1
|
Toit SAD, Rip D. Exploring the genetic variability, virulence factors, and antibiotic resistance of Listeria monocytogenes from fresh produce, ready-to-eat hummus, and food-processing environments. J Food Sci 2024; 89:6916-6945. [PMID: 39327637 DOI: 10.1111/1750-3841.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Listeria monocytogenes is ubiquitous in nature and persistent in food-processing facilities, farms, retail stores, and home and restaurant kitchens. Current research suggests ready-to-eat (RTE) products (including RTE hummus and fresh produce) to be of increasing interest and concern. These foods are typically stored at refrigeration temperatures suited to the survival of L. monocytogenes and are consumed without further processing. Since L. monocytogenes is ubiquitous in agricultural environments, the cultivation of fresh produce predisposes it to contamination. The contamination of RTE foods originates either from raw ingredients or, more commonly, from cross-contamination within food-processing facilities. Research on the food-processing environment has been recommended to reduce the incidence of L. monocytogenes in foods. The consumption of contaminated foods by immunocompromised individuals causes invasive listeriosis, with a 20% to 30% fatality rate despite treatment. The emergence of antibiotic-resistant strains has reduced the effectiveness of modern medicine and may increase morbidity and mortality. Without epidemiological surveillance and identifying trends in disease determinants, no action can be taken to improve food safety and mitigate the risk of such outbreaks.
Collapse
Affiliation(s)
- Samantha Anne du Toit
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| |
Collapse
|
2
|
Negi S, Sharma S. Ready to Eat Food: A Reason for Enhancement in Multidrug Resistance in Humans. Adv Pharm Bull 2024; 14:504-512. [PMID: 39494259 PMCID: PMC11530875 DOI: 10.34172/apb.2024.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 01/07/2024] [Indexed: 11/05/2024] Open
Abstract
The increasing trend of consuming ready-to-eat (RTE) food has become a global phenomenon, and this has raised concerns about the potential negative impacts on human health. Recent studies have shown a correlation between the consumption of RTE foods and the expansion of multidrug resistance (MDR) in humans. MDR is a significant challenge in the effective theory of infectious diseases, as it limits the effectiveness of antibiotics and other drugs used in therapy. Consumption of RTE food contribute to the development of MDR in humans. Additionally, there are potential risks of consuming RTE food contaminated with antibiotic-resistant bacteria, which can cause severe health consequences. The article highlights the need for awareness campaigns on the potential hazard related to the ingestion of RTE food and the importance of responsible and safe food production practices. It also recommends the need for regulatory bodies to establish strict guidelines for the production and distribution of RTE food to ensure that they are free from harmful contaminants and that their consumption does not lead to the development of MDR in humans. Overall, this article provides a comprehensive analysis of the potential negative impacts of RTE food consumption on human health and emphasizes the need for a more cautious approach to food consumption to protect public health.
Collapse
Affiliation(s)
- Sheetal Negi
- Department of Microbiology, Lovely Professional University Phagwara (Punjab), India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University Phagwara (Punjab), India
| |
Collapse
|
3
|
Rippa A, Bilei S, Peruzy MF, Marrocco MG, Leggeri P, Bossù T, Murru N. Antimicrobial Resistance of Listeria monocytogenes Strains Isolated in Food and Food-Processing Environments in Italy. Antibiotics (Basel) 2024; 13:525. [PMID: 38927191 PMCID: PMC11200948 DOI: 10.3390/antibiotics13060525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Listeria monocytogenes, along with various other pathogenic bacteria, may show resistance against a broad spectrum of antibiotics. Evaluating the extent of resistance in harmful microorganisms like Listeria monocytogenes holds significant importance in crafting novel therapeutic strategies to mitigate or combat the rise of infections stemming from antibiotic-resistant bacteria. The present work aims to investigate the occurrence of antimicrobial resistance among Listeria monocytogenes strains in meat products (n = 173), seafood (n = 54), dairy products (n = 19), sauces (n = 2), confectionary products (n = 1), ready-to-eat rice dishes (n = 1), and food-processing environments (n = 19). A total of 269 Listeria monocytogenes strains belonging to eight different serovars were tested against 10 antimicrobials. In the classes of antibiotics, most of the strains were resistant antibiotics belonging to the family of β-lactams (92.94%). High proportions of L. monocytogenes isolates were resistant to oxacillin (88.48%), followed by fosfomycin (85.87%) and flumenique (78.44%). The lowest level of resistance was observed against gentamycin (1.49%). A total of 235 strains (n = 87.36%) showed a profile of multidrug resistance. In conclusion, a high occurrence of resistant and multidrug-resistant strains of Listeria monocytogenes was observed among the examined serotypes isolated from different food sources. This understanding enables the adoption of suitable measures to avert contamination and the spread of resistant bacteria via food.
Collapse
Affiliation(s)
- Antonio Rippa
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.R.); (N.M.)
| | - Stefano Bilei
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale of Regions Lazio and Toscana “Mariano Aleandri”, Via Appia Nuova 001411, 00178 Rome, Italy; (S.B.); (M.G.M.); (P.L.); (T.B.)
| | - Maria Francesca Peruzy
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.R.); (N.M.)
| | - Maria Grazia Marrocco
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale of Regions Lazio and Toscana “Mariano Aleandri”, Via Appia Nuova 001411, 00178 Rome, Italy; (S.B.); (M.G.M.); (P.L.); (T.B.)
| | - Patrizia Leggeri
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale of Regions Lazio and Toscana “Mariano Aleandri”, Via Appia Nuova 001411, 00178 Rome, Italy; (S.B.); (M.G.M.); (P.L.); (T.B.)
| | - Teresa Bossù
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale of Regions Lazio and Toscana “Mariano Aleandri”, Via Appia Nuova 001411, 00178 Rome, Italy; (S.B.); (M.G.M.); (P.L.); (T.B.)
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.R.); (N.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
4
|
Silva A, Silva V, Gomes JP, Coelho A, Batista R, Saraiva C, Esteves A, Martins Â, Contente D, Diaz-Formoso L, Cintas LM, Igrejas G, Borges V, Poeta P. Listeria monocytogenes from Food Products and Food Associated Environments: Antimicrobial Resistance, Genetic Clustering and Biofilm Insights. Antibiotics (Basel) 2024; 13:447. [PMID: 38786175 PMCID: PMC11118052 DOI: 10.3390/antibiotics13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Listeria monocytogenes, a foodborne pathogen, exhibits high adaptability to adverse environmental conditions and is common in the food industry, especially in ready-to-eat foods. L. monocytogenes strains pose food safety challenges due to their ability to form biofilms, increased resistance to disinfectants, and long-term persistence in the environment. The aim of this study was to evaluate the presence and genetic diversity of L. monocytogenes in food and related environmental products collected from 2014 to 2022 and assess antibiotic susceptibility and biofilm formation abilities. L. monocytogenes was identified in 13 out of the 227 (6%) of samples, 7 from food products (meat preparation, cheeses, and raw milk) and 6 from food-processing environments (slaughterhouse-floor and catering establishments). All isolates exhibited high biofilm-forming capacity and antibiotic susceptibility testing showed resistance to several classes of antibiotics, especially trimethoprim-sulfamethoxazole and erythromycin. Genotyping and core-genome clustering identified eight sequence types and a cluster of three very closely related ST3 isolates (all from food), suggesting a common contamination source. Whole-genome sequencing (WGS) analysis revealed resistance genes conferring resistance to fosfomycin (fosX), lincosamides (lin), fluoroquinolones (norB), and tetracycline (tetM). In addition, the qacJ gene was also detected, conferring resistance to disinfecting agents and antiseptics. Virulence gene profiling revealed the presence of 92 associated genes associated with pathogenicity, adherence, and persistence. These findings underscore the presence of L. monocytogenes strains in food products and food-associated environments, demonstrating a high virulence of these strains associated with resistance genes to antibiotics, but also to disinfectants and antiseptics. Moreover, they emphasize the need for continuous surveillance, effective risk assessment, and rigorous control measures to minimize the public health risks associated to severe infections, particularly listeriosis outbreaks. A better understanding of the complex dynamics of pathogens in food products and their associated environments can help improve overall food safety and develop more effective strategies to prevent severe health consequences and economic losses.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Anabela Coelho
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Batista
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Cristina Saraiva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Alexandra Esteves
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ângela Martins
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Lara Diaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Ravindhiran R, Sivarajan K, Sekar JN, Murugesan R, Dhandapani K. Listeria monocytogenes an Emerging Pathogen: a Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. MICROBIAL ECOLOGY 2023; 86:2231-2251. [PMID: 37479828 DOI: 10.1007/s00248-023-02269-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Listeria monocytogenes, the third most deleterious zoonotic pathogen, is a major causative agent of animal and human listeriosis, an infection related to the consumption of contaminated food products. Even though, this pathogen has been responsible for the outbreaks of foodborne infections in the early 1980s, the major outbreaks have been reported during the past two decades. Listeriosis infection in the host is a rare but life-threatening disease with major public health and economic implications. Extensive reports on listeriosis outbreaks are associated with milk and milk products, meat and meat products, and fresh produce. This bacterium can adapt to any environmental and stress conditions, making it a prime causative agent for major foodborne diseases. The pathogen could survive an antibiotic treatment and persist in the host cell, thereby escaping the standard diagnostic practices. The current review strives to provide concise information on the epidemiology, serotypes, and pathogenesis of the L. monocytogenes to decipher the knowledge on the endurance of the pathogen inside the host and food products as a vehicle for Listeria contaminations. In addition, various detection methods for Listeria species from food samples and frontline regimens of L. monocytogenes treatment have also been discussed.
Collapse
Affiliation(s)
- Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
6
|
Genetic Characterization of Listeria from Food of Non-Animal Origin Products and from Producing and Processing Companies in Bavaria, Germany. Foods 2023; 12:foods12061120. [PMID: 36981047 PMCID: PMC10048318 DOI: 10.3390/foods12061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Reported cases of listeriosis from food of non-animal origin (FNAO) are increasing. In order to assess the risk of exposure to Listeria monocytogenes from FNAO, the genetic characterization of the pathogen in FNAO products and in primary production and processing plants needs to be investigated. For this, 123 samples of fresh and frozen soft fruit and 407 samples of 39 plants in Bavaria, Germany that produce and process FNAO were investigated for Listeria contamination. As a result, 64 Listeria spp. isolates were detected using ISO 11290-1:2017. Environmental swabs and water and food samples were investigated. L. seeligeri (36/64, 56.25%) was the most frequently identified species, followed by L. monocytogenes (8/64, 12.50%), L. innocua (8/64, 12.50%), L. ivanovii (6/64, 9.38%), L. newyorkensis (5/64, 7.81%), and L. grayi (1/64, 1.56%). Those isolates were subsequently sequenced by whole-genome sequencing and subjected to pangenome analysis to retrieve data on the genotype, serotype, antimicrobial resistance (AMR), and virulence markers. Eight out of sixty-four Listeria spp. isolates were identified as L. monocytogenes. The serogroup analysis detected that 62.5% of the L. monocytogenes isolates belonged to serogroup IIa (1/2a and 3a) and 37.5% to serogroup IVb (4b, 4d, and 4e). Furthermore, the MLST (multilocus sequence typing) analysis of the eight detected L. monocytogenes isolates identified seven different sequence types (STs) and clonal complexes (CCs), i.e., ST1/CC1, ST2/CC2, ST6/CC6, ST7/CC7, ST21/CC21, ST504/CC475, and ST1413/CC739. The core genome MLST analysis also showed high allelic differences and suggests plant-specific isolates. Regarding the AMR, we detected phenotypic resistance against benzylpenicillin, fosfomycin, and moxifloxacin in all eight L. monocytogenes isolates. Moreover, virulence factors, such as prfA, hly, plcA, plcB, hpt, actA, inlA, inlB, and mpl, were identified in pathogenic and nonpathogenic Listeria species. The significance of L. monocytogenes in FNAO is growing and should receive increasing levels of attention.
Collapse
|
7
|
Zhang H, Luo X, Aspridou Z, Misiou O, Dong P, Zhang Y. The Prevalence and Antibiotic-Resistant of Listeria monocytogenes in Livestock and Poultry Meat in China and the EU from 2001 to 2022: A Systematic Review and Meta-Analysis. Foods 2023; 12:foods12040769. [PMID: 36832844 PMCID: PMC9957035 DOI: 10.3390/foods12040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
To compare the prevalence and antibiotic resistance rate of Listeria monocytogenes in livestock and poultry (beef, pork and chicken) meat between China and the European Union (EU), a meta-analysis was conducted. Ninety-one out of 2156 articles in Chinese and English published between January 2001 and February 2022 were selected from four databases. The prevalence of L. monocytogenes in livestock and poultry (beef, pork and chicken) meat in China and Europe was 7.1% (3152/56,511, 95% CI: 5.8-8.6%) and 8.3% (2264/889,309, 95% CI: 5.9-11.0%), respectively. Moreover, a decreasing trend was observed in both regions over time. Regarding antibiotic resistance, for the resistance to 15 antibiotics, the pooled prevalence was 5.8% (95% CI: 3.1-9.1%). In both regions, the highest prevalence was found in oxacillin, ceftriaxone and tetracycline, and a large difference was reported between China and the EU in ceftriaxone (52.6% vs. 17.3%) and cefotaxime (7.0% vs. 0.0%). Based on the above, it remains a significant challenge to enforce good control measures against the meat-sourced L. monocytogenes both in China and in the EU.
Collapse
Affiliation(s)
- Haoqi Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
| | - Xin Luo
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
| | - Zafeiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ourania Misiou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Pengcheng Dong
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
| | - Yimin Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
8
|
Kayode AJ, Okoh AI. Antibiotic Resistance Profile of Listeria monocytogenes Recovered from Ready-to-Eat Foods Surveyed in South Africa. J Food Prot 2022; 85:1807-1814. [PMID: 36075088 DOI: 10.4315/jfp-22-090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT In recent decades, there has been an increase in the reports of antimicrobial resistance of Listeria monocytogenes, which constitutes a serious threat to the therapeutic management of listeriosis infection. Our study profiled the antibiogram fingerprint of L. monocytogenes isolates (n = 194) recovered from common South African ready-to-eat foods. L. monocytogenes isolates recovered from foods were tested against a panel of 22 antibiotics using the disk diffusion method. Antimicrobial resistance (>50%) against ceftriaxone (53.1%), trimethoprim (56.2%), streptomycin, cefotetan (59.3%), sulfamethoxazole (61.9%), vancomycin, and oxytetracyclines (62.9%) were observed. Thirty of the isolates (15.5%) were resistant against only one or two antibiotics, whereas 162 (83.5%) exhibited phenotypic multiple antibiotic resistance. Only two (1%) of the isolates did not exhibit phenotypic resistance against any antibiotics screened. Multiple antibiotic phenotypes revealed high resistance patterns, and the multiple antibiotic indices were greater than the Krumperman permissible (>0.2) benchmark. Of the 44 genes screened, 22 antimicrobial resistance genes were detected among ready-to-eat food isolates, including resistance determinants that encode sulfonamides (n = 125, 64.4%), β-lactams (n = 86, 44.3%), phenicols (n = 25, 12.9), and aminoglycosides (n = 93, 47.9%) resistance. We conclude that the presence of resistant L. monocytogenes isolates harboring corresponding antimicrobial resistance genes in foods could compromise safety and constitute severe health consequences if consumed. HIGHLIGHTS
Collapse
Affiliation(s)
- Adeoye John Kayode
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.,SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.,SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.,Department of Environmental Health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
AGBOOLA TD, BISI-JOHNSON MA. OCCURRENCE OF Listeria monocytogenes IN IRRIGATION WATER AND IRRIGATED VEGETABLES IN SELECTED AREAS OF OSUN STATE, NIGERIA. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, Atakpa EO, Agu CV, Okoye CO. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69241-69274. [PMID: 35969340 PMCID: PMC9376131 DOI: 10.1007/s11356-022-22319-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 05/13/2023]
Abstract
Aquaculture has emerged as one of the world's fastest-growing food industries in recent years, helping food security and boosting global economic status. The indiscriminate disposal of untreated or improperly managed waste and effluents from different sources including production plants, food processing sectors, and healthcare sectors release various contaminants such as bioactive compounds and unmetabolized antibiotics, and antibiotic-resistant organisms into the environment. These emerging contaminants (ECs), especially antibiotics, have the potential to pollute the environment, particularly the aquatic ecosystem due to their widespread use in aquaculture, leading to various toxicological effects on aquatic organisms as well as long-term persistence in the environment. However, various forms of nanotechnology-based technologies are now being explored to assist other remediation technologies to boost productivity, efficiency, and sustainability. In this review, we critically highlighted several ecofriendly nanotechnological methods including nanodrug and vaccine delivery, nanoformulations, and nanosensor for their antimicrobial effects in aquaculture and aquatic organisms, potential public health risks associated with nanoparticles, and their mitigation measures for sustainable management.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
| | - Kingsley Ikechukwu Chukwudozie
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Raphael Nyaruaba
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, China
| | - Richard Ekeng Ita
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria
| | - Abiodun Oladipo
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Onome Ejeromedoghene
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, People's Republic of China
| | - Edidiong Okokon Atakpa
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Uyo, 1017, Akwa Ibom State, Nigeria
| | | | - Charles Obinwanne Okoye
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya.
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
- School of Environment & Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China.
- Key Laboratory of Intelligent Agricultural Machinery Equipment, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Effect of Hurdle Approaches Using Conventional and Moderate Thermal Processing Technologies for Microbial Inactivation in Fruit and Vegetable Products. Foods 2022; 11:foods11121811. [PMID: 35742009 PMCID: PMC9222969 DOI: 10.3390/foods11121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Thermal processing of packaged fruit and vegetable products is targeted at eliminating microbial contaminants (related to spoilage or pathogenicity) and extending shelf life using microbial inactivation or/and by reducing enzymatic activity in the food. The conventional process of thermal processing involves sterilization (canning and retorting) and pasteurization. The parameters used to design the thermal processing regime depend on the time (minutes) required to eliminate a known population of bacteria in a given food matrix under specified conditions. However, due to the effect of thermal exposure on the sensitive nutrients such as vitamins or bioactive compounds present in fruits and vegetables, alternative technologies and their combinations are required to minimize nutrient loss. The novel moderate thermal regimes aim to eliminate bacterial contaminants while retaining nutritional quality. This review focuses on the “thermal” processing regimes for fruit and vegetable products, including conventional sterilization and pasteurization as well as mild to moderate thermal techniques such as pressure-assisted thermal sterilization (PATS), microwave-assisted thermal sterilization (MATS) and pulsed electric field (PEF) in combination with thermal treatment as a hurdle approach or a combined regime.
Collapse
|
12
|
Antibiotic Resistance Patterns of Listeria Species Isolated from Broiler Abattoirs in Lusaka, Zambia. Antibiotics (Basel) 2022; 11:antibiotics11050591. [PMID: 35625235 PMCID: PMC9137566 DOI: 10.3390/antibiotics11050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
L. monocytogenes is a public health threat linked to fast foods such as broiler chickens. This study aimed to verify the occurrence of Listeria species in chickens from abattoirs and evaluate their antimicrobial resistance. In total, 150 broiler carcass swabs distributed as cloacal (n = 60), exterior surface (n = 60), and environmental (n = 30) were collected. Listeria species were characterized using biochemical tests and PCR. We conducted antibiotic resistance tests using the disc diffusion and Etest (Biomerieux, Durham, NC, USA) methods. Overall isolation of Listeria species was 15% (23/150) 95% CI (10.16–22.33), 2% (3/150) 95% CI (0.52–6.19) and 13% (20/150) 95% CI (8.53–20.08) came from environmental swabs and carcass swabs, respectively. Proportions of positive Listeria isolates were L. monocytogenes 74% (17/23), L. welshimeri 22% (5/23), and L. innocua 4% (1/23). Listeria species from the exterior carcass swabs was 61% (14/23), cloacal swabs 26% (6/23), and environmental swabs 3% (3/23). L. monocytogenes had the greatest resistance percentage to the following antibiotics: clindamycin (61%, 10/23), tetracycline 30% (7/23), and erythromycin 13%, (3/23). Isolation of L. monocytogenes in relatively high numbers, including the antimicrobial profiles, suggests a potential risk of the pathogen remaining viable in the food continuum and a public health risk to would-be consumers.
Collapse
|
13
|
COSTA PV, NASCIMENTO JDS, COSTA LEDO, FERREIRA PBDM, BRANDÃO MLL. Listeria monocytogenes: challenges of microbiological control of food in Brazil. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | - Marcelo Luiz Lima BRANDÃO
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Brasil; Fundação Oswaldo Cruz, Brasil
| |
Collapse
|
14
|
Ratshilingano MT, du Plessis EM, Duvenage S, Korsten L. Characterization of Multidrug-Resistant Escherichia coli Isolated from Two Commercial Lettuce and Spinach Supply Chains. J Food Prot 2022; 85:122-132. [PMID: 34324673 DOI: 10.4315/jfp-21-125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Leafy green vegetables have increasingly been reported as a reservoir of multidrug-resistant pathogenic Enterobacteriaceae, with Shiga toxin-producing Escherichia coli frequently implicated in disease outbreaks worldwide. This study examined the presence and characteristics of antibiotic resistance, diarrheagenic virulence genes, and phylogenetic groupings of E. coli isolates (n = 51) from commercially produced lettuce and spinach from farms, through processing, and at the point of sale. Multidrug resistance was observed in 33 (64.7%) of the 51 E. coli isolates, with 35.7% (10 of 28) being generic and 100% (23 of 23) being extended-spectrum β-lactamase/AmpC producing. Resistance of E. coli isolates was observed against neomycin (51 of 51, 100%), ampicillin (36 of 51, 70.6%), amoxicillin (35 of 51, 68.6%), tetracycline (23 of 51, 45%), trimethoprim-sulfamethoxazole (22 of 51, 43%), chloramphenicol (13 of 51, 25.5%), Augmentin (6 of 51, 11.8%), and gentamicin (4 of 51, 7.8%), with 100% (51 of 51) susceptibility to imipenem. Virulence gene eae was detected in two E. coli isolates from irrigation water sources only, whereas none of the other virulence genes for which we tested were detected. Most of the E. coli strains belonged to phylogenetic group B2 (25.5%; n = 13), B1 (19.6%; n = 10), and A (17.6%; n = 9), with D (5.9%; n = 3) less distributed. Although diarrheagenic E. coli was not detected, antibiotic resistance in E. coli prevalent in the supply chain was evident. In addition, a clear link between E. coli isolates from irrigation water sources and leafy green vegetables through DNA fingerprinting was established, indicating the potential transfer of E. coli from irrigation water to minimally processed leafy green vegetables. HIGHLIGHTS
Collapse
Affiliation(s)
- Muneiwa T Ratshilingano
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| |
Collapse
|
15
|
A systematic review and meta-analysis of Listeria monocytogenes isolated from human and non-human sources: The antibiotic susceptibility aspect. Diagn Microbiol Infect Dis 2022; 102:115634. [DOI: 10.1016/j.diagmicrobio.2022.115634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023]
|
16
|
Rahman M, Alam MU, Luies SK, Kamal A, Ferdous S, Lin A, Sharior F, Khan R, Rahman Z, Parvez SM, Amin N, Hasan R, Tadesse BT, Taneja N, Islam MA, Ercumen A. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:360. [PMID: 35010620 PMCID: PMC8744955 DOI: 10.3390/ijerph19010360] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Fresh produce, when consumed raw, can be a source of exposure to antimicrobial residues, antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) of clinical importance. This review aims to determine: (1) the presence and abundance of antimicrobial residues, ARB and ARGs in fresh agricultural products sold in retail markets and consumed raw; (2) associated health risks in humans; and (3) pathways through which fresh produce becomes contaminated with ARB/ARGs. We searched the Ovid Medline, Web of Science and Hinari databases as well as grey literature, and identified 40 articles for inclusion. All studies investigated the occurrence of multidrug-resistant bacteria, and ten studies focused on ARGs in fresh produce, while none investigated antimicrobial residues. The most commonly observed ARB were E. coli (42.5%) followed by Klebsiella spp. (22.5%), and Salmonella spp. (20%), mainly detected on lettuce. Twenty-five articles mentioned health risks from consuming fresh produce but none quantified the risk. About half of the articles stated produce contamination occurred during pre- and post-harvest processes. Our review indicates that good agricultural and manufacturing practices, behavioural change communication and awareness-raising programs are required for all stakeholders along the food production and consumption supply chain to prevent ARB/ARG exposure through produce.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Mahbub-Ul Alam
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Sharmin Khan Luies
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Abul Kamal
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Sharika Ferdous
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Audrie Lin
- Berkeley’s School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA;
| | - Fazle Sharior
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Rizwana Khan
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Ziaur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Sarker Masud Parvez
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St., Ultimo, NSW 2007, Australia
| | - Rezaul Hasan
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Birkneh Tilahun Tadesse
- School of Medicine, Hawassa University, Shashemene, Awassa P.O. Box 5, Ethiopia;
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Mohammad Aminul Islam
- Allen Center, Paul G. Allen School for Global Health, Washington State University, 240 SE Ott Road, Pullman, WA 99164, USA;
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Drive, 3120 Jordan Hall, Raleigh, NC 27607, USA;
| |
Collapse
|
17
|
Kayode AJ, Okoh AI. Incidence and genetic diversity of multi-drug resistant Listeria monocytogenes isolates recovered from fruits and vegetables in the Eastern Cape Province, South Africa. Int J Food Microbiol 2021; 363:109513. [PMID: 34971880 DOI: 10.1016/j.ijfoodmicro.2021.109513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/02/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
We investigated the prevalence, genetic diversity and antibiogram profiles of Listeria monocytogenes (Lm) recovered from fruits and vegetables sourced from three District Municipalities in the Eastern Cape Province, South Africa after the recent listeriosis outbreak in the country. The procedure outlined by the International Organization for Standardization EN ISO 11290:2017 Parts 1 and 2 was adopted for the isolation of Lm from 140 vegetable samples. Molecular detection of the pathogen and the presence of 10 virulence-associated markers were assessed. Lm was detected in 42.86% of all the vegetable samples tested. Highest prevalence was recorded in tomato (65.52%) followed by spinach (56.67%), cabbage (38.10%), apple (36.84%), mushroom (29.41%) and carrot (10%). The virulence determinants including the inlA, inlC, prfA and plcA, hly, plcB genes were detected in all Lm isolates whereas, inlJ (88.35%), inlB (86.41%), mpl (92.23%) and actA (84.55%) respectively. High susceptibility (> 50) was observed to all antibiotics tested except for sulfamethoxazole (17.48%), streptomycin (38.84%), amoxicillin (41.75%) and erythromycin (43.69%). However, high resistance against sulfamethoxazole (80.58%), amoxicillin (58.25%) and erythromycin (49.52%) were observed. About 85.44% of Lm isolates showed multidrug-resistance phenotypes against the test antibiotics. Furthermore, twenty (20) resistance genes encoding tetracyclines, sulphonamides, phenicols, aminoglycosides, β-lactamases, and variants of the extended-spectrum of β-lactamases (ESBLs) resistance were detected among the Lm isolates. The sul2 (90.81), tetM (68.42%) sul1 (45.98%) were more prevalent among the resistant strains. The dendrogram signatures generating seven clades is an indication of the high genetic diversity among the isolates. We conclude that the presence of Lm in fruits and vegetables is a potential threat to the consumers and a potential public health hazard, particularly to the high-risk group of the population.
Collapse
Affiliation(s)
- Adeoye John Kayode
- SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anthony Ifeanyi Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
18
|
Wu L, Bao H, Yang Z, He T, Tian Y, Zhou Y, Pang M, Wang R, Zhang H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiol 2021; 21:327. [PMID: 34823476 PMCID: PMC8613961 DOI: 10.1186/s12866-021-02335-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Background Listeria monocytogenes is one of the deadliest foodborne pathogens. The bacterium can tolerate severe environments through biofilm formation and antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility, resistance genes, virulence, and molecular epidemiology about Listeria from meat processing environments. Methods This study evaluated the antibiotic resistance and virulence of Listeria isolates from slaughtering and processing plants. All isolates were subjected to antimicrobial susceptibility testing using a standard microbroth dilution method. The harboring of resistant genes was identified by polymerase chain reaction. The multilocus sequence typing was used to determine the subtyping of the isolates and characterize possible routes of contamination from meat processing environments. The virulence of different STs of L. monocytogenes isolates was evaluated using a Caco-2 cell invasion assay. Results A total of 59 Listeria isolates were identified from 320 samples, including 37 L. monocytogenes isolates (62.71%). This study evaluated the virulence of L. monocytogenes and the antibiotic resistance of Listeria isolates from slaughtering and processing plants. The susceptibility of these 59 isolates against 8 antibiotics was analyzed, and the resistance levels to ceftazidime, ciprofloxacin, and lincomycin were as high as 98.31% (L. m 37; L. innocua 7; L. welshimeri 14), 96.61% (L. m 36; L. innocua 7; L. welshimeri 14), and 93.22% (L. m 35; L. innocua 7; L. welshimeri 13), respectively. More than 90% of the isolates were resistant to three to six antibiotics, indicating that Listeria isolated from meat processing environments had high antimicrobial resistance. Up to 60% of the isolates harbored the tetracycline-resistance genes tetA and tetM. The frequency of ermA, ermB, ermC, and aac(6′)-Ib was 16.95, 13.56, 15.25, and 6.78%, respectively. Notably, the resistant phenotype and genotype did not match exactly, suggesting that the mechanisms of antibiotic resistance of these isolates were likely related to the processing environment. Multilocus sequence typing (MLST) revealed that 59 Listeria isolates were grouped into 10 sequence types (STs). The dominant L. monocytogenes STs were ST5, ST9, and ST121 in the slaughtering and processing plant of Jiangsu province. Moreover, ST5 subtypes exhibited high invasion in Caco-2 cells compared with ST9 and ST121 cells. Conclusion The dominant L. monocytogenes ST5 persisted in the slaughtering and processing plant and had high antimicrobial resistance and invasion characteristics, illustrating a potential risk in food safety and human health.
Collapse
Affiliation(s)
- Liting Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hongduo Bao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhengquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yuan Tian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University - School of Food and Biological Engineering, Zhenjiang, 212013, China
| | - Yan Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Maoda Pang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
19
|
Listeria monocytogenes: health risk and a challenge for food processing establishments. Arch Microbiol 2021; 203:5907-5919. [DOI: 10.1007/s00203-021-02590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
|
20
|
Mpundu P, Mbewe AR, Muma JB, Mwasinga W, Mukumbuta N, Munyeme M. A global perspective of antibiotic-resistant Listeria monocytogenes prevalence in assorted ready to eat foods: A systematic review. Vet World 2021; 14:2219-2229. [PMID: 34566342 PMCID: PMC8448623 DOI: 10.14202/vetworld.2021.2219-2229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIM Listeria monocytogenes in ready-to-eat (RTE) foods remains consistently under-reported globally. Nevertheless, several independent studies conducted to investigate have elucidated the prevalence and antibiotic resistance profiles of L. monocytogenes in RTE-associated foods and their antibiotic resistance profiles. Given the rapid increase in consumption of RTE foods of both animal and plant origin, it is imperative to know the prevalence deductive data focusing on how much of L. monocytogenes is present in RTE foods, which is critical for food safety managers and retailers to assess the possible risk posed to end-users. In addition, valuable insight and another angle to the depth of the problem, we conducted a systematic review and meta-analysis to synthesize available data regarding the prevalence of L. monocytogenes in RTE foods and antibiotic resistance profiles. MATERIALS AND METHODS We conducted a meta-analysis study of L. monocytogenes and antibiotic resistance to clinically relevant antibiotics to determine the extent of L. monocytogenes contamination in RTE foods and antibiotic resistance profiles. The primary search terms, also known as keywords used, were restricted to peer-reviewed and review articles, and databases, including Google Scholars, Science-Direct, and Scopus, were searched. The inclusion of articles meeting eligibility criteria published between 2010 and 2020 after title, abstract, and full article screening. Data analysis was performed at multiple stages using quantitative meta-analysis reviews. RESULTS L. monocytogenes pooled proportion/prevalence was highest in chicken products determined at (22%) followed by various but uncategorized RTE foods at 21%. Regarding antibiotic resistance, profiling's highest pooled prevalence resistance was observed in penicillin at 80% resistance, followed by cephalosporin at 47%. CONCLUSION Within its limitations, this study has attempted to provide insight into the pooled proportion/prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile at the global level. Determining the proportion/prevalence of L. monocytogenes in RTE foods across the globe and antibiotic resistance profile is essential for providing quality food and reducing public health problems due to unsuccessful treatment of foodborne illness. This study provides insight into the pooled prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile. The results of this study partly endeavored to help appropriate authorities strengthen their preventive measures on specific RTE foods that are most likely to be contaminated with L. monocytogenes and antibiotic resistance profiles.
Collapse
Affiliation(s)
- Prudence Mpundu
- Ministry of Health, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Allan Rabson Mbewe
- Department of Environmental Health, School of Public Health, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Wizaso Mwasinga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Nawa Mukumbuta
- Ministry of Health, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
- Department of Epidemiology and Biostatics, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
21
|
Duze ST, Marimani M, Patel M. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiol 2021; 97:103758. [PMID: 33653529 DOI: 10.1016/j.fm.2021.103758] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes a life-threatening disease in humans known as listeriosis. Contamination of food during processing is the main route of transmission of Listeria monocytogenes. Therefore, biocides play a crucial role in food processing environments as they act as the first line of defense in the prevention and control of L. monocytogenes. Residues of biocides may be present at sublethal concentrations after disinfection. This, unfortunately, subjects L. monocytogenes to selection pressure, giving rise to tolerant strains, which pose a threat to food safety and public health. This review will give a brief description of L. monocytogenes, the clinical manifestation, treatment of listeriosis as well as recently recorded outbreaks. The article will then discuss the current literature on the ability of L. monocytogenes strains to tolerate biocides especially quaternary ammonium compounds as well as the mechanisms of tolerance towards biocides including the activation of efflux pump systems.
Collapse
Affiliation(s)
- Sanelisiwe Thinasonke Duze
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Musa Marimani
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mrudula Patel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
22
|
Keet R, Rip D. Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns. AIMS Microbiol 2021; 7:40-58. [PMID: 33659768 PMCID: PMC7921373 DOI: 10.3934/microbiol.2021004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
Food-borne disease outbreaks are common and offer valuable insights into the causes, impacts, and mechanisms underlying food pathogens. This also serves as a good foundation to validate the performance of current best practice control methods, for example antibiotics, that are used in the fight against food pathogens. Listeriosis outbreaks, caused by Listeria monocytogenes, is no exception. In 2018, South Africa experienced the largest global listeriosis outbreak recorded to date. However, despite the scale of this outbreak, information on the bacterium and its resistance towards antibiotics is still severely lacking. Furthermore, until now it remained to be determined whether L. monocytogenes antibiotic resistance patterns in South Africa mirror resistance patterns elsewhere in the world. The aim of this study was therefore to evaluate the efficacy of antibiotics that are currently used against L. monocytogenes. Using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disc diffusion method, L. monocytogenes isolates (n = 177) from diverse origins in the Western Cape, South Africa (clinical, food, and environment) were tested for susceptibility against five different antibiotics, namely ampicillin, erythromycin, chloramphenicol, gentamicin, and tetracycline. Isolates were collected over a period of two years (2017-2019). All isolates were susceptible to ampicillin, the currently recommended antibiotic, while a large number of isolates were resistant to chloramphenicol, erythromycin, and tetracycline. Also, patterns of resistance observed here are different to patterns observed elsewhere. The findings of this study demonstrate that it is imperative to continuously monitor the efficacy of currently recommended antibiotics, since resistance patterns can quickly develop when such antibiotics are overutilized, and secondly, that it is crucial to assess local antibiotic resistance patterns in conjunction with global patterns, since the latter is not necessarily generalizable to local scales.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food Science, Centre for Food Safety, Stellenbosch University, South Africa
| |
Collapse
|
23
|
Heidarzadeh S, Pourmand MR, Hasanvand S, Pirjani R, Afshar D, Noori M, Soltan Dallal MM. Antimicrobial Susceptibility, Serotyping, and Molecular Characterization of Antibiotic Resistance Genes in Listeria monocytogenes Isolated from Pregnant Women with a History of Abortion. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:170-179. [PMID: 34178776 PMCID: PMC8213617 DOI: 10.18502/ijph.v50i1.5084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Listeria monocytogenes show high mortality among pregnant women and newborns. This study aimed to detect L. monocytogenes in pregnant women with a history of abortion and assess the serotypes, antibiotic susceptibility patterns, and its resistance genes. Methods: Overall, 400 vaginal swabs were taken from pregnant women with a history of abortion in the past few years in a tertiary care hospital in Tehran, Iran, during 2015–2018. Antibiotics susceptibility to a panel of 10 antibiotics was determined using the standard disk diffusion method and the isolates serotyped by the agglutination method. The antimicrobial-resistant isolates were also screened for the presence of tetM, ermB and dfrD genes by PCR. Results: Overall, 22 L. monocytogenes isolates were identified. High rates of resistance were observed for trimethoprim (50%; n=11), sulphamethoxazole (50%; n=11), tetracycline (45.45%; n=10) and gentamicin (36.36%; n=8). From 22 L. monocytogenes isolates, 13 (59.10 %), 5 (22.73%), 3 (13.63%) and 1 (4.54%) belonged to serotypes 4b, 1/2a, 1/2b, and 3c, respectively. The genetic determinant tetM was detected in 70% of the tetracycline-resistant isolates. Out of 11 trimethoprim-resistant isolates, 27.27% isolates contained dfrD. Moreover, the ermB gene was found in 83.33% of the erythromycin-resistant isolates. Conclusion: Ampicillin and partly penicillin consider to be suitable antimicrobial agents to treat human listeriosis. Moreover, due to resistance against many antibiotics, it is necessary to continue monitoring and managing antimicrobial resistance.
Collapse
Affiliation(s)
- Siamak Heidarzadeh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hasanvand
- Department of Microbiology, Damghan Branch, Science and Research Islamic Azad University, Damghan, Iran
| | - Reyhaneh Pirjani
- Department of Obstetrics & Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Matina Noori
- Department of Obstetrics & Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
da Silva DAF, Vallim DC, Rosas CDO, de Mello VM, Brandão MLL, de Filippis I. Genetic diversity of Listeria monocytogenes serotype 1/2a strains collected in Brazil by Multi-Virulence-Locus Sequence Typing. Lett Appl Microbiol 2020; 72:316-324. [PMID: 33063325 DOI: 10.1111/lam.13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023]
Abstract
Listeria monocytogenes is an opportunistic pathogen with the ability to adapt to different environmental conditions, resulting in safety issues for food producers. Foods contaminated by L. monocytogenes can represent a risk if consumed by susceptible individuals such as elderly, pregnant women and the immunocompromised. The aim of this study was to evaluate the genetic diversity of a collection of L. monocytogenes isolated from different matrices in Brazil during the period of 1979-2015. A total of 51 L. monocytogenes serotype 1/2a strains isolated from clinical samples (n = 3) and food samples (n = 48) were characterized by Multi-Virulence-Locus Sequence Typing (MVLST). The strains were assigned to nine virulence types (VT): VT-11 (n = 3, 5·9%), VT-45 (n = 27, 52·9%), VT-59 (n = 11, 21·6%), VT-68 (n = 3, 5·9%), VT-94 (n = 2, 3·9%), VT-107 (n = 2, 3·9%), VT-184 (n = 1, 1·9%), VT-185 (n = 1, 1·9%) and VT-186 (n = 1, 1·9%); and four of them (VT-11, VT-45, VT-59 and VT-68) have already been associated with cases of listeriosis worldwide. The VT-11, VT-59 (Epidemic Clone V) and VT-186 were identified in blood culture samples, as well as in different classes of foods. It is recommended that the epidemiological surveillance agencies evaluate the risk that foods contaminated with L. monocytogenes VTs pose to susceptible populations.
Collapse
Affiliation(s)
- D A F da Silva
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro, Brazil
| | - D C Vallim
- Laboratory of Bacterial Zoonoses - Listeria Sector, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - C D O Rosas
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro, Brazil
| | - V M de Mello
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro, Brazil
| | - M L L Brandão
- Laboratory of Microbiology Control, Bio-Manguinhos/Fiocruz, Rio de Janeiro, Brazil
| | - I de Filippis
- Laboratory of Reference Microorganisms, INCQS/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
26
|
Li C, Zeng H, Ding X, Chen Y, Liu X, Zhou L, Wang X, Cheng Y, Hu S, Cao Z, Liu R, Yin C. Perinatal listeriosis patients treated at a maternity hospital in Beijing, China, from 2013-2018. BMC Infect Dis 2020; 20:601. [PMID: 32799811 PMCID: PMC7429786 DOI: 10.1186/s12879-020-05327-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Listeriosis is a rare but severe foodborne infectious disease. Perinatal listeriosis is often associated with septicemia, central nervous system (CNS) infection, and serious adverse pregnancy outcomes (miscarriage and neonate death). Here we report the characteristics and outcomes of perinatal listeriosis cases treated over 6 years at Beijing Obstetrics and Gynecology Hospital (BOGH), the largest maternity hospital in China. Methods We retrospectively reviewed the records of laboratory-confirmed, pregnancy-associated listeriosis cases treated from January 1, 2013 to December 31, 2018. The clinical manifestations, laboratory results, perinatal complications and outcomes (post-natal follow-up of 6 months) were investigated. Results In BOGH, 12 perinatal listeriosis cases were diagnosed based on Listeria monocytogenes positive culture, including 10 single pregnancies and 2 twin pregnancies. The corresponding incidence of pregnancy-associated listeriosis was 13.7/100,000 deliveries. Among those cases, four pregnant women and four newborns had septicemia, and two of the neonates with septicemia also suffered CNS infection. All the maternal patients recovered. Two inevitable miscarriages and four fetal stillbirths occurred. Of the eight delivered newborns, six survived, and two died within 2 days from birth. None of the survivors had neurological sequelae during a 6-month follow-up. The overall feto-neonatal fatality rate was 57.1%; notably, this rate was 100% for infections occurring during the second trimester of pregnancy and only 14.3% for those occurring in the third trimester. Conclusions Perinatal listeriosis is associated with high feto-neonatal mortality, and thus, a public health concern. Additional large-scale studies are needed to strengthen the epidemiological understanding of listeriosis in China.
Collapse
Affiliation(s)
- Chunyun Li
- Department of Internal Medicine, Capital Medical University Beijing Obstetrics and Gynecology Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, P. R. China
| | - Huihui Zeng
- Department of Neonatology, Capital Medical University, Beijing, China
| | - Xin Ding
- Department of Obstetrics, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Obstetrics, Capital Medical University, Beijing, China
| | - Xiaowei Liu
- Department of Obstetrics, Capital Medical University, Beijing, China
| | - Li Zhou
- Department of Obstetrics, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of Obstetrics, Capital Medical University, Beijing, China
| | - Yumei Cheng
- Department of Obstetrics, Capital Medical University, Beijing, China
| | - Shanshan Hu
- Department of Disease Prevention and Control and Nosocomial Infection, Capital Medical University, Beijing, China
| | - Zheng Cao
- Department of Clinical Laboratory, Capital Medical University, Beijing, China
| | - Ruixia Liu
- Department of Central Laboratory, Capital Medical University Beijing Obstetrics and Gynecology Hospital, 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, P. R. China.
| | - Chenghong Yin
- Department of Internal Medicine, Capital Medical University Beijing Obstetrics and Gynecology Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, P. R. China.
| |
Collapse
|
27
|
Zhang F, Zhai T, Haider S, Liu Y, Huang ZJ. Synergistic Effect of Chlorogenic Acid and Caffeic Acid with Fosfomycin on Growth Inhibition of a Resistant Listeria monocytogenes Strain. ACS OMEGA 2020; 5:7537-7544. [PMID: 32280897 PMCID: PMC7144146 DOI: 10.1021/acsomega.0c00352] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 05/08/2023]
Abstract
Listeria monocytogenes, a human foodborne pathogen that causes listeriosis with high-rate mortality, has been reported to be resistant to commonly used antibiotics. New antibiotics or cocktails of existing antibiotics with synergistic compounds are in high demand for treating this multi-drug-resistant pathogen. Fosfomycin is one of the novel and promising therapeutic antibiotics for the treatment of listeriosis. However, some L. monocytogenes strains with the FosX gene were recently reported to survive from the fosfomycin treatment. This work aims to identify FosX inhibitors that can revive fosfomycin in treating resistant L. monocytogenes. Since structures and activities of the FosX protein in L. monocytogenes have been well studied, we used an integrated computational and experimental approach to identify FosX inhibitors that show synergistic effect with fosfomycin in treating resistant L. monocytogenes. Specifically, automated ligand docking was implemented to perform virtual screening of the Indofine natural-product database and FDA-approved drugs to identify potential inhibitors. An in vitro bacterial growth inhibition test was then utilized to verify the effectiveness of identified compounds combined with fosfomycin in inhibiting the resistant L. monocytogenes strains. Two phenolic acids, i.e., caffeic acid and chlorogenic acid, were predicted as high-affinity FosX inhibitors from the ligand-docking platform. Experiments with these compounds indicated that the cocktail of either caffeic acid (1.5 mg/mL) or chlorogenic acid (3 mg/mL) with fosfomycin (50 mg/L) was able to significantly inhibit the growth of the pathogen. The finding of this work implies that the combination of fosfomycin with either caffeic acid or chlorogenic acid is of potential to be used in the clinical treatment of Listeria infections.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department
of Chemical Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Tianhua Zhai
- Department
of Chemical Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Shozeb Haider
- School
of Pharmacy, University College London (UCL), London WC1E 6BT, U.K.
| | - Yanhong Liu
- Molecular
Characterization of Foodborne Pathogens Research Unit, Eastern Regional
Research Center, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038, United States
| | - Zuyi Jacky Huang
- Department
of Chemical Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, Pennsylvania 19085, United States
- . Tel: 1-610-519-4848
| |
Collapse
|
28
|
Caruso M, Fraccalvieri R, Pasquali F, Santagada G, Latorre LM, Difato LM, Miccolupo A, Normanno G, Parisi A. Antimicrobial Susceptibility and Multilocus Sequence Typing of Listeria monocytogenes Isolated Over 11 Years from Food, Humans, and the Environment in Italy. Foodborne Pathog Dis 2020; 17:284-294. [PMID: 31718307 DOI: 10.1089/fpd.2019.2723] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Due to the increasing number of studies reporting the detection of antimicrobial-resistant isolates of Listeria monocytogenes, we sought to determine the antimicrobial susceptibility of L. monocytogenes isolates collected in Italy and find potential correlations to their serotypes and multilocus sequence types (MLST). The antimicrobial susceptibility of 317 L. monocytogenes isolates collected from food, humans, and the environment from 1998 to 2009 was assessed by minimum inhibitory concentration (MIC). Serotyping and MLST was also performed on all isolates. Potential correlations among antimicrobial resistance profiles, serotyping, and MLST were statistically evaluated. Twenty-four percent of L. monocytogenes isolates were resistant to oxacillin, 28.7% intermediate to clindamycin, and 24.3% to ciprofloxacin. The majority of isolates with elevated MIC to oxacillin was of environmental origin and belonged to serotype 4b/4e and ST2. Isolates with intermediate MIC values to clindamycin and ciprofloxacin were mostly of food and human origin and belonged to serotype 4b/4e and ST9. Regarding the time frame of isolate collection, comparing the last 3 years (2007-2009) to previous years (1998-2006), an increase was observed in the percentage of resistant and intermediate isolates per year. This trend strongly suggests the need for increasing attention on the prevalence of antimicrobial resistance in L. monocytogenes in Italy. To predict future resistance trends, the monitoring of clinical intermediate resistance might represent a useful tool especially for antibiotics associated to multiple-step mechanisms of acquired resistance. A specific focus should be addressed to antimicrobial-resistant isolates of serotype 4b, repeatedly associated with food-borne outbreaks.
Collapse
Affiliation(s)
- Marta Caruso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Gianfranco Santagada
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Laura M Latorre
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Laura M Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | | | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
29
|
Pu C, Yu Y, Diao J, Gong X, Li J, Sun Y. Exploring the persistence and spreading of antibiotic resistance from manure to biocompost, soils and vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:262-269. [PMID: 31229823 DOI: 10.1016/j.scitotenv.2019.06.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The main avenue in which antibiotic resistance enters soils is through the application of livestock manure. However, whether antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) persist and spread to vegetables with the application of manure and manure products is still unclear. This study assessed seven kinds of cultured ARB, 221 ARGs subtypes and three transposon genes in the vegetable production chain (from manure to biocompost, soils and vegetables). Results showed that at least 80% of ARB, ARGs and transposon genes were removed after aerobic composting. However, aerobic composting did not reduce the diversity of ARGs in pig and chicken manure. A total of 19 ARGs subtypes still persisted during aerobic composting. Compared to the temperature-thermophilic stage, the number of bacteria resistant to erythromycin, the relative abundance of ARGs and IS613 increased 1.7-4.9 times at the temperature-decreasing stage. Direct application of biocompost introduced 11 ARGs subtypes to pakchoi, but these ARGs did not present in biocompost-amended soil. A transposon gene tnpA was also detected in the biocompost-amended soil, but surprisingly was found in the control vegetable. This demonstrated that the transposon gene is intrinsic in pakchoi. Bacterial community analysis and network analysis revealed that a specific genus Terrisporobacter carrying tetO, tetW ermB and tnpA persisted in the vegetable production chain, which may generate a potential risk in the following production. Our study illuminates the persistence and spreading of antibiotic resistance in the vegetable production chain which could help manage the ecological risks arising from antibiotic resistance in manure sources.
Collapse
Affiliation(s)
- Chengjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jianxiong Diao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Gong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ji Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Coban A, Pennone V, Sudagidan M, Molva C, Jordan K, Aydin A. Prevalence, virulence characterization, and genetic relatedness of Listeria monocytogenes isolated from chicken retail points and poultry slaughterhouses in Turkey. Braz J Microbiol 2019; 50:1063-1073. [PMID: 31478167 PMCID: PMC6863211 DOI: 10.1007/s42770-019-00133-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens and is a causal agent of listeriosis in humans and animals. The aim of this study was to determine the prevalence, serogroups, antibiotic susceptibility, virulence factor genes, and genetic relatedness of L. monocytogenes strains isolated from 500 poultry samples in Turkey. The isolation sources of 103 L. monocytogenes strains were retail markets (n = 100) and slaughterhouses (n = 3). L. monocytogenes strains were identified as serogroups 1/2a-3a (75.7%, lineage I), 1/2c-3c (14.56%, lineage I), 1/2b-3b-7 (5.82%, lineage II), 4a-4c (2.91%, lineage III), and 4b-4d-4e (0.97%, lineage III). Most of the L. monocytogenes strains (93.2%) were susceptible to the antibiotics tested. PCR analysis indicated that the majority of the strains (95% to 100%) contained most of the virulence genes (hylA, plcA, plcB, prfA, mpl, actA, dltA, fri, flaA inlA, inlC, and inlJ). Pulsed-field gel electrophoresis (PFGE) demonstrated that there were 18 pulsotypes grouped at a similarity of > 90% among the strains. These results indicate that it is necessary to prevent the presence of L. monocytogenes in the poultry-processing environments to help prevent outbreaks of listeriosis and protect public health.
Collapse
Affiliation(s)
- Aysen Coban
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, İstanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, Turkey
| | - Celenk Molva
- Department of Food Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ali Aydin
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, İstanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey.
| |
Collapse
|
31
|
Hölzel CS, Tetens JL, Schwaiger K. Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne Pathog Dis 2019; 15:671-688. [PMID: 30444697 PMCID: PMC6247988 DOI: 10.1089/fpd.2018.2501] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, vegetables gain consumer attraction due to their reputation of being healthy in combination with low energy density. However, since fresh produce is often eaten raw, it may also be a source for foodborne illness. The presence of antibiotic-resistant bacteria might pose a particular risk to the consumer. Therefore, this review aims to present the current state of knowledge concerning the exposure of humans to antibiotic-resistant bacteria via food of plant origin for quantitative risk assessment purposes. The review provides a critical overview of available information on hazard identification and characterization, exposure assessment, and risk prevention with special respect to potential sources of contamination and infection chains. Several comprehensive studies are accessible regarding major antimicrobial-resistant foodborne pathogens (e.g., Salmonella spp., Listeria spp., Bacillus cereus, Campylobacter spp., Escherichia coli) and other bacteria (e.g., further Enterobacteriaceae, Pseudomonas spp., Gram-positive cocci). These studies revealed vegetables to be a potential—although rare—vector for extended-spectrum beta-lactamase-producing Enterobacteriaceae, mcr1-positive E. coli, colistin- and carbapenem-resistant Pseudomonas aeruginosa, linezolid-resistant enterococci and staphylococci, and vancomycin-resistant enterococci. Even if this provides first clues for assessing the risk related to vegetable-borne antimicrobial-resistant bacteria, the literature research reveals important knowledge gaps affecting almost every part of risk assessment and management. Especially, the need for (comparable) quantitative data as well as data on possible contamination sources other than irrigation water, organic fertilizer, and soil becomes obvious. Most crucially, dose–response studies would be needed to convert a theoretical “risk” (e.g., related to antimicrobial-resistant commensals and opportunistic pathogens) into a quantitative risk estimate.
Collapse
Affiliation(s)
- Christina Susanne Hölzel
- 1 Animal Hygiene and Animal Health Management, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel (CAU) , Kiel, Germany
| | - Julia Louisa Tetens
- 1 Animal Hygiene and Animal Health Management, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel (CAU) , Kiel, Germany
| | - Karin Schwaiger
- 2 Department of Veterinary Sciences, Institute of Food Safety, Ludwig-Maximilians-University Munich (LMU) , Munich, Germany
| |
Collapse
|
32
|
Oliveira NA, Bittencourt GM, Barancelli GV, Kamimura ES, Lee SHI, Oliveira CAF. Listeria monocytogenes in Brazilian foods: occurrence, risks to human health and their prevention. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2019. [DOI: 10.12944/crnfsj.7.2.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen which occurs mainly in ready-to-eat food products, especially in artisanal products manufactured from raw milk such as some types of cheese, meat products and leafy vegetables. L. monocytogenes requires special attention in the food industry because of its ability to survive under adverse conditions and form biofilms on different surfaces in food processing environments. The potential for product contamination by L. monocytogenes strains in the industrial environment emphasizes the importance of preventive measures in the food industry. This review presents an overview on the main characteristics, pathogenicity and occurrence data of L. monocytogenes in Brazilian foods. The main prevention measures to avoid contamination by L. monocytogenes in foods are also highlighted, especially the adoption of quality assurance programs by the food industry.
Collapse
Affiliation(s)
- Naila Albertina Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Gabriela Marques Bittencourt
- Department of Agroindustry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Giovana Verginia Barancelli
- Department of Agroindustry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Eliana Setsuko Kamimura
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Sarah Hwa In Lee
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
33
|
Prevalence and characterization of Listeria monocytogenes isolated from pork meat and on inert surfaces. Braz J Microbiol 2019; 50:817-824. [PMID: 30976991 DOI: 10.1007/s42770-019-00073-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 02/09/2019] [Indexed: 10/27/2022] Open
Abstract
This study focuses on the prevalence of Listeria monocytogenes (Lm) in pork meat and on inert surfaces from slaughterhouses in Sonora, Mexico. A total of 21 Lm were obtained from 103 samples, giving a prevalence of 20.3%. The prevalence of Lm in pork loin was 15.9% and 20.8% for inert surfaces in Federal Inspection Type (FIT) slaughterhouses. For non-FIT slaughterhouses, the prevalence was 25.7%. PCR amplification of genomic DNA from the Lm isolates revealed the presence of the hlyA gene, suggesting a pathogenic nature for these isolates. The isolates obtained in this work all clustered with Lm, according to our phylogenetic analysis based on the 16S rDNA sequence. This Lm cluster indicates that Lm isolates 7-2, 4, 2-1, 10B, 8, 3, 3-3, and 9 share 16S rRNA identity with other Lm isolates that have been reported as foodborne pathogens (rR2-502, J1817, J1816, J1926) and that are involved in foodborne outbreaks. The most commonly detected serotypes were 1/2a and 1/2b. All isolates displayed differential responses to the assayed antibiotics, and most isolates were able to grow in the presence of penicillin G, or both penicillin and penicillin-derived (oxacillin) antibiotics.
Collapse
|
34
|
Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Shamloo E, Hosseini H, Abdi Moghadam Z, Halberg Larsen M, Haslberger A, Alebouyeh M. Importance of Listeria monocytogenes in food safety: a review of its prevalence, detection, and antibiotic resistance. IRANIAN JOURNAL OF VETERINARY RESEARCH 2019; 20:241-254. [PMID: 32042288 PMCID: PMC6983307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 06/10/2023]
Abstract
Listeria monocytogenes, as a foodborne pathogenic bacterium, is considered as major causative agent responsible for serious diseases in both humans and animals. Milk and dairy products are among the main sources of energy supply in the human, therefore contamination of these products with Listeria spp., especially L. monocytogenes, could lead to life threatening infections in a large population of people. Rapid and accurate detection of L. monocytogenes in milk and dairy products, vegetables, meat, poultry, and seafood products is needed to prevent its dissemination through the food chain. Upon contamination of food materials with this pathogen, increase in its antibiotic resistance rate can occur after exposure to preservatives, antibiotics, and stress conditions, which has now become another major public health concern emphasizing the need for special attention on its control along the food chain and management of the disease in the patients. This review provides an overview of researches with respect to the prevalence of Listeria spp., especially L. monocytogenes, in milk and dairy products, methods of their detection and typing, and current status of resistance rates to the antibiotics used for treatment of listeriosis.
Collapse
Affiliation(s)
- E. Shamloo
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H. Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- These authors contributed equally in this study
| | - Z. Abdi Moghadam
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Halberg Larsen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A. Haslberger
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - M. Alebouyeh
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- These authors contributed equally in this study
| |
Collapse
|
36
|
de Oliveira Elias S, Tombini Decol L, Tondo EC. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Susana de Oliveira Elias
- Departamento de Ciências dos Alimentos – Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Porto Alegre – RS – Brasil
| | - Luana Tombini Decol
- Departamento de Ciências dos Alimentos – Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Porto Alegre – RS – Brasil
| | - Eduardo Cesar Tondo
- Departamento de Ciências dos Alimentos – Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Porto Alegre – RS – Brasil
| |
Collapse
|
37
|
Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Foods in Turkey. J FOOD QUALITY 2018. [DOI: 10.1155/2018/7693782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was the determination of the prevalence and antibiotic resistance of L. monocytogenes in ready-to-eat (RTE) foods in Ankara, Turkey. In order to detect and isolate L. monocytogenes from 201 RTE food samples, the EN ISO 11290:1 method was used. All isolates were identified using the polymerase chain reaction. The strains were also confirmed by the detection of the hemolysin gene (hlyA). The overall prevalence of L. monocytogenes was 8.5% among the food samples. Seventeen L. monocytogenes strains were examined by the disk diffusion assay for their resistance to 23 antibiotics. All strains were susceptible to erythromycin, clarithromycin, streptomycin, gentamicin, vancomycin, imipenem, trimethoprim, and chloramphenicol, while all strains were resistant to nalidixic acid, ampicillin, penicillin G, linezolid, and clindamycin. The higher resistance was found against oxacillin (94.1%), kanamycin (76.5%), levofloxacin (70.6%), and teicoplanin (64.7%), followed by amoxicillin/clavulanic acid (53.0%), rifampicin (47.1%), and ciprofloxacin (35.3%). A lower incidence of resistance was observed against tetracycline (5.9%), meropenem (5.9%), and trimethoprim/sulfamethoxazole (17.7%). All isolates were multidrug resistant showing resistance to at least three antibiotic classes. High L. monocytogenes prevalence among analyzed RTE foods represents a high risk for public health. Our findings show a high prevalence of L. monocytogenes in RTE foods in Turkey. More effective control strategies for L. monocytogenes are needed to reduce both prevalence and resistance of L. monocytogenes in Turkish RTE foods.
Collapse
|
38
|
Oh H, Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Choi KH, Yoon Y. Prevalence, Serotype Diversity, Genotype and Antibiotic Resistance of Listeria monocytogenes Isolated from Carcasses and Human in Korea. Korean J Food Sci Anim Resour 2018; 38:851-865. [PMID: 30479494 PMCID: PMC6238023 DOI: 10.5851/kosfa.2018.e5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 11/22/2022] Open
Abstract
This study investigated the prevalence of Listeria monocytogenes in slaughterhouses, and determined serovars and genotypes, and antibiotic resistance of the isolates obtained from slaughterhouses and humans in Korea. Two hundred ninety samples were collected from feces (n=136), carcasses [n=140 (cattle: n=61, swine: n=79)], and washing water (n=14) in nine slaughterhouses. Eleven human isolates were obtained from hospitals and the Korea Center for Disease Control and Prevention. Listeria monocytogenes was enriched and identified, using polymerase chain reaction (PCR) and 16S rRNA sequencing. Serovars and presence of virulence genes were determined, and genetic correlations among the isolates were evaluated by the restriction digest patterns of AscI. Antibiotic resistance of L. monocytogenes isolates were examined against 12 different antibiotics. Of 290 slaughterhouse samples, 15 (5.17%) carcass samples were L. monocytogenes positive. Most L. monocytogenes isolates possessed all the virulence genes, while polymorphisms in the actA gene were found between carcass and human isolates. Serovars 1/2a (33.3%) and 1/2b (46.7%) were the most frequent in carcass isolates. Genetic correlations among the isolates from carcass and clinical isolates were grouped within serotypes, but there were low geographical correlations. Most L. monocytogenes isolates were antibiotic resistant, and some strains showed resistance to more than four antibiotics. These results indicate that L. monocytogenes are isolated from carcass and human in Korea, and they showed high risk serotypes and antibiotic resistance. Therefore, intensive attentions are necessary to be aware for the risk of L. monocytogenes in Korea.
Collapse
Affiliation(s)
- Hyemin Oh
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Sejeong Kim
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Soomin Lee
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Heeyoung Lee
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Jimyeong Ha
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Jeeyeon Lee
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Yukyung Choi
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of
Dentistry, Wonkwang University, Iksan 54538,
Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung
Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| |
Collapse
|
39
|
Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA. Emergence of Antibiotic Resistance in Listeria monocytogenes Isolated from Food Products: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 17:1277-1292. [PMID: 33350166 DOI: 10.1111/1541-4337.12387] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/07/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Listeria monocytogenes is an opportunistic pathogen that has been involved in several deadly illness outbreaks. Future outbreaks may be more difficult to manage because of the emergence of antibiotic resistance among L. monocytogenes strains isolated from food products. The present review summarizes the available evidence on the emergence of antibiotic resistance among L. monocytogenes strains isolated from food products and the possible ways this resistance has developed. Furthermore, the resistance of food L. monocytogenes isolates to antibiotics currently used in the treatment of human listeriosis such as penicillin, ampicillin, tetracycline, and gentamicin, has been documented. Acquisition of movable genetic elements is considered the major mechanism of antibiotic resistance development in L. monocytogenes. Efflux pumps have also been linked with resistance of L. monocytogenes to some antibiotics including fluoroquinolones. Some L. monocytogenes strains isolated from food products are intrinsically resistant to several antibiotics. However, factors in food processing chains and environments (from farm to table) including extensive or sub-inhibitory antibiotics use, horizontal gene transfer, exposure to environmental stresses, biofilm formation, and presence of persister cells play crucial roles in the development of antibiotic resistance by L. monocytogenes.
Collapse
Affiliation(s)
- Amin N Olaimat
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences, Hashemite Univ., P.O. Box 150459, Zarqa, 13115, Jordan
| | - Murad A Al-Holy
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences, Hashemite Univ., P.O. Box 150459, Zarqa, 13115, Jordan
| | - Hafiz M Shahbaz
- Dept. of Food Science and Human Nutrition, Univ. of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Anas A Al-Nabulsi
- Dept. of Nutrition and Food Technology, Jordan Univ. of Science and Technology, P.O. Box 3030, Irbid, Jordan
| | - Mahmoud H Abu Ghoush
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences, Hashemite Univ., P.O. Box 150459, Zarqa, 13115, Jordan
| | - Tareq M Osaili
- Dept. of Nutrition and Food Technology, Jordan Univ. of Science and Technology, P.O. Box 3030, Irbid, Jordan.,Dept. of Clinical Nutrition and Dietetics, College of Health Sciences, Univ. of Sharjah, Sharjah, United Arab Emirates
| | - Mutamed M Ayyash
- Dept. of Food Science, United Arab Emirates Univ., Al Ain, United Arab Emirates
| | - Richard A Holley
- Dept. of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, Univ. of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
40
|
Rasha IM, Mohamed AA, Heba MA. Virulence and antimicrobial susceptibility profile of Listeria monocytogenes isolated from frozen vegetables available in the Egyptian market. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajmr2018.8794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Lima MTNS, Santos LBD, Bastos RW, Nicoli JR, Takahashi JA. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi. Braz J Microbiol 2018; 49:169-176. [PMID: 28818332 PMCID: PMC5790575 DOI: 10.1016/j.bjm.2017.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/17/2017] [Indexed: 12/02/2022] Open
Abstract
Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66±5.98% and 15.38±1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62±3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91±3.90% (control) to 92.20±3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.
Collapse
Affiliation(s)
| | - Larissa Batista Dos Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, MG, Brazil
| | - Rafael Wesley Bastos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brazil
| | - Jacques Robert Nicoli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brazil
| | - Jacqueline Aparecida Takahashi
- Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, MG, Brazil.
| |
Collapse
|
42
|
Hudson JA, Frewer LJ, Jones G, Brereton PA, Whittingham MJ, Stewart G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Xu Y, Nagy A, Bauchan GR, Xia X, Nou X. Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa. AIMS Microbiol 2017; 3:774-783. [PMID: 31294188 PMCID: PMC6604966 DOI: 10.3934/microbiol.2017.4.774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023] Open
Abstract
In the natural environments microorganisms coexist in communities as biofilms. Since foodborne pathogens have varying abilities to form biofilms, investigation of bacterial interactions in biofilm formation may enhance our understanding of the persistence of these foodborne pathogens in the environment. Thus the objective of this study was to investigate the interactions between Listeria monocytogenes and Ralstonia insidiosa in dual species biofilms. Biofilm development after 24 h was measured using crystal violet in 96-well microtiter plate. Scanning electron microscopy and cell enumeration were employed after growth on stainless steel coupons. When compared with their single species counterparts, the dual species biofilms exhibited a significant increase in biofilm biomass. The number of L. monocytogenes in co-culture biofilms on stainless steel also increased significantly. However, there was no effect on the biofilm formation of L. monocytogenes when cultured with R. insidiosa separated by a semi-permeable membrane-linked compartment or cultured in R. insidiosa cell-free supernatant, indicating that direct cell-cell contact is critical for this interaction.
Collapse
Affiliation(s)
- Yunfeng Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.,USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA
| | - Attila Nagy
- USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA
| | - Gary R Bauchan
- USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangwu Nou
- USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA
| |
Collapse
|
44
|
Camargo AC, Woodward JJ, Call DR, Nero LA. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario. Foodborne Pathog Dis 2017; 14:623-636. [PMID: 28767285 DOI: 10.1089/fpd.2016.2274] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, utensils, floors, and drains, ultimately reaching final products by cross-contamination. This pathogen grows even under high salt conditions or refrigeration temperatures, remaining viable in various food products until the end of their shelf life. While the estimated incidence of listeriosis is lower than other enteric illnesses, infections caused by L. monocytogenes are more likely to lead to hospitalizations and fatalities. Despite the description of L. monocytogenes occurrence in Brazilian food-processing facilities and foods, there is a lack of consistent data regarding listeriosis cases and outbreaks directly associated with food consumption. Listeriosis requires rapid treatment with antibiotics and most drugs suitable for Gram-positive bacteria are effective against L. monocytogenes. Only a minority of clinical antibiotic-resistant L. monocytogenes strains have been described so far; whereas many strains recovered from food-processing facilities and foods exhibited resistance to antimicrobials not suitable against listeriosis. L. monocytogenes control in food industries is a challenge, demanding proper cleaning and application of sanitization procedures to eliminate this foodborne pathogen from the food-processing environment and ensure food safety. This review focuses on presenting the L. monocytogenes distribution in food-processing environment, food contamination, and control in the food industry, as well as the consequences of listeriosis to human health, providing a comparison of the current Brazilian situation with the international scenario.
Collapse
Affiliation(s)
- Anderson Carlos Camargo
- 1 Departamento de Veterinária, Universidade Federal de Viçosa , Viçosa, Minas Gerais, Brazil
| | | | - Douglas Ruben Call
- 3 Paul G. Allen School for Global Animal Health, Washington State University , Pullman, Washington
| | - Luís Augusto Nero
- 1 Departamento de Veterinária, Universidade Federal de Viçosa , Viçosa, Minas Gerais, Brazil
| |
Collapse
|
45
|
Braga V, Vázquez S, Vico V, Pastorino V, Mota MI, Legnani M, Schelotto F, Lancibidad G, Varela G. Prevalence and serotype distribution of Listeria monocytogenes isolated from foods in Montevideo-Uruguay. Braz J Microbiol 2017. [PMID: 28629969 PMCID: PMC5628299 DOI: 10.1016/j.bjm.2017.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to study the prevalence of Listeria monocytogenes in foods obtained in retail shops and food industries located in Montevideo-Uruguay, and to identify the serogroups of the obtained isolates. Three-thousand one-hundred and seventy-five food samples (frozen, deli meats, ready-to-eat and cheese) were analyzed. The obtained isolates were serogrouped by multiplex PCR and serotyped by conventional procedure. Genetic comparisons were performed using pulsed-field gel electrophoresis on a sub-set of isolates belonging to the same serotype successively recovered from the same establishment. L. monocytogenes was isolated from 11.2% of samples. The highest prevalence was observed in frozen foods (38%), followed by cheese (10%). 1/2b and 4b were the most frequently identified serotypes. In six of 236 analyzed establishments we successively recovered L. monocytogenes isolates belonging to the same serotype. Most of them corresponded to serotype 1/2b. Pulsed-field gel electrophoresis profiles suggest that at least 33% of L. monocytogenes 1/2b isolates are genetically related and that may remain viable for prolonged periods. The observed prevalence of L. monocytogenes was lower than reported in neighboring countries. Our findings highlight the role that frozen foods may play in the spread of this pathogen, and the relevance of serotypes 1/2b and 4b.
Collapse
Affiliation(s)
- Valeria Braga
- Laboratorio de Bromatología - Intendencia de Montevideo, Isla de Flores 1323, Montevideo, Uruguay; Departamento de Bacteriología y Virología - Instituto de Higiene, Facultad de Medicina - UdelaR, Montevideo, Uruguay
| | - Sylvia Vázquez
- Laboratorio de Bromatología - Intendencia de Montevideo, Isla de Flores 1323, Montevideo, Uruguay
| | - Victoria Vico
- Departamento de Bacteriología y Virología - Instituto de Higiene, Facultad de Medicina - UdelaR, Montevideo, Uruguay
| | - Valeria Pastorino
- Laboratorio de Bromatología - Intendencia de Montevideo, Isla de Flores 1323, Montevideo, Uruguay
| | - María Inés Mota
- Departamento de Bacteriología y Virología - Instituto de Higiene, Facultad de Medicina - UdelaR, Montevideo, Uruguay
| | - Marcela Legnani
- Laboratorio de Bromatología - Intendencia de Montevideo, Isla de Flores 1323, Montevideo, Uruguay
| | - Felipe Schelotto
- Departamento de Bacteriología y Virología - Instituto de Higiene, Facultad de Medicina - UdelaR, Montevideo, Uruguay
| | - Gustavo Lancibidad
- Laboratorio de Bromatología - Intendencia de Montevideo, Isla de Flores 1323, Montevideo, Uruguay
| | - Gustavo Varela
- Departamento de Bacteriología y Virología - Instituto de Higiene, Facultad de Medicina - UdelaR, Montevideo, Uruguay.
| |
Collapse
|