material continued to undergo resorption during this process. The results obtained in this research contribute to developing endodontic technologies for tissue recovery and regeneration.
Collapse
Affiliation(s)
- Ingrid Zamora
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (I.Z.); (G.A.M.); (C.H.V.-L.)
| | - Gilbert Alfonso Morales
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (I.Z.); (G.A.M.); (C.H.V.-L.)
| | - Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Lina Marcela Ruiz Rojas
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Cali 760032, Colombia; (L.M.R.R.); (J.H.M.H.); (M.E.V.Z.)
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (I.Z.); (G.A.M.); (C.H.V.-L.)
| | - Jose Herminsul Mina Hernandez
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Cali 760032, Colombia; (L.M.R.R.); (J.H.M.H.); (M.E.V.Z.)
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Cali 760032, Colombia; (L.M.R.R.); (J.H.M.H.); (M.E.V.Z.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
48
|
Kumar A, Yadav S, Pramanik J, Sivamaruthi BS, Jayeoye TJ, Prajapati BG, Chaiyasut C. Chitosan-Based Composites: Development and Perspective in Food Preservation and Biomedical Applications. Polymers (Basel) 2023; 15:3150. [PMID: 37571044 PMCID: PMC10421092 DOI: 10.3390/polym15153150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Chitin, which may be the second-most common polymer after cellulose, is the raw material of chitosan. Chitosan has been infused with various plant extracts and subsidiary polymers to improve its biological and physiological properties. Chitosan's physicochemical properties are enhanced by blending, making them potential candidates that can be utilized in multifunctional areas, including food processing, nutraceuticals, food quality monitoring, food packaging, and storage. Chitosan-based biomaterials are biocompatible, biodegradable, low toxic, mucoadhesive, and regulate chemical release. Therefore, they are used in the biomedical field. The present manuscript highlights the application of chitosan-based composites in the food and biomedical industries.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Sangeeta Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Jhilam Pramanik
- Department of Food Technology, William Carey University, Shillong 793019, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
49
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
50
|
Soleimani M, Ebrahimi Z, Ebrahimi KS, Farhadian N, Shahlaei M, Cheraqpour K, Ghasemi H, Moradi S, Chang AY, Sharifi S, Baharnoori SM, Djalilian AR. Application of biomaterials and nanotechnology in corneal tissue engineering. J Int Med Res 2023; 51:3000605231190473. [PMID: 37523589 PMCID: PMC10392709 DOI: 10.1177/03000605231190473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Corneal diseases are among the most common causes of blindness worldwide. Regardless of the etiology, corneal opacity- or globe integrity-threatening conditions may necessitate corneal replacement procedures. Several procedure types are currently available to address these issues, based on the complexity and extent of injury. Corneal allograft or keratoplasty is considered to be first-line treatment in many cases. However, a significant proportion of the world's population are reported to have no access to this option due to limitations in donor preparation. Thus, providing an appropriate, safe, and efficient synthetic implant (e.g., artificial cornea) may revolutionize this field. Nanotechnology, with its potential applications, has garnered a lot of recent attention in this area, however, there is seemingly a long way to go. This narrative review provides a brief overview of the therapeutic interventions for corneal pathologies, followed by a summary of current biomaterials used in corneal regeneration and a discussion of the nanotechnologies that can aid in the production of superior implants.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zohreh Ebrahimi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Sadat Ebrahimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ghasemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sina Sharifi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Seyed Mahbod Baharnoori
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|