1
|
Gorini F, Coada CA, Monesmith S, De Leo A, de Biase D, Dondi G, Di Costanzo S, Mezzapesa F, Vannini I, Melloni M, Bandini S, Guerra F, Di Corato R, De Iaco P, Hrelia P, Perrone AM, Angelini S, Ravegnini G. Distinctive features of blood- and ascitic fluid-derived extracellular vesicles in ovarian cancer patients. Mol Med 2025; 31:143. [PMID: 40259212 DOI: 10.1186/s10020-025-01177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a highly aggressive malignancy characterized by early dissemination of cancer cells from the surface of the ovary to the peritoneum. To gain a deeper understanding of the mechanisms associated with this intraperitoneal spread, we aimed to characterize the role of extracellular vesicles (EVs) in metastatic colonization in OC. METHODS To this purpose, a total of 150 samples of ascitic fluids, blood serum, tumor and normal tissues from 60 OC patients, were extensively analyzed to characterize the EVs released in blood and ascitic fluids of OC patients, in terms of size, expression of superficial epitopes and abundance of miRNAs biocargo. RESULTS A statistically significant difference in the size of EVs derived from ascitic fluid and serum was identified. Analysis of surface protein expression highlighted twenty epitopes with a significant difference between the two biological matrices, of which 18 were over- and two were under-expressed in ascitic fluid. With regard to miRNA levels, Principal Component Analysis (PCA) assessed four distinct clusters representing tumor tissue, normal tissue, ascitic fluid, and serum. A prominent difference in circulating miRNAs was observed in serum and ascitic fluid highlighting 98 miRNAs significantly deregulated (P-adj < 0.05) between the two bodily fluids. Deregulated miRNAs and epitopes underline an enrichment in ascites in components contributing to the metastatic spread. CONCLUSION The results highlight a clear difference between the two biological fluids, suggesting that tumor selectively releases specific EVs populations in serum or ascites. In this context, it seems that ascites-derived EVs play a major role in modulating EMT and metastatic cascade, which is a key feature of OC.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Camelia Alexandra Coada
- Department of Morpho-Functional Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", Strada Victor Babeş 8, 400347, Cluj-Napoca, Romania
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Antonio De Leo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna/Azienda USL di Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna/Azienda USL di Bologna, Bologna, Italy
| | - Giulia Dondi
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stella Di Costanzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Mezzapesa
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ivan Vannini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Mattia Melloni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Pierandrea De Iaco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Myriam Perrone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Seo Y, Kang H, Park J. Shear stress-induced influx of extracellular calcium ions: a pivotal trigger amplifying the production of mesenchymal stem cell-derived extracellular vesicles. NANOSCALE 2025; 17:3861-3872. [PMID: 39466346 DOI: 10.1039/d4nr01215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) have drawn attention as promising therapeutic agents whose characteristics resemble their parent cells. However, their practical utility is limited by low EV yields. Cell culture under fluidic flow to enhance EV secretion has been proposed to address this challenge. However, the precise mechanism of increased EV production in response to flow conditions has not been studied thoroughly. We investigated the mechanism of higher release of EVs from mesenchymal stem cells under flow conditions, focusing on the correlation between intracellular calcium ions and EV production. Shear stress was applied to cells through shaking cultures, and stimulated cells showed increased EV production. Results suggested that the stimulation of EV secretion was promoted by an increasing intracellular concentration of calcium ions, primarily due to their transport through calcium ion channels in the plasma membrane, which was induced by shear stress. Furthermore, we confirmed that the essential characteristics of the EVs released under shear stress remained intact by analyzing individual EVs and assessing their regeneration efficacy in a model of kidney injury in vitro. Unveiling the reason for the high production of EVs under shear stress is expected to contribute to the development of EV-application research by increasing the reliability of EV utilization.
Collapse
Affiliation(s)
- Youngju Seo
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea.
| | - Hyejin Kang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea.
| | - Jaesung Park
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
- Center for Wireless Integrated MicroSensing and System (WIMS2), U. Michigan, Ann Arbor, MI 48109, USA
- Global Research Institute for Exosome (GRIE), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
3
|
Hochreiter B, Lindner C, Postl M, Hunyadi-Gulyas E, Darula Z, Domenig O, Sharma S, Lang IM, Kiss A, Spittler A, Hoetzenecker K, Reindl-Schwaighofer R, Krenn K, Ullrich R, Wieser M, Grillari-Voglauer R, Tretter V. Characterizing SV40-hTERT Immortalized Human Lung Microvascular Endothelial Cells as Model System for Mechanical Stretch-Induced Lung Injury. Int J Mol Sci 2025; 26:683. [PMID: 39859396 PMCID: PMC11765890 DOI: 10.3390/ijms26020683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles. In order to test their suitability as a disease model, we simulated mechanical stress induced by cyclic stretch as encountered in ventilator-induced lung injury using the FlexCell® system and compared their performance to primary lung endothelial cells. In this setting, HLMVEC/SVTERT289 cells exhibited significantly higher neprilysin activity on the cell surface and extracellular vesicles secreted from the cell line exhibited higher Tissue Factor and ACE2 expression but lower ACE expression and ACE activity than vesicles released from the primary cells. This study provides an unprecedented and detailed characterization of the HLMVEC/SVTERT289 cell line, which should help to appraise its suitability in different molecular studies.
Collapse
Affiliation(s)
- Beatrix Hochreiter
- Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (B.H.); (R.U.)
| | - Claudia Lindner
- Evercyte GmbH, 1110 Vienna, Austria; (C.L.); (M.P.); (M.W.); (R.G.-V.)
| | - Matthias Postl
- Evercyte GmbH, 1110 Vienna, Austria; (C.L.); (M.P.); (M.W.); (R.G.-V.)
| | - Eva Hunyadi-Gulyas
- Core Facility Proteomics Research Group, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (E.H.-G.); (Z.D.)
| | - Zsuzsanna Darula
- Core Facility Proteomics Research Group, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (E.H.-G.); (Z.D.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6728 Szeged, Hungary
| | | | - Smriti Sharma
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University Vienna, 1090 Vienna, Austria; (S.S.); (I.M.L.)
| | - Irene M. Lang
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University Vienna, 1090 Vienna, Austria; (S.S.); (I.M.L.)
| | - Attila Kiss
- Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria;
| | - Andreas Spittler
- Core Facility Flow Cytometry and Department of Surgery, Medical University Vienna, 1090 Vienna, Austria;
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Roman Reindl-Schwaighofer
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University Vienna, 1090 Vienna, Austria;
| | - Katharina Krenn
- Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (B.H.); (R.U.)
| | - Roman Ullrich
- Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (B.H.); (R.U.)
| | - Matthias Wieser
- Evercyte GmbH, 1110 Vienna, Austria; (C.L.); (M.P.); (M.W.); (R.G.-V.)
| | | | - Verena Tretter
- Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (B.H.); (R.U.)
| |
Collapse
|
4
|
Tessier S, Halgand B, Aubeux D, Véziers J, Galvani A, Jamoneau J, Pérez F, Geoffroy V, Gaudin A. Small Extracellular Vesicles Derived from Lipopolysaccharide-Treated Stem Cells from the Apical Papilla Modulate Macrophage Phenotypes and Inflammatory Interactions in Pulpal and Periodontal Tissues. Int J Mol Sci 2024; 26:297. [PMID: 39796155 PMCID: PMC11719611 DOI: 10.3390/ijms26010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing. LPS-SCAP-sEVs exhibited characteristic exosome morphology (~100 nm diameter) and expressed vesicular markers (CD9, CD63, CD81, and HSP70). Functional analysis revealed that LPS-SCAP-sEVs promoted M1 macrophage polarization, as evidenced by the increased pro-inflammatory cytokines (IL-6 and IL-1β) and the reduced anti-inflammatory markers (IL-10 and CD206), while impairing the M2 phenotype. Additionally, LPS-SCAP-sEVs had a minimal impact on SCAP metabolic activity or osteogenic gene expression but significantly reduced mineralization capacity in osteogenic conditions. These findings suggest that sEVs mediate the inflammatory interplay between SCAP and macrophages, skewing macrophage polarization toward a pro-inflammatory state and hindering osteoblast differentiation. Understanding this sEV-driven communication axis provides novel insights into the cellular mechanisms underlying inflammation in oral tissues and highlights potential therapeutic targets for modulating extracellular vesicle activity during acute inflammatory episodes.
Collapse
Affiliation(s)
- Solène Tessier
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Boris Halgand
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| | - Davy Aubeux
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Joëlle Véziers
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| | - Angélique Galvani
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Juliette Jamoneau
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Fabienne Pérez
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| | - Valérie Geoffroy
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Alexis Gaudin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| |
Collapse
|
5
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Li L, Al‐Jallad H, Sun A, Georgiopoulos M, Bokhari R, Ouellet J, Jarzem P, Cherif H, Haglund L. The proteomic landscape of extracellular vesicles derived from human intervertebral disc cells. JOR Spine 2024; 7:e70007. [PMID: 39507593 PMCID: PMC11538033 DOI: 10.1002/jsp2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background Extracellular vesicles (EVs) function as biomarkers and are crucial in cell communication and regulation, with therapeutic potential for intervertebral disc (IVD)-related low back pain (LBP). EV cargo is often affected by tissue health, which may affect the therapeutic potential. There is currently limited knowledge of how the cargo of IVD cell-derived EVs varies with tissue health and how differences in proteomic profile affect the predicted biological functions. Methods Our study purified EVs from human IVD cell conditioned media by size-exclusion chromatography. Nanoparticle tracking analysis was conducted to measure EV size and concentration. Transmission electron microscopy and Western blot were performed to examine EV structure and markers. Tandem mass tag-mass spectrometry was conducted to determine protein cargo. Results Most EVs were exosomes and intermediate microvesicles with an increasing amount linked to disease progression. Of the proteins detected, 88.6% were shared across the non-degenerate, mildly-degenerate, and degenerate samples. GO and KEGG analyses revealed that cargo from the mildly-degenerate samples was the most distinct, with the proteins in high abundance strongly associated with extracellular matrix (ECM) organization and structure. Shared proteins, highly expressed in the non-degenerate and degenerate samples, showed strong associations with cell adhesion, ECM-receptor interaction, and vesicle-mediated transport, respectively. Conclusions Our findings indicate that EVs from IVD cells from tissue with different degrees of degeneration share a majority of the cargo proteins. However, the level of expression differs with degeneration grade. Cargo from the mildly-degenerate samples exhibits the most differences. A better understanding of changes in EV cargo in the degenerative process may provide novel information related to molecular mechanisms underlying IVD degeneration and suggest new potential treatment modalities for IVD-related LBP.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | | | - Aiwei Sun
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealQuebecCanada
| | - Miltiadis Georgiopoulos
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Rakan Bokhari
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- Department of Surgery, Division of NeurosurgeryFaculty of Medicine, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Jean Ouellet
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Peter Jarzem
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Hosni Cherif
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Lisbet Haglund
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| |
Collapse
|
7
|
Thouvenot E, Charnay L, Burshtein N, Guigner JM, Dec L, Loew D, Silva AKA, Lindner A, Wilhelm C. High-Yield Bioproduction of Extracellular Vesicles from Stem Cell Spheroids via Millifluidic Vortex Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412498. [PMID: 39530646 DOI: 10.1002/adma.202412498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) are emerging as novel therapeutics, particularly in cancer and degenerative diseases. Nevertheless, from both market and clinical viewpoints, high-yield production methods using minimal cell materials are still needed. Herein, a millifluidic cross-slot chip is proposed to induce high-yield release of biologically active EVs from less than three million cells. Depending on the flow rate, a single vortex forms in the outlet channels, exposing transported cellular material to high viscous stresses. Importantly, the chip accommodates producer cells within their physiological environment, such as human mesenchymal stem cells (hMSCs) spheroids, while facilitating their visualization and individual tracking within the vortex. This precise control of viscous stresses at the spheroid level allows for the release of up to 30000 EVs per cell at a Reynolds number of ≈400, without compromising cellular integrity. Additionally, it reveals a threshold initiating EV production, providing evidence for a stress-dependent mechanism governing vesicle secretion. EVs mass-produced at high Reynolds displayed pro-angiogenic and wound healing capabilities, as confirmed by proteomic and cytometric analysis of their cargo. These distinct molecular signatures of these EVs, compared to those derived from monolayers, underscore the critical roles of the production method and the 3D cellular environment in EV generation.
Collapse
Affiliation(s)
- Elliot Thouvenot
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Laura Charnay
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Noa Burshtein
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, MNHN, IRD UR 206, Campus Jussieu, Sorbonne Université, Case courrier 115, 4 Place Jussieu, 75252, Paris, Cedex 05, France
| | - Léonie Dec
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes, MSC, CNRS UMR7057, Université Paris Cité, Paris, 75006, France
| | - Anke Lindner
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| |
Collapse
|
8
|
Jin B, Liao Y, Ding Z, Zou R, Xu F, Li Y, Cheng B, Niu L. The role of biophysical cues and their modulated exosomes in dental diseases: from mechanism to therapy. Stem Cell Res Ther 2024; 15:373. [PMID: 39427216 PMCID: PMC11491033 DOI: 10.1186/s13287-024-03990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Dental diseases such as caries and periodontitis have been common public health problems. Dental disease treatment can be achieved through stem cell-based dental regeneration. Biophysical cues determine the fate of stem cells and govern the success of dental regeneration. Some studies have manifested exosomes derived from stem cells could not only inherit biophysical signals in microenvironment but also evade some issues in the treatment with stem cells. Nowadays, biophysical cue-regulated exosomes become another promising therapy in dental regenerative medicine. However, methods to improve the efficacy of exosome therapy and the underlying mechanisms are still unresolved. In this review, the association between biophysical cues and dental diseases was summarized. We retrospected the role of exosomes regulated by biophysical cues in curing dental diseases and promoting dental regeneration. Our research also delved into the mechanisms by which biophysical cues control the biogenesis, release, and uptake of exosomes, as well as potential methods to enhance the effectiveness of exosomes. The aim of this review was to underscore the important place biophysical cue-regulated exosomes occupy in the realm of dentistry, and to explore novel targets for dental diseases.
Collapse
Affiliation(s)
- Bilun Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhaojing Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Das S, Thompson W, Papoutsakis ET. Engineered and hybrid human megakaryocytic extracellular vesicles for targeted non-viral cargo delivery to hematopoietic (blood) stem and progenitor cells. Front Bioeng Biotechnol 2024; 12:1435228. [PMID: 39386042 PMCID: PMC11461334 DOI: 10.3389/fbioe.2024.1435228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Native and engineered extracellular vesicles generated from human megakaryocytes (huMkEVs) or from the human megakaryocytic cell line CHRF (CHEVs) interact with tropism delivering their cargo to both human and murine hematopoietic stem and progenitor cells (HSPCs). To develop non-viral delivery vectors to HSPCs based on MkEVs, we first confirmed, using NOD-scid IL2Rγnull (NSG™) mice, the targeting potential of the large EVs, enriched in microparticles (huMkMPs), chosen for their large cargo capacity. 24 h post intravenous infusion into NSG mice, huMkEVs induced a nearly 50% increase in murine platelet counts. PKH26-labeled huMkEVs or CHEVs localized to the HSPC-rich bone marrow preferentially interacting with murine HSPCs, thus confirming their receptor-mediated tropism for NSG HSPCs, and their potential to treat thromobocytopenias. We explored this tropism to functionally deliver synthetic cargo, notably plasmid DNA coding for a fluorescent reporter, to NSG HSPCs both in vitro and in vivo. We loaded huMkEVs with plasmid DNA either through electroporation or by generating hybrid particles with preloaded liposomes. Both methods facilitated successful functional targeted delivery of pDNA, as tissue weight-normalized fluorescence intensity of the expressed fluorescent reporter was significantly higher in bone marrow than other tissues. Furthermore, the fraction of fluorescent CD117+ HSPCs was nearly 19-fold higher than other cell types within the bone marrow 72-h following administration of the hybrid particles, further supporting that HSPC tropism is retained when using hybrid particles. These data demonstrate the potential of these EVs as a non-viral, HSPC-specific cargo vehicle for gene therapy applications to treat hematological diseases.
Collapse
Affiliation(s)
- Samik Das
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
10
|
Wang G, Guasp RJ, Salam S, Chuang E, Morera A, Smart AJ, Jimenez D, Shekhar S, Friedman E, Melentijevic I, Nguyen KC, Hall DH, Grant BD, Driscoll M. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. eLife 2024; 13:RP95443. [PMID: 39255003 PMCID: PMC11386954 DOI: 10.7554/elife.95443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Large vesicle extrusion from neurons may contribute to spreading pathogenic protein aggregates and promoting inflammatory responses, two mechanisms leading to neurodegenerative disease. Factors that regulate the extrusion of large vesicles, such as exophers produced by proteostressed C. elegans touch neurons, are poorly understood. Here, we document that mechanical force can significantly potentiate exopher extrusion from proteostressed neurons. Exopher production from the C. elegans ALMR neuron peaks at adult day 2 or 3, coinciding with the C. elegans reproductive peak. Genetic disruption of C. elegans germline, sperm, oocytes, or egg/early embryo production can strongly suppress exopher extrusion from the ALMR neurons during the peak period. Conversely, restoring egg production at the late reproductive phase through mating with males or inducing egg retention via genetic interventions that block egg-laying can strongly increase ALMR exopher production. Overall, genetic interventions that promote ALMR exopher production are associated with expanded uterus lengths and genetic interventions that suppress ALMR exopher production are associated with shorter uterus lengths. In addition to the impact of fertilized eggs, ALMR exopher production can be enhanced by filling the uterus with oocytes, dead eggs, or even fluid, supporting that distention consequences, rather than the presence of fertilized eggs, constitute the exopher-inducing stimulus. We conclude that the mechanical force of uterine occupation potentiates exopher extrusion from proximal proteostressed maternal neurons. Our observations draw attention to the potential importance of mechanical signaling in extracellular vesicle production and in aggregate spreading mechanisms, making a case for enhanced attention to mechanobiology in neurodegenerative disease.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ryan J Guasp
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Sangeena Salam
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Edward Chuang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Andrés Morera
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Anna J Smart
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - David Jimenez
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Sahana Shekhar
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Emily Friedman
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ilija Melentijevic
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ken C Nguyen
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| |
Collapse
|
11
|
Silvestri M, Grazioli E, Duranti G, Sgrò P, Dimauro I. Exploring the Impact of Exercise-Derived Extracellular Vesicles in Cancer Biology. BIOLOGY 2024; 13:701. [PMID: 39336127 PMCID: PMC11429480 DOI: 10.3390/biology13090701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Cancer remains a major challenge in medicine, prompting exploration of innovative therapies. Recent studies suggest that exercise-derived extracellular vesicles (EVs) may offer potential anti-cancer benefits. These small, membrane-bound particles, including exosomes, carry bioactive molecules such as proteins and RNA that mediate intercellular communication. Exercise has been shown to increase EV secretion, influencing physiological processes like tissue repair, inflammation, and metabolism. Notably, preclinical studies have demonstrated that exercise-derived EVs can inhibit tumor growth, reduce metastasis, and enhance treatment response. For instance, in a study using animal models, exercise-derived EVs were shown to suppress tumor proliferation in breast and colon cancers. Another study reported that these EVs reduced metastatic potential by decreasing the migration and invasion of cancer cells. Additionally, exercise-induced EVs have been found to enhance the effectiveness of chemotherapy by sensitizing tumor cells to treatment. This review highlights the emerging role of exercise-derived circulating biomolecules, particularly EVs, in cancer biology. It discusses the mechanisms through which EVs impact cancer progression, the challenges in translating preclinical findings to clinical practice, and future research directions. Although research in this area is still limited, current findings suggest that EVs could play a crucial role in spreading molecules that promote better health in cancer patients. Understanding these EV profiles could lead to future therapies, such as exercise mimetics or targeted drugs, to treat cancer.
Collapse
Affiliation(s)
- Monica Silvestri
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
12
|
Liu C, Sun L, Worden H, Ene J, Zeng OZ, Bhagu J, Grant SC, Bao X, Jung S, Li Y. Profiling biomanufactured extracellular vesicles of human forebrain spheroids in a Vertical-Wheel Bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70002. [PMID: 39211409 PMCID: PMC11350274 DOI: 10.1002/jex2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Extracellular vesicles (EVs) secreted by human brain cells have great potential as cell-free therapies in various diseases, including stroke. However, because of the significant amount of EVs needed in preclinical and clinical trials, EV application is still challenging. Vertical-Wheel Bioreactors (VWBRs) have designed features that allow for scaling up the generation of human forebrain spheroid EVs under low shear stress. In this study, EV secretion by human forebrain spheroids derived from induced pluripotent stem cells as 3D aggregates and on Synthemax II microcarriers in VWBRs were investigated with static aggregate culture as a control. The spheroids were characterized by metabolite and transcriptome analysis. The isolated EVs were characterized by nanoparticle tracking analysis, electron microscopy, and Western blot. The EV cargo was analyzed using proteomics and miRNA sequencing. The in vitro functional assays of an oxygen and glucose-deprived stroke model were conducted. Proof of concept in vivo study was performed, too. Human forebrain spheroid differentiated on microcarriers showed a higher growth rate than 3D aggregates. Microcarrier culture had lower glucose consumption per million cells and lower glycolysis gene expression but higher EV biogenesis genes. EVs from the three culture conditions showed no differences in size, but the yields from high to low were microcarrier cultures, dynamic aggregates, and static aggregates. The cargo is enriched with proteins (proteomics) and miRNAs (miRNA-seq), promoting axon guidance, reducing apoptosis, scavenging reactive oxygen species, and regulating immune responses. Human forebrain spheroid EVs demonstrated the ability to improve recovery in an in vitro stroke model and in vivo. Human forebrain spheroid differentiation in VWBR significantly increased the EV yields (up to 240-750 fold) and EV biogenesis compared to static differentiation due to the dynamic microenvironment and metabolism change. The biomanufactured EVs from VWBRs have exosomal characteristics and more therapeutic cargo and are functional in in vitro assays, which paves the way for future in vivo stroke studies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | | | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Jamini Bhagu
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Xiaoping Bao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
13
|
Llorente A, Brokāne A, Mlynska A, Puurand M, Sagini K, Folkmane S, Hjorth M, Martin‐Gracia B, Romero S, Skorinkina D, Čampa M, Cešeiko R, Romanchikova N, Kļaviņa A, Käämbre T, Linē A. From sweat to hope: The role of exercise-induced extracellular vesicles in cancer prevention and treatment. J Extracell Vesicles 2024; 13:e12500. [PMID: 39183543 PMCID: PMC11345496 DOI: 10.1002/jev2.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
The benefits of regular physical exercise on cancer prevention, as well as reducing fatigue, treatment side effects and recurrence, and improving quality of life and overall survival of cancer patients, are increasingly recognised. Initial studies showed that the concentration of extracellular vesicles (EVs) increases during physical activity and that EVs carry biologically active cargo. These EVs are released by blood cells, skeletal muscle and other organs involved in exercise, thus suggesting that EVs may mediate tissue crosstalk during exercise. This possibility triggered a great interest in the study of the roles of EVs in systemic adaptation to exercise and in their potential applications in the prevention and treatment of various diseases, including cancer. This review presents studies exploring the concentration and molecular cargo of EVs released during exercise. Furthermore, we discuss putative stimuli that may trigger EV release from various cell types, the biological functions and the impact of exercise-induced EVs on cancer development and progression. Understanding the interplay between exercise, EVs, and cancer biology may offer insights into novel therapeutic strategies and preventive measures for cancer.
Collapse
Affiliation(s)
- Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
- Department for Mechanical, Electronics and Chemical EngineeringOslo Metropolitan UniversityOsloNorway
| | - Agnese Brokāne
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Agata Mlynska
- Laboratory of ImmunologyNational Cancer InstituteVilniusLithuania
- Department of Chemistry and BioengineeringVilnius Gediminas Technical UniversityVilniusLithuania
| | - Marju Puurand
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Signe Folkmane
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Beatriz Martin‐Gracia
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Diana Skorinkina
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Mārtiņš Čampa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | - Rūdolfs Cešeiko
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | | | - Aija Kļaviņa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Tuuli Käämbre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Aija Linē
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
14
|
Wang G, Guasp R, Salam S, Chuang E, Morera A, Smart AJ, Jimenez D, Shekhar S, Friedman E, Melentijevic I, Nguyen KC, Hall DH, Grant BD, Driscoll M. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.565361. [PMID: 38014134 PMCID: PMC10680645 DOI: 10.1101/2023.11.13.565361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Large vesicle extrusion from neurons may contribute to spreading pathogenic protein aggregates and promoting inflammatory responses, two mechanisms leading to neurodegenerative disease. Factors that regulate extrusion of large vesicles, such as exophers produced by proteostressed C. elegans touch neurons, are poorly understood. Here we document that mechanical force can significantly potentiate exopher extrusion from proteostressed neurons. Exopher production from the C. elegans ALMR neuron peaks at adult day 2 or 3, coinciding with the C. elegans reproductive peak. Genetic disruption of C. elegans germline, sperm, oocytes, or egg/early embryo production can strongly suppress exopher extrusion from the ALMR neurons during the peak period. Conversely, restoring egg production at the late reproductive phase through mating with males or inducing egg retention via genetic interventions that block egg-laying can strongly increase ALMR exopher production. Overall, genetic interventions that promote ALMR exopher production are associated with expanded uterus lengths and genetic interventions that suppress ALMR exopher production are associated with shorter uterus lengths. In addition to the impact of fertilized eggs, ALMR exopher production can be enhanced by filling the uterus with oocytes, dead eggs, or even fluid, supporting that distention consequences, rather than the presence of fertilized eggs, constitute the exopher-inducing stimulus. We conclude that the mechanical force of uterine occupation potentiates exopher extrusion from proximal proteostressed maternal neurons. Our observations draw attention to the potential importance of mechanical signaling in extracellular vesicle production and in aggregate spreading mechanisms, making a case for enhanced attention to mechanobiology in neurodegenerative disease.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ryan Guasp
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sangeena Salam
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Edward Chuang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Andrés Morera
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Anna J Smart
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - David Jimenez
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sahana Shekhar
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Emily Friedman
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ilija Melentijevic
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ken C Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
15
|
Zeng Y, Cui X, Li H, Wang Y, Cheng M, Zhang X. Extracellular vesicles originating from the mechanical microenvironment in the pathogenesis and applications for cardiovascular diseases. Regen Ther 2024; 26:1069-1077. [PMID: 39582802 PMCID: PMC11585476 DOI: 10.1016/j.reth.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The mechanical microenvironment plays a crucial regulatory role in the growth and development of cells. Mechanical stimuli, including shear, tensile, compression, and extracellular matrix forces, significantly influence cell adhesion, migration, proliferation, differentiation, and various other cellular functions. Extracellular vesicles (EVs) are involved in numerous physiological and pathological processes, with their occurrence and secretion being strictly regulated by the mechanical microenvironment. Recent studies have confirmed that alterations in the mechanical microenvironment are present in cardiovascular diseases, and the components of EVs can respond to changes in mechanical signals, thereby impacting the progression of these diseases. Additionally, engineered EVs, created by leveraging mechanical microenvironments, can serve as natural drug-delivery vehicles for treating and managing specific diseases. This article systematically reviews the regulatory mechanisms through which the mechanical microenvironment influences EVs and summarizes the role and advancements of EVs derived from this environment in the context of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Yanhui Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| |
Collapse
|
16
|
Wang Y, Lou P, Xie Y, Liu S, Li L, Wang C, Du D, Chen Y, Lu Y, Cheng J, Liu J. Nutrient availability regulates the secretion and function of immune cell-derived extracellular vesicles through metabolic rewiring. SCIENCE ADVANCES 2024; 10:eadj1290. [PMID: 38354238 PMCID: PMC10866539 DOI: 10.1126/sciadv.adj1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicle (EV)-based immunotherapeutics have emerged as promising strategy for treating diseases, and thus, a better understanding of the factors that regulate EV secretion and function can provide insights into developing advanced therapies. Here, we report that nutrient availability, even changes in individual nutrient components, may affect EV biogenesis and composition of immune cells [e.g., macrophages (Mφs)]. As a proof of concept, EVs from M1-Mφ under glutamine-depleted conditions (EVGLN-) had higher yields, functional compositions, and immunostimulatory potential than EVs from conventional GLN-present medium (EVGLN+). Mechanistically, the systemic metabolic rewiring (e.g., altered energy and redox metabolism) induced by GLN depletion resulted in up-regulated pathways related to EV biogenesis/cargo sorting (e.g., ESCRT) and immunostimulatory molecule production (e.g., NF-κB and STAT) in Mφs. This study highlights the importance of nutrient status in EV secretion and function, and optimizing metabolic states and/or integrating them with other engineering methods may advance the development of EV therapeutics.
Collapse
Affiliation(s)
- Yizhuo Wang
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Peng Lou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yijing Xie
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lan Li
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
18
|
Muok L, Sun L, Esmonde C, Worden H, Vied C, Duke L, Ma S, Zeng O, Driscoll T, Jung S, Li Y. Extracellular vesicle biogenesis of three-dimensional human pluripotent stem cells in a novel Vertical-Wheel bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e133. [PMID: 38938678 PMCID: PMC11080838 DOI: 10.1002/jex2.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood-brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The in vitro functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17-23 fold higher EV secretion, and EV collection in mTeSR had 2.7-3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia in vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Cynthia Vied
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Leanne Duke
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
19
|
Tang M, Wang C, Zhao B. Exosome at the crossroads of mechanosensing and liver tumorigenesis. Sci Bull (Beijing) 2023; 68:3087-3090. [PMID: 37977917 DOI: 10.1016/j.scib.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Mei Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chenliang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China.
| |
Collapse
|
20
|
Xu B, Zhou Z, Fang J, Wang J, Tao K, Liu J, Liu S. Exosomes derived from schwann cells alleviate mitochondrial dysfunction and necroptosis after spinal cord injury via AMPK signaling pathway-mediated mitophagy. Free Radic Biol Med 2023; 208:319-333. [PMID: 37640169 DOI: 10.1016/j.freeradbiomed.2023.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Although spinal cord injury (SCI) represents a primary etiology of disability, currently, there are exist limited viable therapies modalities. Acquiring comprehension of the diverse pathways that drive mitochondrial aberration may facilitate the identification of noteworthy targets for ameliorating the deleterious consequences precipitated by SCI. Our objective was to determine the efficiency of exosomes produced from Schwann cells (SCDEs) in protecting against mitochondrial dysfunction. This evaluation was conducted using a rat model of compressed SCI and in vitro experiments involving rat pheochromocytoma cells (PC12) exposed to oxygen-glucose deprivation (OGD). The conducted experiments yielded evidence that SCDEs effectively mitigated oxidative stress (OS) and inflammation subsequent to SCI, while concurrently diminishing necroptosis. Subsequent in vitro inquiry assessed the impact of SCDEs on PC12, with a specific emphasis on mitochondrial functionality, necrotic cell prevalence, and mitophagy. The study findings revealed that SCDEs enhanced mitophagy in PC12 cells, leading to a decrease in the generation of reactive oxygen species (ROS) and inflammatory cytokines (CK) provoked by OGD-induced injury. This, in turn, mitigated mitochondrial dysfunction and necroptosis. Mechanistically, SCDEs facilitated cellular mitophagy through activation of the AMPK signaling pathway. In conclusion, our data strongly support the notion that SCDEs hold considerable promise as a therapeutic approach for managing SCI. Furthermore, our investigation serves to elucidate the pivotal role of AMPK-mediated mitophagy in reducing cell damage, thereby unveiling novel prospects for enhancing neuro-pathological outcomes following SCI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zezhu Zhou
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Fang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianguang Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Tao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Junjian Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Shuhao Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Guo W, Ying P, Ma R, Jing Z, Ma G, Long J, Li G, Liu Z. Liquid biopsy analysis of lipometabolic exosomes in pancreatic cancer. Cytokine Growth Factor Rev 2023; 73:69-77. [PMID: 37684117 DOI: 10.1016/j.cytogfr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Pancreatic cancer is characterized by its high malignancy, insidious onset and poor prognosis. Most patients with pancreatic cancer are usually diagnosed at advanced stage or with the distant metastasis due to the lack of an effective early screening method. Liquid biopsy technology is promising in studying the occurrence, progression, and early metastasis of pancreatic cancer. In particular, exosomes are pivotal biomarkers in lipid metabolism and liquid biopsy of blood exosomes is valuable for the evaluation of pancreatic cancer. Lipid metabolism is crucial for the formation and activity of exosomes in the extracellular environment. Exosomes and lipids have a complex relationship of mutual influence. Furthermore, spatial metabolomics can quantify the levels and spatial locations of individual metabolites in cancer tissue, cancer stroma, and para-cancerous tissue in pancreatic cancer. However, the relationship among exosomes, lipid metabolism, and pancreatic cancer is also worth considering. This study mainly updates the research progress of metabolomics in pancreatic cancer, their relationship with exosomes, an important part of liquid biopsy, and their lipometabolic roles in pancreatic cancer. We also discuss the mechanisms by which possible metabolites, especially lipid metabolites through exosome transport and other processes, contribute to the recurrence and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Peiyao Ying
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Gang Ma
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jin Long
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guichen Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Zhao X, Sun Z, Xu B, Duan W, Chang L, Lai K, Ye Z. Degenerated nucleus pulposus cells derived exosome carrying miR-27a-3p aggravates intervertebral disc degeneration by inducing M1 polarization of macrophages. J Nanobiotechnology 2023; 21:317. [PMID: 37667246 PMCID: PMC10478255 DOI: 10.1186/s12951-023-02075-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a major contributor to spinal disorders. Previous studies have indicated that the infiltration of immunocytes, specifically macrophages, plays a crucial role in the advancement of IVDD. Exosomes (exo) are believed to play a significant role in intercellular communication. This study aims to investigate the role of exosomes derived from degenerated nucleus pulposus (dNPc) in the process of macrophages M1 polarization. METHODS Nucleus pulposus (NP) tissue and nucleus pulposus cells (NPc) were collected from patients with intervertebral disc degeneration (IVDD) and idiopathic scoliosis. Immunohistochemistry analysis was performed to determine the number of M1 macrophages in NP tissue. Subsequently, exosomes derived from degenerated NP cells (dNPc-exo) and non-degenerated NP cells (nNPc-exo) were collected and co-cultured with M0 macrophages, which were induced from THP-1 cells. The M1 phenotype was assessed using western blot, flow cytometry, immunofluorescence staining, and qRT-PCR. RNA-sequencing analysis was conducted to examine the expression levels of microRNAs in the dNPc-exo and nNPc-exo groups, and qRT-PCR was performed to investigate the effect pf different microRNA to induce macrophage polarization. Furthermore, western blot and qRT-PCR were employed to demonstrate the regulatory effect of microRNAs carried by dNPc-exo on downstream target signaling pathways in macrophages. Finally, an animal model of IVDD was utilized to investigate the impact of dNPc-exo on inducing M1 polarization of macrophages and its role in the IVDD process. RESULTS In this study, we observed an increase in the number of M1 macrophages as the intervertebral disc (IVD) degraded. Additionally, we discovered that dNPc releases exosomes (dNPc-exo) could promote the polarization of macrophages towards the M1 phenotype. Notably, through RNA-sequencing analysis of dNPc-exo and nNPc-exo groups, we identified miR-27a-3p as a highly expressed miRNA in the dNPc-exo group, which significantly influences the induction of M1 polarization of macrophages. And then, we discovered that dNPc-exo has the ability to transport miR-27a-3p and target the PPARγ/NFκB/PI3K/AKT signaling pathway, thereby influencing the M1 polarization of macrophages. We conducted experiments using rat model of IVDD and observed that the exosomes carrying miR-27a-3p actually induced the M1 polarization of macrophages and exacerbated the degradation of IVD. CONCLUSION In conclusion, our findings highlight the significant role of dNPc-exo in IVDD process and provide a basis for further investigation into the mechanism of IVDD and the potential of exosome-based therapy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, 710032, Xi'an, Shannxi Provence, P. R. China
| | - Zhen Sun
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, 710032, Xi'an, Shannxi Provence, P. R. China
| | - Benchi Xu
- Xi'an Medical University, 710021, Xi'an, China
| | - Wei Duan
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, 710032, Xi'an, Shannxi Provence, P. R. China
| | - Le Chang
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, 710032, Xi'an, Shannxi Provence, P. R. China
| | - Kangwei Lai
- Xi'an Medical University, 710021, Xi'an, China
| | - Zhengxu Ye
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, 710032, Xi'an, Shannxi Provence, P. R. China
| |
Collapse
|
23
|
Thompson W, Papoutsakis ET. Similar but distinct: The impact of biomechanical forces and culture age on the production, cargo loading, and biological efficacy of human megakaryocytic extracellular vesicles for applications in cell and gene therapies. Bioeng Transl Med 2023; 8:e10563. [PMID: 37693047 PMCID: PMC10486331 DOI: 10.1002/btm2.10563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 09/12/2023] Open
Abstract
Megakaryocytic extracellular vesicles (MkEVs) promote the growth and megakaryopoiesis of hematopoietic stem and progenitor cells (HSPCs) largely through endogenous miR-486-5p and miR-22-3p cargo. Here, we examine the impact of biomechanical force and culture age/differentiation on the formation, properties, and biological efficacy of MkEVs. We applied biomechanical force to Mks using two methods: shake flask cultures and a syringe pump system. Force increased MkEV production in a magnitude-dependent manner, with similar trends emerging regardless of whether flow cytometry or nanoparticle tracking analysis was used for MkEV counting. Both methods produced MkEVs that were relatively depleted of miR-486-5p and miR-22-3p cargo. However, while the shake flask-derived MkEVs were correspondingly less effective in promoting megakaryocytic differentiation of HSPCs, the syringe pump-derived MkEVs were more effective in doing so, suggesting the presence of unique, unidentified miRNA cargo components. Higher numbers of MkEVs were also produced by "older" Mk cultures, though miRNA cargo levels and MkEV bioactivity were unaffected by culture age. A reduction in MkEV production by Mks derived from late-differentiating HSPCs was also noted. Taken together, our results demonstrate that biomechanical force has an underappreciated and deeply influential role in MkEV biology, though that role may vary significantly depending on the nature of the force. Given the ubiquity of biomechanical force in vivo and in biomanufacturing, this phenomenon must be grappled with before MkEVs can attain clinical relevance.
Collapse
Affiliation(s)
- Will Thompson
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | | |
Collapse
|