1
|
Kenchegowda M, Angolkar M, Hani U, Al Fatease A, Fatima F, Talath S, Dera AA, Paramshetti S, Gangadharappa HV, Osmani RAM, Kazi HS. Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04117-8. [PMID: 40244451 DOI: 10.1007/s00210-025-04117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Microneedles (MNs) offer a transformative solution for delivering macromolecules, including proteins, RNA, and peptides. These are critical in treating complex diseases but face significant challenges such as immunogenicity, poor stability, high molecular weight, and delivery efficiency. Unlike conventional methods, MNs efficiently bypass biological barriers like the stratum corneum, enabling precise and minimally invasive transdermal drug delivery. This review explores various MN types such as solid, coated, hollow, hydrogel-forming, and dissolving and their therapeutic applications in cancer immunotherapy, diabetes management, and osteoporosis treatment. For instance, dissolving MNs have been employed for transdermal insulin delivery, enhancing patient compliance and therapeutic outcomes. Similarly, hydrogel MNs have shown promise in sustained drug release for immunotherapy applications. By addressing cost and scalability issues, polymeric MNs demonstrate significant potential for clinical translation, paving the way for innovations in macromolecule delivery, diagnostics, and personalised medicine. This review underscores the pivotal role of MNs in redefining drug delivery systems, offering improved efficacy, patient comfort, and accessibility.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | | | - Riyaz Ali M Osmani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al-Faraa, Abha, 62223, Saudi Arabia.
| | - Heena Shijauddin Kazi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| |
Collapse
|
2
|
Bereket C, Kunter I, Ashrafian Bonab E, Footohi G. Gene therapy and gene therapy products introduced to market by 2022. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-39. [PMID: 40207986 DOI: 10.1080/15257770.2025.2489495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Gene therapy has revolutionized the concept of treating genetic disorders by addressing the root causes at the genetic level, becoming one of the most quickly evolving fields in medicine today, especially due to its long-term effects. Gene therapy for the treatment of diseases relies on strategies of gene suppression, overexpression, and editing using different tools such as CRISPR and RNA interference. The gene transfer methods are broadly classified into three categories: physical, chemical, and biological. The use of viral vectors, such as adenoviruses, retroviruses, and adeno-associated viruses, is prevalent in clinical settings due to their high efficiency. Safety remains as an issue, and risk mitigation strategies will continue to evolve from clinical data to minimize complications related to gene silencing and immunotoxicity. In this review, various aspects of gene therapy have been covered, such as in-vivo and ex-vivo gene therapy, gene transfer methods, safety issues, as well as the gene therapy products approved until 2022. This review lists 35 licensed gene therapy products, detailing their therapeutic uses, mechanism of action, and vectors employed. Each product illustrates the various applications and potentials of gene therapy against untreatable conditions. Continuous improvements in gene transfer methods, vector safety, and clinical applications will increase the impact of the technology and offer hope for effective treatment and possible cures for different genetic disorders.
Collapse
Affiliation(s)
- Cengiz Bereket
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Sıhhiye, Ankara, Turkey
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Imge Kunter
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | | | - Ghazal Footohi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| |
Collapse
|
3
|
Foster T, Lim P, Wagle SR, Ionescu CM, Kovacevic B, McLenachan S, Carvalho L, Brunet A, Mooranian A, Al-Salami H. Nanoparticle-Based gene therapy strategies in retinal delivery. J Drug Target 2025; 33:508-527. [PMID: 39749456 DOI: 10.1080/1061186x.2024.2433563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
4
|
Ma W, Wang W, Zhao L, Fan J, Liu L, Huang L, Peng B, Wang J, Xu B, Liu H, Wu D, Zheng Z. Reprogramming to restore youthful epigenetics of senescent nucleus pulposus cells for mitigating intervertebral disc degeneration and alleviating low back pain. Bone Res 2025; 13:35. [PMID: 40075068 PMCID: PMC11903667 DOI: 10.1038/s41413-025-00416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Aging is a pivotal risk factor for intervertebral disc degeneration (IVDD) and chronic low back pain (LBP). The restoration of aging nucleus pulposus cells (NPCs) to a youthful epigenetic state is crucial for IVDD treatment, but remains a formidable challenge. Here, we proposed a strategy to partially reprogram and reinstate youthful epigenetics of senescent NPCs by delivering a plasmid carrier that expressed pluripotency-associated genes (Oct4, Klf4 and Sox2) in Cavin2-modified exosomes (OKS@M-Exo) for treatment of IVDD and alleviating LBP. The functional OKS@M-Exo efficaciously alleviated senescence markers (p16INK4a, p21CIP1 and p53), reduced DNA damage and H4K20me3 expression, as well as restored proliferation ability and metabolic balance in senescent NPCs, as validated through in vitro experiments. In a rat model of IVDD, OKS@M-Exo maintained intervertebral disc height, nucleus pulposus hydration and tissue structure, effectively ameliorated IVDD via decreasing the senescence markers. Additionally, OKS@M-Exo reduced nociceptive behavior and downregulated nociception markers, indicating its efficiency in alleviating LBP. The transcriptome sequencing analysis also demonstrated that OKS@M-Exo could decrease the expression of age-related pathways and restore cell proliferation. Collectively, reprogramming by the OKS@M-Exo to restore youthful epigenetics of senescent NPCs may hold promise as a therapeutic platform to treat IVDD.
Collapse
Affiliation(s)
- Wenzheng Ma
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baogan Peng
- Department of Orthopedics, The Third Medical Centre of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baoshan Xu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 30021l, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Ziebarth JD, Shadman H, Wang Y. Insights from Computational Studies of Polymeric Systems for Nucleic Acid Delivery. Mol Pharm 2025; 22:1160-1173. [PMID: 39957182 DOI: 10.1021/acs.molpharmaceut.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The safe and efficient delivery of nucleic acids into cells is a critical step in the success of gene and cell therapies. Although viral vectors are the predominant tools in current gene and cell therapy practices, they present significant challenges including high costs and safety concerns. Nonviral delivery systems for nucleic acids show immense potential for future medicine, particularly as nucleic acid therapeutics continue to be developed for the treatment of a wide range of diseases, including cancer. Significant research efforts, both experimental and computational, have been devoted to the development, characterization, and understanding of nonviral delivery processes. While numerous reviews have documented these research advancements, few have specifically addressed the contributions from computational studies. In this review, we provide an overview of the insights gained from computational and theoretical studies of polymeric systems for nucleic acid delivery. We also highlight future directions where computational and experimental approaches could synergize to advance the field.
Collapse
Affiliation(s)
- Jesse Dylan Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Hossain Shadman
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
6
|
Sawan S, Kumari A, Majie A, Ghosh A, Karmakar V, Kumari N, Ghosh S, Gorain B. siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 168:214120. [PMID: 39577366 DOI: 10.1016/j.bioadv.2024.214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA. These siRNA-based therapies could include genes encoding pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as other molecular targets such as RANK, p38 MAPK, TGF-β, Wnt/Fz complex, and HIF. By downregulating the expression of these genes, siRNA-based nanoformulations can attenuate inflammation, inhibit immune system dysregulation, and prevent tissue damage associated with RA. Strategies of delivering siRNA molecules through nanocarriers could be targeted to treat RA effectively, where specific genes associated with this autoimmune disease pathology can be selectively silenced. Additionally, simultaneous targeting of multiple molecular pathways may offer synergistic therapeutic benefits, potentially leading to more effective and safer therapeutic strategies for RA patients. This review critically highlights the in-depth pathology of RA, RNA interference-mediated molecular targets, and nanocarrier-based siRNA delivery strategies, along with the challenges and opportunities to harbor future solutions.
Collapse
Affiliation(s)
- Sweta Sawan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankita Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
7
|
Aranda-Barradas ME, Coronado-Contreras HE, Aguilar-Castañeda YL, Olivo-Escalante KD, González-Díaz FR, García-Tovar CG, Álvarez-Almazán S, Miranda-Castro SP, Del Real-López A, Méndez-Albores A. Effect of Different Karyophilic Peptides on Physical Characteristics and In Vitro Transfection Efficiency of Chitosan-Plasmid Nanoparticles as Nonviral Gene Delivery Systems. Mol Biotechnol 2025; 67:723-733. [PMID: 38400988 PMCID: PMC11711767 DOI: 10.1007/s12033-024-01087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.
Collapse
Affiliation(s)
- María Eugenia Aranda-Barradas
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México.
| | - Héctor Eduardo Coronado-Contreras
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Yareli Lizbeth Aguilar-Castañeda
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Karen Donají Olivo-Escalante
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Francisco Rodolfo González-Díaz
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Carlos Gerardo García-Tovar
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Samuel Álvarez-Almazán
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Susana Patricia Miranda-Castro
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Alicia Del Real-López
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Juriquilla La Mesa, 76230, Santiago de Querétaro, México
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| |
Collapse
|
8
|
Jamil MU, Waheed NK. Gene therapy for geographic atrophy in age-related macular degeneration: current insights. Eye (Lond) 2025; 39:274-283. [PMID: 39578546 PMCID: PMC11751089 DOI: 10.1038/s41433-024-03463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Geographic atrophy (GA) is the advanced stage of non-neovascular (dry) age-related macular degeneration, defined by the presence of sharply demarcated atrophic lesions of the outer retina. The complement system is integral to the body's natural immune response, and hence its overactivation can lead to tissue damage and inflammation. It has been shown to play a significant role in GA lesion development and progression, and therefore, complement inhibition is emerging as a promising avenue for therapeutic intervention. With the recent approval by the Food and Drug Administration of drugs like SYFOVRE™ (pegcetacoplan injection) and IZERVAY™ (avacincaptad pegol intravitreal solution), there is hope for the development of interventions capable of slowing down or arresting the progression of GA. In particular, gene therapy intervention is gaining traction for halting GA atrophy at the source of our genes. The concept is to insert a gene into the eye that will act as an ocular "bio-factory," producing a desired protein. This can either lead to overproduction of an already available protein or produce a substance not typically generated in the eye. This review aims to provide an overview of the present understanding of GA, encompassing risk factors, prevalence, pathophysiology, and genetic associations. It will also highlight the current landscape of GA treatment, with particular emphasis on gene therapy intervention.
Collapse
Affiliation(s)
| | - Nadia K Waheed
- New England Eye Center, Tufts Medical Center, Boston, MA, 02116, USA.
| |
Collapse
|
9
|
Maksoud S, Schweiger MW, Tabet EI, Xiao T, Hokayem JE, Zinter M, Carvalho LA, Breyne K, Noske DP, Chiocca EA, Tannous BA. Arming AAV9 with a Single-Chain Fragment Variable Antibody Against PD-1 for Systemic Glioblastoma Therapy. Mol Neurobiol 2025; 62:2617-2625. [PMID: 39138760 PMCID: PMC11772126 DOI: 10.1007/s12035-024-04406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain cancer with a low survival rate, prompting the exploration of novel therapeutic strategies. Immune checkpoint inhibitors have shown promise in cancer treatment but are associated with immune-related toxicities and brain penetration. Here, we present a targeted approach using an adeno-associated virus serotype 9 (AAV9) to systemically deliver a single-chain fragment variable antibody against PD-1 (scFv-PD-1) into the tumor microenvironment (TME). Single-cell RNA sequencing analysis revealed robust PD-1 expression in GBM TME, predominantly on T cells. AAV9-scFv-PD-1 expressed and secreted scFv-PD-1, which effectively binds to PD-1. Systemic administration of AAV9-scFv-PD-1 in an immunocompetent GBM mouse model resulted in a robust cytolytic T-cell activation at the tumor site, marked by accumulation of IFN-γ and Granzyme B, leading to a significant reduction in tumor growth. Importantly, AAV9-scFv-PD-1 treatment conferred a survival benefit, highlighting its therapeutic potential. This study demonstrates the feasibility of systemically delivered AAV9-mediated local expression of scFv-PD-1 for targeted immunotherapy in GBM and warrants further investigation for clinical translation.
Collapse
Affiliation(s)
- Semer Maksoud
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA.
- Present Address: Early Oncology R&D, ICC, AstraZeneca, Waltham, MA, 02451, USA.
| | - Markus W Schweiger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurosurgery, Amsterdam , UMC Location Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Brain Tumor Center and Liquid Biopsy Center, 1081 HV, Amsterdam, the Netherlands
| | - Elie I Tabet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Tianhe Xiao
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Joelle El Hokayem
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Max Zinter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Litia A Carvalho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Koen Breyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - David P Noske
- Department of Neurosurgery, Amsterdam , UMC Location Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Brain Tumor Center and Liquid Biopsy Center, 1081 HV, Amsterdam, the Netherlands
| | | | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA.
- Present Address: Early Oncology R&D, ICC, AstraZeneca, Waltham, MA, 02451, USA.
| |
Collapse
|
10
|
Maia MV, do Egito EST, Sapin-Minet A, Viana DB, Kakkar A, Soares DCF. Fibroin-Hybrid Systems: Current Advances in Biomedical Applications. Molecules 2025; 30:328. [PMID: 39860198 PMCID: PMC11767523 DOI: 10.3390/molecules30020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates. This review article brings into focus applications of fibroin-hybrid systems prepared using chemical modification of the protein with polymers and inorganic compounds. A selection of recent preclinical evaluations of these hybrids is included to highlight the significance of this approach.
Collapse
Affiliation(s)
- Matheus Valentin Maia
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Eryvaldo Sócrates Tabosa do Egito
- Laboratório de Sistemas Dispersos LaSiD, Faculdade de Farmácia, Universidade Federal do Rio Grande no Norte, Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Anne Sapin-Minet
- Faculté de Pharmacie, Université de Lorraine, CITHEFOR, F-54000 Nancy, France;
| | - Daniel Bragança Viana
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | | |
Collapse
|
11
|
Shi J, Chen X, Hu H, Ung COL. The role of hospital pharmacists in supporting the appropriate and safe use of CGT/ATMPs: a scoping review of current insights. BMC Health Serv Res 2025; 25:52. [PMID: 39789612 PMCID: PMC11721208 DOI: 10.1186/s12913-024-12026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The role of hospital pharmacists in managing cell and gene therapy (CGT) and advanced therapy medicinal products (ATMPs) is gradually being recognized but the evidence about impact of their role has not been systematically reported. OBJECTIVE This study was aimed to summarize the professional services provided by hospital pharmacists on managing CGT/ATMPs and the evidence about the effects on patient care, as well as to identify the perceptions about pharmacists assuming a role that supports the appropriate and safe use of CGT/ATMPs. METHODS Literature from 4 electronic databases (PubMed, ScienceDirect, Web of Science, Scopus) were searched following PRISMA checklist to yield publications on the interventions provided by hospital pharmacists in the management of CGT/ATMPs dated since 1 January 2013 till 30 April 2023. RESULTS Thirty-four publications were included in this review. Eight studies involving hospital pharmacists participating in interventions for 1,012 hematopoietic stem cell transplant (HSCT) patients from 8 hospitals in 5 countries were identified. Common pharmacist-led interventions centered on medicine administration, prescribing, and monitoring of medicines use, resulting in significant improvement in patient adherence, satisfaction and knowledge. Of 26 studies, the perspectives assuming their roles in CGT/ATMPs management were categorized when patients receiving ATMPs (n = 2), HSCT and cellular-based therapy (n = 12), gene therapy (n = 6), and the chimeric antigen receptor (CAR) T-cell therapy (n = 6), mainly covering procurement, influences on prescribing, preparation and delivery, administration, monitoring of medicines use, human resources, training and development. The anticipated impact was primarily intended to promote pharmacy practice, multidisciplinary collaboration and improve patient clinical outcomes. CONCLUSION Leveraging the role of hospital pharmacists in multidisciplinary healthcare teams to develop a coordinated approach that supports pharmacy practice will better meet the management of CGT/ATMPs. For hospital pharmacists to step up their role in the multidisciplinary healthcare team, advancing their skillset in terms of clinical practice standards and medication management is essential.
Collapse
Affiliation(s)
- Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
12
|
Delshad M, Davoodi-Moghaddam Z, Khademi M, Pourbagheri-Sigaroodi A, Zali MR, Bashash D. Advancements in gene therapy for human diseases: Trend of current clinical trials. Eur J Pharmacol 2025; 986:177143. [PMID: 39566812 DOI: 10.1016/j.ejphar.2024.177143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
In an era of rapid scientific advancement, gene therapy has emerged as a groundbreaking approach with the potential to revolutionize the treatment of a myriad of diseases and medical conditions. The trend of current clinical trials suggests that there is growing interest and investment in exploring gene therapy as a viable treatment option. In 2023, a significant milestone was achieved with the approval of seven gene therapies by the Food and Drug Administration (FDA). Projections indicate that between 10 and 20 gene therapies could receive annual FDA approval by 2025. In this review, we conducted a comprehensive analysis of registered clinical trials on Clinicaltrials.gov to determine the progression status of gene therapies. Upon extraction of the data, we conducted a comprehensive analysis of the 2809 included studies. This involved a systematic approach, commencing with an overview, followed by a detailed examination of gene therapy strategies employed in various malignant and non-malignant disorders. Additionally, the study will cover the types of vectors utilized in current trials. Lastly, a meticulous review of 105 phase III-IV clinical trials was conducted to identify potential therapies demonstrating promise. We trust that the comprehensive overview provided will serve as a solid foundation for forthcoming research and study designs, ultimately contributing to the progression of gene therapy and its practical application within healthcare settings. Also, we anticipate that such inquiries will bolster the formulation of practical policies and guidelines for pharmaceutical companies engaged in gene therapy research and development.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Melika Khademi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Bhagat M, Kamal R, Sharma J, Kaur K, Sharma A, Singh TG, Bhatia R, Awasthi A. Gene Therapy: Towards a New Era of Medicine. AAPS PharmSciTech 2024; 26:17. [PMID: 39702810 DOI: 10.1208/s12249-024-03010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Over the past years, many significant advances have been made in the field of gene therapy and shown promising results in clinical trials conducted. Gene therapy aims at modifying or replacing a defective, inefficient, or nonfunctional gene with a healthy, functional gene by administration of genome material into the cell to cure genetic diseases. Various methods have been devised to do this by using several viral and non-viral vectors which are either administered by in vivo or ex vivo technique. Viral vectors are best suitable for this therapy due to their potential to invade cells and deliver their genetic material whereas non-viral vectors are less efficient than viral vectors but possess some advantages such as less immunogenic response and large gene carrying capacity. Recent advances in biotechnology such as CRISPR-Cas9 mediated genome engineering and Cancer treatment with Chimeric antigen receptor (CAR) T-cell therapy are addressed in this review. This review article also delves into some recent research studies, gene therapy trials, and its applications, laying out future hopes for gene therapy in the treatment of various diseases namely haemophilia, Muscular dystrophy, SCID, Sickle cell disease, Familial Hypercholesterolemia, Cystic Fibrosis. Additionally, it also includes various nanoformulations and clinical trial data related to gene therapy.
Collapse
Affiliation(s)
- Mokshit Bhagat
- Bachlor of Pharmacy, I.S.F College of Pharmacy, Moga, Punjab, India
| | - Raj Kamal
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, 147301, India
| | - Jyoti Sharma
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India
| | - Amit Sharma
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India.
| | | | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
14
|
Yi X, Hussain I, Zhang P, Xiao C. Nuclear-Targeting Peptides for Cancer Therapy. Chembiochem 2024; 25:e202400596. [PMID: 39215136 DOI: 10.1002/cbic.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nucleus is the central regulator of cells that controls cell proliferation, metabolism, and cell cycle, and is considered the most important organelle in cells. The precision medicine that can achieve nuclear targeting has achieved good therapeutic effects in anti-tumor therapy. However, the presence of biological barriers such as cell membranes and nuclear membranes in cells limit the delivery of therapeutic agents to the nucleus. Therefore, developing effective nuclear-targeting drug delivery strategies is particularly important. Nuclear-targeting peptides are a class of functional peptides that can penetrate cell membranes and target the nucleus. They mainly recognize and bind to the nuclear transport molecules (such as Importin-α/β) and transport the therapeutic agents to the nucleus through nuclear pore complexes (NPC). This review summarizes the most recent developments of strategies for anti-tumor therapy utilizing nuclear-targeting peptides, which will ultimately contribute to the development of more effective nuclear-targeting strategies to achieve better anti-tumor outcomes.
Collapse
Affiliation(s)
- Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore, 54792, Pakistan
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
15
|
Tzimou K, Catalán-Tatjer D, Nielsen LK, Lavado-García J. Unlocking DOE potential by selecting the most appropriate design for rAAV optimization. Mol Ther Methods Clin Dev 2024; 32:101329. [PMID: 39296857 PMCID: PMC11406035 DOI: 10.1016/j.omtm.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Producing recombinant adeno-associated virus (rAAV) for gene therapy via triple transfection is an intricate process involving many cellular interactions. Each of the different elements encoded in the three required plasmids-pHelper, pRepCap, and pGOI-plays a distinct role, affecting different cellular pathways when producing rAAVs. The required expression balance emphasizes the critical need to fine-tune the concentration of all these different elements. The use of design of experiments (DOE) to find optimal ratios is a powerful method to streamline the process. However, the choice of the DOE method and design construction is crucial to avoid misleading results. In this work, we examined and compared four distinct DOE approaches: rotatable central composite design (RCCD), Box-Behnken design (BBD), face-centered central composite design (FCCD), and mixture design (MD). We compared the abilities of the different models to predict optimal ratios and interactions among the plasmids and the transfection reagent. Our findings revealed that blocking is essential to reduce the variability caused by uncontrolled random effects and that MD coupled with FCCD outperformed all other approaches, improving volumetric productivity 109-fold. These outcomes underscore the importance of selecting a model that can effectively account for the biological context, ultimately yielding superior results in optimizing rAAV production.
Collapse
Affiliation(s)
- Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Rafiq M, Ahmed J, Alturaifi HA, Awwad NS, Ibrahium HA, Mir S, Maalik A, Sabahat S, Hassan S, Khan ZUH. Recent developments in the biomedical and anticancer applications of chitosan derivatives. Int J Biol Macromol 2024; 283:137601. [PMID: 39549805 DOI: 10.1016/j.ijbiomac.2024.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chitosan is a natural polymer derived from chitin. It has significant applications in various fields due to its unique physicochemical properties, biocompatibility, and biodegradability. These important properties of chitosan make it an attractive candidate for various anti-cancer activities and biomedical applications, including tissue engineering. This review emphasizes the latest literature on anticancer applications of chitosan derivatives and in-depth study of biomedical applications. This review highlights the importance of biomedical applications and anti-cancer activities like breast, liver, colon, gastric, melanoma, colorectal, cervical, oral, and lymphoma cancer. Currently, there is a notable absence of recent reviews that comprehensively address these aspects such as Alejandro Elizalde-Cárdenas, et al. 2024, focuses only on Biomedical applications of Cs and its derivatives (Elizalde-Cárdenas et al., 2024). Jingxian Ding, et al. 2022 discussed the applications of Cs in some Cancer treatments (Mabrouk et al., 2024). However, our article aims to provide a comprehensive overview of the latest advancements in Cs derivatives in both fields. This manuscript is designed with proper diagrams, flow sheets and summarized tables to enhance the understanding of the reader. It also highlights recent advancements in the development of various chitosan derivatives, offering a comprehensive perspective for researchers and practitioners to further progress in biomedical and anticancer technologies.
Collapse
Affiliation(s)
- Muqadas Rafiq
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Jalal Ahmed
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
17
|
Zhou M, Zhang X, Yan H, Xing L, Tao Y, Shen L. Review on the bioanalysis of non-virus-based gene therapeutics. Bioanalysis 2024; 16:1279-1294. [PMID: 39673530 PMCID: PMC11703353 DOI: 10.1080/17576180.2024.2437418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024] Open
Abstract
Over the past years, gene therapeutics have held great promise for treating many inherited and acquired diseases. The increasing number of approved gene therapeutics and developing clinical pipelines demonstrate the potential to treat diseases by modifying their genetic blueprints in vivo. Compared with conventional treatments targeting proteins rather than underlying causes, gene therapeutics can achieve enduring or curative effects via gene activation, inhibition, and editing. However, the delivery of DNA/RNA to the target cell to alter the gene expression is a complex process that involves, crossing numerous barriers in both the extracellular and intracellular environment. Generally, the delivery strategies can be divided into viral-based and non-viral-based vectors. This review summarizes various bioanalysis strategies that support the non-virus-based gene therapeutics research, including pharmacokinetics (PK)/toxicokinetics (TK), biodistribution, immunogenicity evaluations for the gene cargo, vector, and possible expressed protein, and highlights the challenges and future perspectives of bioanalysis strategies in non-virus-based gene therapeutics. This review may provide new insights and directions for the development of emerging bioanalytical methods, offering technical support and a research foundation for innovative gene therapy treatments.
Collapse
Affiliation(s)
- Maotian Zhou
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Xue Zhang
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Huan Yan
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Lili Xing
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Yi Tao
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Liang Shen
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| |
Collapse
|
18
|
Sun Y, Wu X, Li J, Radiom M, Mezzenga R, Verma CS, Yu J, Miserez A. Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules. Nat Commun 2024; 15:10094. [PMID: 39572548 PMCID: PMC11582321 DOI: 10.1038/s41467-024-54463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulate the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy. We show that a few amino acid alterations are sufficient to modulate the viscoelastic properties of CMs towards either a gel-like or a liquid-like state as well as their binding interaction with cellular membranes, collectively enabling to tune the kinetics of intracellular cargo release. We also demonstrate that the optimized PSPs CMs display excellent transfection efficiency in hard-to-transfect cells such as primary fibroblasts and immune cells. Our findings provide molecular guidelines to precisely program the material properties of PSP CMs and achieve tunable cellular uptake and release kinetics depending on the cargo modality, with broad implications for therapeutic applications such as protein, gene, and immune cell therapies.
Collapse
Affiliation(s)
- Yue Sun
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Xi Wu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Jianguo Li
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, Matrix, 138671, Singapore, Singapore
- Singapore Eye Research Institute, 169856, Singapore, Singapore
| | - Milad Radiom
- Department of Health Sciences & Technology, ETH Zurich, 8092, Zürich, Switzerland
| | - Raffaele Mezzenga
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Department of Health Sciences & Technology, ETH Zurich, 8092, Zürich, Switzerland
- Department of Materials, ETH Zurich, 8092, Zürich, Switzerland
| | - Chandra Shekhar Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, Matrix, 138671, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Jing Yu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore.
| |
Collapse
|
19
|
Kreofsky NW, Roy P, Reineke TM. pH-Responsive Micelles Containing Quinine Functionalities Enhance Intracellular Gene Delivery and Expression. Bioconjug Chem 2024; 35:1762-1778. [PMID: 39467734 DOI: 10.1021/acs.bioconjchem.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Quinine is a promising building block for creating polymer carriers for intracellular nucleic acid delivery. This is due to its ability to bind to genetic material through intercalation and electrostatic interactions and the balance of hydrophobicity and hydrophilicity dependent on the pH/charge state. Yet, studies utilizing cinchona alkaloid natural products in gene delivery are limited. Herein, we present the incorporation of a quinine functionalized monomer (Q) into block polymer architectures to form self-assembled micelles for highly efficient gene delivery. Q was incorporated into the core and/or the shell of the micelles to introduce the unique advantages of quinine to the system. We found that incorporation of Q into the core of the micelle resulted in acid-induced disassembly of the micelle and a boost in transfection efficiency by promoting endosomal escape. This effect was especially evident in the cancerous cell line, A549, which has a more acidic intracellular environment. Incorporation of Q into the shell of the micelles resulted in intercalative binding to the genetic payload as well as larger micelle-DNA complexes (micelleplexes) from the hydrophobicity of Q in the shell. These factors enable the micelleplexes to be more resistant to serum and have more persistent protein expression post-transfection. Overall, this study is the first to demonstrate the benefits of including quinine functionalities into self-assembled micelles for highly efficient gene delivery and presents a platform for inclusion of other natural products with similar properties into micellar systems.
Collapse
Affiliation(s)
- Nicholas W Kreofsky
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Punarbasu Roy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Stancheva R, Haladjova E, Petrova M, Ugrinova I, Dimitrov I, Rangelov S. Polypiperazine-Based Micelles of Mixed Composition for Gene Delivery. Polymers (Basel) 2024; 16:3100. [PMID: 39518308 PMCID: PMC11548379 DOI: 10.3390/polym16213100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
We introduce a novel concept in nucleic acid delivery based on the use of mixed polymeric micelles (MPMs) as platforms for the preparation of micelleplexes with DNA. MPMs were prepared by the co-assembly of a cationic copolymer, poly(1-(4-methylpiperazin-1-yl)-propenone)-b-poly(d,l-lactide), and nonionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers. We hypothesize that by introducing nonionic entities incorporated into the mixed co-assembled structures, the mode and strength of DNA binding and DNA accessibility and release could be modulated. The systems were characterized in terms of size, surface potential, buffering capacity, and binding ability to investigate the influence of composition, in particular, the poly(ethylene oxide) chain length on the properties and structure of the MPMs. Endo-lysosomal conditions were simulated to follow the changes in fundamental parameters and behavior of the micelleplexes. The results were interpreted as reflecting the specific structure and composition of the corona and localization of DNA in the corona, predetermined by the poly(ethylene oxide) chain length. A favorable effect of the introduction of the nonionic block copolymer component in the MPMs and micelleplexes thereof was the enhancement of biocompatibility. The slight reduction of the transfection efficiency of the MPM-based micelleplexes compared to that of the single-component polymer micelles was attributed to the premature release of DNA from the MPM-based micelleplexes in the endo-lysosomal compartments.
Collapse
Affiliation(s)
- Rumena Stancheva
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| | - Maria Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 21, 1113 Sofia, Bulgaria; (M.P.); (I.U.)
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 21, 1113 Sofia, Bulgaria; (M.P.); (I.U.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| |
Collapse
|
21
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Tirone B, Scarabosio A, Surico PL, Parodi PC, D’Esposito F, Avitabile A, Foti C, Gagliano C, Zeppieri M. Targeted Drug Delivery in Periorbital Non-Melanocytic Skin Malignancies. Bioengineering (Basel) 2024; 11:1029. [PMID: 39451404 PMCID: PMC11504966 DOI: 10.3390/bioengineering11101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Targeted drug delivery has emerged as a transformative approach in the treatment of periorbital skin malignancies, offering the potential for enhanced efficacy and reduced side effects compared to traditional therapies. This review provides a comprehensive overview of targeted therapies in the context of periorbital malignancies, including basal cell carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, and Merkel cell carcinoma. It explores the mechanisms of action for various targeted therapies, such as monoclonal antibodies, small molecule inhibitors, and immunotherapies, and their applications in treating these malignancies. Additionally, this review addresses the management of ocular and periocular side effects associated with these therapies, emphasizing the importance of a multidisciplinary approach to minimize impact and ensure patient adherence. By integrating current findings and discussing emerging trends, this review aims to highlight the advancements in targeted drug delivery and its potential to improve treatment outcomes and quality of life for patients with periorbital skin malignancies.
Collapse
Affiliation(s)
- Benedetta Tirone
- Dermatology and Venerology Section, Department of Precision and Regenerative Medicine and Ionan Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Scarabosio
- Clinic of Plastic and Reconstructive Surgery, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Alessandro Avitabile
- Eye Clinic Catania San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Caterina Foti
- Dermatology and Venerology Section, Department of Precision and Regenerative Medicine and Ionan Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Caterina Gagliano
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
23
|
Giri BR, Jakka D, Sandoval MA, Kulkarni VR, Bao Q. Advancements in Ocular Therapy: A Review of Emerging Drug Delivery Approaches and Pharmaceutical Technologies. Pharmaceutics 2024; 16:1325. [PMID: 39458654 PMCID: PMC11511072 DOI: 10.3390/pharmaceutics16101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Eye disorders affect a substantial portion of the global population, yet the availability of efficacious ophthalmic drug products remains limited. This can be partly ascribed to a number of factors: (1) inadequate understanding of physiological barriers, treatment strategies, drug and polymer properties, and delivery systems; (2) challenges in effectively delivering drugs to the anterior and posterior segments of the eye due to anatomical and physiological constraints; and (3) manufacturing and regulatory hurdles in ocular drug product development. The present review discusses innovative ocular delivery and treatments, encompassing implants, liposomes, nanoparticles, nanomicelles, microparticles, iontophoresis, in situ gels, contact lenses, microneedles, hydrogels, bispecific antibodies, and gene delivery strategies. Furthermore, this review also introduces advanced manufacturing technologies such as 3D printing and hot-melt extrusion (HME), aimed at improving bioavailability, reducing therapeutic dosages and side effects, facilitating the design of personalized ophthalmic dosage forms, as well as enhancing patient compliance. This comprehensive review lastly offers insights into digital healthcare, market trends, and industry and regulatory perspectives pertaining to ocular product development.
Collapse
Affiliation(s)
- Bhupendra Raj Giri
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Deeksha Jakka
- School of Pharmacy, The University of Mississippi, University, MS 38677, USA;
| | - Michael A. Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Vineet R. Kulkarni
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Quanying Bao
- Synthetic Product Development, Alexion, AstraZeneca Rare Disease, 101 College Street, New Haven, CT 06510, USA
| |
Collapse
|
24
|
Liu J, Wong G, Li H, Yang Y, Cao Y, Li Y, Wu Y, Zhang Z, Jin C, Wang X, Chen Y, Su B, Wang Z, Wang Q, Cao Y, Chen G, Qian Z, Zhao J, Wu G. Biosafety and immunology: An interdisciplinary field for health priority. BIOSAFETY AND HEALTH 2024; 6:310-318. [PMID: 40078733 PMCID: PMC11894974 DOI: 10.1016/j.bsheal.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 03/14/2025] Open
Abstract
Biosafety hazards can trigger a host immune response after infection, invasion, or contact with the host. Whether infection with a microorganism results in disease or biosafety concerns depends to a large extent on the immune status of the population. Therefore, it is essential to investigate the immunological characteristics of the host and the mechanisms of biological threats and agents to protect the host more effectively. Emerging and re-emerging infectious diseases, such as the current coronavirus disease 2019 (COVID-19) pandemic, have raised concerns regarding both biosafety and immunology worldwide. Interdisciplinary studies involved in biosafety and immunology are relevant in many fields, including the development of vaccines and other immune interventions such as monoclonal antibodies and T-cells, herd immunity (or population-level barrier immunity), immunopathology, and multispecies immunity, i.e., animals and even plants. Meanwhile, advances in immunological science and technology are occurring rapidly, resulting in important research achievements that may contribute to the recognition of emerging biosafety hazards, as well as early warning, prevention, and defense systems. This review provides an overview of the interdisciplinary field of biosafety and immunology. Close collaboration and innovative application of immunology in the field of biosafety is becoming essential for human health.
Collapse
Affiliation(s)
- Jun Liu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Gary Wong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12000, Cambodia
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Yang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuxi Cao
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150040, China
| | - Yan Wu
- Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, and School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zijie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Cong Jin
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 200025, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | | | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guobing Chen
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
25
|
Wang Q, Jia S, Wang Z, Chen H, Jiang X, Li Y, Ji P. Nanogene editing drug delivery systems in the treatment of liver fibrosis. Front Med (Lausanne) 2024; 11:1418786. [PMID: 39386741 PMCID: PMC11461213 DOI: 10.3389/fmed.2024.1418786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.
Collapse
Affiliation(s)
- Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Auger M, Sorroza-Martinez L, Brahiti N, Huppé CA, Faucher-Giguère L, Arbi I, Hervault M, Cheng X, Gaillet B, Couture F, Guay D, Soultan AH. Enhancing peptide and PMO delivery to mouse airway epithelia by chemical conjugation with the amphiphilic peptide S10. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102290. [PMID: 39233851 PMCID: PMC11372590 DOI: 10.1016/j.omtn.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys. Herein, we demonstrate that covalently attaching S10 to a fluorescently labeled peptide or a functional splice-switching phosphorodiamidate morpholino oligomer improves their intracellular delivery to airway epithelia in mice after a single intranasal instillation. Data reveal a homogeneous delivery from the trachea to the distal region of the lungs, specifically into the cells lining the airway. Quantitative measurements further highlight that conjugation via a disulfide bond through a pegylated (PEG) linker was the most beneficial strategy compared with direct conjugation (without the PEG linker) or conjugation via a permanent thiol-maleimide bond. We believe that S10-based conjugation provides a great strategy to achieve intracellular delivery of peptides and ASOs with therapeutic properties in lungs.
Collapse
Affiliation(s)
- Maud Auger
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Luis Sorroza-Martinez
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Nadine Brahiti
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Carole-Ann Huppé
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | | | - Imen Arbi
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Maxime Hervault
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Xue Cheng
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Frédéric Couture
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | - David Guay
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Al-Halifa Soultan
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| |
Collapse
|
27
|
Foster T, Lim P, Jones M, Wagle SR, Kovacevic B, Ionescu CM, Wong EYM, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles for Inner Ear Targeted Trans Differentiation Gene Therapy. ChemMedChem 2024; 19:e202400038. [PMID: 38818625 DOI: 10.1002/cmdc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hearing loss is a significant disability that often goes under recognised, largely due to poor identification, prevention, and treatment. Steps are being made to amend these pitfalls in the investigation of hearing loss, however, the development of a cure to reverse advanced forms remains distant. This review details some current advances in the treatment of hearing loss, with a particular focus on genetic-based nanotechnology and how it may provide a useful avenue for further research. This review presents a broad background on the pathophysiology of hearing loss and some current interventions. We also highlight some potential genes that may be useful in the amelioration of hearing loss. Pathways of cellular differentiation from stem or supporting cell to functional hair cell are covered in detail, as this mechanism represents a key means of regenerating these cell types. Overall, we believe that polymer-based nanotechnology coupled with novel excipients represents a useful area of further research in the treatment of hearing loss, although further studies in this area are required.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
28
|
Gao Y, Luo Y, Chen W, Xue X, Xiao C, Wei K. Theranostic Nanoplatform Based on Polydopamine-Coated Magnetic Mesoporous Silicon for Precise Cancer Triplex Nanotherapy and Multimodal Imaging. Anal Chem 2024; 96:13557-13565. [PMID: 39115161 DOI: 10.1021/acs.analchem.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Although targeted therapy has revolutionized oncotherapy, engineering a versatile oncotherapy nanoplatform integrating both diagnostics and therapeutics has always been an intractable challenge to overcome the limitations of monotherapy. Herein, a theranostics platform based on DI/MP-MB has successfully realized the fluorescence detection of disease marker miR-21 and the gene/photothermal/chemo triple synergetic cancer therapy, which can trace the tumor through photothermal and fluorescence dual-mode imaging and overcome the limitations of monotherapy to improve the treatment efficiency of tumors. DI/MP-MB was prepared by magnetic mesoporous silicon nanoparticles (M-MSNs) loaded with doxorubicin (Dox) and new indocyanine green (IR820), and subsequently coating polydopamine as a "gatekeeper", followed by the surface adsorbed with molecular beacons capable of targeting miR-21 for responsive imaging. Under the action of enhanced permeability retention and external magnetic field, DI/MP-MB were targeted and selectively accumulated in the tumor. MiR-21 MB hybridized with miR-21 to form a double strand, which led to the desorption of miR-21 MB from the polydopamine surface and the fluorescence recovery to realize gene silencing and fluorescence imaging for tracking the treatment process. Meanwhile, with the response to the near-infrared irradiation and the tumor's microacid environment, the outer layer polydopamine will decompose, releasing Dox and IR820 to realize chemotherapy and photothermal therapy. Finally, the ability of DI/MP-MB to efficiently suppress tumor growth was comprehensively assessed and validated both in vitro and in vivo. Noteworthily, the excellent anticancer efficiency by the synergistic effect of gene/photothermal/chemo triple therapy of DI/MP-MB makes it an ideal nanoplatform for tumor therapy and imaging.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yujia Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenyu Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinrui Xue
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chujie Xiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
29
|
Chira S, Strilciuc Ș, Muresanu DF. Retargeting phages from bacteria to human cells. J Med Life 2024; 17:823-824. [PMID: 39539430 PMCID: PMC11556524 DOI: 10.25122/jml-2024-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ștefan Strilciuc
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dafin Fior Muresanu
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
- Department of Neurosciences, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
30
|
Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev 2024; 98:102321. [PMID: 38723752 DOI: 10.1016/j.arr.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. In AD, the binding of Aβ with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Dist-Birbhum, West Bengal, India
| | | | - Sunil Kumar
- Faculty of Pharmacy, P. K. University, Village, Thanra, District, Karera, Shivpuri, Madhya Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
31
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Ma J, Tian Z, Shi Q, Dong X, Sun Y. Affinity chromatography for virus-like particle manufacturing: Challenges, solutions, and perspectives. J Chromatogr A 2024; 1721:464851. [PMID: 38574547 DOI: 10.1016/j.chroma.2024.464851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The increasing medical application of virus-like particles (VLPs), notably vaccines and viral vectors, has increased the demand for commercial VLP production. However, VLP manufacturing has not yet reached the efficiency level achieved for recombinant protein therapeutics, especially in downstream processing. This review provides a comprehensive analysis of the challenges associated with affinity chromatography for VLP purification with respect to the diversity and complexity of VLPs and the associated upstream and downstream processes. The use of engineered affinity ligands and matrices for affinity chromatography is first discussed. Although several representative affinity ligands are currently available for VLP purification, most of them have difficulty in balancing ligand universality, ligand selectivity and mild operation conditions. Then, phage display technology and computer-assisted design are discussed as efficient methods for the rapid discovery of high-affinity peptide ligands. Finally, the VLP purification by affinity chromatography is analyzed. The process is significantly influenced by virus size and variation, ligand type and chromatographic mode. To address the updated regulatory requirements and epidemic outbreaks, technical innovations in affinity chromatography and process intensification and standardization in VLP purification should be promoted to achieve rapid process development and highly efficient VLP manufacturing, and emphasis is given to the discovery of universal ligands, applications of gigaporous matrices and platform technology. It is expected that the information in this review can provide a better understanding of the affinity chromatography methods available for VLP purification and offer useful guidance for the development of affinity chromatography for VLP manufacturing in the decades to come.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
33
|
Sussman C, Liberatore RA, Drozdz MM. Delivery of DNA-Based Therapeutics for Treatment of Chronic Diseases. Pharmaceutics 2024; 16:535. [PMID: 38675196 PMCID: PMC11053842 DOI: 10.3390/pharmaceutics16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body's ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future.
Collapse
|
34
|
Wu Y, Zhang J, Zhao J, Wang B. Folate-modified liposomes mediate the co-delivery of cisplatin with miR-219a-5p for the targeted treatment of cisplatin-resistant lung cancer. BMC Pulm Med 2024; 24:159. [PMID: 38561695 PMCID: PMC10986081 DOI: 10.1186/s12890-024-02938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cisplatin (DDP) resistance, often leading to first-line chemotherapy failure in non-small cell lung cancer (NSCLC), poses a significant challenge. MiR-219a-5p has been reported to enhance the sensitivity of human NSCLC to DDP. However, free miR-219a-5p is prone to degradation by nucleases in the bloodstream, rendering it unstable. In light of this, our study developed an efficient nanodrug delivery system that achieved targeted delivery of DDP and miR-219a-5p by modifying liposomes with folate (FA). Based on the results of material characterization, we successfully constructed a well-dispersed and uniformly sized (approximately 135.8 nm) Lipo@DDP@miR-219a-5p@FA nanodrug. Agarose gel electrophoresis experiments demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited good stability in serum, effectively protecting miR-219a-5p from degradation. Immunofluorescence and flow cytometry experiments revealed that, due to FA modification, Lipo@DDP@miR-219a-5p@FA could specifically bind to FA receptors on the surface of tumor cells (A549), thus enhancing drug internalization efficiency. Safety evaluations conducted in vitro demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited no significant toxicity to non-cancer cells (BEAS-2B) and displayed excellent blood compatibility. Cellular functional experiments, apoptosis assays, and western blot demonstrated that Lipo@DDP@miR-219a-5p@FA effectively reversed DDP resistance in A549 cells, inhibited cell proliferation and migration, and further promoted apoptosis. In summary, the Lipo@DDP@miR-219a-5p@FA nanodrug, through specific targeting of cancer cells and reducing their resistance to DDP, significantly enhanced the anti-NSCLC effects of DDP in vitro, providing a promising therapeutic option for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Jiandong Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Junjun Zhao
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Bin Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
35
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
36
|
Liu J, Gao Y, Song C, Liao W, Meng L, Yang S, Xiong Y. Immunotherapeutic prospects and progress in bladder cancer. J Cell Mol Med 2024; 28:e18101. [PMID: 38165009 PMCID: PMC10902563 DOI: 10.1111/jcmm.18101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
Bladder cancer is one of the most common malignant tumours of the urogenital system, with high morbidity and mortality. In most cases, surgery is considered the first choice of treatment, followed by adjuvant chemotherapy. However, the 5-year recurrence rate is still as high as 65% in patients with non-invasive or in situ tumours and up to 73% in patients with slightly more advanced disease at initial diagnosis. Various treatment methods for bladder cancer have been developed, and hundreds of new immunotherapies are being tested. To date, only a small percentage of people have had success with new treatments, though studies have suggested that the combination of immunotherapy with other therapies improves treatment efficiency and positive outcomes for individuals, with great hopes for the future. In this article, we summarize the origins, therapeutic mechanisms and current status of research on immunotherapeutic agents for bladder cancer.
Collapse
Affiliation(s)
- Junwei Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yue Gao
- Department of Party and AdministrationRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wenbiao Liao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Lingchao Meng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Sixing Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yunhe Xiong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
37
|
Zemplenyi A, Leonard J, DiStefano MJ, Anderson KE, Wright GC, Mendola ND, Nair K, McQueen RB. Using Real-World Data to Inform Value-Based Contracts for Cell and Gene Therapies in Medicaid. PHARMACOECONOMICS 2024; 42:319-328. [PMID: 37989969 PMCID: PMC10861602 DOI: 10.1007/s40273-023-01335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE High upfront costs and long-term benefit uncertainties of gene therapies challenge Medicaid budgets, making value-based contracts a potential solution. However, value-based contract design is hindered by cost-offset uncertainty. The aim of this study is to determine actual cost-offsets for valoctocogene roxaparvovec (hemophilia A) and etranacogene dezaparvovec (hemophilia B) from Colorado Medicaid's perspective, defining payback periods and its uncertainty from the perspective of Colorado Medicaid. METHODS This cost analysis used 2018-2022 data from the Colorado Department of Health Care Policy & Financing to determine standard-of-care costs and employed cost simulation models to estimate the cost of Medicaid if patients switched to gene therapy versus if they did not. Data encompassed medical and pharmacy expenses of Colorado Medicaid enrollees. Identified cohorts were patients aged 18+ with ICD-10-CM codes D66 (hemophilia A) and D67 (hemophilia B). Severe hemophilia A required ≥ 6 claims per year for factor therapies or emicizumab, while moderate/severe hemophilia B necessitated ≥ 4 claims per year for factor therapies. Patients were included in the cohort in the year they first met the criteria and were subsequently retained in the cohort for the duration of the observation period. Standard-of-care included factor VIII replacement therapy/emicizumab for hemophilia A and factor IX replacement therapies for hemophilia B. Simulated patients received valoctocogene roxaparvovec or etranacogene dezaparvovec. Main measures were annual standard-of-care costs, cost offset, and breakeven time when using gene therapies. RESULTS Colorado Medicaid's standard-of-care costs for hemophilia A and B were $426,000 [standard deviation (SD) $353,000] and $546,000 (SD $542,000) annually, respectively. Substituting standard-of-care with gene therapy for eligible patients yielded 8-year and 6-year average breakeven times, using real-world costs, compared with 5 years with published economic evaluation costs. Substantial variability in real-world standard-of-care costs resulted in a 48% and 59% probability of breakeven within 10 years for hemophilia A and B, respectively. Altering eligibility criteria significantly influenced breakeven time. CONCLUSIONS Real-world data indicates substantial uncertainty and extended payback periods for gene therapy costs. Utilizing real-world data, Medicaid can negotiate value-based contracts to manage budget fluctuations, share risk with manufacturers, and enhance patient access to innovative treatments.
Collapse
Affiliation(s)
- Antal Zemplenyi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Faculty of Pharmacy, Center for Health Technology Assessment and Pharmacoeconomic Research, University of Pecs, Pecs, Hungary.
| | - Jim Leonard
- Colorado Department of Health Care Policy and Finance, Denver, CO, USA
| | - Michael J DiStefano
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly E Anderson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Garth C Wright
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas D Mendola
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kavita Nair
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R Brett McQueen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
38
|
Tao Z, Zhang H, Wu S, Zhang J, Cheng Y, Lei L, Qin Y, Wei H, Yu CY. Spherical nucleic acids: emerging amplifiers for therapeutic nanoplatforms. NANOSCALE 2024; 16:4392-4406. [PMID: 38289178 DOI: 10.1039/d3nr05971e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Gene therapy is a revolutionary treatment approach in the 21st century, offering significant potential for disease prevention and treatment. However, the efficacy of gene delivery is often compromised by the inherent challenges of gene properties and vector-related defects. It is crucial to explore ways to enhance the curative effect of gene drugs and achieve safer, more widespread, and more efficient utilization, which represents a significant challenge in amplification gene therapy advancements. Spherical nucleic acids (SNAs), with their unique physicochemical properties, are considered an innovative solution for scalable gene therapy. This review aims to comprehensively explore the amplifying contributions of SNAs in gene therapy and emphasize the contribution of SNAs to the amplification effect of gene therapy from the aspects of structure, application, and recent clinical translation - an aspect that has been rarely reported or explored thus far. We begin by elucidating the fundamental characteristics and scaling-up properties of SNAs that distinguish them from traditional linear nucleic acids, followed by an analysis of combined therapy treatment strategies, theranostics, and clinical translation amplified by SNAs. We conclude by discussing the challenges of SNAs and provide a prospect on the amplification characteristics. This review seeks to update the current understanding of the use of SNAs in gene therapy amplification and promote further research into their clinical translation and amplification of gene therapy.
Collapse
Affiliation(s)
- Zhenghao Tao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Shang Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Jiaheng Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| |
Collapse
|
39
|
Penchovsky R, Georgieva AV, Dyakova V, Traykovska M, Pavlova N. Antisense and Functional Nucleic Acids in Rational Drug Development. Antibiotics (Basel) 2024; 13:221. [PMID: 38534656 DOI: 10.3390/antibiotics13030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
This review is focused on antisense and functional nucleic acid used for completely rational drug design and drug target assessment, aiming to reduce the time and money spent and increase the successful rate of drug development. Nucleic acids have unique properties that play two essential roles in drug development as drug targets and as drugs. Drug targets can be messenger, ribosomal, non-coding RNAs, ribozymes, riboswitches, and other RNAs. Furthermore, various antisense and functional nucleic acids can be valuable tools in drug discovery. Many mechanisms for RNA-based control of gene expression in both pro-and-eukaryotes and engineering approaches open new avenues for drug discovery with a critical role. This review discusses the design principles, applications, and prospects of antisense and functional nucleic acids in drug delivery and design. Such nucleic acids include antisense oligonucleotides, synthetic ribozymes, and siRNAs, which can be employed for rational antibacterial drug development that can be very efficient. An important feature of antisense and functional nucleic acids is the possibility of using rational design methods for drug development. This review aims to popularize these novel approaches to benefit the drug industry and patients.
Collapse
Affiliation(s)
- Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Antoniya V Georgieva
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Vanya Dyakova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Martina Traykovska
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Nikolet Pavlova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
40
|
Guan X, Pei Y, Song J. DNA-Based Nonviral Gene Therapy─Challenging but Promising. Mol Pharm 2024; 21:427-453. [PMID: 38198640 DOI: 10.1021/acs.molpharmaceut.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decades, significant progress has been made in utilizing nucleic acids, including DNA and RNA molecules, for therapeutic purposes. For DNA molecules, although various DNA delivery systems have been established, viral vector systems are the go-to choice for large-scale commercial applications. However, viral systems have certain disadvantages such as immune response, limited payload capacity, insertional mutagenesis and pre-existing immunity. In contrast, nonviral systems are less immunogenic, not size limited, safer, and easier for manufacturing compared with viral systems. What's more, nonviral DNA vectors have demonstrated their capacity to mediate specific protein expression in vivo for diverse therapeutic objectives containing a wide range of diseases such as cancer, rare diseases, neurodegenerative diseases, and infectious diseases, yielding promising therapeutic outcomes. However, exogenous plasmid DNA is prone to degrade and has poor immunogenicity in vivo. Thus, various strategies have been developed: (i) designing novel plasmids with special structures, (ii) optimizing plasmid sequences for higher expression, and (iii) developing more efficient nonviral DNA delivery systems. Based on these strategies, many interesting clinical results have been reported. This Review discusses the development of DNA-based nonviral gene therapy, including novel plasmids, nonviral delivery systems, clinical advances, and prospects. These developments hold great potential for enhancing the efficacy and safety of nonviral gene therapy and expanding its applications in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaocai Guan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
41
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
42
|
Ouyang X, Liu Y, Zheng K, Pang Z, Peng S. Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers. Asian J Pharm Sci 2024; 19:100883. [PMID: 38357524 PMCID: PMC10861844 DOI: 10.1016/j.ajps.2023.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/28/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Nanoscale drug delivery systems (nDDS) have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects. Although several nDDS have been successfully approved for clinical use up to now, biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment. Polyethylene glycol (PEG)-modification (or PEGylation) has been regarded as the gold standard for stabilising nDDS in complex biological environment. However, the accelerated blood clearance (ABC) of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications. Zwitterionic polymer, a novel family of anti-fouling materials, have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility. Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues. More impressively, zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution, pressure gradients, impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications. The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS, which could facilitate their better clinical translation. Herein, we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlying mechanisms. Finally, prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
Collapse
Affiliation(s)
- Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Yu Liu
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| |
Collapse
|
43
|
Tang F, Ding A, Xu Y, Ye Y, Li L, Xie R, Huang W. Gene and Photothermal Combination Therapy: Principle, Materials, and Amplified Anticancer Intervention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307078. [PMID: 37775950 DOI: 10.1002/smll.202307078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Gene therapy (GT) and photothermal therapy (PTT) have emerged as promising alternatives to chemotherapy and radiotherapy for cancer treatment, offering noninvasiveness and reduced side effects. However, their efficacy as standalone treatments is limited. GT exhibits slow response rates, while PTT is confined to local tumor ablation. The convergence of GT and PTT, known as GT-PTT, facilitated by photothermal gene nanocarriers, has attracted considerable attention across various disciplines. In this integrated approach, GT reciprocates PTT by sensitizing cellular response to heat, while PTT benefits GT by improving gene translocation, unpacking, and expression. Consequently, this integration presents a unique opportunity for cancer therapy with rapid response and improved effectiveness. Extensive efforts over the past few years have been dedicated to the development of GT-PTT, resulting in notable achievements and rapid progress from the laboratory to potential clinical applications. This comprehensive review outlines recent advances in GT-PTT, including synergistic mechanisms, material systems, imaging-guided therapy, and anticancer applications. It also explores the challenges and future prospects in this nascent field. By presenting innovative ideas and insights into the implementation of GT-PTT for enhanced cancer therapy, this review aims to inspire further progress in this promising area of research.
Collapse
Affiliation(s)
- Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yao Xu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yingsong Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rongjun Xie
- Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
44
|
Mohammadian Farsani A, Mokhtari N, Nooraei S, Bahrulolum H, Akbari A, Farsani ZM, Khatami S, Ebadi MS, Ahmadian G. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing. Heliyon 2024; 10:e24606. [PMID: 38288017 PMCID: PMC10823087 DOI: 10.1016/j.heliyon.2024.e24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. However, limited transfection efficiency of CRISPR-Cas9 poses a substantial challenge, hindering its wide adoption for genetic modification. Recent advancements in nanoparticle technology, specifically lipid nanoparticles (LNPs), offer promising opportunities for targeted drug delivery. LNPs are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. Notably, certain LNPs, such as Polyethylene glycol-phospholipid-modified cationic lipid nanoparticles and solid lipid nanoparticles, exhibit remarkable potential for efficient CRISPR-Cas9 delivery as a gene editing instrument. This review will introduce the molecular mechanisms and diverse applications of the CRISPR/Cas9 gene editing system, current strategies for delivering CRISPR/Cas9-based tools, the advantage of LNPs for CRISPR-Cas9 delivery, an overview of strategies for overcoming off-target genome editing, and approaches for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology for clinical trials will be discussed.
Collapse
Affiliation(s)
- Arezoo Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negin Mokhtari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi Univesity, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zoheir Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyedmoein Khatami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mozhdeh sadat Ebadi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
45
|
Prokopovich AK, Litvinova IS, Zubkova AE, Yudkin DV. CXCR4 Is a Potential Target for Anti-HIV Gene Therapy. Int J Mol Sci 2024; 25:1187. [PMID: 38256260 PMCID: PMC10816112 DOI: 10.3390/ijms25021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The human immunodeficiency virus (HIV) epidemic is a global issue. The estimated number of people with HIV is 39,000,000 to date. Antiviral therapy is the primary approach to treat the infection. However, it does not allow for a complete elimination of the pathogen. The advances in modern gene therapy methods open up new possibilities of effective therapy. One of these areas of possibility is the development of technologies to prevent virus penetration into the cell. Currently, a number of technologies aimed at either the prevention of virus binding to the CCR5 coreceptor or its knockout are undergoing various stages of clinical trials. Since HIV can also utilize the CXCR4 coreceptor, technologies to modify this receptor are also required. Standard knockout of CXCR4 is impossible due to its physiological significance. This review presents an analysis of interactions between individual amino acids in CXCR4 and physiological ligands and HIV gp120. It also discusses potential targets for gene therapy approaches aimed at modifying the coreceptor.
Collapse
Affiliation(s)
- Appolinaria K. Prokopovich
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Irina S. Litvinova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Alexandra E. Zubkova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Dmitry V. Yudkin
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| |
Collapse
|
46
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
47
|
Biskupiak Z, Ha VV, Rohaj A, Bulaj G. Digital Therapeutics for Improving Effectiveness of Pharmaceutical Drugs and Biological Products: Preclinical and Clinical Studies Supporting Development of Drug + Digital Combination Therapies for Chronic Diseases. J Clin Med 2024; 13:403. [PMID: 38256537 PMCID: PMC10816409 DOI: 10.3390/jcm13020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Limitations of pharmaceutical drugs and biologics for chronic diseases (e.g., medication non-adherence, adverse effects, toxicity, or inadequate efficacy) can be mitigated by mobile medical apps, known as digital therapeutics (DTx). Authorization of adjunct DTx by the US Food and Drug Administration and draft guidelines on "prescription drug use-related software" illustrate opportunities to create drug + digital combination therapies, ultimately leading towards drug-device combination products (DTx has a status of medical devices). Digital interventions (mobile, web-based, virtual reality, and video game applications) demonstrate clinically meaningful benefits for people living with Alzheimer's disease, dementia, rheumatoid arthritis, cancer, chronic pain, epilepsy, depression, and anxiety. In the respective animal disease models, preclinical studies on environmental enrichment and other non-pharmacological modalities (physical activity, social interactions, learning, and music) as surrogates for DTx "active ingredients" also show improved outcomes. In this narrative review, we discuss how drug + digital combination therapies can impact translational research, drug discovery and development, generic drug repurposing, and gene therapies. Market-driven incentives to create drug-device combination products are illustrated by Humira® (adalimumab) facing a "patent-cliff" competition with cheaper and more effective biosimilars seamlessly integrated with DTx. In conclusion, pharma and biotech companies, patients, and healthcare professionals will benefit from accelerating integration of digital interventions with pharmacotherapies.
Collapse
Affiliation(s)
- Zack Biskupiak
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Vinh Ha
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Aarushi Rohaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
- The Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
48
|
Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, Mohammadinejad R, Ozdemir F, Sahin O, Adiguzel S, Khan H, Zarrabi A, Sharifi E, Kumar A, Mostafavi E, Kouchehbaghi NH, Mattoli V, Zhang F, Jucaud V, Najafabadi AH, Khademhosseini A. Biomedical applications of engineered heparin-based materials. Bioact Mater 2024; 31:87-118. [PMID: 37609108 PMCID: PMC10440395 DOI: 10.1016/j.bioactmat.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Heparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical applications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.
Collapse
Affiliation(s)
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatma Ozdemir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Onur Sahin
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D'Oltremare pad. 20, 80125, Naples, Italy
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| |
Collapse
|
49
|
Singh K, Bhushan B, Kumar S, Singh S, Macadangdang RR, Pandey E, Varma AK, Kumar S. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Curr Gene Ther 2024; 24:377-394. [PMID: 38258771 DOI: 10.2174/0115665232279528240115075352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Pharmacology, P.K. University, Thanra, Karera, Shivpuri, Madhya Pradesh, India
| | - Supriya Singh
- Department of Pharmaceutics, Babu Banarasi Das Northern India Institute of Technology, Faizabaad road, Lucknow, Uttar Pradesh, India
| | | | - Ekta Pandey
- Department of Chemistry, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Ajit Kumar Varma
- Department of Pharmaceutics, Rama University, Kanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
50
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|