1
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Wang X, Sun ML, Lin L, Ledesma-Amaro R, Wang K, Ji XJ. Engineering strategies for producing medium-long chain dicarboxylic acids in oleaginous yeasts. BIORESOURCE TECHNOLOGY 2025; 430:132593. [PMID: 40294756 DOI: 10.1016/j.biortech.2025.132593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/20/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Medium-long chain dicarboxylic acids (DCAs, C ≥ 6) are essential chemical raw materials, with wide applications in the chemical, pharmaceutical, material and food industries. However, the traditional chemical synthesis methods cause environmental pollution and are not in line with goals of sustainable development. With the development of synthetic biology, high-value-added DCAs can be biosynthesized from hydrophobic substrates (HSs) using suitable microorganisms. This review first summarizes the biosynthetic pathway of DCAs in oleaginous yeasts and then emphasizes the related engineering strategies for increasing the product yield, including promoter, enzyme, pathway, cell, fermentation, and downstream engineering. In addition, the challenges and development trends in the biosynthesis of DCAs are discussed, in light of the current progress, challenges, and trends in this field. Finally, guidelines for future research are proposed. Overall, this review systematically summarizes recent engineering strategies for DCAs production in oleaginous yeasts and offers valuable insights for future DCAs biosynthesis.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
3
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Praveen M, Brogi S. Microbial Fermentation in Food and Beverage Industries: Innovations, Challenges, and Opportunities. Foods 2025; 14:114. [PMID: 39796404 PMCID: PMC11719914 DOI: 10.3390/foods14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods. Historical records clearly show that fermented foods and drinks, such as wine, beer, and bread, have been consumed for more than 7000 years. The main microorganisms employed were Saccharomyces cerevisiae, which are predominantly used in alcohol fermentation, and Lactobacillus in dairy and vegetable fermentation. Typical fermented foods and drinks made from yogurt, cheese, beer, wine, cider, and pickles from vegetables are examples. Although there are risks of contamination and spoilage by pathogenic and undesirable microorganisms, advanced technologies and proper control procedures can mitigate these risks. This review addresses microbial fermentation and clarifies its past importance and contribution to food preservation, flavoring, and nutrition. It systematically separates yeasts, molds, and bacteria and explains how they are used in food products such as bread, yogurt, beer, and pickles. Larger producers employ primary production methods such as the artisanal approach, which are explored along with future trends such as solid-state fermentation, the potential of biotechnology in developing new products, and sustainability in new product development. Future research and development strategies can lead to innovations in methods that improve efficiency, product range, and sustainability.
Collapse
Affiliation(s)
- Mallari Praveen
- Department of Research and Development, Academy of Bioelectric Meridian Massage Australia (ABMMA), Noosaville, QLD 4566, Australia;
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
5
|
Bernard A, Rossignol T, Park YK. Biotechnological approaches for producing natural pigments in yeasts. Trends Biotechnol 2024; 42:1644-1662. [PMID: 39019677 DOI: 10.1016/j.tibtech.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Pigments are widely used in the food, cosmetic, textile, pharmaceutical, and materials industries. Demand for natural pigments has been increasing due to concerns regarding potential health problems and environmental pollution from synthetic pigments. Microbial production of natural pigments is a promising alternative to chemical synthesis or extraction from natural sources. Here, we discuss yeasts as promising chassis for producing natural pigments with their advantageous traits such as genetic amenability, safety, rapid growth, metabolic diversity, and tolerance. Metabolic engineering strategies and optimizing strategies in downstream process to enhance production of natural pigments are thoroughly reviewed. We discuss the challenges, including expanding the range of natural pigments and improving their feasibility of industrial scale-up, as well as the potential strategies for future development.
Collapse
Affiliation(s)
- Armand Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
6
|
Dagci I, Acar M, Turhan F, Mavi A, Unver Y. Extracellular production of azurin by reusable magnetic Fe 3O 4 nanoparticle-immobilized Pseudomonas aeruginosa. J Biotechnol 2024; 394:48-56. [PMID: 39159754 DOI: 10.1016/j.jbiotec.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Azurin, found in the periplasm of Pseudomonas aeruginosa, has garnered significant attention as a potential anticancer agent in recent years. High-level secretion of proteins into the culture medium, offers a significant advantage over periplasmic or cytoplasmic expression. In this study, for the first time, P. aeruginosa cells were immobilized with magnetic nanoparticles (MNPs) to ensure effective, simple and quick separation of the cells and secretion of periplasmic azurin protein to the culture medium. For this purpose, polyethyleneimine-coated iron oxide (Fe3O4@PEI) MNPs were synthesized and MNPs containing Fe up to 600 ppm were found to be non-toxic to the bacteria. The highest extracellular azurin level was observed in LB medium compared to peptone water. The cells immobilized with 400 ppm Fe-containing MNPs secreted the highest protein. Lastly, the immobilized cells were found suitable for azurin secretion until the sixth use. Thus, the magnetic nanoparticle immobilization method facilitated the release of azurin as well as the simple and rapid separation of cells. This approach, by facilitating protein purification and enabling the reuse of immobilized cells, offers a cost-effective means of protein production, reducing waste cell formation, and thus presents an advantageous method.
Collapse
Affiliation(s)
- Ibrahim Dagci
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Melek Acar
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Fatma Turhan
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey; Department of Chemistry Education, Kazım Karabekir Faculty of Education, Atatürk University, Erzurum, Turkey
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
7
|
Dong C, Cui S, Ren J, Gong G, Zha J, Wu X. Engineering of bacteria towards programmed autolysis: why, how, and when? Microb Cell Fact 2024; 23:293. [PMID: 39465360 PMCID: PMC11514776 DOI: 10.1186/s12934-024-02566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Programmed autolytic bacteria, also termed controlled self-disruptive or self-destructive bacteria, are bacterial systems that express certain lytic genes and undergo cell lysis at a predetermined time point to release the intracellular contents or to commit suicide. Such systems have wide applications in high-throughput screening of protein libraries, synthesis and recovery of bio-products, population control of heterogeneous cultures or synthetic co-cultures, drug delivery, and food fermentation. Recently, great achievements have been reported regarding on-demand control of cell autolysis for different purposes, highlighting the potential of autolytic strains in biomanufacturing and biomedicine. In this review article, we first introduce the various applications of such bacteria, followed by a summarization of the approaches used in the establishment of autolytic bacterial systems, including cell autolysis mediated by cell wall hydrolases with or without facilitating proteins and by membrane-disturbing proteins. Next, we describe in detail the methodologies adopted to control and initiate cell lysis, including induction by chemical inducers, stimulation by physical signals, auto-induction by metabolic status or nutrient limitation, and constitutive expression of the lytic genes. This article is ended with discussions on the remaining problems and possible future directions. This review provides comprehensive information on autolytic bacteria and insightful guidance to the development of highly efficient, robust, and smart autolytic bacterial platforms.
Collapse
Affiliation(s)
- Changying Dong
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, City of Jilin, 132101, Jilin, China.
| | - Shenghao Cui
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, City of Jilin, 132101, Jilin, China
| | - Jialuan Ren
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Guoli Gong
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Jian Zha
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an, 710021, Shaanxi, China.
| | - Xia Wu
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
8
|
El-Zahed MM, Abou-Dobara MI, El-Khodary MM, Mousa MMA. Antimicrobial activity and nanoremediation of heavy metals using biosynthesized CS/GO/ZnO nanocomposite by Bacillus subtilis ATCC 6633 alone or immobilized in a macroporous cryogel. Microb Cell Fact 2024; 23:278. [PMID: 39402571 PMCID: PMC11475717 DOI: 10.1186/s12934-024-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health. RESULTS The present study highlighted a simple and cost-effective approach to biosynthesize a chitosan/graphene oxide/zinc oxide nanocomposite (CS/GO/ZnO) alone and immobilized in a macroporous cryogel as a new antimicrobial agent. Bacillus subtilis ATCC 6633 was used as a safe and efficient bio-nano-factory during biosynthesis. The formation of CS/GO/ZnO was confirmed and characterized using different analyses including ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), selective area diffraction pattern (SADP), Zeta analyses, scanning electron microscope (SEM) and transmission electron microscopy (TEM). GO combined with ZnO NPs successfully and displayed an adsorption peak at 358 nm. The XRD results showed the crystalline composition of the loaded ZnO NPs on GO sheets. FTIR spectrum confirmed the presence of proteins during the synthesis which act as stabilizing and capping agents. The nanocomposite has a high negative surface charge (-32.8 ± 5.7 mV) which increases its stability. SEM and TEM showing the size of biosynthesized ZnO-NPs was in the range of 40-50 nm. The CS/GO/ZnO alone or immobilized in cryogel revealed good antimicrobial activities against B. cereus ATCC 14,579, Escherichia coli ATCC 25,922, and Candida albicans ATCC 10,231 in a dose-dependent manner. The CS/GO/ZnO cryogel revealed higher antimicrobial activity than GO/ZnO nanocomposite and standard antibiotics (amoxicillin and miconazole) with inhibition zones averages of 24.33 ± 0.12, 15.67 ± 0.03, and 17.5 ± 0.49 mm, respectively. The MIC values of the prepared nanocomposite against B. cereus, E. coli, and C. albicans were 80, 80, and 90 µg/ml compared to standard drugs (90, 120 and 150 µg/ml, respectively). According to the TEM ultrastructure studies of nanocomposite-treated microbes, treated cells had severe deformities and morphological alterations compared to the untreated cells including cell wall distortion, the separation between the cell wall and plasma membrane, vacuoles formation moreover complete cell lyses were also noted. In the cytotoxicity test of CS/GO/ZnO alone and its cryogel, there was a significant reduction (p˂0.05) in cell viability of WI-38 normal lung cell line after the concentration of 209 and 164 µg/ml, respectively. It showed the low toxic effect of the nanocomposite and its cryogel on the WI-38 line which implies its safety. In addition, water treatment with the CS/GO/ZnO cryogel decreased turbidity (0.58 NTU), total coliform (2 CFU/100 ml), fecal coliform (1 CFU/100 ml), fecal Streptococcus (2 CFU/100 ml), and heterotrophic plate counts (53 CFU/1 ml) not only in comparison with the chlorine-treated samples (1.69 NTU, 4 CFU/100 ml, 6 CFU/100 ml, 57 CFU/100 ml, and 140 CFU/1 ml, respectively) but also with the raw water samples (6.9 NTU, 10800 CFU/100 ml, 660 CFU/100 ml, 800 CFU/100 ml, and 4400 CFU/1 ml, respectively). Moreover, cryogel significantly decreased the concentration of different heavy metals, especially cobalt compared to chlorine (0.004 ppm, 0.002 ppm, and 0.001 ppm for raw water, chlorine-treated, and cryogel-treated groups, respectively) which helped in the reduction of their toxic effects. CONCLUSION This study provides an effective, promising, safe, and alternative nanocomposite to treat different human and animal pathogenic microbes that might be used in different environmental, industrial, and medical applications.
Collapse
Affiliation(s)
- Mohamed M El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Mohamed I Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Marwa M El-Khodary
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed M A Mousa
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| |
Collapse
|
9
|
Ye L, Bogicevic B, Bolten CJ, Wittmann C. Single-cell protein: overcoming technological and biological challenges towards improved industrialization. Curr Opin Biotechnol 2024; 88:103171. [PMID: 39024923 DOI: 10.1016/j.copbio.2024.103171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
The commercialization of single-cell protein (SCP) obtained from microbial fermentation in large-scale bioreactors emerged almost 50 years ago, with Pruteen marketed as animal feed in the 1970s and Quorn®, released for human nutrition in 1985. SCP holds great promises to feed the meanwhile doubled world population in a sustainable way, but its application is still limited by price and availability on scale. There is a need to optimize the underlying manufacturing processes with enhanced affordability and productivity. From the industrial perspective, it is crucial to identify key process components and prioritize innovations that best promote cost efficiency and large-scale production. Here, we present the state-of-art in SCP manufacturing and provide a comprehensive insight into recent techno-economic analyses and life-cycle assessments of different production scenarios. Thereby, we identified the most influential technical hotspots and challenges for each of the main production scenarios and evaluated the technological opportunities to overcome them.
Collapse
Affiliation(s)
- Lijuan Ye
- Nestlé Research, Lausanne, Switzerland.
| | | | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
10
|
Yunus IS, Hudson GA, Chen Y, Gin JW, Kim J, Baidoo EEK, Petzold CJ, Adams PD, Simmons BA, Mukhopadhyay A, Keasling JD, Lee TS. Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida. Metab Eng 2024; 84:69-82. [PMID: 38839037 DOI: 10.1016/j.ymben.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO2 has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of 13C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of Pseudomonas putida KT2440 as platform for shinorine production.
Collapse
Affiliation(s)
- Ian S Yunus
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joonhoon Kim
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
11
|
Song X, Zhao Y, Ren Y, Liu R, Zhang M, Zhang Z, Meng Q, Zhu T, Yin J, Yu Z. Development of a Quorum Sensing-Mediated Bacterial Autolytic System in Escherichia coli for Automatic Release of Intracellular Products. ACS Synth Biol 2024; 13:1956-1962. [PMID: 38860508 DOI: 10.1021/acssynbio.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Escherichia coli, one of the most efficient expression hosts for recombinant proteins, is widely used in chemical, medical, food, and other industries. De novo engineering of gene regulation circuits and cell density-controlled E. coli cell lysis are promising directions for the release of intracellular bioproducts. Here, we developed an E. coli autolytic system, named the quorum sensing-mediated bacterial autolytic (QS-BA) system, by incorporating an acyl-homoserine lactone (AHL)-based YasI/YasR-type quorum sensing circuit from Pseudoalteromonas into E. coli cells. The results showed that the E. coli QS-BA system can release the intracellular bioproducts into the cell culture medium in terms of E. coli cell density, which offers an environmentally-friendly, economical, efficient, and flexible E. coli lysis platform for production of recombinant proteins. The QS-BA system has the potential to serve as an integrated system for the large-scale production of target products in E. coli for medical and industrial applications.
Collapse
Affiliation(s)
- Xiaofei Song
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yifan Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yixuan Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ruoyu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Mengting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhikai Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
12
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
13
|
Singh S, Kumar Sharma P, Chaturvedi S, Kumar P, Deepak Nannaware A, Kalra A, Kumar Rout P. Biocatalyst for the synthesis of natural flavouring compounds as food additives: Bridging the gap for a more sustainable industrial future. Food Chem 2024; 435:137217. [PMID: 37832337 DOI: 10.1016/j.foodchem.2023.137217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
Biocatalysis entails the use of purified enzymes in the manufacturing of flavouring chemicals food industry as well as at the laboratory level. These biocatalysts can significantly accelerate organic chemical processes and improve product stereospecificity. The unique characteristics of biocatalyst helpful in synthesizing the environmentally friendly flavour and aroma compounds used as a food additive in foodstuffs. With methods like enzyme engineering on biotechnological interventions the efficient tuning of produce will fulfil the needs of food industry. This review summarizes the biosynthesis of different flavour and aroma component through microbial catalysts and using advanced techniques which are available for enzyme improvement. Also pointing out their benefits and drawbacks for specific technological processes necessary for successful industrial application of biocatalysts. The article covers the market scenario, cost economics, environmental safety and regulatory framework for the production of food flavoured chemicals by the bioprocess engineering.
Collapse
Affiliation(s)
- Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Praveen Kumar Sharma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Shivani Chaturvedi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prashant Kumar
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kalra
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Kalia VC, Patel SKS, Karthikeyan KK, Jeya M, Kim IW, Lee JK. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers (Basel) 2024; 16:410. [PMID: 38337299 DOI: 10.3390/polym16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.
Collapse
Affiliation(s)
- Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kugalur K Karthikeyan
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Marimuthu Jeya
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
15
|
Etit D, Ögmundarson Ó, Zhang J, Krogh Jensen M, Sukumara S. Early-stage economic and environmental impact assessment for optimized bioprocess development: Monoterpenoid indole alkaloids. BIORESOURCE TECHNOLOGY 2024; 391:130005. [PMID: 37952588 DOI: 10.1016/j.biortech.2023.130005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Microbial refactoring offers sustainable production of plant-sourced pharmaceuticals associated with high production costs, ecological harms, and supply chain dependencies. Here, microbial tabersonine production in Saccharomyces cerevisiae is modeled during early-stage development (TRL: 3-5), guiding decisions for process-scale economic and environmental optimization. The base-case 0.7 mg/L titer indicated a minimum selling price (MSP) of $3,910,000/kg and global warming potential (GWP) of 2,540 kgCO2eq/g. The industrial process at 1 g/L resulted in an MSP of 4,262 $/kg and a GWP of 6.36 kgCO2eq/g. Location analysis indicated a sustainability trade-off between France, USA, Poland, and China, with the written order of declining MSP and increasing GWP. Continuous processing promised reducing the MSP by 18-27 %, and the GWP by 17-31 %. In-situ product extraction during fermentation was estimated to lower the MSP by 41-61 %, and the GWP by 30-75 %. In addition to showcasing a combined TEA-LCA on biopharmaceuticals, the early-stage assessment approach guides bioprocess optimization.
Collapse
Affiliation(s)
- Deniz Etit
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ólafur Ögmundarson
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sumesh Sukumara
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Zhang X, Chen H, Ouyang P, Liu X. Next-generation industrial biotechnology for low-cost mass production of PHA. Trends Biotechnol 2024; 42:135-136. [PMID: 37833199 DOI: 10.1016/j.tibtech.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Affiliation(s)
- Xiaohan Zhang
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Huanyu Chen
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Pengfei Ouyang
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China.
| |
Collapse
|
17
|
Sakarika M, Kerckhof FM, Van Peteghem L, Pereira A, Van Den Bossche T, Bouwmeester R, Gabriels R, Van Haver D, Ulčar B, Martens L, Impens F, Boon N, Ganigué R, Rabaey K. The nutritional composition and cell size of microbial biomass for food applications are defined by the growth conditions. Microb Cell Fact 2023; 22:254. [PMID: 38072930 PMCID: PMC10712164 DOI: 10.1186/s12934-023-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND It is increasingly recognized that conventional food production systems are not able to meet the globally increasing protein needs, resulting in overexploitation and depletion of resources, and environmental degradation. In this context, microbial biomass has emerged as a promising sustainable protein alternative. Nevertheless, often no consideration is given on the fact that the cultivation conditions affect the composition of microbial cells, and hence their quality and nutritional value. Apart from the properties and nutritional quality of the produced microbial food (ingredient), this can also impact its sustainability. To qualitatively assess these aspects, here, we investigated the link between substrate availability, growth rate, cell composition and size of Cupriavidus necator and Komagataella phaffii. RESULTS Biomass with decreased nucleic acid and increased protein content was produced at low growth rates. Conversely, high rates resulted in larger cells, which could enable more efficient biomass harvesting. The proteome allocation varied across the different growth rates, with more ribosomal proteins at higher rates, which could potentially affect the techno-functional properties of the biomass. Considering the distinct amino acid profiles established for the different cellular components, variations in their abundance impacts the product quality leading to higher cysteine and phenylalanine content at low growth rates. Therefore, we hint that costly external amino acid supplementations that are often required to meet the nutritional needs could be avoided by carefully applying conditions that enable targeted growth rates. CONCLUSION In summary, we demonstrate tradeoffs between nutritional quality and production rate, and we discuss the microbial biomass properties that vary according to the growth conditions.
Collapse
Affiliation(s)
- Myrsini Sakarika
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium.
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium.
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
- Kytos BV, IIC UGent, Frieda Saeysstraat 1/B, Ghent, 9052, Belgium
| | - Lotte Van Peteghem
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Alexandra Pereira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Tim Van Den Bossche
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Proteomics Core, VIB, Ghent, Belgium
| | - Barbara Ulčar
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Proteomics Core, VIB, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| |
Collapse
|
18
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
20
|
Blunt W, Blanchard C, Doyle C, Vasquez V, Ye M, Adewale P, Liu Y, Morley K, Monteil-Rivera F. The potential of Burkholderia thailandensis E264 for co-valorization of C 5 and C 6 sugars into multiple value-added bio-products. BIORESOURCE TECHNOLOGY 2023; 387:129595. [PMID: 37541546 DOI: 10.1016/j.biortech.2023.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Despite known metabolic versatility of Burkholderia spp., sugar metabolism and end-product synthesis patterns in Burkholderia thailandensis have been poorly characterized. This work has demonstrated that B. thailandensis is capable of simultaneously uptaking glucose and xylose and accumulating up to 64% of its dry mass as poly(3-hydroxyalkanoate) (PHA) biopolymers, resulting in a PHA titer of up to 3.8 g L-1 in shake flasks. Rhamnolipids - mainly (68-75%) in the form of Rha-Rha-C14-C14 - were produced concomitantly with a titer typically in the range of 0.2-0.4 g L-1. Gluconic and xylonic acids were also detected in titers of up to 5.3 g L-1, and while gluconic acid appeared to be back consumed, xylonic acid formed as a major end product. This first example of co-production of three products from mixed sugars using B. thailandensis paves the way for improving biorefinery economics.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Catherine Blanchard
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Peter Adewale
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada.
| |
Collapse
|
21
|
Della-Flora IK, de Andrade CJ. Biosynthesis of metallic nanoparticles by bacterial cell-free extract. NANOSCALE 2023; 15:13886-13908. [PMID: 37581280 DOI: 10.1039/d3nr02507a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The biosynthesis of metallic nanoparticles (MNPs), encompassing noble metals, metal oxides, and sulfides, has gained significant attention in recent years due to their unique properties and wide-ranging applications. However, traditional chemical synthesis methods often involve extreme conditions, harsh chemicals, and negative environmental impacts. Consequently, developing a simple, non-toxic, and eco-friendly approach for MNP synthesis is paramount. One promising method that addresses these concerns is using a bacterial cell-free extract (CFE) as a mediator for biosynthesis. Compared with other biosynthesis production methods, the purification process of MNPs synthesized using bacterial CFEs is much simpler, and CFE production is easier to standardize and reproduce. Bacterial CFEs are rich in various biomolecules, including proteins, enzymes, and peptides, which serve as both reducing and oxidizing agents during MNP formation. These biomolecules act as capping agents, contributing to the stability and monodisperse nature of MNPs. Using bacterial CFEs for MNP synthesis offers several advantages. Firstly, it aligns with eco-friendly practices as a biosynthesis approach. The non-toxic process minimizes environmental damage. Additionally, bacterial CFEs are cost-effective, making large-scale production economically viable. This review provides insights into these mechanisms, highlighting the role of CFE biomolecules and their impact on MNP characteristics. It also investigates the correlation between synthesis parameters, morphologies, and physical, chemical, and biological properties, allowing for tailored MNP design through the biosynthesis conditions. Despite its advantages, bacterial CFE-mediated biosynthesis faces challenges. This review addresses these challenges and discusses potential solutions. It also explores future perspectives, emphasizing areas for further investigation and innovation. In summary, using bacterial CFEs to synthesize MNPs offers significant advantages over other methods. It ensures eco-friendly, non-toxic, and cost-effective production. The review emphasizes the mechanisms and biomolecules involved, showcasing the potential for tailored MNP design. It also addresses challenges and prospects, paving the way for advancements in this field. Furthermore, the originality of this work lies in the exploitation of bacterial CFEs as a highly efficient and scalable platform for MNP synthesis.
Collapse
Affiliation(s)
- Isabela Karina Della-Flora
- Department of Chemical Engineering & Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Cristiano José de Andrade
- Department of Chemical Engineering & Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
22
|
Adams JD, Sander KB, Criddle CS, Arkin AP, Clark DS. Engineering osmolysis susceptibility in Cupriavidus necator and Escherichia coli for recovery of intracellular products. Microb Cell Fact 2023; 22:69. [PMID: 37046248 PMCID: PMC10091555 DOI: 10.1186/s12934-023-02064-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Intracellular biomacromolecules, such as industrial enzymes and biopolymers, represent an important class of bio-derived products obtained from bacterial hosts. A common key step in the downstream separation of these biomolecules is lysis of the bacterial cell wall to effect release of cytoplasmic contents. Cell lysis is typically achieved either through mechanical disruption or reagent-based methods, which introduce issues of energy demand, material needs, high costs, and scaling problems. Osmolysis, a cell lysis method that relies on hypoosmotic downshock upon resuspension of cells in distilled water, has been applied for bioseparation of intracellular products from extreme halophiles and mammalian cells. However, most industrial bacterial strains are non-halotolerant and relatively resistant to hypoosmotic cell lysis. RESULTS To overcome this limitation, we developed two strategies to increase the susceptibility of non-halotolerant hosts to osmolysis using Cupriavidus necator, a strain often used in electromicrobial production, as a prototypical strain. In one strategy, C. necator was evolved to increase its halotolerance from 1.5% to 3.25% (w/v) NaCl through adaptive laboratory evolution, and genes potentially responsible for this phenotypic change were identified by whole genome sequencing. The evolved halotolerant strain experienced an osmolytic efficiency of 47% in distilled water following growth in 3% (w/v) NaCl. In a second strategy, the cells were made susceptible to osmolysis by knocking out the large-conductance mechanosensitive channel (mscL) gene in C. necator. When these strategies were combined by knocking out the mscL gene from the evolved halotolerant strain, greater than 90% osmolytic efficiency was observed upon osmotic downshock. A modified version of this strategy was applied to E. coli BL21 by deleting the mscL and mscS (small-conductance mechanosensitive channel) genes. When grown in medium with 4% NaCl and subsequently resuspended in distilled water, this engineered strain experienced 75% cell lysis, although decreases in cell growth rate due to higher salt concentrations were observed. CONCLUSIONS Our strategy is shown to be a simple and effective way to lyse cells for the purification of intracellular biomacromolecules and may be applicable in many bacteria used for bioproduction.
Collapse
Affiliation(s)
- Jeremy David Adams
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Kyle B Sander
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Wu S, Tian J, Xue X, Tang Z, Huang Z, Hammock BD, Morisseau C, Li QX, Xu T. Development of a Genetically Encoded Magnetic Platform in Magnetospirillum gryphiswaldense MSR-1 for Downstream Processing of Protein Expression System. RESEARCH SQUARE 2023:rs.3.rs-2630343. [PMID: 36993437 PMCID: PMC10055543 DOI: 10.21203/rs.3.rs-2630343/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Protein downstream processing remains a challenge in protein production, especially in low yields of products, in spite of ensuring effective disruption of cell and separation of target proteins. It is complicated, expensive and time-consuming. Here, we report a novel nano-bio-purification system for producing recombinant proteins of interest with automatic purification from engineered bacteria. Results This system employed a complete genetic engineering downstream processing platform for proteins at low expression levels, referred to as a genetically encoded magnetic platform (GEMP). GEMP consists of four elements as follows. (1) A truncated phage lambda lysis cassette (RRz/Rz1) is controllable for lysis of Magnetospirillum gryphiswaldense MSR-1 (host cell). (2) A surface-expressed nuclease (NucA) is to reduce viscosity of homogenate by hydrolyzing long chain nucleic acids. (3) A bacteriogenic magnetic nanoparticle, known as magnetosome, allows an easy separation system in a magnetic field. (4) An intein realizes abscission of products (nanobodies against tetrabromobisphenol A) from magnetosome. Conclusions In this work, removal of most impurities greatly simplified the subsequent purification procedure. The system also facilitated the bioproduction of nanomaterials. The developed platform can substantially simplify industrial protein production and reduce its cost.
Collapse
Affiliation(s)
- Sha Wu
- China Agricultural University
| | | | | | | | | | | | | | | | - Ting Xu
- China Agricultural University
| |
Collapse
|
24
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
25
|
Ye JW, Lin YN, Yi XQ, Yu ZX, Liu X, Chen GQ. Synthetic biology of extremophiles: a new wave of biomanufacturing. Trends Biotechnol 2023; 41:342-357. [PMID: 36535816 DOI: 10.1016/j.tibtech.2022.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Microbial biomanufacturing, powered by the advances of synthetic biology, has attracted growing interest for the production of diverse products. In contrast to conventional microbes, extremophiles have shown better performance for low-cost production owing to their outstanding growth and synthesis capacity under stress conditions, allowing unsterilized fermentation processes. We review increasing numbers of products already manufactured utilizing extremophiles in recent years. In addition, genetic parts, molecular tools, and manipulation approaches for extremophile engineering are also summarized, and challenges and opportunities are predicted for non-conventional chassis. Next-generation industrial biotechnology (NGIB) based on engineered extremophiles promises to simplify biomanufacturing processes and achieve open and continuous fermentation, without sterilization, and utilizing low-cost substrates, making NGIB an attractive green process for sustainable manufacturing.
Collapse
Affiliation(s)
- Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi-Na Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xue-Qing Yi
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuo-Xuan Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xu Liu
- PhaBuilder Biotech Company, Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Ministry of Education (MOE) Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
26
|
Du Y, Wang M, Chen Sun C, Yu H. Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5' untranslated region for versatile applications in Corynebacterium glutamicum. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:88-96. [PMID: 39416452 PMCID: PMC11446368 DOI: 10.1016/j.biotno.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 10/19/2024]
Abstract
As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism Corynebacterium glutamicum, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the -35 and -10 regions, and the 5'-terminal untranslated region (5'UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using C. glutamicum ATCC13032 as the host. Here, we explored the effect of sequence length between the -35 and -10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5'-terminal untranslated region (5'UTR) and screened out the optimal PtacM4 mutant with a 5'UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5'UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.
Collapse
Affiliation(s)
- Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Miaomiao Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Claudia Chen Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Luo J, Efimova E, Volke DC, Santala V, Santala S. Engineering cell morphology by CRISPR interference in Acinetobacter baylyi ADP1. Microb Biotechnol 2022; 15:2800-2818. [PMID: 36005297 DOI: 10.1111/1751-7915.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Microbial production of intracellular compounds can be engineered by redirecting the carbon flux towards products and increasing the cell size. Potential engineering strategies include exploiting clustered regularly interspaced short palindromic repeats interference (CRISPRi)-based tools for controlling gene expression. Here, we applied CRISPRi for engineering Acinetobacter baylyi ADP1, a model bacterium for synthesizing intracellular storage lipids, namely wax esters. We first established an inducible CRISPRi system for strain ADP1, which enables tightly controlled repression of target genes. We then targeted the glyoxylate shunt to redirect carbon flow towards wax esters. Second, we successfully employed CRISPRi for modifying cell morphology by repressing ftsZ, an essential gene required for cell division, in combination with targeted knock-outs to generate significantly enlarged filamentous or spherical cells respectively. The engineered cells sustained increased wax ester production metrics, demonstrating the potential of cell morphology engineering in the production of intracellular lipids.
Collapse
Affiliation(s)
- Jin Luo
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Daniel Christoph Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
28
|
Sakarika M, Ganigué R, Rabaey K. Methylotrophs: from C1 compounds to food. Curr Opin Biotechnol 2022; 75:102685. [DOI: 10.1016/j.copbio.2022.102685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 01/11/2023]
|
29
|
Lyu ZY, Bu QT, Fang JL, Zhu CY, Xu WF, Ma L, Gao WL, Chen XA, Li YQ. Improving the Yield and Quality of Daptomycin in Streptomyces roseosporus by Multilevel Metabolic Engineering. Front Microbiol 2022; 13:872397. [PMID: 35509317 PMCID: PMC9058172 DOI: 10.3389/fmicb.2022.872397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic with a significant antibacterial action against antibiotic-resistant Gram-positive bacteria. Despite numerous attempts to enhance daptomycin yield throughout the years, the production remains unsatisfactory. This study reports the application of multilevel metabolic engineering strategies in Streptomyces roseosporus to reconstruct high-quality daptomycin overproducing strain L2797-VHb, including precursor engineering (i.e., refactoring kynurenine pathway), regulatory pathway reconstruction (i.e., knocking out negative regulatory genes arpA and phaR), byproduct engineering (i.e., removing pigment), multicopy biosynthetic gene cluster (BGC), and fermentation process engineering (i.e., enhancing O2 supply). The daptomycin titer of L2797-VHb arrived at 113 mg/l with 565% higher comparing the starting strain L2790 (17 mg/l) in shake flasks and was further increased to 786 mg/l in 15 L fermenter. This multilevel metabolic engineering method not only effectively increases daptomycin production, but can also be applied to enhance antibiotic production in other industrial strains.
Collapse
Affiliation(s)
- Zhong-Yuan Lyu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Jiao-Le Fang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Chen-Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wei-Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Lie Ma
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wen-Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
- *Correspondence: Yong-Quan Li,
| |
Collapse
|
30
|
Huang L, Zhao L, Wang Z, Chen Z, Jia S, Song Y. Ecological insight into incompatibility between polymer storage and floc settling in polyhydroxyalkanoate producer selection using complex carbon sources. BIORESOURCE TECHNOLOGY 2022; 347:126378. [PMID: 34808315 DOI: 10.1016/j.biortech.2021.126378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoate (PHA) producer selection is a key step in mixed culture (MC) production. This study focused on incompatibility between PHA storage and floc settling of MCs in the selection process. In a selector using fermented waste activated sludge as substrate under varying organic loading, average maximum PHA content obtained in batch assays increased by ∼ 22 wt% and biomass concentration increased by ∼ 34% with the increasing of organic loading. However, poor floc settling occurred, causing decreased batch PHA production and costly downstream process. A flank community which can corporately use non-VFA organics existed in the selector. When organic loading increased, PHA producers had stronger negative interactions, but not cooperation with the flank community members. Thus, high PHA storage of MCs was bounded to the domination of core PHA producer. But the domination of Thauera bacteria under high organic loading indirectly induced a bloom of filamentous bacteria.
Collapse
Affiliation(s)
- Long Huang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450002, China
| | - Liuyi Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450002, China; SIPPR Engineering Group Co., Ltd, Zhengzhou 450007, China
| | - Zhuowen Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450002, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450002, China
| | - Yali Song
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
31
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
32
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
33
|
Zou H, Taguchi S, Levin DB. Editorial: Microbial Production of Biopolyesters and Their Building Blocks: Opportunities and Challenges. Front Bioeng Biotechnol 2021; 9:777265. [PMID: 34957072 PMCID: PMC8692883 DOI: 10.3389/fbioe.2021.777265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Seiichi Taguchi
- Faculty of Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - David Bernard Levin
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Reprogramming microbial populations using a programmed lysis system to improve chemical production. Nat Commun 2021; 12:6886. [PMID: 34824227 PMCID: PMC8617184 DOI: 10.1038/s41467-021-27226-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
Microbial populations are a promising model for achieving microbial cooperation to produce valuable chemicals. However, regulating the phenotypic structure of microbial populations remains challenging. In this study, a programmed lysis system (PLS) is developed to reprogram microbial cooperation to enhance chemical production. First, a colicin M -based lysis unit is constructed to lyse Escherichia coli. Then, a programmed switch, based on proteases, is designed to regulate the effective lysis unit time. Next, a PLS is constructed for chemical production by combining the lysis unit with a programmed switch. As a result, poly (lactate-co-3-hydroxybutyrate) production is switched from PLH synthesis to PLH release, and the content of free PLH is increased by 283%. Furthermore, butyrate production with E. coli consortia is switched from E. coli BUT003 to E. coli BUT004, thereby increasing butyrate production to 41.61 g/L. These results indicate the applicability of engineered microbial populations for improving the metabolic division of labor to increase the efficiency of microbial cell factories.
Collapse
|
35
|
Chen L, Pang Y, Luo Y, Cheng X, Lv B, Li C. Separation and purification of plant terpenoids from biotransformation. Eng Life Sci 2021; 21:724-738. [PMID: 34764825 PMCID: PMC8576074 DOI: 10.1002/elsc.202100014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022] Open
Abstract
The production of plant terpenoids through biotransformation has undoubtedly become one of the research hotspots, and the continuous upgrading of the corresponding downstream technology is also particularly important. Downstream technology is the indispensable technical channel for the industrialization of plant terpenoids. How to efficiently separate high-purity products from complex microbial fermentation broths or enzyme-catalyzed reactions to achieve high separation rates, high returns and environmental friendliness has become the focus of research in recent years. This review mainly introduces the common separation methods of plant terpenoids based on biotransformation from the perspectives of engineering strain construction, unit separation technology, product properties and added value. Then, further attention was paid to the application prospects of intelligent cell factories and control in the separation of plant terpenoids. Finally, some current challenges and prospects are proposed, which provide possible directions and guidance for the separation and purification of terpenoids and even industrialization.
Collapse
Affiliation(s)
- Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
- Key Lab for Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijingP. R. China
| |
Collapse
|
36
|
Impacts of Magnetic Immobilization on the Growth and Metabolic Status of Recombinant Pichia pastoris. Mol Biotechnol 2021; 64:320-329. [PMID: 34647242 DOI: 10.1007/s12033-021-00420-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Downstream processing is an expensive step for industrial production of recombinant proteins. Cell immobilization is known as one of the ideal solutions in regard to process intensification. In recent years, magnetic immobilization was introduced as a new technique for cell immobilization. This technique was successfully employed to harvest many bacterial and eukaryotic cells. But there are no data about the influence of magnetic immobilization on the eukaryotic inducted recombinant cells. In this study, impacts of magnetic immobilization on the growth and metabolic status of induced recombinant Pichia pastoris as a valuable eukaryotic model cells were investigated. Results based on colony-forming unit, OD600, and trypan blue assay indicated that magnetic immobilization had no adverse effect on the growth and viability of P. pastoris cells. Also, about 20-40% increase in metabolic activity was recorded in immobilized cells that were decorated with 0.5-2 mg/mL nanoparticles. Total protein and carbohydrate of the cells were also measured as main indicatives for cell function and no significant changes were observed in the immobilized cells. Current data show magnetic immobilization as a biocompatible technique for application in eukaryotic expression systems. Results can be considered for further developments in P. pastoris-based expression systems.
Collapse
|
37
|
Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab Eng 2021; 67:198-215. [PMID: 34166765 DOI: 10.1016/j.ymben.2021.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.
Collapse
|
38
|
Zhao P, Tian P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol 2021; 37:117. [PMID: 34128152 DOI: 10.1007/s11274-021-03091-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.
Collapse
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
39
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
40
|
Sludge amendment accelerating reclamation process of reconstructed mining substrates. Sci Rep 2021; 11:2905. [PMID: 33536526 PMCID: PMC7859177 DOI: 10.1038/s41598-021-81703-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023] Open
Abstract
We constructed a mining soil restoration system combining plant, complex substrate and microbe. Sludge was added to reconstructed mine substrates (RMS) to accelerate the reclamation process. The effect of sludge on plant growth, microbial activity, soil aggregate stability, and aggregation-associated soil characteristics was monitored during 10 years of reclamation. Results show that the height and total biomass of ryegrass increases with reclamation time. Sludge amendment increases the aggregate binding agent content and soil aggregate stability. Soil organic carbon (SOC) and light-fraction SOC (LFOC) in the RMS increase by 151% and 247% compared with those of the control, respectively. A similar trend was observed for the glomalin-related soil protein (GRSP). Stable soil aggregate indexes increase until the seventh year. In short, the variables of RMS determined after 3-7 years insignificantly differ from those of the untreated sample in the tenth-year. Furthermore, significant positive correlations between the GRSP and SOC and GRSP and soil structure-related variables were observed in RMS. Biological stimulation of the SOC and GRSP accelerates the recovery of the soil structure and ecosystem function. Consequently, the plant-complex substrate-microbe ecological restoration system can be used as an effective tool in early mining soil reclamation.
Collapse
|
41
|
Abstract
Microbial fermentations produce chemicals, materials, biofuels, foods and medicines for many years. The processes are less competitive compared to chemical industries. To increase its competitiveness, technologies must be developed to address the following issues including fresh water shortage, heavy energy consumption, microbial contaminations, complexity of sterile operations, poor oxygen utilization in the cultures, food-related ingredients as substrates, low substrate to product conversion efficiency, difficult cells and broth separation, large amount of wastewater, discontinuous processes, heavy labour involvements and expensive bioreactors. Future industrial fermentations should be more effective with the above issues reasonably addressed. Recently, extremophilic bacteria have well addressed the above issues for future fermentation.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Xinyi Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Bradley SA, Zhang J, Jensen MK. Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Front Bioeng Biotechnol 2020; 8:594126. [PMID: 33195162 PMCID: PMC7644825 DOI: 10.3389/fbioe.2020.594126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Plants produce some of the most potent therapeutics and have been used for thousands of years to treat human diseases. Today, many medicinal natural products are still extracted from source plants at scale as their complexity precludes total synthesis from bulk chemicals. However, extraction from plants can be an unreliable and low-yielding source for human therapeutics, making the supply chain for some of these life-saving medicines expensive and unstable. There has therefore been significant interest in refactoring these plant pathways in genetically tractable microbes, which grow more reliably and where the plant pathways can be more easily engineered to improve the titer, rate and yield of medicinal natural products. In addition, refactoring plant biosynthetic pathways in microbes also offers the possibility to explore new-to-nature chemistry more systematically, and thereby help expand the chemical space that can be probed for drugs as well as enable the study of pharmacological properties of such new-to-nature chemistry. This perspective will review the recent progress toward heterologous production of plant medicinal alkaloids in microbial systems. In particular, we focus on the refactoring of halogenated alkaloids in yeast, which has created an unprecedented opportunity for biosynthesis of previously inaccessible new-to-nature variants of the natural alkaloid scaffolds.
Collapse
Affiliation(s)
| | | | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
43
|
Ding Q, Diao W, Gao C, Chen X, Liu L. Microbial cell engineering to improve cellular synthetic capacity. Biotechnol Adv 2020; 45:107649. [PMID: 33091485 DOI: 10.1016/j.biotechadv.2020.107649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Rapid technological progress in gene assembly, biosensors, and genetic circuits has led to reinforce the cellular synthetic capacity for chemical production. However, overcoming the current limitations of these techniques in maintaining cellular functions and enhancing the cellular synthetic capacity (e.g., catalytic efficiency, strain performance, and cell-cell communication) remains challenging. In this review, we propose a strategy for microbial cell engineering to improve the cellular synthetic capacity by utilizing biotechnological tools along with system biology methods to regulate cellular functions during chemical production. Current strategies in microbial cell engineering are mainly focused on the organelle, cell, and consortium levels. This review highlights the potential of using biotechnology to further develop the field of microbial cell engineering and provides guidance for utilizing microorganisms as attractive regulation targets.
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wenwen Diao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
44
|
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139420. [PMID: 32464391 DOI: 10.1016/j.scitotenv.2020.139420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lipid-based biofuel is a clean and renewable energy that has been recognized as a promising replacement for petroleum-based fuels. Lipid-based biofuel can be made from three different types of intracellular biolipids; triacylglycerols (TAGs), wax esters (WEs), and polyhydroxybutyrate (PHB). Among many lipid-producing prokaryotes and eukaryotes, biolipids from prokaryotes have been recently highlighted due to simple cultivation of lipid-producing prokaryotes and their ability to accumulate high biolipid contents. However, the cost of lipid-based biofuel production remains high, in part, because of high cost of lipid extraction processes. This review summarizes the production mechanisms of these different types of biolipids from prokaryotes and extraction methods for these biolipids. Traditional and improved physical/chemical approaches for biolipid extraction remain costly, and these methods are summarized and compared in this review. Recent advances in biological lipid extraction including phage-based cell lysis or secretion of biolipids are also discussed. These new techniques are promising for bacterial biolipids extraction. Challenges and future research needs for cost-effective lipid extraction are identified in this review.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
45
|
Morphology engineering: a new strategy to construct microbial cell factories. World J Microbiol Biotechnol 2020; 36:127. [PMID: 32712725 DOI: 10.1007/s11274-020-02903-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Currently, synthetic biology approaches have been developed for constructing microbial cell factories capable of efficient synthesis of high value-added products. Most studies have focused on the construction of novel biosynthetic pathways and their regulatory processes. Morphology engineering has recently been proposed as a novel strategy for constructing efficient microbial cell factories, which aims at controlling cell shape and cell division pattern by manipulating the cell morphology-related genes. Morphology engineering strategies have been exploited for improving bacterial growth rate, enlarging cell volume and simplifying downstream separation. This mini-review summarizes cell morphology-related proteins and their function, current advances in manipulation tools and strategies of morphology engineering, and practical applications of morphology engineering for enhanced production of intracellular product polyhydroxyalkanoate and extracellular products. Furthermore, current limitations and the future development direction using morphology engineering are proposed.
Collapse
|
46
|
Zhang X, Lin Y, Wu Q, Wang Y, Chen GQ. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol 2020; 38:689-700. [DOI: 10.1016/j.tibtech.2019.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
|
47
|
Dvořák P, Kováč J, de Lorenzo V. Biotransformation of d-xylose to d-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42. Microb Biotechnol 2020; 13:1273-1283. [PMID: 32363744 PMCID: PMC7264884 DOI: 10.1111/1751-7915.13574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Co-production of two or more desirable compounds from low-cost substrates by a single microbial catalyst could greatly improve the economic competitiveness of many biotechnological processes. However, reports demonstrating the adoption of such co-production strategy are still scarce. In this study, the ability of genome-edited strain Pseudomonas putida EM42 to simultaneously valorize d-xylose and d-cellobiose - two important lignocellulosic carbohydrates - by converting them into the platform chemical d-xylonate and medium-chain-length polyhydroxyalkanoates, respectively, was investigated. Biotransformation experiments performed with P. putida resting cells showed that promiscuous periplasmic glucose oxidation route can efficiently generate extracellular xylonate with a high yield. Xylose oxidation was subsequently coupled to the growth of P. putida with cytoplasmic β-glucosidase BglC from Thermobifida fusca on d-cellobiose. This disaccharide turned out to be a better co-substrate for xylose-to-xylonate biotransformation than monomeric glucose. This was because unlike glucose, cellobiose did not block oxidation of the pentose by periplasmic glucose dehydrogenase Gcd, but, similarly to glucose, it was a suitable substrate for polyhydroxyalkanoate formation in P. putida. Co-production of extracellular xylose-born xylonate and intracellular cellobiose-born medium-chain-length polyhydroxyalkanoates was established in proof-of-concept experiments with P. putida grown on the disaccharide. This study highlights the potential of P. putida EM42 as a microbial platform for the production of xylonate, identifies cellobiose as a new substrate for mcl-PHA production, and proposes a fresh strategy for the simultaneous valorization of xylose and cellobiose.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology)Faculty of ScienceMasaryk UniversityKamenice 753/562500BrnoCzech Republic
| | - Jozef Kováč
- Department of Experimental Biology (Section of Microbiology)Faculty of ScienceMasaryk UniversityKamenice 753/562500BrnoCzech Republic
| | - Víctor de Lorenzo
- Systems and Synthetic Biology ProgramCentro Nacional de Biotecnología CNB‐CSICCantoblancoDarwin 328049MadridSpain
| |
Collapse
|
48
|
Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Curr Opin Biotechnol 2020; 66:18-26. [PMID: 32569960 DOI: 10.1016/j.copbio.2020.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
Microbial cell factory performance is significantly affected by the cell morphology and membrane homeostasis. It is important to ensure that cell factories are able to regulate cell morphology and maintain membrane homeostasis. Cell morphology can be controlled by regulating the formation of elongasomes and divisomes, which change the shapes of cells from rods to fibers, large spheres, or mini-cells. Membrane homeostasis can also be controlled by regulating the homeostasis of membrane lipids and proteins, thereby improving the robustness of microbes in toxic environments. In the present review, we discuss promising developments in cell morphology and membrane homeostasis engineering that have improved microbial cell factory performance.
Collapse
|
49
|
Taghizadeh SM, Ebrahiminezhad A, Ghoshoon MB, Dehshahri A, Berenjian A, Ghasemi Y. Magnetic Immobilization of Pichia pastoris Cells for the Production of Recombinant Human Serum Albumin. NANOMATERIALS 2020; 10:nano10010111. [PMID: 31935937 PMCID: PMC7022243 DOI: 10.3390/nano10010111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Magnetic immobilization as a novel technique was used to immobilize recombinant Pichia pastoris (GS115 Albumin) cells to produce human serum albumin (HSA). In this regard, magnetic nanoparticles (MNPs) coated with amino propyl triethoxy silane (APTES) were synthesized. P. pastoris cells were decorated with MNPs via nonspecific interactions. Decorated cells were magneto-responsible and easily harvested by applying an external magnetic field. The efficiency of magnetic immobilization (Ei) for cell removal was in direct relation with the MNP concentration and time of exposure to the magnetic field. By increasing the nanoparticles concentration, cells were harvested in a shorter period. Complete cell removal (Ei ≈ 100) was achieved in ≥0.5 mg/mL of MNPs in just 30 s. HSA is produced in an extremely high cell density (OD ~20) and it is the first time that magnetic immobilization was successfully employed for harvesting such a thick cell suspension. After 5 days of induction the cells, which were immobilized with 0.25 to 1 mg/mL of nanoparticles, showed an increased potency for recombinant HSA production. The largest increase in HSA production (38.1%) was achieved in the cells that were immobilized with 0.5 mg/mL of nanoparticles. These results can be considered as a novel approach for further developments in the P. pastoris-based system.
Collapse
Affiliation(s)
- Seyedeh-Masoumeh Taghizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
| | - Alireza Ebrahiminezhad
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mohammad Bagher Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, the University of Waikato, Hamilton 3240, New Zealand
- Correspondence: (A.B.); (Y.G.)
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.-M.T.); (M.B.G.); (A.D.)
- Correspondence: (A.B.); (Y.G.)
| |
Collapse
|
50
|
|