1
|
Pruitt HM, Zhu JC, Riley SP, Shi M. The Hidden Fortress: A Comprehensive Review of Fungal Biofilms with Emphasis on Cryptococcus neoformans. J Fungi (Basel) 2025; 11:236. [PMID: 40137272 PMCID: PMC11943451 DOI: 10.3390/jof11030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Biofilms are structurally organized communities of microorganisms that adhere to a variety of surfaces. These communities produce protective matrices consisting of polymeric polysaccharides, proteins, nucleic acids, and/or lipids that promote shared resistance to various environmental threats, including chemical, antibiotic, and immune insults. While algal and bacterial biofilms are more apparent in the scientific zeitgeist, many fungal pathogens also form biofilms. These surprisingly common biofilms are morphologically distinct from the multicellular molds and mushrooms normally associated with fungi and are instead an assemblage of single-celled organisms. As a collection of yeast and filamentous cells cloaked in an extracellular matrix, fungal biofilms are an extreme threat to public health, especially in conjunction with surgical implants. The encapsulated yeast, Cryptococcus neoformans, is an opportunistic pathogen that causes both pulmonary and disseminated infections, particularly in immunocompromised individuals. However, there is an emerging trend of cryptococcosis among otherwise healthy individuals. C. neoformans forms biofilms in diverse environments, including within human hosts. Notably, biofilm association correlates with increased expression of multiple virulence factors and increased resistance to both host defenses and antifungal treatments. Thus, it is crucial to develop novel strategies to combat fungal biofilms. In this review, we discuss the development and treatment of fungal biofilms, with a particular focus on C. neoformans.
Collapse
Affiliation(s)
| | | | - Sean P. Riley
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (H.M.P.); (J.C.Z.)
| | - Meiqing Shi
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (H.M.P.); (J.C.Z.)
| |
Collapse
|
2
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Wang D, Zeng N, Li C, Li Z, Zhang N, Li B. Fungal biofilm formation and its regulatory mechanism. Heliyon 2024; 10:e32766. [PMID: 38988529 PMCID: PMC11233959 DOI: 10.1016/j.heliyon.2024.e32766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Fungal biofilm is a microbial community composed of fungal cells and extracellular polymeric substances (EPS). In recent years, fungal biofilms have played an increasingly important role in many fields. However, there are few studies on fungal biofilms and their related applications and development are still far from enough. Therefore, this review summarizes the composition and function of EPS in fungal biofilms, and improves and refines the formation process of fungal biofilms according to the latest viewpoints. Moreover, based on the study of Saccharomyces cerevisiae and Candida albicans, this review summarizes the gene regulation network of fungal biofilm synthesis, which is crucial for systematically understanding the molecular mechanism of fungal biofilm formation. It is of great significance to further develop effective methods at the molecular level to control harmful biofilms or enhance and regulate the formation of beneficial biofilms. Finally, the quorum sensing factors and mixed biofilms formed by fungi in the current research of fungal biofilms are summarized. These results will help to deepen the understanding of the formation process and internal regulation mechanism of fungal biofilm, provide reference for the study of EPS composition and structure, formation, regulation, group behavior and mixed biofilm formation of other fungal biofilms, and provide strategies and theoretical basis for the control, development and utilization of fungal biofilms.
Collapse
Affiliation(s)
- Dandan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, PR China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| |
Collapse
|
4
|
Le PH, Linklater DP, Medina AA, MacLaughlin S, Crawford RJ, Ivanova EP. Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomater 2024; 177:20-36. [PMID: 38342192 DOI: 10.1016/j.actbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; Department of Biomedical Engineering, The Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arturo Aburto Medina
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shane MacLaughlin
- ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; BlueScope Steel Research, Port Kembla, NSW 2505, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia.
| |
Collapse
|
5
|
Xu J, Sun W, Wang Y, Jiang H, Ding H, Cheng Q, Bao N, Meng J. Two-Stage Treatment Protocol of Fungal Periprosthetic Hip and Knee Joint Infections: the Clinical Experience from a Single Center Experience. ACTA CHIRURGIAE ORTHOPAEDICAE ET TRAUMATOLOGIAE CECHOSLOVACA 2024; 91:52-56. [PMID: 38447565 DOI: 10.55095/achot2024/003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF THE STUDY To evaluate the clinical results and safety of fungal periprosthetic joint Infections (fPJIs) using two-stage treatment protocol. MATERIAL AND METHODS 8 patients with fPJIs (3 hips and 5 knees) using two-stage revision were reviewed retrospectively and followed up at least 2 years. The preoperative demographic data, two-stage treatment protocol, results of microbiology and histologic workup and postoperative follow-up results (reimplantation success rate and infection free time) were recorded. RESULTS 7 patients got successful reimplantation, with a 75% reimplantation success rate. Two patients got knee arthrodesis eventually. All patients were infection free with a median follow-up of 4.0 ± 2.0 years (range, 2-7 years). Of them, Candida species were found in 7 patients, while non-Candida specimen was only isolated in 1 patient with Aspergillus. Only 2 patients had coexisting bacterial infection (Methicillin-resistant coagulase-negative Staphylococci and Proteus mirabilis respectively). The average interval between the initial surgery and diagnosis of fPJIs was 21.50±34.79 months (range, 4-104 months). The mean time of spacer implantation was 7.75±2.77 months (range, 6-14 months). None serious complication or above knee amputation was found. DISCUSSION fPJIs are very rare and considerable challenge after total hip or knee arthroplasty. The goal of therapy is to eradicate local infection and maintain function. Candida species were the most common pathogen. The duration between spacer placement and staged reimplantation was highly variable, and generally dependent upon the results of joint aspirates and infl ammatory markers. The current study shows that the two-stage treatment protocol is recommended for fungal periprosthetic hip and knee joint infections. CONCLUSIONS The two-stage treatment protocol is recommended for fungal periprosthetic hip and knee joint infections. The safety and effi cacy of biantibiotical impregnated (antifungal + antibiotics) cement spacer is confi rmed. Further evidence-based work is needed to determine the optimal drug dose and reimplantation time. KEY WORDS two-stage treatment protocol, fungal periprosthetic infections, hip spacer, knee spacer.
Collapse
Affiliation(s)
- J Xu
- Department of Orthopaedics, Changzhou Traditional Chinese medical hospital, affi liated to Nanjing University of Traditional Chinese Medicine, Changzhou, Jiangsu Province, China
| | - W Sun
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Y Wang
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - H Jiang
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - H Ding
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Q Cheng
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - N Bao
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - J Meng
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Whitehead KA, Lynch S, Amin M, Deisenroth T, Liauw CM, Verran J. Effects of Cationic and Anionic Surfaces on the Perpendicular and Lateral Forces and Binding of Aspergillus niger Conidia. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2932. [PMID: 37999286 PMCID: PMC10674310 DOI: 10.3390/nano13222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
The binding of conidia to surfaces is a prerequisite for biofouling by fungal species. In this study, Aspergillus niger subtypes 1957 and 1988 were used which produced differently shaped conidia (round or spikey respectively). Test surfaces were characterised for their surface topography, wettability, and hardness. Conidial assays included perpendicular and lateral force measurements, as well as attachment, adhesion and retention assays. Anionic surfaces were less rough (Ra 2.4 nm), less wettable (54°) and harder (0.72 GPa) than cationic surfaces (Ra 5.4 nm, 36° and 0.5 GPa, respectively). Perpendicular and lateral force assays demonstrated that both types of conidia adhered with more force to the anionic surfaces and were influenced by surface wettability. Following the binding assays, fewer A. niger 1957 and A. niger 1988 conidia bound to the anionic surface. However, surface wettability affected the density and dispersion of the conidia on the coatings, whilst clustering was affected by their spore shapes. This work demonstrated that anionic surfaces were more repulsive to A. niger 1998 spores than cationic surfaces were, but once attached, the conidia bound more firmly to the anionic surfaces. This work informs on the importance of understanding how conidia become tightly bound to surfaces, which can be used to prevent biofouling.
Collapse
Affiliation(s)
- Kathryn A. Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Stephen Lynch
- Department of Computing and Mathematics, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK;
| | - Mohsin Amin
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Ted Deisenroth
- BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY 10591, USA;
| | - Christopher M. Liauw
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Joanna Verran
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| |
Collapse
|
7
|
Arafa SH, Elbanna K, Osman GEH, Abulreesh HH. Candida diagnostic techniques: a review. JOURNAL OF UMM AL-QURA UNIVERSITY FOR APPLIED SCIENCES 2023; 9:360-377. [DOI: 10.1007/s43994-023-00049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 01/03/2025]
Abstract
AbstractFungal infections (mycoses) represent a major health issue in humans. They have emerged as a global concern for medical professionals by causing high morbidity and mortality. Fungal infections approximately impact one billion individuals per annum and account for 1.6 million deaths. The diagnosis of Candida infections is a challenging task. Laboratory-based Candida species identification techniques (molecular, commercial, and conventional) have been reviewed and summarized. This review aims to discuss the mycoses history, taxonomy, pathogenicity, and virulence characteristics.
Collapse
|
8
|
Martins Leal Schrekker C, Sokolovicz YCA, Raucci MG, Leal CAM, Ambrosio L, Lettieri Teixeira M, Meneghello Fuentefria A, Schrekker HS. Imidazolium Salts for Candida spp. Antibiofilm High-Density Polyethylene-Based Biomaterials. Polymers (Basel) 2023; 15:polym15051259. [PMID: 36904500 PMCID: PMC10007465 DOI: 10.3390/polym15051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The species of Candida present good capability to form fungal biofilms on polymeric surfaces and are related to several human diseases since many of the employed medical devices are designed using polymers, especially high-density polyethylene (HDPE). Herein, HDPE films containing 0; 0.125; 0.250 or 0.500 wt% of 1-hexadecyl-3-methylimidazolium chloride (C16MImCl) or its analog 1-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS) were obtained by melt blending and posteriorly mechanically pressurized into films. This approach resulted in more flexible and less brittle films, which impeded the Candida albicans, C. parapsilosis, and C. tropicalis biofilm formation on their surfaces. The employed imidazolium salt (IS) concentrations did not present any significant cytotoxic effect, and the good cell adhesion/proliferation of human mesenchymal stem cells on the HDPE-IS films indicated good biocompatibility. These outcomes combined with the absence of microscopic lesions in pig skin after contact with HDPE-IS films demonstrated their potential as biomaterials for the development of effective medical device tools that reduce the risk of fungal infections.
Collapse
Affiliation(s)
- Clarissa Martins Leal Schrekker
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Yuri Clemente Andrade Sokolovicz
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125 Naples, Italy
| | - Claudio Alberto Martins Leal
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125 Naples, Italy
| | - Mário Lettieri Teixeira
- Laboratory of Biochemistry and Toxicology, Instituto Federal Catarinense (IFC), Rodovia SC 283—km 17, Concórdia 89703-720, SC, Brazil
| | - Alexandre Meneghello Fuentefria
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil
- Correspondence: (A.M.F.); (H.S.S.)
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
- Correspondence: (A.M.F.); (H.S.S.)
| |
Collapse
|
9
|
Fathi-Hafshejani P, Tinker HB, Freel K, Mahjouri-Samani M, Hasim S. Effects of TiS 2 on Inhibiting Candida albicans Biofilm Formation and Its Compatibility with Human Gingival Fibroblasts in Titanium Implants. ACS APPLIED BIO MATERIALS 2023; 6:436-444. [PMID: 36723506 DOI: 10.1021/acsabm.2c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Titanium is widely used in medical devices, such as dental and orthopedic implants, due to its excellent mechanical properties, low toxicity, and biocompatibility. However, the titanium surface has the risk of microbial biofilm formation, which results in infections from species such as Candida albicans (C. albicans). This kind of biofilm prevents antifungal therapy and complicates the treatment of infectious diseases associated with implanted devices. It is critical to developing a feasible surface to decrease microbial growth while not interfering with the growth of the host cells. This study reports the influence of titanium surface modification to titanium disulfide (TiS2) on inhibiting C. albicans biofilm formation while allowing the attachment of human gingival fibroblasts (HGFs) on their surface. The surface of titanium parts is directly converted to structured titanium and TiS2 using direct laser processing and crystal growth methods. C. albicans adhesion and colonization are then investigated on these surfaces by the colony counting assay and reactive oxygen species (ROS) assay, using 2',7'-dichlorofluorescin diacetate (DCFH-DA) and microscopy images. Also, the viability and adhesion of HGFs on these surfaces are investigated to show their adhesion and biocompatibility. Titanium samples with the TiS2 surface show both C. albicans biofilm inhibition and HGF attachment. This study provides insight into designing and manufacturing titanium biomedical implants.
Collapse
Affiliation(s)
- Parvin Fathi-Hafshejani
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Hunter B Tinker
- Department of Biology, Mercer University, Macon, Georgia31207, United States
| | - Katherine Freel
- Department of Biology, Mercer University, Macon, Georgia31207, United States
| | - Masoud Mahjouri-Samani
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Sahar Hasim
- Department of Biology, Mercer University, Macon, Georgia31207, United States
| |
Collapse
|
10
|
Khan P, Datta A, Basu M, Chatterjee A, Banerjee B, Mitra AK. Lantibiotics in antifungal therapy: a futuristic approach. LANTIBIOTICS AS ALTERNATIVE THERAPEUTICS 2023:205-220. [DOI: 10.1016/b978-0-323-99141-4.00018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Costa PDS, Prado A, Bagon NP, Negri M, Svidzinski TIE. Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms 2022; 10:microorganisms10091721. [PMID: 36144323 PMCID: PMC9506030 DOI: 10.3390/microorganisms10091721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.
Collapse
|
12
|
Ca 2Fe 2O 5 powder antifungal activity to the Candida utilis culture upon its growth. Biometals 2022; 35:1133-1143. [PMID: 35969323 DOI: 10.1007/s10534-022-00429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
This study reports the impact of Ca2Fe2O5 porous powder on the yeast Candida utilis-as a fungal model-at different phases of growth, i.e., early exponential (6 h), mid-log (11 h), and stationary (17 h) phases. Ca2Fe2O5 inhibited the cell growth in a time-dependent manner. After 120 min incubation, the fungicidal activity of porous powder was observed, i.e., log reduction of 2.81 and 2.58 for 11 and 17 h cultures, respectively, reaching the maximum of 4 log reduction after 7 days. Nevertheless, the 6 h culture of C. utilis showed enhanced resistance to Ca2Fe2O5 with a ≤ 0.4 log reduction during the 7 days exposure. Our results not only showed that Ca2Fe2O5 has the potential to effectively eliminate the C. utilis cell growth but also indicated the importance of the yeast culture physiological state for resistance to Ca2Fe2O5. To the best of our knowledge, this is the first study that evaluated the fungicidal activity of Ca2Fe2O5 porous powder on C. utilis and the impact of the C. utilis phase of growth on the cell susceptibility.
Collapse
|
13
|
Molecular Mapping of Antifungal Mechanisms Accessing Biomaterials and New Agents to Target Oral Candidiasis. Int J Mol Sci 2022; 23:ijms23147520. [PMID: 35886869 PMCID: PMC9320712 DOI: 10.3390/ijms23147520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.
Collapse
|
14
|
Ramstedt M, Burmølle M. Can multi-species biofilms defeat antimicrobial surfaces on medical devices? CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Dou F, Lu Y, Nitin N. Yeast cell microcarriers for delivery of a model bioactive compound in skin. Int J Pharm 2021; 609:121123. [PMID: 34560206 DOI: 10.1016/j.ijpharm.2021.121123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 01/22/2023]
Abstract
This study aimed at developing a cell-based encapsulation carrier for topical delivery of bioactives to the skin. The overall objectives were to evaluate affinity of the yeast-cell based carrier to bind to the skin surface following topical application and to quantify controlled release of curcumin as a model bioactive in ex-vivo skin models using a combination of imaging, modeling and analytical measurements. Both porcine skin tissue and clinically obtained human skin biopsies were studied. The results demonstrated that upon incubation with the ex-vivo skin tissues, the cell carriers rapidly bound to the skin surface following topical delivery and provided sustained release of encapsulated curcumin. The microcarrier binding and penetration of curcumin in the dermal compartment also showed to increase with incubation time. The average flux of curcumin in human skin biopsies Jp was 0.89 ± 0.02 μg/cm2/h. These results illustrated the potential of a novel cell-based carrier for high affinity binding to skin surface, efficient encapsulation of a model bioactive and controlled release from the cell carrier to the skin with enhanced permeation to the dermis section. Overall, this study demonstrated a new class of cost-effective carriers for improving delivery of bioactives to the skin and potentially other epithelial tissues.
Collapse
Affiliation(s)
- Fang Dou
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Yixing Lu
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Assessment of nonreleasing antifungal surface coatings bearing covalently attached pharmaceuticals. Biointerphases 2021; 16:061001. [PMID: 34794317 DOI: 10.1116/6.0001099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There are many reports of antimicrobial coatings bearing immobilized active agents on surfaces; however, strong analytical evidence is required to verify that the agents are indeed covalently attached to the surface. In the absence of such evidence, antimicrobial activity could result from a release of active agents. We report a detailed assessment of antifungal surface coatings prepared using covalent attachment chemistries, with the aim of establishing a set of instrumental and biological evidence required to convincingly demonstrate antimicrobial activity due to nonreleasing, surface active compounds and to exclude the alternate possibility of activity due to release. The strongest biological evidence initially supporting permanent antifungal activity was the demonstration of the ability to reuse samples in multiple, sequential pathogen challenges. However, additional supporting evidence from washing studies and instrumental analysis is also required to probe the possibility of gradual desorption of strongly physisorbed compounds versus covalently attached compounds. Potent antifungal surface coatings were prepared from approved pharmaceutical compounds from the echinocandin drug class (caspofungin, anidulafungin, and micafungin) and assessed by microbiological tests and instrumental methods. Carbonyl diimidazole linking chemistry enabled covalent attachment of caspofungin, anidulafungin, and micafungin to plasma polymer surfaces, with antifungal surface activity likely caused by molecular orientations that present the lipophilic tail toward interfacing fungal cells. This study demonstrates the instrumental and biological evidence required to convincingly ascertain activity due to nonreleasing, surface active compounds and summarize these as three criteria for assessing other reports on surface-immobilized antimicrobial compounds.
Collapse
|
17
|
Chakraborty A, Jasieniak M, Coad BR, Griesser HJ. Candida albicans Can Survive Antifungal Surface Coatings on Surfaces with Microcone Topography. ACS APPLIED BIO MATERIALS 2021; 4:7769-7778. [PMID: 35006760 DOI: 10.1021/acsabm.1c00307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study demonstrates the ability of Candida albicans, a medically significant human fungal pathogen, to minimize contact with an antifungal surface coating that on a flat surface is lethal on contact by growing on and between micron-sized surface topographical features, thus minimizing the contact area. Scanning electron microscopy showed that cells contacting the "floor" between microcones were killed, whereas cells attached to microcones survived and formed hyphal filaments. These spanned space between cones and avoided contact with the flat surface in-between cones. Thus, fungal cells managed to attach and grow despite the antifungal coating. This ability of Candida albicans to exploit topography features to minimize surface contact yet utilize the solid surface for anchoring reduces the effectiveness of the grafted antifungal surface coating. This suggests that biomedical devices with rough surfaces might be more challenging to protect against fungal biofilm formation via application of an antifungal coating.
Collapse
Affiliation(s)
- Argha Chakraborty
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, South Australia 5000, Australia
| | - Marek Jasieniak
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, South Australia 5000, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, South Australia 5000, Australia
| |
Collapse
|
18
|
Aburto-Medina A, Le PH, MacLaughlin S, Ivanova E. Diversity of experimental designs for the fabrication of antifungal surfaces for the built environment. Appl Microbiol Biotechnol 2021; 105:2663-2674. [PMID: 33704514 DOI: 10.1007/s00253-021-11214-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022]
Abstract
The fungal infestation in construction industries is a major problem with a very high removal cost that needs to be controlled not only to prevent the fouling of surfaces but also to prevent allergic reactions or respiratory problems especially in immunocompromised individuals. To combat fungal invasion, several experimental approaches to produce antifungal surfaces have been developed. Here, we reviewed the current strategies in designing antifungal surfaces and classified those approaches into two major categories: the chemical and/or physical modification of the actual material surface and nanoparticle-based coating formulations created using the functionalised nanoparticles. KEY POINTS: • Antifungal effect of micro- and nano-structured superhydrophobic surfaces. • Long-term antifungal effect conferred through biocides. • Advanced coatings based on functionalised silica, TiO2 and ZnO nanoparticles.
Collapse
Affiliation(s)
- Arturo Aburto-Medina
- College of STEM, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.,ARC Research Hub for Australian Steel Manufacturing Melbourne, Melbourne, VIC, 3001, Australia
| | - Phuc Hoang Le
- College of STEM, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.,ARC Research Hub for Australian Steel Manufacturing Melbourne, Melbourne, VIC, 3001, Australia
| | | | - Elena Ivanova
- College of STEM, School of Science, RMIT University, Melbourne, VIC, 3000, Australia. .,ARC Research Hub for Australian Steel Manufacturing Melbourne, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
19
|
Serafini MR, Santos VV, Torres BGS, Johansson Azeredo F, Savi FM, Alves IA. A patent review of antibiofilm fungal drugs (2002-present). Crit Rev Biotechnol 2021; 41:229-248. [PMID: 33530749 DOI: 10.1080/07388551.2021.1874283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fungal biofilms, such as Candida albicans biofilms, are capable of surviving in hostile environments owing to their remarkable ability to adhere to surfaces and their tolerance to chemical interventions. Currently, therapeutic treatment options are few, making these biofilm-based infections problematic particularly due to their great tolerance to conventional antimicrobial drugs, thus causing serious health and economic problems. Therefore, the development of new drugs and antibiofilm specific therapies for the prevention and treatment of antifungal to eradicate biofilms are needed. This study was aimed at carrying out a patent review analysis to identify the innovation trends, and to explore the latest antifungal drugs and the specific therapeutic strategies available for the treatment of fungal biofilms. The present patent review was carried out using the Espacenet database, using the key words "biofilm and antifungal," from 2002 to December 2019. Through this review, it was possible to identify that most of the patent contents refer to new synthetic drugs derived from natural products and associations thereof with existing antifungal drugs. Methods and biomaterials for the treatment and prevention of fungal biofilms, mainly for C. albicans biofilms, which is the most isolated and studied fungal species, were also disclosed. The lack of scientific and technical information on the biofilm eradication subject is remarkable and further confirmed by the small number of patents identified in this survey.
Collapse
Affiliation(s)
| | | | | | | | - Flávia Medeiros Savi
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | |
Collapse
|
20
|
Combatting fungal biofilm formation by diffusive release of fluconazole from heptylamine plasma polymer coating. Biointerphases 2020; 15:061012. [PMID: 33339460 DOI: 10.1116/6.0000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A drug-eluting coating applied onto biomedical devices and implants is an appropriate way to ensure that an inhibitory concentration of antimicrobial drugs is present at the device surface, thus preventing surface colonization and subsequent biofilm formation. In this study, a thin polymer coating was applied to materials, and it acted as a drug-delivery reservoir capable of surface delivery of the antifungal drug fluconazole to amounts up to 21 μg/cm2. The release kinetics into aqueous solution were quantified by UV spectroscopy and conformed to the Ritger-Peppas and Korsmeyer-Peppas model. Complementary microbiological assays were used to determine effectiveness against Candida albicans attachment and biofilm formation, and against the control heptylamine plasma polymer coating without drug loading, on which substantial fungal growth occurred. Fluconazole release led to marked antifungal activity in all assays, with log 1.6 reduction in CFUs/cm2. Cell viability assays and microscopy revealed that fungal cells attached to the fluconazole-loaded coating remained rounded and did not form hyphae and biofilm. Thus, in vitro screening results for fluconazole-releasing surface coatings showed efficacy in the prevention of the formation of Candida albicans biofilm.
Collapse
|
21
|
de Souza de Azevedo PO, Mendonça CMN, Moreno ACR, Bueno AVI, de Almeida SRY, Seibert L, Converti A, Watanabe IS, Gierus M, de Souza Oliveira RP. Antibacterial and antifungal activity of crude and freeze-dried bacteriocin-like inhibitory substance produced by Pediococcus pentosaceus. Sci Rep 2020; 10:12291. [PMID: 32704020 PMCID: PMC7378238 DOI: 10.1038/s41598-020-68922-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022] Open
Abstract
Pediococcus pentosaceus LBM 18 has shown potential as producer of an antibacterial and antifungal bacteriocin-like inhibitory substance (BLIS). BLIS inhibited the growth of spoilage bacteria belonging to Lactobacillus, Enterococcus and Listeria genera with higher activity than Nisaplin used as control. It gave rise to inhibition halos with diameters from 9.70 to 20.00 mm, with Lactobacillus sakei being the most sensitive strain (13.50-20.00 mm). It also effectively suppressed the growth of fungi isolated from corn grain silage for up to 25 days and impaired morphology of colonies by likely affecting fungal membranes. These results point out that P. pentosaceus BLIS may be used as a new promising alternative to conventional antibacterial and antifungal substances, with potential applications in agriculture and food industry as a natural bio-controlling agent. Moreover, cytotoxicity and cell death induction tests demonstrated cytotoxicity and toxicity of BLIS to human colon adenocarcinoma Caco-2cells but not to peripheral blood mononuclear cells, with suggests possible applications of BLIS also in medical-pharmaceutical applications.
Collapse
Affiliation(s)
| | | | - Ana Carolina Ramos Moreno
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Liane Seibert
- Department of Animal Science, Laboratory of Ecology and Natural Grassland, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera 15, 16145, Genoa, Italy
| | - Ii-Sei Watanabe
- Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | |
Collapse
|
22
|
A Biodegradable Antifungal-Loaded Sol-Gel Coating for the Prevention and Local Treatment of Yeast Prosthetic-Joint Infections. MATERIALS 2020; 13:ma13143144. [PMID: 32679668 PMCID: PMC7411966 DOI: 10.3390/ma13143144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
Fungal prosthetic-joint infections are rare but devastating complications following arthroplasty. These infections are highly recurrent and expose the patient to the development of candidemia, which has high mortality rates. Patients with this condition are often immunocompromised and present several comorbidities, and thus pose a challenge for diagnosis and treatment. The most frequently isolated organisms in these infections are Candida albicans and Candida parapsilosis, pathogens that initiate the infection by developing a biofilm on the implant surface. In this study, a novel hybrid organo-inorganic sol-gel coating was developed from a mixture of organopolysiloxanes and organophosphite, to which different concentrations of fluconazole or anidulafungin were added. Then, the capacity of these coatings to prevent biofilm formation and treat mature biofilms produced by reference and clinical strains of C. albicans and C. Parapsilosis was evaluated. Anidulafungin-loaded sol-gel coatings were more effective in preventing C. albicans biofilm formation, while fluconazole-loaded sol-gel prevented C. parapsilosis biofilm formation more effectively. Treatment with unloaded sol-gel was sufficient to reduce C. albicans biofilms, and the sol-gels loaded with fluconazole or anidulafungin slightly enhanced this effect. In contrast, unloaded coatings stimulated C. parapsilosis biofilm formation, and loading with fluconazole reduced these biofilms by up to 99%. In conclusion, these coatings represent a novel therapeutic approach with potential clinical use to prevent and treat fungal prosthetic-joint infections.
Collapse
|
23
|
Song J, Liu H, Lei M, Tan H, Chen Z, Antoshin A, Payne GF, Qu X, Liu C. Redox-Channeling Polydopamine-Ferrocene (PDA-Fc) Coating To Confer Context-Dependent and Photothermal Antimicrobial Activities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8915-8928. [PMID: 31971763 DOI: 10.1021/acsami.9b22339] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial disinfection associated with medical device surfaces has been an increasing need, and surface modification strategies such as antibacterial coatings have gained great interest. Here, we report the development of polydopamine-ferrocene (PDA-Fc)-functionalized TiO2 nanorods (Ti-Nd-PDA-Fc) as a context-dependent antibacterial system on implant to combat bacterial infection and hinder biofilm formation. In this work, two synergistic antimicrobial mechanisms of the PDA-Fc coating are proposed. First, the PDA-Fc coating is redox-active and can be locally activated to release antibacterial reactive oxygen species (ROS), especially ·OH in response to the acidic microenvironment induced by bacteria colonization and host immune responses. The results demonstrate that redox-based antimicrobial activity of Ti-Nd-PDA-Fc offers antibacterial efficacy of over 95 and 92% against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), respectively. Second, the photothermal effect of PDA can enhance the antibacterial capability upon near-infrared (NIR) irradiation, with over 99% killing efficacy against MRSA and E. coli, and even suppress the formation of biofilm through both localized hyperthermia and enhanced ·OH generation. Additionally, Ti-Nd-PDA-Fc is biocompatible when tested with model pre-osteoblast MC-3T3 E1 cells and promotes cell adhesion and spreading presumably due to its nanotopographical features. The MRSA-infected wound model also indicates that Ti-Nd-PDA-Fc with NIR irradiation can effectively eliminate bacterial infection and suppress host inflammatory responses. We believe that this study demonstrates a simple means to create biocompatible redox-active coatings that confer context-dependent antibacterial activities to implant surfaces.
Collapse
Affiliation(s)
- Jialin Song
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhanyi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Artem Antoshin
- Institute for Regenerative Medicine , Sechenov University , 8-2 Trubetskaya Street , Moscow 119991 , Russia
| | - Gregory F Payne
- Department of Bioengineering , Institute for Biosystems and Biotechnology Research and Fischell , 5115 Plant Sciences Building, College Park , Maryland 20742 , United States
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
24
|
Montefusco-Pereira CV, Formicola B, Goes A, Re F, Marrano CA, Mantegazza F, Carvalho-Wodarz C, Fuhrmann G, Caneva E, Nicotra F, Lehr CM, Russo L. Coupling quaternary ammonium surfactants to the surface of liposomes improves both antibacterial efficacy and host cell biocompatibility. Eur J Pharm Biopharm 2020; 149:12-20. [PMID: 32007589 DOI: 10.1016/j.ejpb.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/11/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
By functionalizing the surface of PEG-liposomes with linkers bearing quaternary ammonium compounds (QACs), we generated novel bacteria disruptors with anti-adhesive properties and reduced cytotoxicity compared to free QACs. Furthermore, QAC-functionalized liposomes are a promising platform for future drug encapsulation. The QAC (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide (MTAB) was attached to maleimide-functionalized liposomes (DSPE-PEG) via thiol linker. The MTAB-functionalized liposomes were physicochemically characterized and their biological activity, in terms of anti-adherence activity and biofilm prevention in Escherichia coli were assessed. The results showed that MTAB-functionalized liposomes inhibit bacterial adherence and biofilm formation while reducing MTAB toxicity.
Collapse
Affiliation(s)
- Carlos V Montefusco-Pereira
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Beatrice Formicola
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Adriely Goes
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Claudia A Marrano
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Cristiane Carvalho-Wodarz
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Gregor Fuhrmann
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterization via advanced sPECTtrometry, 20133 Milan, Italy.
| | - Francesco Nicotra
- Bio Organic Chemistry Laboratory, Department of Biotechnology and Biosciences, University of Milan - Bicocca (UNIMIB), Piazza della Scienza 2, 20126 Milan, Italy.
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Laura Russo
- Bio Organic Chemistry Laboratory, Department of Biotechnology and Biosciences, University of Milan - Bicocca (UNIMIB), Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
25
|
Qian Y, Shen Y, Deng S, Liu T, Qi F, Lu Z, Liu L, Shao N, Xie J, Ding F, Liu R. Dual functional β-peptide polymer-modified resin beads for bacterial killing and endotoxin adsorption. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42833-019-0005-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Background
Bacterial infections and endotoxin contaminations are serious problems in the production/manufacture of food, water, drinks, and injections. The development of effective materials to kill bacteria and adsorb endotoxins, particularly those caused by gram-negative bacteria, represents a major step toward improved safety. As synthetic mimic of host defense peptides, β-peptide polymers are not susceptible to bacterial resistance and exhibit potent bacteria-killing abilities upon antibiotic-resistant bacteria. This study investigated the potential of synthetic β-peptide polymer-modified polyacrylate (PA) beads to kill bacteria and remove endotoxin, i.e. lipopolysaccharide (LPS), produced by these bacteria.
Results
Synthetic β-peptide polymer-modified PA beads displayed strong antimicrobial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus, as well as excellent biocompatibility. In addition, these β-peptide polymer-modified beads removed around 90% of the endotoxins, even at 200 EU/mL of LPS, a very high concentration of LPS.
Conclusions
β-peptide polymer-modified PA beads are efficient in bacterial killing and endotoxin adsorption. Hence, these modified beads demonstrate the potential application in the production/manufacture of food, water, drinks, and injections.
Collapse
|
26
|
In-situ detection based on the biofilm hydrophilicity for environmental biofilm formation. Sci Rep 2019; 9:8070. [PMID: 31147580 PMCID: PMC6542837 DOI: 10.1038/s41598-019-44167-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
A biofilm has a unique structure composed of microorganisms, extracellular polymeric substances (EPSs), etc., and it is layered on a substrate in water. In material science, it is important to detect the biofilm formed on a surface to prevent biofouling. EPSs, the major component of the biofilm, mainly consist of polysaccharides, proteins, nucleic acids, and lipids. Because these biomolecules have a variety of hydrophilicities or hydrophobicities, the substrate covered with the biofilm shows different wettability from the initial state. To detect the biofilm formation, this study employed a liquid-squeezing-based wettability assessment method with a simple wettability index: the liquid-squeezed diameter of a smaller value indicates higher wettability. The method is based on the liquid-squeezing behaviour of a liquid that covers sample surfaces when an air-jet is applied. To form the biofilm, polystyrene surfaces were immersed and incubated in a water-circulated bioreactor that had collected microorganisms in ambient air. After the 14-d incubation, good formation of the biofilm on the surfaces was confirmed by staining with crystal violet. Although the contact angles of captive bubbles on the surfaces with the biofilm were unmeasurable, the liquid-squeezing method could distinguish between hydrophilic and hydrophobic initial surfaces with and without biofilm formation using the diameter of the liquid-squeezed area. The surface wettability is expected to be a promising property for in-situ detection of biofilm formation on a macroscopic scale.
Collapse
|
27
|
Electrospun essential oil-polycaprolactone nanofibers as antibiofilm surfaces against clinical Candida tropicalis isolates. Biotechnol Lett 2019; 41:511-522. [PMID: 30879154 DOI: 10.1007/s10529-019-02660-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE As an approach to prevent biofilm infections caused by Candida tropicalis on various surfaces, determination of effect of biodegradable polycaprolactone nanofibers (PCLNFs) with different concentrations of two different essential oils were tested in this study. RESULTS Both of the tested essential oils exhibited antifungal effect (minimal inhibitory concentration; 0.25-0.49 µL/mL, minimal fungicidal concentration; 0.25-0.49 µL/mL, depending on the C. tropicalis strain) (Zone of inhibition caused by 500 μL/mL concentration of oils; 28-56 mm). 0, 2, 4% clove oil PCLNFs and 0, 2, 4% red thyme oil-PCLNFs were free from bead formation and uniform in diameter. Diameters of all essential oil containing PCLNFs were ranged from 760 to 1100 nm and were significantly different from 0% essential oil-PCLNF (P < 0.05). 0, 2, 4% clove oil-PCLNFs were significantly more hydrophobic compared to 8% clove oil-PCLNF (P < 0.01), whereas 0% and 2% red thyme oil-PCLNFs were significantly more hydrophobic compared to 4% and 8% red thyme oil PCLNFs (P < 0.01). Highest amount of biofilm inhibition was observed by 4% clove oil-PCLNF and by 4% red thyme oil-PCLNF. CONCLUSIONS Clove and red thyme oils may be used not only as antifungals but also as biofilm inhibitive agents on surfaces of biomaterials that are frequently contaminated by C. tropicalis, when they are incorporated into PCLNFs.
Collapse
|
28
|
Belden K, Cao L, Chen J, Deng T, Fu J, Guan H, Jia C, Kong X, Kuo FC, Li R, Repetto I, Riccio G, Tarabichi M. Hip and Knee Section, Fungal Periprosthetic Joint Infection, Diagnosis and Treatment: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S387-S391. [PMID: 30343967 DOI: 10.1016/j.arth.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
29
|
Naderi J, Giles C, Saboohi S, Griesser HJ, Coad BR. Surface-grafted antimicrobial drugs: Possible misinterpretation of mechanism of action. Biointerphases 2018; 13:06E409. [PMID: 30482023 PMCID: PMC6905654 DOI: 10.1116/1.5050043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial surface coatings that act through a contact-killing mechanism (not diffusive release) could offer many advantages to the design of medical device coatings that prevent microbial colonization and infections. However, as the authors show here, to prevent arriving at an incorrect conclusion about their mechanism of action, it is essential to employ thorough washing protocols validated by surface analytical data. Antimicrobial surface coatings were fabricated by covalently attaching polyene antifungal drugs to surface coatings. Thorough washing (often considered to be sufficient to remove noncovalently attached molecules) was used after immobilization and produced samples that showed a strong antifungal effect, with a log 6 reduction in Candida albicans colony forming units. However, when an additional washing step using surfactants and warmed solutions was used, more firmly adsorbed compounds were eluted from the surface as evidenced by XPS and ToF-SIMS, resulting in reduction and complete elimination of in vitro antifungal activity. Thus, polyene molecules covalently attached to surfaces appear not to have a contact-killing effect, probably because they fail to reach their membrane target. Without additional stringent washing and surface analysis, the initial favorable antimicrobial testing results could have been misinterpreted as evidencing activity of covalently grafted polyenes, while in reality activity arose from desorbing physisorbed molecules. To avoid unintentional confirmation bias, they suggest that binding and washing protocols be analytically verified by qualitative/quantitative instrumental methods, rather than relying on false assumptions of the rigors of washing/soaking protocols.
Collapse
Affiliation(s)
- Javad Naderi
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Carla Giles
- Department of Primary Industries Parks Water and Environment Tasmania, Centre for Aquatic Animal Health and Vaccines, 165 Westbury Road, Prospect, Tasmania 7250, Australia
| | - Solmaz Saboohi
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
30
|
Rigo S, Cai C, Gunkel‐Grabole G, Maurizi L, Zhang X, Xu J, Palivan CG. Nanoscience-Based Strategies to Engineer Antimicrobial Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700892. [PMID: 29876216 PMCID: PMC5979626 DOI: 10.1002/advs.201700892] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Microbial contamination and biofilm formation of medical devices is a major issue associated with medical complications and increased costs. Consequently, there is a growing need for novel strategies and exploitation of nanoscience-based technologies to reduce the interaction of bacteria and microbes with synthetic surfaces. This article focuses on surfaces that are nanostructured, have functional coatings, and generate or release antimicrobial compounds, including "smart surfaces" producing antibiotics on demand. Key requirements for successful antimicrobial surfaces including biocompatibility, mechanical stability, durability, and efficiency are discussed and illustrated with examples of the recent literature. Various nanoscience-based technologies are described along with new concepts, their advantages, and remaining open questions. Although at an early stage of research, nanoscience-based strategies for creating antimicrobial surfaces have the advantage of acting at the molecular level, potentially making them more efficient under specific conditions. Moreover, the interface can be fine tuned and specific interactions that depend on the location of the device can be addressed. Finally, remaining important challenges are identified: improvement of the efficacy for long-term use, extension of the application range to a large spectrum of bacteria, standardized evaluation assays, and combination of passive and active approaches in a single surface to produce multifunctional surfaces.
Collapse
Affiliation(s)
- Serena Rigo
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Chao Cai
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | | | - Lionel Maurizi
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Xiaoyan Zhang
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Jian Xu
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | - Cornelia G. Palivan
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
31
|
Giles C, Lamont-Friedrich SJ, Michl TD, Griesser HJ, Coad BR. The importance of fungal pathogens and antifungal coatings in medical device infections. Biotechnol Adv 2017; 36:264-280. [PMID: 29199134 DOI: 10.1016/j.biotechadv.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
In recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms. However, fungi being eukaryotes, the challenge is greater than for bacterial infections because antifungal agents are often toxic towards eukaryotic host cells. Whilst there is extensive literature on antibacterial coatings, a far lesser body of literature exists on surfaces or coatings that prevent attachment and biofilm formation on medical devices by fungal pathogens. Here we review strategies for the design and fabrication of medical devices with antifungal surfaces. We also survey the microbiology literature on fundamental mechanisms by which fungi attach and spread on natural and synthetic surfaces. Research in this field requires close collaboration between biomaterials scientists, microbiologists and clinicians; we consider progress in the molecular understanding of fungal recognition of, and attachment to, suitable surfaces, and of ensuing metabolic changes, to be essential for designing rational approaches towards effective antifungal coatings, rather than empirical trial of coatings.
Collapse
Affiliation(s)
- Carla Giles
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Stephanie J Lamont-Friedrich
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Thomas D Michl
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia; School of Agriculture Food & Wine, The University of Adelaide, Waite Campus, Adelaide, SA 5000, Australia.
| |
Collapse
|
32
|
Li G, Zhao H, Hong J, Quan K, Yuan Q, Wang X. Antifungal graphene oxide-borneol composite. Colloids Surf B Biointerfaces 2017; 160:220-227. [DOI: 10.1016/j.colsurfb.2017.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/12/2017] [Accepted: 09/09/2017] [Indexed: 01/12/2023]
|
33
|
Caspofungin on ARGET-ATRP grafted PHEMA polymers: Enhancement and selectivity of prevention of attachment ofCandida albicans. Biointerphases 2017; 12:05G602. [DOI: 10.1116/1.4986054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Sadeghi F, Yazdanpanah A, Abrishamkar A, Moztarzadeh F, Ramedani A, Pouraghaie S, Shirinzadeh H, Samadikuchaksaraei A, Chauhan N, Hopkinson L, Sefat F, Mozafari M. Shape‐controlled silver NPs for shape‐dependent biological activities. MICRO & NANO LETTERS 2017; 12:647-651. [DOI: 10.1049/mnl.2016.0804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
The most important issue during synthesis of nanoparticles (NPs) is to avoid particle agglomeration and adhesion. There have been several attempts to use special substances such as organic surfactants, polymers and stable ligands for this purpose. In this study, silver NPs were synthesised with and without gelatin macromolecules, as a green natural biopolymer, which resulted in NPs with varying shapes and sizes. The effect of morphological characteristics on the antibacterial and antifungal properties of the synthesised NPs were studied, by comparing Gram‐negative (Escherichia coli) versus Gram‐positive (Staphylococcus aureus) bacteria as well as fungi (Candida albicans) by calculation of minimal inhibition concentration value. The results corresponded well with the assumptions on the effects of shape and size on the antibacterial and antifungal properties of the studied NPs.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Biomaterials Group Faculty of Biomedical Engineering (Centre of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| | - Abolfazl Yazdanpanah
- Biomaterials Group Faculty of Biomedical Engineering (Centre of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| | | | - Fatholah Moztarzadeh
- Biomaterials Group Faculty of Biomedical Engineering (Centre of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| | - Arash Ramedani
- Department of Nanoscience & Nanotechnology (INST) Sharif University of Technology P.O. Box 89694‐14588 Tehran Iran
| | - Sevda Pouraghaie
- Biomaterials Group Faculty of Biomedical Engineering (Centre of Excellence) Amirkabir University of Technology P.O. Box 15875‐4413 Tehran Iran
| | - Haji Shirinzadeh
- Semiconductor Department Materials and Energy Research Center (MERC) P.O. Box 14155‐4777 Tehran Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - N.P.S. Chauhan
- Department of Chemistry Faculty of Science, Co‐Ed Wing Bhupal Nobles University Udaipur 313001 Rajasthan India
| | - L. Hopkinson
- School of Engineering Medical and Healthcare Technology Department University of Bradford Bradford BD7 1DP UK
| | - Farshid Sefat
- School of Engineering Medical and Healthcare Technology Department University of Bradford Bradford BD7 1DP UK
| | - Masoud Mozafari
- Bioengineering Research Group Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) P.O. Box 14155‐4777 Tehran Iran
| |
Collapse
|
35
|
Influence of serum and polystyrene plate type on stability of Candida albicans biofilms. J Microbiol Methods 2017; 139:8-11. [DOI: 10.1016/j.mimet.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 11/24/2022]
|
36
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
37
|
Su Y, Zhi Z, Gao Q, Xie M, Yu M, Lei B, Li P, Ma PX. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies. Adv Healthc Mater 2017; 6. [PMID: 28128893 DOI: 10.1002/adhm.201601173] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/25/2016] [Indexed: 12/12/2022]
Abstract
Biomedical device-associated infections which engender severe threat to public health require feasible solutions. In this study, block copolymers consisting of antimicrobial, antifouling, and surface-tethering segments in one molecule are synthesized and grafted on polymeric substrates by a facile plasma/autoclave-assisted method. Hetero-bifunctional polyethylene glycol (PEG) with allyl and tosyl groups (APEG-OTs) is first prepared. PEGs with different molecular weights (1200 and 2400 Da) are employed. Polyhexamethylene guanidine (PHMG) which has excellent broad-spectrum antimicrobial activity and thermal/chemical stability, is conjugated with APEG-OTs to generate the block copolymer (APEG-PHMG). Allyl terminated PHMG (A-PHMG) without PEG segments is also synthesized by reacting PHMG with allyl glycidyl ether. The synthesized copolymers are thermal initiated by autoclaving and grafted on plasma pretreated silicone surface, forming permanently bonded bottlebrush-like coatings. Both A-PHMG and APEG1200/2400 -PHMG coatings exhibit potent antimicrobial activity against gram-positive/negative bacteria and fungus, whereas APEG1200/2400 -PHMG coatings show superior antifouling activity and long-term reusability to A-PHMG coating. APEG2400 -PHMG coating demonstrates the most effective in vitro antibiofilm and protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. Furthermore, APEG2400 -PHMG greatly reduces the bacteria number with 5-log reduction in a rodent subcutaneous infection model. This rationally designed dual-functional antimicrobial and antifouling coating has great potential in combating biomedical devices/implant-associated infections.
Collapse
Affiliation(s)
- Yajuan Su
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Zelun Zhi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 China
| | - Qiang Gao
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Meihua Xie
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Meng Yu
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Bo Lei
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Peng Li
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 China
| | - Peter X. Ma
- Department of Biomedical Engineering; University of Michigan; Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
- Macromolecular Science and Engineering Center; University of Michigan; Ann Arbor MI 48109 USA
- Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
38
|
Beltrán-Partida E, Valdez-Salas B, Curiel-Álvarez M, Castillo-Uribe S, Escamilla A, Nedev N. Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:59-65. [PMID: 28482568 DOI: 10.1016/j.msec.2017.02.153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/26/2022]
Abstract
We have provided evidence that the beneficial effect of super-oxidized water (SOW) disinfected Ti6Al4V-TiO2 nanotubes (NTs) can reduce bacterial adhesion and biofilm formation. However, the need of antifungal nanostructured surfaces with osteoactive capabilities is an important goal that has been arising for dental implants (DI) applications. Thus, in the present study we isolated and tested the effects of Candida albicans (C. albicans) on disinfected, wetter and nanoroughness NTs compared to a non-modified control. Moreover, we elucidated part of the fungal adhesion mechanism by studying and relating the mycotic adhesion kinetics and the formation of fungal nanoadhesion bonds among the experimental materials, to gain new insight of the fungal-material-interface. Similarly, the initial behavior of human alveolar bone osteoblasts (HAOb) was microscopically evaluated. NTs significantly reduced the yeasts adhesion and viability with non-outcomes of biofilm than the non-modified surface. Cross-sectioning of the fungal cells revealed promoted nano-contact bonds with superior fungal spread on the control alloy interface; meanwhile NTs evidenced decreased tendency along time; suggesting, down-regulation by the nanostructured morphology and the SOW treatment. Importantly, the initial performance of HAOb demonstrated strikingly promoted anchorage with effects of filopodia formation and increased vital cell on NTs with SOW. The present study proposes SOW treatment as an active protocol for synthesis and disinfection of NTs with potent antifungal capability, acting in part by the reduction of nano-adhesion bonds at the surface-fungal interface; opening up a novel route for the investigation of mycotic-adhesion processes at the nanoscale for bone implants applications.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico; Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California, Mexico.
| | - Benjamín Valdez-Salas
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico.
| | - Mario Curiel-Álvarez
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Sandra Castillo-Uribe
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico; Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California, Mexico
| | - Alan Escamilla
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Nicola Nedev
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| |
Collapse
|
39
|
Kwong CA, Puloski SKT, Hildebrand KA. Fungal periprosthetic joint infection following total elbow arthroplasty: a case report and review of the literature. J Med Case Rep 2017; 11:20. [PMID: 28109195 PMCID: PMC5251295 DOI: 10.1186/s13256-016-1176-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/11/2016] [Indexed: 01/23/2023] Open
Abstract
Background With improving surgical techniques for total elbow arthroplasty clinical outcomes have improved and its utilization continues to increase. Despite these advances, complication rates remain as high as 24%. Of these complications periprosthetic joint infection is one of the most common and morbid. The rheumatoid elbow remains a leading indication for total elbow arthroplasty. Patients with this condition frequently require immunosuppressive therapy, which places them at higher risk of both typical and atypical infections. Case presentation We present the case of a persistent, late-onset periprosthetic joint infection in a total elbow arthroplasty of a 64-year-old Caucasian woman with severe refractory rheumatoid arthritis. The offending pathogen, Aspergillus terreus, is previously unreported in the arthroplasty literature and grew concurrently with coagulase-negative staphylococcus. Eradication of the fungal and bacterial agents involved resection arthroplasty, serial debridement, and multiple courses of intravenous and oral antimicrobial therapy. Two attempts at reimplantation arthroplasty failed to eliminate the infection and our patient ultimately required definitive resection arthroplasty. Conclusions Arthroplasty in the rheumatoid elbow confers with it a high complication rate. Inflammatory disease and immunosuppressive drugs combined with the subcutaneous anatomy of the elbow contribute to the risk of infection. Fungal periprosthetic joint infection in the rheumatoid patient presents both diagnostic and therapeutic challenges. Fungal growth should always be treated and requires organism-specific antimicrobials in conjunction with surgical debridement. More literature is needed to determine the optimal treatment regimen for this devastating complication.
Collapse
Affiliation(s)
- Cory A Kwong
- Orthopaedic Surgery Resident PGY-3, Section of Orthopedic Surgery, Department of Surgery, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Shannon K T Puloski
- Section of Orthopedic Surgery, Department of Surgery, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kevin A Hildebrand
- Department of Surgery, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
40
|
Lee JH, El-Fiqi A, Jo JK, Kim DA, Kim SC, Jun SK, Kim HW, Lee HH. Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 2016; 32:1564-1574. [DOI: 10.1016/j.dental.2016.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022]
|
41
|
Schrekker CML, Sokolovicz YCA, Raucci MG, Selukar BS, Klitzke JS, Lopes W, Leal CAM, de Souza IOP, Galland GB, Dos Santos JHZ, Mauler RS, Kol M, Dagorne S, Ambrosio L, Teixeira ML, Morais J, Landers R, Fuentefria AM, Schrekker HS. Multitask Imidazolium Salt Additives for Innovative Poly(l-lactide) Biomaterials: Morphology Control, Candida spp. Biofilm Inhibition, Human Mesenchymal Stem Cell Biocompatibility, and Skin Tolerance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21163-21176. [PMID: 27486827 DOI: 10.1021/acsami.6b06005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Candida species have great ability to colonize and form biofilms on medical devices, causing infections in human hosts. In this study, poly(l-lactide) films with different imidazolium salt (1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS)) contents were prepared, using the solvent casting process. Poly(l-lactide)-imidazolium salt films were obtained with different surface morphologies (spherical and directional), and the presence of the imidazolium salt in the surface was confirmed. These films with different concentrations of the imidazolium salts C16MImCl and C16MImMeS presented antibiofilm activity against isolates of Candida tropicalis, Candida parapsilosis, and Candida albicans. The minor antibiofilm concentration assay enabled one to determine that an increasing imidazolium salt content promoted, in general, an increase in the inhibition percentage of biofilm formation. Scanning electron microscopy micrographs confirmed the effective prevention of biofilm formation on the imidazolium salt containing biomaterials. Lower concentrations of the imidazolium salts showed no cytotoxicity, and the poly(l-lactide)-imidazolium salt films presented good cell adhesion and proliferation percentages with human mesenchymal stem cells. Furthermore, no acute microscopic lesions were identified in the histopathological evaluation after contact between the films and pig ear skin. In combination with the good morphological, physicochemical, and mechanical properties, these poly(l-lactide)-based materials with imidazolium salt additives can be considered as promising biomaterials for use in the manufacturing of medical devices.
Collapse
Affiliation(s)
| | | | - Maria G Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy , Naples, Italy
| | | | | | | | | | | | | | | | | | - Moshe Kol
- School of Chemistry, Tel Aviv University , Tel Aviv, Israel
| | - Samuel Dagorne
- Laboratoire DECOMET, Institut de Chimie de Strasbourg, CNRS-Université de Strasbourg , Strasbourg, France
| | | | - Mário L Teixeira
- Laboratory of Biochemistry and Toxicology, Instituto Federal Catarinense , Concórdia, SC, Brazil
| | | | - Richard Landers
- Institute of Physics "Gleb Wataghin", Universidade Estadual de Campinas-UNICAMP , Campinas, SP, Brazil
| | | | | |
Collapse
|
42
|
Coad BR, Griesser HJ, Peleg AY, Traven A. Anti-infective Surface Coatings: Design and Therapeutic Promise against Device-Associated Infections. PLoS Pathog 2016; 12:e1005598. [PMID: 27253192 PMCID: PMC4890736 DOI: 10.1371/journal.ppat.1005598] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Bryan R. Coad
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Hans J. Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Anton Y. Peleg
- Infection and Immunity Program and the Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
43
|
Jin YY, Li YD, Sun W, Fan S, Feng XZ, Wang KY, He WQ, Yang ZY. The whole-cell immobilization of d-hydantoinase-engineered Escherichia coli for d-CpHPG biosynthesis. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Abstract
Fungal infections constitute a major threat to an escalating number of critically ill patients. Fungi are eukaryotic organisms and, as such, there is a limited armamentarium of antifungal drugs, which leads to high mortality rates. Moreover, fungal infections are often associated with the formation of biofilms, which contribute to virulence and further complicate treatment due to the high level of antifungal drug resistance displayed by sessile cells within these microbial communities. Thus, the treatment of fungal infections associated with a biofilm etiology represents a formidable and unmet clinical challenge. The increasing importance and awareness of fungal biofilms is reflected by the fact that this is now an area of very active research. Studies in the last decade have provided important insights into fungal biofilm biology, physiology, and pathology, as well as into the molecular basis of biofilm resistance. Here we discuss how this accumulated knowledge may inform the development of new antibiofilm strategies and therapeutics that are urgently needed.
Collapse
|
45
|
Yan S, Luan S, Shi H, Xu X, Zhang J, Yuan S, Yang Y, Yin J. Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent. Biomacromolecules 2016; 17:1696-704. [DOI: 10.1021/acs.biomac.6b00115] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shunjie Yan
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Shifang Luan
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Hengchong Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xiaodong Xu
- Polymer Materials Research Center and Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People’s Republic China
| | - Jidong Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Shuaishuai Yuan
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yuming Yang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jinghua Yin
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
46
|
Abdelhamid HN, Kumaran S, Wu HF. One-pot synthesis of CuFeO2 nanoparticles capped with glycerol and proteomic analysis of their nanocytotoxicity against fungi. RSC Adv 2016. [DOI: 10.1039/c6ra13396g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One-pot synthesis of cuprous ferrite (CuFeO2) nanoparticles modified with glycerol (glycerol@CuFeO2 NPs) using oligol and reducing agent was reported.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Department of Chemistry
| | - Sekar Kumaran
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Center for Nanoscience and Nanotechnology
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Center for Nanoscience and Nanotechnology
| |
Collapse
|
47
|
Kundu S, Abdullah MF, Das A, Basu A, Halder A, Das M, Samanta A, Mukherjee A. Antifungal ouzo nanoparticles from guar gum propionate. RSC Adv 2016. [DOI: 10.1039/c6ra19658f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of high DS guar gum propionate esters and the formation of self-assembly nanoparticles for fungus contact killing.
Collapse
Affiliation(s)
- Sonia Kundu
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata
- India
| | - Md. Farooque Abdullah
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata
- India
| | - Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata
- India
| | - Aalok Basu
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata
- India
| | - Asim Halder
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata
- India
| | - Mousumi Das
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Amalesh Samanta
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Arup Mukherjee
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata
- India
| |
Collapse
|
48
|
Antifungal coatings by caspofungin immobilization onto biomaterials surfaces via a plasma polymer interlayer. Biointerphases 2015; 10:04A307. [PMID: 26467660 DOI: 10.1116/1.4933108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.
Collapse
|
49
|
Strassburg A, Kracke F, Wenners J, Jemeljanova A, Kuepper J, Petersen H, Tiller JC. Nontoxic, Hydrophilic Cationic Polymers-Identified as Class of Antimicrobial Polymers. Macromol Biosci 2015; 15:1710-23. [DOI: 10.1002/mabi.201500207] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Arne Strassburg
- Chair of Biomaterials and Polymer Science; Department of biochemical and Chemical Engineering, TU Dortmund; Emil-Figge-Str. 66, 44227 Dortmund Germany
| | - Frauke Kracke
- Chair of Biomaterials and Polymer Science; Department of biochemical and Chemical Engineering, TU Dortmund; Emil-Figge-Str. 66, 44227 Dortmund Germany
| | - Julia Wenners
- Chair of Biomaterials and Polymer Science; Department of biochemical and Chemical Engineering, TU Dortmund; Emil-Figge-Str. 66, 44227 Dortmund Germany
| | - Anna Jemeljanova
- Chair of Biomaterials and Polymer Science; Department of biochemical and Chemical Engineering, TU Dortmund; Emil-Figge-Str. 66, 44227 Dortmund Germany
| | - Jannis Kuepper
- Chair of Biomaterials and Polymer Science; Department of biochemical and Chemical Engineering, TU Dortmund; Emil-Figge-Str. 66, 44227 Dortmund Germany
| | - Hanne Petersen
- Chair of Biomaterials and Polymer Science; Department of biochemical and Chemical Engineering, TU Dortmund; Emil-Figge-Str. 66, 44227 Dortmund Germany
| | - Joerg C. Tiller
- Chair of Biomaterials and Polymer Science; Department of biochemical and Chemical Engineering, TU Dortmund; Emil-Figge-Str. 66, 44227 Dortmund Germany
| |
Collapse
|
50
|
Paladini F, Pollini M, Sannino A, Ambrosio L. Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules 2015; 16:1873-85. [PMID: 26082968 DOI: 10.1021/acs.biomac.5b00773] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interest in nanotechnology and the growing concern for the antibiotic resistance demonstrated by many microorganisms have recently stimulated many efforts in designing innovative biomaterials and substrates with antibacterial properties. Among the implemented strategies to control the incidence of infections associated with the use of biomedical device and implants, interesting routes are represented by the incorporation of bactericidal agents onto the surface of biomaterials for the prevention of bacterial adhesion and biofilm growth. Natural products and particularly bioactive metals such as silver, copper and zinc represent an interesting alternative for the development of advanced biomaterials with antimicrobial properties. This review presents an overview of recent progress in the modification of biomaterials as well as the most attractive techniques for the deposition of antimicrobial coatings on different substrates for biomedical application. Moreover, some research activities and results achieved by the authors in the development of antibacterial materials are also presented and discussed.
Collapse
Affiliation(s)
- Federica Paladini
- †Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Mauro Pollini
- †Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Alessandro Sannino
- †Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|