1
|
Thomson A, Rehn J, Yeung D, Breen J, White D. Deciphering IGH rearrangement complexity and detection strategies in acute lymphoblastic leukaemia. NPJ Precis Oncol 2025; 9:99. [PMID: 40185891 PMCID: PMC11971345 DOI: 10.1038/s41698-025-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Acute lymphoblastic leukaemia is a highly heterogeneous malignancy characterised by various genomic alterations that influence disease progression and therapeutic outcomes. Gene fusions involving the immunoglobulin heavy chain gene represent a complex and diverse category. These fusions often result in enhancer hijacking, upregulation of partner proto-oncogenes and contribute to leukemogenesis. This review highlights the mechanisms underlying IGH gene fusions, the critical role they play in ALL pathogenesis, and current detection technologies.
Collapse
Affiliation(s)
- Ashlee Thomson
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| | - Jacqueline Rehn
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - David Yeung
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Haematology Department, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, 5000, Australia
| | - James Breen
- Black Ochre Data Labs, Indigenous Genomics, The Kids Research Institute Australia, Adelaide, SA, 5000, Australia
- James Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - Deborah White
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, VIC, 3168, Australia.
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
| |
Collapse
|
2
|
Canichella M, De Fazio L, Molica M. Integrating Blinatumomab in the Frontline Treatment in B-Cell Acute Lymphoblastic Leukemia: A New Era in Therapeutic Management. J Clin Med 2025; 14:2055. [PMID: 40142863 PMCID: PMC11942861 DOI: 10.3390/jcm14062055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Blinatumomab, a bispecific T-cell engager (BiTE), has shown substantial efficacy in treating both relapsed/refractory (R/R) Philadelphia chromosome (Ph)-positive and Ph-negative acute lymphoblastic leukemia (ALL). With its targeted mechanism of action, favorable safety profile, and ability to induce deep molecular remissions, blinatumomab is increasingly incorporated into frontline treatment regimens for B-ALL. Recently, the Food and Drug Administration (FDA) has approved its use in the frontline setting for Ph-negative ALL. In Ph-negative ALL, combining blinatumomab with intensive chemotherapy has resulted in superior measurable residual disease (MRD) clearance and improved long-term outcomes. In Ph-positive ALL, combination therapies involving tyrosine kinase inhibitors (TKIs), particularly ponatinib and blinatumomab, are challenging the traditional approach of allogeneic hematopoietic stem cell transplantation (allo-SCT). This review explores the current evidence supporting the frontline use of blinatumomab in newly diagnosed adults with B-ALL, its impact on treatment paradigms, and potential future directions, including novel combination therapies and the role of emerging immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Laura De Fazio
- Department of Hematology-Oncology, Azienda Universitaria Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| | - Matteo Molica
- Department of Hematology-Oncology, Azienda Universitaria Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| |
Collapse
|
3
|
Walter W, Iacobucci I, Meggendorfer M. Diagnosis of acute lymphoblastic leukaemia: an overview of the current genomic classification, diagnostic approaches, and future directions. Histopathology 2025; 86:134-145. [PMID: 39403021 DOI: 10.1111/his.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
B-acute lymphoblastic leukaemia (B-ALL) is a haematological disease resulting from haematopoietic system dysfunction, leading to the unchecked growth of immature B lymphoblasts. The disease's complexity is underscored by the spectrum of genetic aberrations that underlie B-ALL entities, necessitating advanced genetic analyses for precise classification and risk determination. Prior to the adoption of next-generation sequencing into standard diagnostic practices, up to 30% of B-ALL cases were not assigned to specific entities due to the limitations of traditional diagnostic methods. The advent of comprehensive genomic analysis, especially whole-genome transcriptome sequencing, has significantly enhanced our understanding of B-ALL's molecular heterogeneity, paving the way for the exploration of novel, tailored treatment strategies. Furthermore, recent technological innovations, such as optical genome mapping, methylation profiling, and single-cell sequencing, have propelled forward the fields of cancer research and B-ALL management. These innovations introduce novel diagnostic approaches and prognostic markers, facilitating a deeper, more nuanced understanding of individual patient disease profiles. This review focuses on the latest diagnostic standards and assays for B-ALL, the importance of new technologies and biomarkers in enhancing diagnostic accuracy, and the expected role of innovative advancements in the future diagnosis and treatment of B-ALL.
Collapse
Affiliation(s)
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
4
|
Rammal S, Abou Abdallah F, Attieh C, El Mounajjed Z, Semaan W, Chebly A. Complex karyotypes in hematologic disorders: a 12-year single-center study from Lebanon. Front Oncol 2024; 14:1480793. [PMID: 39512772 PMCID: PMC11540823 DOI: 10.3389/fonc.2024.1480793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Conventional cytogenetic analysis is an important tool for the diagnosis of many hematologic disorders (HD). A karyotype is designed as « complex » when several alterations are detected. However, there is no clear consensus on the exact definition of a complex karyotype (CK), and there is a lack of studies that exclusively analyze CK in the literature. Complex karyotypes were analyzed over a period of 12 years at the Jacques Loiselet Center for Medical Genetics and Genomics (CGGM) at Saint Joseph University in Beirut (USJ) in Lebanon. 255 CK were analyzed with their associated chromosomal abnormalities (CA) detected. Out of 255 patients, 59.22% were males with a mean age of 59 years. The most common anomaly associated with CK was hyperdiploidy with a prevalence of 22.41%, which is different from a previously published study. To our knowledge, this represents the largest series of CK, particularly within the Middle East region. This study underscores the critical role of conventional cytogenetics in detecting CK, ultimately contributing to improved management of HD. Further investigations focusing on CK are needed.
Collapse
Affiliation(s)
- Souraya Rammal
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Farid Abou Abdallah
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Charbel Attieh
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Zeinab El Mounajjed
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Warde Semaan
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Alain Chebly
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| |
Collapse
|
5
|
Collins M, Gorgoglione R, Impedovo V, Pan X, Chakkarai S, Yi SS, Lodi A, Tiziani S. Exploration of the intracellular chiral metabolome in pediatric BCP-ALL: a pilot study investigating the metabolic phenotype of IgH locus aberrations. Front Oncol 2024; 14:1413264. [PMID: 39161381 PMCID: PMC11332069 DOI: 10.3389/fonc.2024.1413264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/13/2024] [Indexed: 08/21/2024] Open
Abstract
Background and aims Aberrations in the immunoglobulin heavy chain (IgH) locus are associated with poor prognosis in pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) patients. The primary objective of this pilot study is to enhance our understanding of the IgH phenotype by exploring the intracellular chiral metabolome. Materials and methods Leukemia cells were isolated from the bone marrow of BCP-ALL pediatric patients at diagnosis. The samples' metabolome and transcriptome were characterized using untargeted chiral metabolomic and next-generation sequencing transcriptomic analyses. Results For the first time D- amino acids were identified in the leukemic cells' intracellular metabolome from the bone marrow niche. Chiral metabolic signatures at diagnosis was indicative of a resistant phenotype. Through integrated network analysis and Pearson correlation, confirmation was obtained regarding the association of the IgH phenotype with several genes linked to poor prognosis. Conclusion The findings of this study have contributed to the understanding that the chiral metabolome plays a role in the poor prognosis observed in an exceptionally rare patient cohort. The findings include elevated D-amino acid incorporation in the IgH group, the emergence of several unknown, potentially enantiomeric, metabolites, and insights into metabolic pathways that all warrant further exploration.
Collapse
Affiliation(s)
- Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ruggiero Gorgoglione
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Valeria Impedovo
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Sathyaseelan Chakkarai
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - S. Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Interdisciplinary Life Sciences Graduate Programs, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Sathitsamitphong L, Chitapanarux I, Srikummoon P, Thongsak N, Nakharutai N, Thumronglaohapun S, Supasri T, Hemwan P, Traisathit P. Ambient air pollution as a time-varying covariate in the survival probability of childhood cancer patients in the upper Northern Thailand. PLoS One 2024; 19:e0303182. [PMID: 38728338 PMCID: PMC11086912 DOI: 10.1371/journal.pone.0303182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
The objective of this study is to determine the possible association between exposure to air pollution and the risk of death from cancer during childhood in upper northern Thailand. Data were collected on children aged 0-15 years old diagnosed with cancer between January 2003 and December 2018 from the Chiang Mai Cancer Registry. Survival rates were determined by using Kaplan-Meier curves. Cox proportional hazard models were used to investigate associations of potential risk factors with the time-varying air pollution level on the risk of death. Of the 540 children with hematologic cancer, 199 died from any cause (overall mortality rate = 5.3 per 100 Person-Years of Follow-Up (PYFU); 95%CI = 4.6-6.0). Those aged less than one year old (adjusted hazard ratio [aHR] = 2.07; 95%CI = 1.25-3.45) or ten years old or more (aHR = 1.41; 95%CI = 1.04-1.91) at the time of diagnosis had a higher risk of death than those aged one to ten years old. Those diagnosed between 2003 and 2013 had an increased risk of death (aHR = 1.65; 95%CI = 1.13-2.42). Of the 499 children with solid tumors, 214 died from any cause (5.9 per 100 PYFU; 95%CI = 5.1-6.7). Only the cancer stage remained in the final model, with the metastatic cancer stage (HR = 2.26; 95%CI = 1.60-3.21) and the regional cancer stage (HR = 1.53; 95%CI = 1.07-2.19) both associated with an increased risk of death. No association was found between air pollution exposure and all-cause mortality for either type of cancer. A larger-scale analytical study might uncover such relationships.
Collapse
Affiliation(s)
| | - Imjai Chitapanarux
- Northern Thai Research Group of Therapeutic Radiology and Oncology (NTRG-TRO), Divisions of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Ahmad A, Dwivedi A, Tomar S, Anand A, Verma RK, Rani A, Diwan RK. Chromosomal Variations and Clinical Features of Acute Lymphoblastic Leukemia in the North Indian Population: A Cross-Sectional Study. Cureus 2024; 16:e60451. [PMID: 38883069 PMCID: PMC11179710 DOI: 10.7759/cureus.60451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The key prognostic markers in acute lymphoblastic leukemia (ALL) include age, leukocyte count upon diagnosis, immunophenotype, and chromosomal abnormalities. Furthermore, there was a correlation between cytogenetic anomalies and specific immunologic phenotypes of ALL, which in turn had varied outcomes. The objective of this study was to examine the occurrence of cytogenetic abnormalities in individuals diagnosed with acute lymphoblastic leukemia. METHODS The study employed a cross-sectional design to investigate genetic evaluation and clinical features in 147 ALL patients between March 2021 and August 2022. Demographic data (like age and sex), clinical manifestations, and hematological parameters were collected. Cytogenetic analysis (G-banding) was performed to identify chromosomal abnormalities. The mean±SD and analysis of variance (ANOVA) were used to assess associations and differences among variables using SPSS Version 24 (IBM Corp., Armonk, NY, USA). RESULTS The study shows male n=85 and female n=62 in ALL patients, with prevalent clinical manifestations: fever n=100 (68.03%), pallor n=123 (83.67%), and lymphadenopathy n=65 (44.22%). The hematological parameters like hemoglobin (Hb) (6.14±2.5 g/dl), total leukocyte count (TLC) (1.7±1.05 cell/mm3), and platelet count (1.2±0.11 lac/mm3) show a significant variation (P<0.05) in patients aged 30-50 years. In addition, chromosomal abnormalities, particularly 46, XX, t(9;22), were prevalent, emphasizing the genetic heterogeneity of ALL. CONCLUSION The study shows a male predominance with ALL, prevalent clinical manifestations, and significant hematological parameter variations in the 30-50 age group. Chromosomal abnormalities, notably 46, XX, t(9;22), underscore the genetic complexity of the disease, which necessitates tailored therapeutic interventions informed by genetic profiles.
Collapse
Affiliation(s)
- Anam Ahmad
- Anatomy, King George's Medical University, Lucknow, IND
| | - Alka Dwivedi
- Clinical Hematology, King George's Medical University, Lucknow, IND
| | - Sushma Tomar
- Anatomy, King George's Medical University, Lucknow, IND
| | - Akriti Anand
- Anatomy, King George's Medical University, Lucknow, IND
| | | | - Archana Rani
- Anatomy, King George's Medical University, Lucknow, IND
| | | |
Collapse
|
8
|
Aldoss I, Clark MC, Wang X, Forman SJ. Leveraging CD19CAR T cells early in the treatment of older patients with B-ALL: are we there yet? Leuk Lymphoma 2024; 65:440-448. [PMID: 38179704 DOI: 10.1080/10428194.2023.2298712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Older adults (≥55 years old) with B-cell acute lymphoblastic leukemia (B-ALL) have dismal outcomes with standard chemotherapy as the result of low treatment efficacy and considerable risks for treatment-related morbidity and mortality. There has been a recent success with the introduction of novel therapies, such as blinatumomab and inotuzumab, in the frontline therapeutic paradigm in older adults with B-ALL. However, these agents have their own challenges including the limited durability of remission, the need for additional concurrent chemotherapy and the prolonged course of treatment, and limited efficacy in the setting of extramedullary disease. Here, we hypothesize that the incorporation of chimeric antigen receptor (CAR) T cell therapy as a consolidation treatment in older adults with B-cell ALL in their first complete remission is the ideal setting to advance treatment outcomes by reducing treatment toxicity, enhancing remission durability, and expanding the use of this effective therapy in this age population.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Hematological Malignancies Research Institute, Duarte, CA, USA
- Gehr Family Center for Leukemia Research, Duarte, CA, USA
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Mary Caroline Clark
- Hematological Malignancies Research Institute, Duarte, CA, USA
- Department of Clinical and Translational Project Development, Duarte, CA, USA
| | - Xiuli Wang
- Hematological Malignancies Research Institute, Duarte, CA, USA
- T Cell Therapeutic Research Laboratories, City of Hope, Duarte, CA, USA
| | - Stephen Joel Forman
- Hematological Malignancies Research Institute, Duarte, CA, USA
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, CA, USA
- T Cell Therapeutic Research Laboratories, City of Hope, Duarte, CA, USA
| |
Collapse
|
9
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
10
|
Yoon JH, Lee S. Diagnostic and therapeutic advances in adults with acute lymphoblastic leukemia in the era of gene analysis and targeted immunotherapy. Korean J Intern Med 2024; 39:34-56. [PMID: 38225824 PMCID: PMC10790045 DOI: 10.3904/kjim.2023.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most rapidly changing hematological malignancies with advanced understanding of the genetic landscape, detection methods of minimal residual disease (MRD), and the development of immunotherapeutic agents with good clinical outcomes. The annual incidence of adult ALL in Korea is 300-350 patients per year. The WHO classification of ALL was revised in 2022 to reflect the molecular cytogenetic features and suggest new adverse- risk subgroups, such as Ph-like ALL and ETP-ALL. We continue to use traditional adverse-risk features and cytogenetics, with MRD-directed post-remission therapy including allogeneic hematopoietic cell transplantation. However, with the introduction of novel agents, such as ponatinib, blinatumomab, and inotuzumab ozogamicin incorporated into frontline therapy, good MRD responses have been achieved, and overall survival outcomes are improving. Accordingly, some clinical trials have suggested a possible era of chemotherapy-free or transplantation-free approaches in the near future. Nevertheless, relapse of refractory ALL still occurs, and some poor ALL subtypes, such as Ph-like ALL and ETP-ALL, are unsolved problems for which novel agents and treatment strategies are needed. In this review, we summarize the currently applied diagnostic and therapeutic practices in the era of advanced genetic analysis and targeted immunotherapies in United States and Europe and introduce real-world Korean data.
Collapse
Affiliation(s)
- Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Molina O, Ortega-Sabater C, Thampi N, Fernández-Fuentes N, Guerrero-Murillo M, Martínez-Moreno A, Vinyoles M, Velasco-Hernández T, Bueno C, Trincado JL, Granada I, Campos D, Giménez C, Boer JM, den Boer ML, Calvo GF, Camós M, Fuster JL, Velasco P, Ballerini P, Locatelli F, Mullighan CG, Spierings DCJ, Foijer F, Pérez-García VM, Menéndez P. Chromosomal instability in aneuploid acute lymphoblastic leukemia associates with disease progression. EMBO Mol Med 2024; 16:64-92. [PMID: 38177531 PMCID: PMC10897411 DOI: 10.1038/s44321-023-00006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.
Collapse
Affiliation(s)
- Oscar Molina
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Carmen Ortega-Sabater
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Namitha Thampi
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Narcís Fernández-Fuentes
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mercedes Guerrero-Murillo
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Alba Martínez-Moreno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Talía Velasco-Hernández
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan L Trincado
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Isabel Granada
- Hematology Service, Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Badalona, Spain
- Josep Carreras Leukemia Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | - Judith M Boer
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L den Boer
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Gabriel F Calvo
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mireia Camós
- Hematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumor Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose-Luis Fuster
- Pediatric Hematology and Oncology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Paola Ballerini
- AP-HP, Service of Pediatric Hematology, Hopital Armand Trousseau, Paris, France
| | - Franco Locatelli
- Bambino Gesù Children's Hospital, Catholic University of Sacred Heart, Rome, Italy
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Víctor M Pérez-García
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Biomedicine. School of Medicine, University of Barcelona, Barcelona, Spain.
- Spanish Cancer Research Network (CIBERONC), ISCIII, Barcelona, Spain.
| |
Collapse
|
12
|
Pourhassan H, Agrawal V, Pullarkat V, Aldoss I. Positioning blinatumomab in the frontline of adult B-cell acute lymphoblastic leukemia treatment. Front Oncol 2023; 13:1237031. [PMID: 37664035 PMCID: PMC10470626 DOI: 10.3389/fonc.2023.1237031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Blinatumomab is a bispecific T cell engager that has shown efficacy in relapsed/refractory Philadelphia chromosome (Ph)-positive and Ph-negative acute lymphoblastic leukemia (ALL). Considering its favorable safety and activity in advanced ALL, blinatumomab as a targeted immunotherapy is fast gaining a frontline position in the ALL treatment paradigm. There have been multiple completed and ongoing studies showing significant promise with improved response rates and survival outcomes and decreased treatment toxicity and need for multi-agent chemotherapy regimens. The early use of blinatumomab has established success in Ph-negative and Ph-positive B-ALL, and this has extended to older adults with ALL who have historically had substantially inferior outcomes compared to their pediatric and young adult counterparts. Herein we will review the current data describing the early use of blinatumomab in newly diagnosed adults with B-cell ALL and future directions.
Collapse
Affiliation(s)
| | | | | | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
13
|
Gaidzik VI, Paschka P, Schlenk RF, Weber D, Fröhling S, Krämer A, Wäsch R, Westermann J, Mayer K, de Wit M, Fiedler W, Benner A, Heuser M, Thol F, Döhner K, Ganser A, Döhner H. Palbociclib in Acute Leukemias With KMT2A-rearrangement: Results of AMLSG 23-14 Trial. Hemasphere 2023; 7:e877. [PMID: 37101762 PMCID: PMC10125418 DOI: 10.1097/hs9.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023] Open
Affiliation(s)
- Verena I. Gaidzik
- Universitätsklinikum Ulm, Klinik für Innere Medizin III, Ulm, Germany
| | - Peter Paschka
- Universitätsklinikum Ulm, Klinik für Innere Medizin III, Ulm, Germany
- Klinikum der Stadt Ludwigshafen, Klinik für Innere Medizin, Hämato-Onkologie, Nephrologie Infektiologie und Rheumatologie, Ludwigshafen am Rhein, Germany
| | - Richard F. Schlenk
- Universitätsklinikum Heidelberg, Klinik für Hämatologie, Onkologie, Rheumatologie, Heidelberg, Germany
| | - Daniela Weber
- Universitätsklinikum Ulm, Klinik für Innere Medizin III, Ulm, Germany
| | - Stefan Fröhling
- Deutsches Krebsforschungszentrum (DKFZ)/Nationales Centrum für Tumorerkrankungen (NCT) Translationale Medizinische Onkologie, Heidelberg, Germany
| | - Alwin Krämer
- Universitätsklinikum Heidelberg, Klinik für Hämatologie, Onkologie, Rheumatologie, Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Klinische Kooperationseinheit Molekulare Hämatologie/Onkologie, Heidelberg, Germany
| | - Ralph Wäsch
- Universitätsklinikum Freiburg, Klinik für Innere Medizin I, Freiburg, Germany
| | - Jörg Westermann
- Charité-Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie | Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Karin Mayer
- Universitätsklinikum Bonn, Medizinische Klinik III für Hämatologie-Onkologie, Bonn, Germany
| | - Maike de Wit
- Vivantes Klinikum Neukölln, Innere Medizin - Hämatologie, Onkologie und Palliativmedizin, Berlin, Germany
| | - Walter Fiedler
- Universitätsklinikum Hamburg-Eppendorf, II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Hamburg, Germany
| | - Axel Benner
- Deutsches Krebsforschungszentrum (DKFZ), Abteilung Biostatistik, Heidelberg, Germany
| | - Michael Heuser
- Medizinische Hochschule Hannover, Klinik für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Hannover, Germany
| | - Felicitas Thol
- Medizinische Hochschule Hannover, Klinik für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Hannover, Germany
| | - Konstanze Döhner
- Universitätsklinikum Ulm, Klinik für Innere Medizin III, Ulm, Germany
| | - Arnold Ganser
- Medizinische Hochschule Hannover, Klinik für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Hannover, Germany
| | - Hartmut Döhner
- Universitätsklinikum Ulm, Klinik für Innere Medizin III, Ulm, Germany
| |
Collapse
|
14
|
Pombo-de-Oliveira MS, Petridou ET, Karalexi MA, Junqueira MER, Braga FHP, Bouzas LF, Murra GRC, Lopes LF, Ntzani E, Greaves M. The Interplay of Cesarean-Section Delivery and First-Birth Order as Risk Factors in Acute Lymphoblastic Leukemia. Cancer Epidemiol Biomarkers Prev 2023; 32:371-379. [PMID: 36525650 DOI: 10.1158/1055-9965.epi-22-0664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has been associated with early-life exposures, including birth by cesarean section (C-section), and a deficit of social exposure (first child). These exposures as proxies for microbiome acquisition in infancy are essential to prime the immune system and restrain later dysregulated immune responses that can trigger ALL in susceptible individuals. We tested risk factors pertaining to immune stimulation that may impact BCP-ALL development. METHODS Cases comprised 1,126 children (0-12 years) with ALL (BCP-ALL: 78.5%) from the EMiLI study group in Brazil (2002-2020). Age- and sex-matched controls (n = 2,252) were randomly selected from healthy children whose mothers participated in the National Placental and Umbilical Cord Blood Bank donation. Multiple logistic regression was run fitted and adjusted for selected covariates models. RESULTS C-section delivery was associated with increased risk for ALL [odds ratio (OR) ALL: 1.10; 95% confidence intervals (CI), 1.04-1.15; ORBCP-ALL: 1.09; 95% CI, 1.03-1.14], as well as being the firstborn child. Interaction analysis showed a significant effect of first birth on the observed C-section associations (P < 0.0001). Indeed, high-risk children, namely, firstborn children delivered via C-section were at increased risk for ALL (OR: 2.33; 95% CI, 2.40-4.84) compared with non-first, vaginally born children. An increased risk was found for firstborn children delivered by C-section and non-breastfed with ALL (ORALL: 2.32; 95% CI, 1.27-4.24; ORBCP-ALL: 2.37; 95% CI, 1.18-4.76). CONCLUSIONS Our observations are in accord with the prediction that exposures determining microbiome composition and adrenal pathway in infancy contribute to the risk of BCP-ALL. IMPACT These findings encourage the exploration of potential preventive interventions. See related commentary by Wiemels and Gallant, p. 292.
Collapse
Affiliation(s)
| | - Eleni Th Petridou
- Hellenic Society for Social Pediatrics and Health Promotion, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria A Karalexi
- Hellenic Society for Social Pediatrics and Health Promotion, Athens, Greece
| | | | | | - Luis Fernando Bouzas
- National Placental and Umbilical Cord Blood Bank, INCA, MS, Rio de Janeiro, Brazil
| | | | - Luiz Fernando Lopes
- Children's Cancer Hospital, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Center for Evidence Synthesis in Health, Brown University School of Public Health, Providence, Rhode Island
| | - Mel Greaves
- Center for Evolution and Cancer, Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
15
|
Asparaginase: How to Better Manage Toxicities in Adults. Curr Oncol Rep 2023; 25:51-61. [PMID: 36449117 DOI: 10.1007/s11912-022-01345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW This review aims to help oncologists who predominantly treat adults better understand and manage asparaginase associated toxicities and prevent unnecessary discontinuation or reluctance of its use. RECENT FINDINGS Given the data supporting the benefit of incorporating multiple doses of asparaginase in pediatric type regimens, it is prudent to promote deeper understanding of this drug, particularly its toxicities, and its use so as to optimize treatment of ALL. Although asparaginase is associated with a variety of toxicities, the vast majority are not life threatening and do not preclude repeat dosing of this important drug. Understanding the pharmacology and toxicity profile of asparaginase is critical to dosing asparaginase appropriately in order to minimize these toxicities.
Collapse
|
16
|
Noronha EP, Ferreira PMS, Andrade FG, Blunck CB, Camargo R, Gimba ERP, Pombo-de-Oliveira MS, Terra-Granado E. Multiparametric flow cytometry directing the evaluation of CRLF2 rearrangements and JAK2 status in pediatric B cell precursor acute lymphoblastic leukemia. Hematol Transfus Cell Ther 2022:S2531-1379(22)00098-0. [DOI: 10.1016/j.htct.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
|
17
|
Total marrow and lymphoid irradiation as conditioning in haploidentical transplant with posttransplant cyclophosphamide. Blood Adv 2022; 6:4098-4106. [PMID: 35838754 PMCID: PMC9327543 DOI: 10.1182/bloodadvances.2022007264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
TMLI at 2000 cGy for HaploHCT with PTCy was determined to be safe in patients with high-risk leukemia and MDS. At 2000 cGy, a 1-year relapse rate of 17% was achieved without increasing GVHD or transplant-related mortality.
Posttransplant cyclophosphamide (PTCy) platform has shown low rates of graft-versus-host disease (GVHD) and nonrelapse mortality (NRM) after haploidentical hematopoietic cell transplantation (HaploHCT). However, because of the limited disease control, relapse rate remains a major cause of treatment failure in high-risk patients. Total marrow and lymphoid irradiation (TMLI) allows for delivery of high radiation to bone marrow and other targeted structures, without increasing off-target radiation exposure and toxicity to end organs. In this phase 1 trial, 31 patients with high-risk and/or active primary refractory leukemias or myelodysplastic syndrome underwent peripheral blood stem cell HaploHCT with TMLI, fludarabine, and cyclophosphamide as the conditioning regimen. Radiation dose was escalated in increments of 200 cGy (1200-2000 cGy). GVHD prophylaxis was PTCy with tacrolimus/mycophenolate mofetil. Grade 2 toxicities by the Bearman scale were mucositis (n = 1), hepatic (n = 3), gastrointestinal (n = 5), and cardiac (n = 2). One patient (1800 cGy) experienced grade 3 pulmonary toxicity (dose-limiting toxicity). At a follow-up duration of 23.9 months for the whole cohort; 2-year NRM was 13%. Cumulative incidence of day 100 grade 2 to 4 and 3 to 4 acute GVHD was 52% and 6%, respectively. Chronic GVHD at 2 years was 35%. For patients treated with 2000 cGy, with a median follow-up duration of 12.3 months, 1-year relapse/progression, progression-free survival, and overall survival rates were 17%, 74%, and 83%, respectively. In conclusion, HaploHCT-TMLI with PTCy was safe and feasible in our high-risk patient population with promising outcomes.
Collapse
|
18
|
Felice MS, Rubio PL, Digiorge J, Barreda Frank M, Martínez CS, Guitter MR, Sajaroff EO, Sánchez La Rosa CG, Pennella CL, Peruzzo LB, Deu MA, Alfaro EM, Guardia MC, Gutierrez G, Fernández Barbieri MA, Recondo E, Vides Herrera MS, Livio V, Arnaiz C, Romero C, Alonso CN, Rossi JG. Impact of IKZF1 Deletions in the Prognosis of Childhood Acute Lymphoblastic Leukemia in Argentina. Cancers (Basel) 2022; 14:cancers14133283. [PMID: 35805054 PMCID: PMC9266042 DOI: 10.3390/cancers14133283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
An association of deletions in the IKZF1 gene (IKZF1del) with poor prognosis in acute lymphoblastic leukemia (ALL) has been demonstrated. Additional deletions in other genes (IKZF1plus) define different IKZF1del subsets. We analyzed the influence of IKZF1del and/or IKZF1plus in the survival of children with ALL. From October 2009 to July 2021, 1055 bone marrow samples from patients with ALL were processed by Multiplex ligation-dependent probe amplification (MLPA). Of them, 28 patients died during induction and 4 were lost-in-follow-up, resulting in an eligible 1023 cases. All patients were treated according to ALLIC-BFM-2009-protocol. Patients were classified into three subsets: IKZF1not-deleted (IKZFF1not-del), IKZF1deleted (IKZF1del) and IKZF1del plus deletion of PAX5, CDKN2A, CDKN2B and/or alterations in CRLF2 with ERG-not-deleted (IKZF1plus). The LFSp and SE were calculated with the Kaplan−Meier calculation and compared with a log-rank test. From the 1023 eligible patients, 835 (81.6%) were defined as IKZF1not-del, 94 (9.2%) as IKZF1del and 94 (9.2%) as IKZF1plus. Of them, 100 (9.8%) corresponded to Standard-Risk (SRG), 629 (61.5%) to Intermediate-Risk (IRG) and 294 (28.7%) to High-Risk (HRG) groups. LFSp(SE) was 7 5(2)% for IKZF1not-del, 51 (6)% for IKZF1del and 48 (6)% for IKZF1plus (p-value < 0.00001). LFSp(SE) according to the risk groups was: in SRG, 91 (4)% for IKZF1not-del, 50 (35)% IKZF1del and 100% IKZF1plus (p-value = ns); in IRG, 77 (2)% IKZF1not-del, 61 (10)% IKZF1del and 54 (7)% IKZF1plus (p-value = 0.0005) and in HRG, 61 (4)% IKZF1not-del, 38 (8)% IKZF1del and 35 (9)% IKZF1plus (p-value = 0.0102). The IKZF1 status defines a population of patients with a poor outcome, mainly in IRG. No differences were observed between IKZF1del versus IKZF1plus. MLPA studies should be incorporated into the risk-group stratification of pediatric ALL.
Collapse
Affiliation(s)
- María Sara Felice
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
- Correspondence:
| | - Patricia Laura Rubio
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Jorge Digiorge
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Mariángeles Barreda Frank
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Celeste Sabrina Martínez
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Myriam Ruth Guitter
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Elisa Olga Sajaroff
- Immunology and Rheumatology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (E.O.S.); (J.G.R.)
| | - Cristian Germán Sánchez La Rosa
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Carla Luciana Pennella
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Luisina Belén Peruzzo
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - María Alejandra Deu
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - Elizabeth Melania Alfaro
- Hematology and Oncology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (P.L.R.); (J.D.); (M.B.F.); (C.S.M.); (M.R.G.); (C.G.S.L.R.); (C.L.P.); (L.B.P.); (M.A.D.); (E.M.A.)
| | - María Constanza Guardia
- Hematology and Oncology Department, Hospital del Niño Jesús, San Miguel de Tucumán, Tucumán 4000, Argentina;
| | - Gladys Gutierrez
- Hematology and Oncology Department, Hospital Juan Pablo II, Corrientes 1435, Argentina;
| | | | - Ezequiel Recondo
- Hematology and Oncology Department, Hospital Nacional de Clínicas San Martín, Buenos Aires 1245, Argentina;
| | | | - Vanina Livio
- Hematology and Oncology Department, Hospital Avelino Castelán, Resistencia, Chaco 3508, Argentina;
| | - Constanza Arnaiz
- Hematology and Oncology Department, Hospital de Niños Castro Rendón, Neuquén 8300, Argentina;
| | - Carolina Romero
- Hematology and Oncology Department, Hospital Alexander Fleming OSEP, Mendoza 5500, Argentina;
| | - Cristina Noemi Alonso
- Area of Specialized Laboratories, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires 1245, Argentina;
| | - Jorge Gabriel Rossi
- Immunology and Rheumatology Department, Hospital de Pediatría Juan P. Garrahan, Buenos Aires 1245, Argentina; (E.O.S.); (J.G.R.)
| |
Collapse
|
19
|
Gagnon MF, Smadbeck JB, Sharma N, Blackburn PR, Demasi Benevides J, Akkari YMN, Jaroscak JJ, Znoyko I, Wolff DJ, Schandl CA, Meyer R, Greipp PT, Xu X, Hoppman NL, Ketterling RP, Peterson JF, Baughn LB. Apparent coexistence of ETV6::RUNX1 and KMT2A::MLLT3 fusions due to a nonproductive KMT2A rearrangement in B-ALL. Leuk Lymphoma 2022; 63:2243-2246. [DOI: 10.1080/10428194.2022.2064991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marie-France Gagnon
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - James B. Smadbeck
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Neeraj Sharma
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | | | - Jonna Demasi Benevides
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer J. Jaroscak
- Division of Pediatric Hematology-Oncology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Iya Znoyko
- Department of Pathology and Laboratory Medicine, Division of Cytogenetics and Genomics, Medical University of South Carolina, Charleston, SC, USA
| | - Daynna J. Wolff
- Department of Pathology and Laboratory Medicine, Division of Cytogenetics and Genomics, Medical University of South Carolina, Charleston, SC, USA
| | - Cynthia A. Schandl
- Department of Pathology and Laboratory Medicine, Division of Cytogenetics and Genomics, Medical University of South Carolina, Charleston, SC, USA
| | - Reid Meyer
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Patricia T. Greipp
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Xinjie Xu
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Nicole L. Hoppman
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Rhett P. Ketterling
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Jess F. Peterson
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Linda B. Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Bang B, Eisfeldt J, Barbany G, Harila-Saari A, Heyman M, Zachariadis V, Taylan F, Nordgren A. A somatic UBA2 variant preceded ETV6-RUNX1 in the concordant BCP-ALL of monozygotic twins. Blood Adv 2022; 6:2275-2289. [PMID: 34982829 PMCID: PMC9006272 DOI: 10.1182/bloodadvances.2021005703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Genetic analysis of leukemic clones in monozygotic twins with concordant acute lymphoblastic leukemia (ALL) has proved a unique opportunity to gain insight into the molecular phylogenetics of leukemogenesis. Using whole-genome sequencing, we characterized constitutional and somatic single nucleotide variants/insertion-deletions (indels) and structural variants in a monozygotic twin pair with concordant ETV6-RUNX1+ B-cell precursor ALL (BCP-ALL). In addition, digital PCR (dPCR) was applied to evaluate the presence of and quantify selected somatic variants at birth, diagnosis, and remission. A shared somatic complex rearrangement involving chromosomes 11, 12, and 21 with identical fusion sequences in leukemias of both twins offered direct proof of a common clonal origin. The ETV6-RUNX1 fusion detected at diagnosis was found to originate from this complex rearrangement. A shared somatic frameshift deletion in UBA2 was also identified in diagnostic samples. In addition, each leukemia independently acquired analogous deletions of 3 genes recurrently targeted in BCP-ALLs (ETV6, ATF7IP, and RAG1/RAG2), providing evidence of a convergent clonal evolution only explained by a strong concurrent selective pressure. Quantification of the UBA2 deletion by dPCR surprisingly indicated it persisted in remission. This, for the first time to our knowledge, provided evidence of a UBA2 variant preceding the well-established initiating event ETV6-RUNX1. Further, we suggest the UBA2 deletion exerted a leukemia predisposing effect and that its essential role in Small Ubiquitin-like Modifier (SUMO) attachment (SUMOylation), regulating nearly all physiological and pathological cellular processes such as DNA-repair by nonhomologous end joining, may hold a mechanistic explanation for the predisposition.
Collapse
Affiliation(s)
- Benedicte Bang
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Arja Harila-Saari
- Department of Women’s and Children’s Health, Uppsala University Hospital, Uppsala, Sweden
| | - Mats Heyman
- Department of Women’s and Children’s Health, Karolinska University Hospital Solna, Stockholm, Sweden; and
| | - Vasilios Zachariadis
- Department of Oncology-Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
22
|
Arpas T, Jelinkova H, Hrabovsky S, Orsulova M, Vrzalova Z, Navrkalova V, Brhelova E, Bryjova L, Bulikova A, Ondrouskova E, Sejnohova M, Folber F, Sedová P, Mayer J, Pospisilova S, Jarosova M, Doubek M. Very rare near-haploid acute lymphoblastic leukemia resistant to immunotherapy and CAR-T therapy in 19-year-old male patient. Clin Case Rep 2022; 10:e05545. [PMID: 35280086 PMCID: PMC8894580 DOI: 10.1002/ccr3.5545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 02/06/2022] [Indexed: 02/02/2023] Open
Abstract
Near-haploid acute lymphoblastic leukemia is rare subgroup of the disease, which is very important due to very poor prognosis and resistance to treatment including novel monoclonal antibodies and CAR-T therapy.
Collapse
Affiliation(s)
- Tomas Arpas
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Hana Jelinkova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Stepan Hrabovsky
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Martina Orsulova
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Zuzana Vrzalova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzechia
| | - Veronika Navrkalova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Eva Brhelova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Lenka Bryjova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Alena Bulikova
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Department of Clinical HematologyUniversity HospitalBrnoCzechia
| | - Eva Ondrouskova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Marketa Sejnohova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Frantisek Folber
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Petra Sedová
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Sarka Pospisilova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzechia
- Department of Medical Genetics and GenomicsUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Marie Jarosova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Department of Medical Genetics and GenomicsUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzechia
- Department of Medical Genetics and GenomicsUniversity Hospital and Faculty of MedicineBrnoCzechia
| |
Collapse
|
23
|
Mroczkowska A, Jaźwiec B, Urbańska-Rakus J, Szymanowska S, Tessmann A, Pająk S, Machnik K, Haus O, Wróbel T. A case report of pediatric acute lymphoblastic leukemia with e8a2 BCR/ABL1 fusion transcript. BMC Med Genomics 2022; 15:20. [PMID: 35123463 PMCID: PMC8818218 DOI: 10.1186/s12920-022-01169-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background Acute lymphoblastic leukemia is the most common type of cancer in children. Most often it affects the age group between 2 and 5 years of age. Studies have shown an improvement in general survivability, more than 90% 5-year overall survival (OS). Current treatment protocols for acute lymphoblastic leukemia require verification of the presence of favorable and unfavorable genetic abnormalities, which help qualify patients to the appropriate risk group and select a more suitable treatment. The presence of the BCR/ABL1 fusion gene stratifies the patient into a high-risk group and requires special treatment with tyrosine kinase inhibitors (TKI). The three dominant mRNA transcripts are e1a2, e13a2, and e14a2. Nevertheless, cases of atypical BCR/ABL1 transcripts have also been reported. Case presentation This paper presents the case of a pediatric patient with Ph + B-cell precursor acute lymphoblastic leukemia with rare atypical e8a2 BCR/ABL1 fusion transcript. Our patient achieved complete remission after 33 days of treatment. Molecular and cytogenetic studies in TP1 did not reveal the presence of the BCR/ABL1 transcript. The PCR-MRD test in TP1b was negative, the patient did not require hematopoietic stem cell transplantation. Conclusion Genetic evaluation of the bone marrow sample is crucial in the initial stage of the diagnosis. Fluorescent in situ hybridization and reverse transcriptase polymerase chain reaction with Sanger sequencing are the appropriate methods used in the detection of rare variants of BCR/ABL1 transcripts.
Collapse
|
24
|
Vettenranta K, Dobsinska V, Kertész G, Svec P, Buechner J, Schultz KR. What Is the Role of HSCT in Philadelphia-Chromosome-Positive and Philadelphia-Chromosome-Like ALL in the Tyrosine Kinase Inhibitor Era? Front Pediatr 2022; 9:807002. [PMID: 35186828 PMCID: PMC8848997 DOI: 10.3389/fped.2021.807002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Previously, the outcome of paediatric Philadelphia-chromosome-positive (Ph+) ALL treated with conventional chemotherapy alone was poor, necessitating the use of haematopoietic stem cell transplantation (HSCT) for the best outcomes. The recent addition of tyrosine kinase inhibitors (TKIs) alongside the chemotherapy regimens for Ph+ ALL has markedly improved outcomes, replacing the need for HSCT for lower risk patients. An additional poor prognosis group of Philadelphia-chromosome-like (Ph-like) ALL has also been identified. This group also can be targeted by TKIs in combination with chemotherapy, but the role of HSCT in this population is not clear. The impact of novel targeted immunotherapies (chimeric antigen receptor T cells and bispecific or drug-conjugated antibodies) has improved the outcome of patients, in combination with chemotherapy, and made the role of HSCT as the optimal curative therapy for Ph+ ALL and Ph-like ALL less clear. The prognosis of patients with Ph+ ALL and persistent minimal residual disease (MRD) at the end of consolidation despite TKI therapy or with additional genetic risk factors remains inferior when HSCT is not used. For such high-risk patients, HSCT using total-body-irradiation-containing conditioning is currently recommended. This review aims to provide an update on the current and future role of HSCT for Ph+ ALL and addresses key questions related to the management of these patients, including the role of HSCT in first complete remission, MRD evaluation and related actions post HSCT, TKI usage post HSCT, and the putative role of HSCT in Ph-like ALL.
Collapse
Affiliation(s)
- Kim Vettenranta
- University of Helsinki and Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Veronika Dobsinska
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Comenius University, Bratislava, Slovakia
| | - Gabriella Kertész
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest – National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Comenius University, Bratislava, Slovakia
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Genetic and immunophenotypic diversity of acute leukemias in children. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Acute leukemias are the most commonly diagnosed malignancies in children. Acute leukemias constitute a heterogeneous group of cancers resulting from clonal outgrowth and accumulation of immature precursor cells of different hematologic lineages. Cancerous transformation begins with disruption of cell maturation mechanisms triggered by particular environmental or endogenic factors, including innate and acquired immunodeficiencies as well as autoimmune diseases.
Research in the field of acute leukemias has revealed many possible genetic abnormalities in leukemic cells, including both structural and numerical aberrations. The former can produce some particular fusion genes, yielding fusion protein products which can have an oncogenic potential in hematopoietic cells. Some of them, including translocations resulting in fusion product formation BCR-ABL1 and different fusion products involving the KMT2A gene, are markers of adverse prognosis, whereas numerical aberrations with high hyperdiploidy and chromosome number exceeding 51 are markers of favorable prognosis. Detection of these aberrations already has a well-grounded clinical significance in acute lymphoblastic leukemia and plays an important role in patient risk stratification. The appearance of particular genetic changes often correlates with the expression of certain markers on the surface of leukemic cells. Determination of expression or lack of specific antigens, that is, immunophenotyping, is possible with the use of the flow cytometry technique. Flow cytometry is currently considered as a fast and broadly available technique which can provide clinically useful information in a relatively short time after biological specimen collection. Flow cytometry also enables appropriate classification of acute leukemias.
Collapse
|
26
|
Truong TH, Jinca C, Mann G, Arghirescu S, Buechner J, Merli P, Whitlock JA. Allogeneic Hematopoietic Stem Cell Transplantation for Children With Acute Lymphoblastic Leukemia: Shifting Indications in the Era of Immunotherapy. Front Pediatr 2021; 9:782785. [PMID: 35004545 PMCID: PMC8733383 DOI: 10.3389/fped.2021.782785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
Pediatric acute lymphoblastic leukemia generally carries a good prognosis, and most children will be cured and become long-term survivors. However, a portion of children will harbor high-risk features at the time of diagnosis, have a poor response to upfront therapy, or suffer relapse necessitating more intensive therapy, which may include allogeneic hematopoietic stem cell transplant (HSCT). Recent advances in risk stratification, improved detection and incorporation of minimal residual disease (MRD), and intensification of upfront treatment have changed the indications for HSCT over time. For children in first complete remission, HSCT is generally reserved for those with the highest risk of relapse. These include patients with unfavorable features/cytogenetics who also have a poor response to induction and consolidation chemotherapy, usually reflected by residual blasts after prednisone or by detectable MRD at pre-defined time points. In the relapsed setting, children with first relapse of B-cell ALL are further stratified for HSCT depending on the time and site of relapse, while all patients with T-cell ALL are generally consolidated with HSCT. Alternatives to HSCT have also emerged over the last decade including immunotherapy and chimeric antigen receptor (CAR) T-cell therapy. These novel agents may spare toxicity while attempting to achieve MRD-negative remission in the most refractory cases and serve as a bridge to HSCT. In some situations, these emerging therapies can indeed be curative for some children with relapsed or resistant disease, thus, obviating the need for HSCT. In this review, we seek to summarize the role of HSCT in the current era of immunotherapy.
Collapse
Affiliation(s)
- Tony H. Truong
- Division of Pediatric Oncology, Blood and Marrow Transplant/Cellular Therapy, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Cristian Jinca
- Department of Pediatrics, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Georg Mann
- Children's Cancer Research Institute, St. Anna Children's Hospital, Vienna, Austria
| | - Smaranda Arghirescu
- Department of Pediatrics, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - James A. Whitlock
- Department of Paediatrics, Hospital for Sick Children/University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Near-Haploidy and Low-Hypodiploidy in B-Cell Acute Lymphoblastic Leukemia: When Less Is Too Much. Cancers (Basel) 2021; 14:cancers14010032. [PMID: 35008193 PMCID: PMC8750410 DOI: 10.3390/cancers14010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Hypodiploidy with less than 40 chromosomes is a rare genetic abnormality in B-cell acute lymphoblastic leukemia (B-ALL). This condition can be classified based on modal chromosome number as low-hypodiploidy (30–39 chromosomes) and near-haploidy (24–29 chromosomes), with unique cytogenetic and mutational landscapes. Hypodiploid B-ALL with <40 chromosomes has an extremely poor outcome, with 5-year overall survival rates below 50% and 20% in childhood and adult B-ALL, respectively. Accordingly, this genetic feature represents an adverse prognostic factor in B-ALL and is associated with early relapse and therapy refractoriness. Notably, half of all patients with hypodiploid B-ALL with <40 chromosomes cases ultimately exhibit chromosome doubling of the hypodiploid clone, resulting in clones with 50–78 chromosomes. Doubled clones are often the major clones at diagnosis, leading to “masked hypodiploidy”, which is clinically challenging as patients can be erroneously classified as hyperdiploid B-ALL. Here, we summarize the main cytogenetic and molecular features of hypodiploid B-ALL subtypes, and provide a brief overview of the diagnostic methods, standard-of-care treatments and overall clinical outcome. Finally, we discuss molecular mechanisms that may underlie the origin and leukemogenic impact of hypodiploidy and may open new therapeutic avenues to improve survival rates in these patients.
Collapse
|
28
|
Capela de Matos RR, Othman M, Ferreira GM, Monteso K, de Souza MT, Rouxinol M, Melo JB, Carreira IM, Abdelhay E, Liehr T, Ribeiro RC, Silva M. Somatic homozygous loss of SH2B3, and a non-Robertsonian translocation t(15;21)(q25.3;q22.1) with NTRK3 rearrangement, in an adolescent with progenitor B-cell acute lymphoblastic leukemia with the iAMP21. Cancer Genet 2021; 262-263:16-22. [PMID: 34974289 DOI: 10.1016/j.cancergen.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
Intrachromosomal amplification of chromosome 21 (iAMP21) occurs in ∼2% of B-cell acute lymphoblastic leukemia (ALL) and is considered to confer a poor prognosis. The relapse risk is associated with therapy intensity, suggesting that other somatic mutations may influence iAMP21-ALL prognosis. This abnormality is characterized by multiple copies of the RUNX1 gene in chromosome 21 and appears to arise through multiple breakage-fusion bridge cycles and chromothripsis. Rob(15;21) or a ring chromosome 21 have been associated with an increased risk for iAMP21-ALL, suggesting that constitutional genetic abnormalities may also drive leukemogenesis. Here we describe homozygous deletion of the SH2B3 gene, chromothripsis of chromosome 21, and a non-Robertsonian somatic t(15;21)(q25.3;q22.1) with NTRK3 gene rearrangement in an adolescent with iAMP21-B-ALL. Molecular cytogenetic studies detected iAMP21 with aCGH analysis revealing further genomic imbalances. The RT-qPCR analysis detected elevated expression levels of RUNX1 (68-fold) and reduced expression of CDK6 (0.057-fold). Studies with constitutive cells collected from mouth swabs showed that SH2B3 biallelic deletion was a somatic alteration occurring during clonal evolution. The identification of novel secondary genetic changes was valuable to discuss sporadic iAMP21 leukemogenic mechanisms. For the first time, we show a t(15;21)(q25.3;q22.1) with NTRK3 rearrangement in an adolescent with iAMP21-ALL.
Collapse
Affiliation(s)
- R R Capela de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Programme in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Mak Othman
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - G M Ferreira
- Stem Cells Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Kca Monteso
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Programme in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - M T de Souza
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - M Rouxinol
- Lagoa Federal Hospital, Rio de Janeiro, Brazil
| | - J B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - I M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - E Abdelhay
- Stem Cells Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Programme in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - T Liehr
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - R C Ribeiro
- Departments of Oncology and Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mlm Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Programme in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Distinct roles of hnRNPH1 low-complexity domains in splicing and transcription. Proc Natl Acad Sci U S A 2021; 118:2109668118. [PMID: 34873036 PMCID: PMC8685725 DOI: 10.1073/pnas.2109668118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
Phase separation of low-complexity (LC) domains appended to most RNA-binding proteins (RBPs) emerges as a principle underlying spatiotemporal protein recruitment. Yet, how LC domains regulate the function of RBPs in cells remains unclear. An alternative-splicing regulator, hnRNPH1, contains two LC domains (LC1 and LC2). Here, we show that phase separation of the LC1 can exert control over hnRNPH1 function in RNA-splicing possibly by facilitating interactions between hnRNPH1 and a variety of RBPs. In contrast, the LC2 lacking in vitro phase properties, is required for aberrant transcriptional activation in the context of fusion oncoproteins. These results have broad implications for understanding how phase separation contributes to distinct roles of LC domains in control of physiological as well as oncogenic functions. Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins that control key events in RNA biogenesis under both normal and diseased cellular conditions. The low-complexity (LC) domain of hnRNPs can become liquid-like droplets or reversible amyloid-like polymers by phase separation. Yet, whether phase separation of the LC domains contributes to physiological functions of hnRNPs remains unclear. hnRNPH1 contains two LC domains, LC1 and LC2. Here, we show that reversible phase separation of the LC1 domain is critical for both interaction with different kinds of RNA-binding proteins and control of the alternative-splicing activity of hnRNPH1. Interestingly, although not required for phase separation, the LC2 domain contributes to the robust transcriptional activation of hnRNPH1 when fused to the DNA-binding domain, as found recently in acute lymphoblastic leukemia. Our data suggest that the ability of the LC1 domain to phase-separate into reversible polymers or liquid-like droplets is essential for function of hnRNPH1 as an alternative RNA-splicing regulator, whereas the LC2 domain may contribute to the aberrant transcriptional activity responsible for cancer transformation.
Collapse
|
30
|
A Systematic Cytogenetic Strategy to Identify Masked Hypodiploidy in Precursor B Acute Lymphoblastic Leukemia in Low Resource Settings. Indian J Hematol Blood Transfus 2021; 37:576-585. [PMID: 34690454 DOI: 10.1007/s12288-021-01409-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022] Open
Abstract
Hypodiploidy with < 40 chromosomes is associated with poor prognosis in B cell precursor acute lymphoblastic leukemia. In some patients, the hypodiploid clone undergoes endoreduplication, resulting in doubling of the number of chromosomes and masquerades as a high hyperdiploid BCP-ALL. Karyotyping reveals metaphases with 50-79 chromosomes masking the hypodiploid clone. Identifying hypodiploidy in such cases requires awareness of non random alterations of chromosomal copy numbers found in hypodiploid BCP-ALL. We used a systematic strategy to identify masked hypodiploidy integrating targeted fluorescence in situ hybridization (FISH) analysis directed towards identifying monosomies of chromosomes 7, 15 and 17 and flow cytometry-based ploidy analysis (FCPA). Of 445 patients diagnosed as BCP ALL, 2.9% (13/445) were classified as hypodiploid including patients with masked hypodiploidy. Karyotype analysis showed hypodiploidy in 3 patients, near triploidy in 4 patients and normal karyotype in 6 patients. Four patients with near triploid clone on karyotype showed either bimodal peak (2 patients) or single low hypodiploid peak (1 patient) or only near triploid peak (1 patient) on FCPA. All 6 patients with normal karyotype revealed either bimodal peak (4 patients) or hypodiploid peak (2 patients) on FCPA. Targeted FISH analysis unmasked hypodiploid clone showing monosomies of chromosomes 7, 15 and 17 in all ten patients. Our algorithm successfully identified masked hypodiploidy in patients, including those with endoreduplication (4 patients) and normal karyotype (6 patients). Integrating FCPA with targeted FISH analysis provides a practical, sensitive and specific approach to identify masked hypodiploidy in low resource settings.
Collapse
|
31
|
Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. Blood 2021; 139:1850-1862. [PMID: 34695176 DOI: 10.1182/blood.2021011921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
The genetic basis of leukemogenesis in adults with B-cell acute lymphoblastic leukemia (B-ALL) is largely unclear and its clinical outcome remains unsatisfactory. This study aimed to advance the understanding of biological characteristics, improve disease stratification, and identify molecular targets of adult B-ALL. Adolescents and young adults (AYA; 15-39 years old, n = 193) and adults (40-64 years old, n = 161) with Philadelphia chromosome-negative B-ALL were included in this study. Integrated transcriptomic and genetic analyses were used to classify the cohort into defined subtypes. Of the 323 cases included in the RNA sequencing analysis, 278 (86.1%) were classified into 18 subtypes. The ZNF384 subtype (22.6%) was the most prevalent, with two novel subtypes (CDX2-high and IDH1/2-mut) identified among cases not assigned to the established subtypes. The CDX2-high subtype (3.4%) was characterized by high expression of CDX2 and recurrent gain of chromosome 1q. The IDH1/2-mut subtype (1.9%) was defined by IDH1 R132C or IDH2 R140Q mutations with specific transcriptional and high-methylation profiles. Both subtypes showed poor prognosis and were considered inferior prognostic factors independent of clinical parameters. Comparison with a previously reported pediatric B-ALL cohort (n = 1003) showed that the frequencies of these subtypes were significantly higher in AYA/adults than in children. We delineated the genetic and transcriptomic landscape of adult B-ALL and identified two novel subtypes that predict poor disease outcomes. Our findings highlight the age-dependent distribution of subtypes, which partially accounts for the prognostic differences between adult and pediatric B-ALL.
Collapse
|
32
|
Afkhami M, Ally F, Pullarkat V, Pillai RK. Genetics and Diagnostic Approach to Lymphoblastic Leukemia/Lymphoma. Cancer Treat Res 2021; 181:17-43. [PMID: 34626353 DOI: 10.1007/978-3-030-78311-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of the genetics and biology of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia, ALL) has advanced rapidly in the past decade with advances in sequencing and other molecular techniques. Besides recurrent chromosomal abnormalities detected by karyotyping or fluorescence in situ hybridization, these leukemias/lymphomas are characterized by a variety of mutations, gene rearrangements as well as copy number alterations. This is particularly true in the case of Philadelphia-like (Ph-like) ALL, a major subset which has the same gene expression signature as Philadelphia chromosome-positive ALL but lacks BCR-ABL1 translocation. Ph-like ALL is associated with a worse prognosis and hence its detection is critical. However, techniques to detect this entity are complex and are not widely available. This chapter discusses various subsets of ALL and describes our approach to the accurate classification and prognostication of these cases.
Collapse
Affiliation(s)
- Michelle Afkhami
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| | - Feras Ally
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Vinod Pullarkat
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Raju K Pillai
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
33
|
Piciocchi A, Messina M, Elia L, Vitale A, Soddu S, Testi AM, Chiaretti S, Mancini M, Albano F, Spadano A, Krampera M, Bonifacio M, Cairoli R, Vetro C, Colella F, Ferrara F, Cimino G, Bassan R, Fazi P, Vignetti M. Prognostic impact of KMT2A-AFF1-positivity in 926 BCR-ABL1-negative B-lineage acute lymphoblastic leukemia patients treated in GIMEMA clinical trials since 1996. Am J Hematol 2021; 96:E334-E338. [PMID: 34048072 DOI: 10.1002/ajh.26253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | | | - Anna Maria Testi
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Marco Mancini
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Francesco Albano
- Hematology, Department of Emergency and Organ Transplantation University of Bari Bari Italy
| | - Antonio Spadano
- Department of Hematology, Transfusion Medicine and Biotechnology "Santo Spirito" Civic Hospital Pescara Italy
| | - Mauro Krampera
- Department of Medicine, Section of Haematology University of Verona Verona Italy
| | | | - Roberto Cairoli
- Department of Hematology ASST Grande Ospedale Metropolitano Niguarda Milan Italy
| | - Calogero Vetro
- Division of Hematology Policlinico Rodolico‐S. Marco Catania Italy
| | | | - Felicetto Ferrara
- Division of Hematology and Stem Cell Transplantation Unit Cardarelli Hospital Naples Italy
| | - Giuseppe Cimino
- Hematology, Department of Translational and Precision Medicine Sapienza University, ASL Latina, Presidio Ospedaliero Nord ‐ Ospedale Santa Maria Goretti Latina Italy
| | - Renato Bassan
- Hematology Unit Ospedale dell'Angelo and Ospedale Ss Giovanni e Paolo Mestre Italy
| | - Paola Fazi
- GIMEMA Foundation Franco Mandelli Onlus Rome Italy
| | - Marco Vignetti
- GIMEMA Foundation Franco Mandelli Onlus Rome Italy
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| |
Collapse
|
34
|
Ampatzidou M, Florentin L, Papadakis V, Paterakis G, Tzanoudaki M, Bouzarelou D, Papadhimitriou SI, Polychronopoulou S. Copy Number Alteration Profile Provides Additional Prognostic Value for Acute Lymphoblastic Leukemia Patients Treated on BFM Protocols. Cancers (Basel) 2021; 13:cancers13133289. [PMID: 34209196 PMCID: PMC8268490 DOI: 10.3390/cancers13133289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Recent advances in genomic analyses of acute lymphoblastic leukemia (ALL) have identified novel prognostic markers associated with patient outcome. In this frame, copy number alterations (CNAs) are constantly gaining relevance as potential risk stratification markers. Herein, we present our data of a proposed CNA-profile risk-index applied on a Greek ALLIC-BFM cohort. The results of our study demonstrate that EFS for GR(good-risk)-CNA-profile patients was 96.0% versus 57.6% of PR(poor-risk)-CNA-profile ones (p < 0.001) in the whole cohort. EFS within the IR-group for the GR-CNA vs. PR-CNA subgroups was 100.0% vs. 60.0% (p < 0.001), and within the HR-group, 88.2% vs. 55.6% (p = 0.047), respectively. The above results indicate that the application of the proposed CNA-profile classifier is feasible in BFM-based protocols, adding prognostic value to the existing prognostic markers and successfully stratifying patients within prognostic subgroups. This novel genomic risk index can be incorporated in future risk-stratification algorithms, further refining MRD-based stratification and possibly reassigning optimal treatment strategies. Abstract We present our data of a novel proposed CNA-profile risk-index, applied on a Greek ALLIC-BFM-treated cohort, aiming at further refining genomic risk-stratification. Eighty-five of 227 consecutively treated ALL patients were analyzed for the copy-number-status of eight genes (IKZF1/CDKN2A/2B/PAR1/BTG1/EBF1/PAX5/ETV6/RB1). Using the MLPA-assay, patients were stratified as: (1) Good-risk(GR)-CNA-profile (n = 51), with no deletion of IKZF1/CDKN2A/B/PAR1/BTG1/EBF1/PAX5/ETV6/RB1 or isolated deletions of ETV6/PAX5/BTG1 or ETV6 deletions with a single additional deletion of BTG1/PAX5/CDKN2A/B. (2) Poor-risk(PR)-CNA-profile (n = 34), with any deletion of ΙΚΖF1/PAR1/EBF1/RB1 or any other CNA. With a median follow-up time of 49.9 months, EFS for GR-CNA-profile and PR-CNA-profile patients was 96.0% vs. 57.6% (p < 0.001). For IR-group and HR-group patients, EFS for the GR-CNA/PR-CNA subgroups was 100.0% vs. 60.0% (p < 0.001) and 88.2% vs. 55.6% (p = 0.047), respectively. Among FC-MRDd15 + patients (MRDd15 ≥ 10−4), EFS rates were 95.3% vs. 51.7% for GR-CNA/PR-CNA subjects (p < 0.001). Similarly, among FC-MRDd33 + patients (MRDd33 ≥ 10−4), EFS was 92.9% vs. 27.3% (p < 0.001) and for patients FC-MRDd33 − (MRDd33 < 10−4), EFS was 97.2% vs. 72.7% (p = 0.004), for GR-CNA/PR-CNA patients, respectively. In a multivariate analysis, the CNA-profile was the most important outcome predictor. In conclusion, the CNA-profile can establish a new genomic risk-index, identifying a distinct subgroup with increased relapse risk among the IR-group, as well as a subgroup of patients with superior prognosis among HR-patients. The CNA-profile is feasible in BFM-based protocols, further refining MRD-based risk-stratification.
Collapse
Affiliation(s)
- Mirella Ampatzidou
- Department of Pediatric Hematology-Oncology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (V.P.); (S.P.)
- Correspondence:
| | - Lina Florentin
- Alfa Laboratory Diagnostic Center, YGEIA Hospital, 11524 Athens, Greece; (L.F.); (D.B.)
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (V.P.); (S.P.)
| | - Georgios Paterakis
- Laboratory of Flow Cytometry, Department of Immunology, “G.Gennimatas” General Hospital, 11527 Athens, Greece;
| | - Marianna Tzanoudaki
- Department of Immunology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Dimitra Bouzarelou
- Alfa Laboratory Diagnostic Center, YGEIA Hospital, 11524 Athens, Greece; (L.F.); (D.B.)
| | - Stefanos I. Papadhimitriou
- Laboratory of Hematology, Department of Molecular Cytogenetics, “G.Gennimatas” General Hospital, 11527 Athens, Greece;
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (V.P.); (S.P.)
| |
Collapse
|
35
|
Marcotte EL, Domingues AM, Sample JM, Richardson MR, Spector LG. Racial and ethnic disparities in pediatric cancer incidence among children and young adults in the United States by single year of age. Cancer 2021; 127:3651-3663. [PMID: 34151418 DOI: 10.1002/cncr.33678] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Incidence rates of pediatric cancers in the United States are typically reported in 5-year age groups, obscuring variation by single year of age. Additionally, racial and ethnic variation in incidence is typically presented in broad categories rather than by narrow age ranges. METHODS The Surveillance, Epidemiology, and End Results (SEER) 18 data (2000-2017) were examined to calculate frequencies and age-adjusted incidence rates among individuals aged birth to 39 years. Incidence rate ratios (IRRs) and 95% confidence intervals (95% CIs) were estimated as the measure of association for rate comparisons by race and Hispanic origin overall and by single year of age. RESULTS Several histologic types showed substantial variation in race/ethnicity-specific and overall rates by single year of age. Overall, Black children and young adults experienced substantially decreased incidence of acute lymphoid leukemia (IRR, 0.52; 95% CI, 0.49-0.55) compared to Whites, and this decreased incidence was strongest at ages 1 through 7 years and 16 through 20 years. Hispanic individuals experienced decreased overall incidence of Hodgkin lymphoma (IRR, 0.50; 95% CI, 0.48-0.52) and astrocytoma (IRR, 0.54; 95% CI, 0.52-0.56) and increased risk of acute lymphoblastic leukemia (IRR, 1.46; 95% CI, 1.42-1.51) compared to non-Hispanic Whites, and the increased risk was strongest at ages 10 through 23 years. Substantial decreased risk across many tumor types was also observed for Asian/Pacific Islanders and American Indian/Alaska Natives. CONCLUSIONS Examination of incidence rates for pediatric cancers by narrow age groups may provide insights regarding etiological differences in subgroups. Additionally, variation in age-specific incidence rates by race and ethnicity may enable hypothesis generation on drivers of disparities observed.
Collapse
Affiliation(s)
- Erin L Marcotte
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Allison M Domingues
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jeannette M Sample
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Michaela R Richardson
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
36
|
Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like-Recent Progress in Treatment. Int J Mol Sci 2021; 22:ijms22126411. [PMID: 34203891 PMCID: PMC8232636 DOI: 10.3390/ijms22126411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pediatric acute lymphoblastic leukemia (ALL) with t(9;22)(q34;q11.2) is a very rare malignancy in children. Approximately 3-5% of pediatric ALL patients present with the Philadelphia chromosome. Previously, children with Ph+ had a poor prognosis, and were considered for allogeneic stem cell transplantation (allo-HSCT) in their first remission (CR1). Over the last few years, the treatment of childhood ALL has significantly improved due to standardized research protocols. Hematopoietic stem cell transplantation (HSCT) has been the gold standard therapy in ALL Ph+ patients, but recently first-generation tyrosine kinase inhibitor (TKI)-imatinib became a major milestone in increasing overall survival. Genomic analyses give the opportunity for the investigation of new fusions or mutations, which can be used to establish effective targeted therapies. Alterations of the IKZF1 gene are present in a large proportion of pediatric and adult ALL Ph+ cases. IKZF1 deletions are present in ~15% of patients without BCR-ABL1 rearrangements. In BCR-ABL1-negative cases, IKZF1 deletions have been shown to have an independent prognostic impact, carrying a three-fold increased risk of treatment failure. The prognostic significance of IKZF1 gene aberrations in pediatric ALL Ph+ is still under investigation. More research should focus on targeted therapies and immunotherapy, which is not associated with serious toxicity in the same way as classic chemotherapy, and on the improvement of patient outcomes. In this review, we provide a molecular analysis of childhood ALL with t(9;22)(q34;q11.2), including the Ph-like subtype, and of treatment strategies.
Collapse
|
37
|
Riley DO, Schlefman JM, Vitzthum Von Eckstaedt V HC, Morris AL, Keng MK, El Chaer F. Pegaspargase in Practice: Minimizing Toxicity, Maximizing Benefit. Curr Hematol Malig Rep 2021; 16:314-324. [PMID: 33978914 DOI: 10.1007/s11899-021-00638-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The incorporation of pegaspargase in chemotherapy regimens has significantly improved the prognosis of ALL in adults. However, pegaspargase use poses many challenges due to its unique toxicity profile. Here, we review pegaspargase's most clinically significant toxicities, and provide guidance for their prevention and management in order to avoid unnecessary drug discontinuation and achieve maximum clinical benefit. RECENT FINDINGS Clinically significant toxicities of pegaspargase include thrombosis, hypersensitivity and inactivation, hepatotoxicity, pancreatitis, and hypertriglyceridemia. The majority of these toxicities are temporary, nonfatal, and can be managed supportively without permanent pegaspargase discontinuation. Special attention should be paid to inactivation, which can lead to treatment failure, as well as pancreatitis, which necessitates complete cessation of asparaginase therapy. The question of how to best proceed in patients who cannot tolerate pegaspargase remains unanswered, and is an important area of future investigation. Pegaspargase is an essential component of the pediatric-inspired regimens that have improved survival in adult ALL. Although pegaspargase's toxicity profile is unique, it is also highly manageable and should not be a barrier to achieving maximum clinical benefit using this drug.
Collapse
Affiliation(s)
- David O Riley
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA
| | - Jenna M Schlefman
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Amy L Morris
- Department of Pharmacy Services, UVA Health, Charlottesville, VA, USA
| | - Michael K Keng
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA
| | - Firas El Chaer
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA.
| |
Collapse
|
38
|
da Silva WF, Cordeiro MG, Kishimoto RK, Velloso EDRP. TCRAD rearrangement in B-cell precursor leukemia: An unexpected finding. Hematol Transfus Cell Ther 2021; 44:595-597. [PMID: 34001465 PMCID: PMC9605896 DOI: 10.1016/j.htct.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Maria Gabriella Cordeiro
- Instituto do Cancer do Estado de São Paulo (ICESP), São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | |
Collapse
|
39
|
Tosi M, Spinelli O, Leoncin M, Cavagna R, Pavoni C, Lussana F, Intermesoli T, Frison L, Perali G, Carobolante F, Viero P, Skert C, Rambaldi A, Bassan R. MRD-Based Therapeutic Decisions in Genetically Defined Subsets of Adolescents and Young Adult Philadelphia-Negative ALL. Cancers (Basel) 2021; 13:cancers13092108. [PMID: 33925541 PMCID: PMC8123823 DOI: 10.3390/cancers13092108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary In acute lymphoblastic leukemia (ALL), once a complete remission is achieved following induction chemotherapy, the study of submicroscopic minimal residual disease (MRD) represents a highly sensitive tool to assess the efficacy of early chemotherapy courses and predict outcome. Because of the significant therapeutic progress occurred in adolescent and young adult (AYA) ALL, the importance of MRD in this peculiar age setting has grown considerably, to refine individual prognostic scores within different genetic subsets and support specific risk and MRD-oriented programs. The evidence coming from the most recent MRD-based studies and the new therapeutic directions for AYA ALL are critically reviewed according to ALL subset and risk category. Abstract In many clinical studies published over the past 20 years, adolescents and young adults (AYA) with Philadelphia chromosome negative acute lymphoblastic leukemia (Ph− ALL) were considered as a rather homogeneous clinico-prognostic group of patients suitable to receive intensive pediatric-like regimens with an improved outcome compared with the use of traditional adult ALL protocols. The AYA group was defined in most studies by an age range of 18–40 years, with some exceptions (up to 45 years). The experience collected in pediatric ALL with the study of post-induction minimal residual disease (MRD) was rapidly duplicated in AYA ALL, making MRD a widely accepted key factor for risk stratification and risk-oriented therapy with or without allogeneic stem cell transplantation and experimental new drugs for patients with MRD detectable after highly intensive chemotherapy. This combined strategy has resulted in long-term survival rates of AYA patients of 60–80%. The present review examines the evidence for MRD-guided therapies in AYA’s Ph− ALL, provides a critical appraisal of current treatment pitfalls and illustrates the ways of achieving further therapeutic improvement according to the massive knowledge recently generated in the field of ALL biology and MRD/risk/subset-specific therapy
Collapse
Affiliation(s)
- Manuela Tosi
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Orietta Spinelli
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Matteo Leoncin
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Roberta Cavagna
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Chiara Pavoni
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Federico Lussana
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Tamara Intermesoli
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Luca Frison
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Giulia Perali
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Francesca Carobolante
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Piera Viero
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Cristina Skert
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Alessandro Rambaldi
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
- Department of Oncology-Hematology, University of Milan, 20122 Milan, Italy
| | - Renato Bassan
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
- Correspondence: ; Tel.: +39-041-965-7362
| |
Collapse
|
40
|
Marcotte EL, Spector LG, Mendes-de-Almeida DP, Nelson HH. The Prenatal Origin of Childhood Leukemia: Potential Applications for Epidemiology and Newborn Screening. Front Pediatr 2021; 9:639479. [PMID: 33968846 PMCID: PMC8102903 DOI: 10.3389/fped.2021.639479] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Childhood leukemias are heterogeneous diseases with widely differing incident rates worldwide. As circulating tumors, childhood acute leukemias are uniquely accessible, and their natural history has been described in greater detail than for solid tumors. For several decades, it has been apparent that most cases of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) initiate in utero. Circumstantial evidence in support of this contention includes the young age of onset and high rate of concordance among identical twins. "Backtracking" of leukemic somatic mutations, particularly gene translocations, to cord blood and dried blood spots collected during the perinatal period has provided molecular proof of prenatal leukemogenesis. Detection of a patient's leukemia translocation in easily accessible birth samples, such as dried blood spots, is straightforward with the knowledge of their idiosyncratic breakpoints. However, to translate these findings into population-based screening and leukemia prevention requires novel methods able to detect translocations at all possible breakpoints when present in a low frequency of cells. Several studies have attempted to screen for leukemic translocations, mainly the common ETV6-RUNX1 translocation, in cord blood samples from healthy children. Most studies have reported finding translocations in healthy children, but estimates of prevalence have varied widely and greatly exceed the incidence of leukemia, leading to concerns that technical artifact or contamination produced an artificially inflated estimate of translocation prevalence at birth. New generation techniques that capture the presence of these translocations at birth have the potential to vastly increase our understanding of the epidemiology of acute leukemias. For instance, if leukemic translocations are present at birth in a far higher proportion of children than eventually develop acute leukemia, what are the exposures and somatic molecular events that lead to disease? And could children with translocations present at birth be targeted for prevention of disease? These questions must be answered before large-scale newborn screening for leukemia can occur as a public health initiative. Here, we review the literature regarding backtracking of acute leukemias and the prevalence of leukemic translocations at birth. We further suggest an agenda for epidemiologic research using new tools for population screening of leukemic translocations.
Collapse
Affiliation(s)
- Erin L. Marcotte
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Logan G. Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Daniela P. Mendes-de-Almeida
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Hematology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Division of Molecular Carcinogenesis, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Heather H. Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
41
|
Mroczkowska A, Lejman M. Intrachromosomal Amplification of Chromosome 21 in Childhood Acute Lymphoblastic Leukemia: Study of 3 Cases. Case Rep Oncol 2021; 14:592-598. [PMID: 33976639 PMCID: PMC8077425 DOI: 10.1159/000514107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/23/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood. The presence or absence of a characteristic genetic abnormality usually observed in childhood ALL plays a very important role in determining the prognosis and stratification for treatment. Intrachromosomal amplification of chromosome 21 (iAMP21) is an uncommon high-risk chromosomal abnormality than can occur only in 2% of childhood B-cell precursor lymphoblastic leukemia. Molecular genetic analysis and the fluorescence in situ hybridization (FISH) technique are the basic methods used to detect the presence of the most common genetic abnormalities, the presence or absence of which has an impact on the patient's classification into the appropriate risk group. This work presents 3 BCP-ALL iAMP21-positive patients who were detected during routine genetic diagnostics using the FISH method and microarray test. iAMP21 is associated with a poor prognosis and high risk for relapse. Children with B-cell precursor lymphoblastic leukemia with this genetic entity are associated with a delayed treatment response. The FISH method and single-nucleotide polymorphism array provides a useful method to detect characteristic genetic changes.
Collapse
Affiliation(s)
- Aleksandra Mroczkowska
- Laboratory of Genetic Diagnostics, University Children's Hospital, Lublin, Poland.,Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Laboratory of Molecular Biology and Cytogenetics, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
42
|
Cerchione C, Locatelli F, Martinelli G. Dasatinib in the Management of Pediatric Patients With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:632231. [PMID: 33842339 PMCID: PMC8027101 DOI: 10.3389/fonc.2021.632231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemia is the most common cancer in childhood; in particular, acute lymphoblastic leukemia (ALL) represents roughly up to 80% of all cases of acute leukemias in children. Survival of children with ALL has dramatically improved over the last few decades, and is now over 90% (versus 40% of adult patients) in developed countries, except for in infants (i.e., children < 1 year), where no significant improvement was registered. Philadelphia positive ALL (Ph+ALL) accounts for around 3% of cases of childhood ALL, its incidence increasing with patient's age. Before the era of tyrosine-kinase inhibitors (TKIs), pediatric Ph+ALL showed a worse prognosis in comparison to other forms of ALL, and was managed with intensive chemotherapy, followed, whenever possible, by allogenic hematopoietic stem cell transplantation (HSCT) in first morphological complete remission. TKIs have revolutionized the current clinical approach, which involves combinations of imatinib plus standard chemotherapy that can abrogate the negative prognostic impact conferred by the presence of BCR/ABL1 rearrangement, resulting in the probability of event-free survival (EFS) being significantly better than that recorded in the pre-TKI era. Long-term follow-up confirms these data, questioning the role of a real advantage offered by HSCT over intensive chemotherapy plus TKI in all Ph+ALL pediatric patients. Imatinib was the first generation TKI and the prototype of targeted therapy, but over the years second- (dasatinib, nilotinib, bosutinib) and third-generation (ponatinib) TKIs showed a capacity to overcome resistance to imatinib in Ph+ hematological neoplasms. Given the effectiveness of the first-in-class TKI, imatinib, also the second-generation TKI dasatinib was incorporated in the treatment regimens of Ph+ALL. In this manuscript, we will discuss the role of this drug in pediatric Ph+ALL, analyzing the available data published to date.
Collapse
Affiliation(s)
- Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Pediatrics, University of Rome, Sapienza, Rome, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
43
|
Clinical features and chromosomal/genetic aberration in adult acute lymphoblastic leukemia in Japan: results of Fukuoka Blood & Marrow Transplant Group Studies ALL MRD 2002 and 2008. Int J Hematol 2021; 113:815-822. [PMID: 33725318 DOI: 10.1007/s12185-021-03116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a common neoplasm in children, but less frequent in adults. Since information on clinical features and genetics of adult ALL in Japan is limited, we analyzed 215 subjects aged 16-65 years with untreated ALL enrolled in the Fukuoka Blood & Marrow Transplant Group studies ALL MRD 2002 and 2008. The prevalence of ALL was bimodal, with the larger group aged 56-65 years. Immunophenotypic characterization showed B-lineage is more frequent than T-lineage ALL (78.6 vs 13.0%), with age-related differences. The proportion with BCR-ABL1 rearrangement increased progressively with age, up to 55.7% among subjects aged over 56-65 years. Rearrangements involving the KMT2A gene, ETV6-RUNX1, and TCF3-PBX1 were rare in this study cohort. The overall incidence of hyperdiploidy was only 1.7%, and there were no cases with hypodiploidy. Overall survival varied by age and cytogenetics. Older subjects and those with BCR-ABL1 tended to have inferior outcomes. In this epidemiological study of Japanese adult ALL, the majority of subjects had B-lineage ALL, the T-cell phenotype was most frequent in those aged 16-25, and BCR-ABL1 rearrangement was very common, with prevalence increasing with age. These types of adult ALL are potentially manageable with targeted therapies.
Collapse
|
44
|
Hosein Pour Feizi A, Zeinali S, Toporski J, Sheervalilou R, Mehranfar S. Frequency and Correlation of Common Genes Copy Number Alterations in Childhood Acute Lymphoblastic Leukemia with Prognosis. Asian Pac J Cancer Prev 2020; 21:3493-3500. [PMID: 33369444 PMCID: PMC8046302 DOI: 10.31557/apjcp.2020.21.12.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: It was shown by genomic profiling that despite no detectable chromosomal abnormalities a proportion of children with pre-B acute lymphoblastic leukemia harbors copy number alterations (CNA) of genes playing role in B-cell development and function. The aim of the study was to determine the frequency of CNA in pediatric acute lymphoblastic leukemia and correlate these findings with clinical outcome. Methods: DNA extracted from peripheral blood or bone marrow at diagnosis/relapse of fifty newly diagnosed children with precursor B-cell acute lymphoblastic leukemia was analyzed for CNA with multiplex ligation-dependent probe amplification. Results: The analysis revealed 76 CNA in 24 patients most frequently found in PAR1 (17%), CDKN2A/B (15.7%) and PAX5 (14.4%) genes. There were significant CNA co-occurrences between PAX5, CDKN2A/B, BTG1, ETV6, PAR1 or XP22 genes, (p<0.020) and the high-risk group. There was a significant correlation between EBF1, RB1, and IKZF1 alterations and bone marrow relapse. Patients with CNA in screened genes are more likely to succumb to their disease except for those with PAR1 or XP22 genes (p<0.050). Conclusion: The multiplex ligation-dependent probe amplification could be considered as an independent diagnostic tool allowing prompt identification of patients at high risk of treatment failure and, subsequently, a more adequate treatment approach.
Collapse
Affiliation(s)
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Kawsar Human Genetics Research Center, Kawsar Genomics Center, Tehran, Iran
| | - Jacek Toporski
- Department of Clinical Sciences, Pediatric Oncology and Hematology, University of Lund, Lund, Sweden
| | | | - Sahar Mehranfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Social Determinate of Health Research Center, Clinical Research Institute Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
45
|
Rosales-Rodríguez B, Núñez-Enríquez JC, Mejía-Aranguré JM, Rosas-Vargas H. Prognostic Impact of Somatic Copy Number Alterations in Childhood B-Lineage Acute Lymphoblastic Leukemia. Curr Oncol Rep 2020; 23:2. [PMID: 33190177 DOI: 10.1007/s11912-020-00998-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The high prevalence of relapse in pediatric B-lineage acute lymphoblastic leukemia (B-ALL) despite the improvements achieved using current risk stratification schemes, demands more accurate methods for outcome prediction. Here, we provide a concise overview about the key advances that have expanded our knowledge regarding the somatic defects across B-ALL genomes, particularly focusing on copy number alterations (CNAs) and their prognostic impact. RECENT FINDINGS The identification of commonly altered genes in B-ALL has inspired the development of risk classifiers based on copy number states such as the IKZF1plus and the United Kingdom (UK) ALL-CNA classifiers to improve outcome prediction in B-ALL. CNA-risk classifiers have emerged as effective tools to predict disease relapse; though, their clinical applications are yet to be transferred to routine practice.
Collapse
Affiliation(s)
- Beatriz Rosales-Rodríguez
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico.,Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico. .,Coordinación de Investigación en Salud, IMSS, Torre Academia Nacional de Medicina, 06720, Ciudad de México, Mexico.
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico.
| |
Collapse
|
46
|
Updated risk-oriented strategy for acute lymphoblastic leukemia in adult patients 18-65 years: NILG ALL 10/07. Blood Cancer J 2020; 10:119. [PMID: 33188164 PMCID: PMC7666128 DOI: 10.1038/s41408-020-00383-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
An updated strategy combining pediatric-based chemotherapy with risk-oriented allogeneic hematopoietic cell transplantation (HCT) was evaluated in Philadelphia chromosome-negative acute lymphoblastic leukemia (Ph- ALL) and compared with a published control series. Following induction-consolidation chemotherapy, responsive patients were assigned to receive maintenance chemotherapy or undergo early HCT according to the risk stratification criteria and minimal residual disease (MRD) status. Of the 203 study patients (median age 41 years, range 17-67), 140/161 with Ph- ALL achieved complete remission (86.9%; 91.6% ≤55 years, P = 0.0002), with complete MRD clearing in 68/109; 55 patients were assigned to maintenance chemotherapy, and 85 to HCT due to very high-risk characteristics (hyperleukocytosis, adverse genetics, early/mature T-precursor ALL, and MRD persistence). The 5-year relapse incidence was 36%, and the treatment-related mortality rate was 18%. Median overall and relapse-free survival were 7.4 and 6.2 years, with rates of 54 and 53% at 5 years, respectively, which were significantly better than those obtained with the historical protocol (P = 0.001 and P = 0.005, respectively), without significant differences between maintenance and HCT cohorts. In prognostic analysis, MRD negativity and age ≤55 years were the most favorable independent prognostic factors. A reduction in treatment toxicity and further improvements in the risk definitions and risk-oriented design are the focuses of this ongoing research.
Collapse
|
47
|
Okuku P, Kwenda G, Samutela M, Nkhoma P, Mantina H. Molecular Detection of Fusion Oncogenes in Zambian Patients with Acute Lymphoblastic Leukemia. Int J Appl Basic Med Res 2020; 10:234-239. [PMID: 33376695 PMCID: PMC7758799 DOI: 10.4103/ijabmr.ijabmr_179_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Chromosomal aberrations play a significant role in the pathogenesis of acute lymphoblastic leukemia (ALL) with prognostic and therapeutic implications. Despite the availability of molecular tools, low-resource settings struggle to diagnose the disease due to limited diagnostic capacity. The objective of this study was to detect common chromosomal aberrations in patients with ALL attending the University Teaching Hospital (UTH) in Lusaka, Zambia. Materials and Methods In this prospective study, 19 blood samples from patients with ALL were screened for the presence of BCR-ABL, E2A-PBX1, MLL-AF4, and ETV6-RUNX1 fusion oncogenes using reverse transcriptase-polymerase chain reaction assay. Blood counts and clinical characteristics of patients were also assessed. Results The age of patients ranged from 1½ to 72 years and comprised 57.9% of males and 42.1% of females. The majority of these patients were children (68%), and adults only comprised 32%. Only BCR-ABL and E2A-PBX1 oncogenes were detected in 3/19 of cases. The BCR-ABL gene was detected in a 4-year-old female child and a 15-year-old child. Both cases were associated with hepatomegaly and anemia coupled with low hemoglobin, white blood cell, and platelet counts. E2A-PBX1 was detected in a 12-year-old child with lymphadenopathy and splenomegaly, coupled with low hemoglobin, white blood cell, and platelet counts. All the three patients who harbored these fusion oncogenes died. Conclusion This is the first study from Zambia to investigate the presence of fusion oncogenes in leukemia patients, which were found only among the older children population. Based on these findings, we recommend that molecular diagnosis be made a priority for the younger leukemia patient population at UTH.
Collapse
Affiliation(s)
- Pauline Okuku
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia.,Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Mulemba Samutela
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Hamakwa Mantina
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| |
Collapse
|
48
|
Hopkins AM, Menz BD, Wiese MD, Kichenadasse G, Gurney H, McKinnon RA, Rowland A, Sorich MJ. Nuances to precision dosing strategies of targeted cancer medicines. Pharmacol Res Perspect 2020; 8:e00625. [PMID: 32662214 PMCID: PMC7358594 DOI: 10.1002/prp2.625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
Selecting the dose of a targeted cancer medicine that is most appropriate for a specific individual is a rational approach to maximize therapeutic outcomes and minimize toxicity. There are many different options for optimizing the dose of targeted cancer medicines and the purpose of this review is to provide a comprehensive comparison of the main options explored in prospective studies. Precision initial dose selection of targeted cancer therapies has been minimally explored to date; however, concentration, toxicity, and therapeutic outcome markers are used to guide on-therapy dose adaption of targeted cancer therapies across several medicines and cancers. While a specific concentration, toxicity, or therapeutic outcome marker commonly dominates an investigated precision on-therapy dose adaption strategy, greater attention to simultaneously account for exposure, toxicity, therapeutic outcomes, disease status, time since treatment initiation and patient preferences are required for optimal patient outcomes. To enable successful implementation of precision dosing strategies for targeted cancer medicines into clinical practice, future prospective studies aiming to develop strategies should consider these elements in their design.
Collapse
Affiliation(s)
- Ashley M. Hopkins
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Bradley D. Menz
- Division of PharmacySouthern Adelaide Local Health Network, Flinders Medical CentreAdelaideSouth AustraliaAustralia
| | - Michael D. Wiese
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Ganessan Kichenadasse
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Howard Gurney
- Department of Medical OncologyWestmead HospitalSydneyNew South WalesAustralia
| | - Ross A. McKinnon
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Michael J. Sorich
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
49
|
Tsuzuki S, Yasuda T, Kojima S, Kawazu M, Akahane K, Inukai T, Imaizumi M, Morishita T, Miyamura K, Ueno T, Karnan S, Ota A, Hyodo T, Konishi H, Sanada M, Nagai H, Horibe K, Tomita A, Suzuki K, Muramatsu H, Takahashi Y, Miyazaki Y, Matsumura I, Kiyoi H, Hosokawa Y, Mano H, Hayakawa F. Targeting MEF2D-fusion Oncogenic Transcriptional Circuitries in B-cell Precursor Acute Lymphoblastic Leukemia. Blood Cancer Discov 2020; 1:82-95. [PMID: 34661142 PMCID: PMC8447276 DOI: 10.1158/2643-3230.bcd-19-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
The cellular context that integrates gene expression, signaling, and metabolism dictates the oncogenic behavior and shapes the treatment responses in distinct cancer types. Although chimeric fusion proteins involving transcription factors (TF) are hallmarks of many types of acute lymphoblastic leukemia (ALL), therapeutically targeting the fusion proteins is a challenge. In this work, we characterize the core regulatory circuitry (CRC; interconnected autoregulatory loops of TFs) of B-ALL involving MEF2D-fusions and identify MEF2D-fusion and SREBF1 TFs as crucial CRC components. By gene silencing and pharmacologic perturbation, we reveal that the CRC integrates the pre-B-cell receptor (BCR) and lipid metabolism to maintain itself and govern malignant phenotypes. Small-molecule inhibitors of pre-BCR signaling and lipid biosynthesis disrupt the CRC and silence the MEF2D fusion in cell culture and show therapeutic efficacy in xenografted mice. Therefore, pharmacologic disruption of CRC presents a potential therapeutic strategy to target fusion protein-driven leukemia. SIGNIFICANCE Cancer type-specific gene expression is governed by transcription factors involved in a highly interconnected autoregulatory loop called CRC. Here, we characterized fusion protein-driven CRC and identified its pharmacologic vulnerabilities, opening therapeutic avenues to indirectly target fusion-driven leukemia by disrupting its CRC.See related commentary by Sadras and Müschen, p. 18. This article is highlighted in the In This Issue feature, p. 5.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | | | - Takanobu Morishita
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hirokazu Nagai
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Sayama, Osaka, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumihiko Hayakawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
50
|
Soares-Lima SC, Pombo-de-Oliveira MS, Carneiro FRG. The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. J Leukoc Biol 2020; 108:1081-1099. [PMID: 32573851 DOI: 10.1002/jlb.2mr0420-707r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023] Open
Abstract
WNT proteins constitute a very conserved family of secreted glycoproteins that act as short-range ligands for signaling with critical roles in hematopoiesis, embryonic development, and tissue homeostasis. These proteins transduce signals via the canonical pathway, which is β-catenin-mediated and better-characterized, or via more diverse noncanonical pathways that are β-catenin independent and comprise the planar cell polarity (PCP) pathway and the WNT/Ca++ pathways. Several proteins regulate Wnt signaling through a variety of sophisticated mechanisms. Disorders within the pathway can contribute to various human diseases, and the dysregulation of Wnt pathways by different molecular mechanisms is implicated in the pathogenesis of many types of cancer, including the hematological malignancies. The types of leukemia differ considerably and can be subdivided into chronic, myeloid or lymphocytic, and acute, myeloid or lymphocytic, leukemia, according to the differentiation stage of the predominant cells, the progenitor lineage, the diagnostic age strata, and the specific molecular drivers behind their development. Here, we review the role of Wnt signaling in normal hematopoiesis and discuss in detail the multiple ways canonical Wnt signaling can be dysregulated in acute leukemia, including alterations in gene expression and protein levels, epigenetic regulation, and mutations. Furthermore, we highlight the different impacts of these alterations, considering the distinct forms of the disease, and the therapeutic potential of targeting Wnt signaling.
Collapse
Affiliation(s)
- Sheila C Soares-Lima
- Epigenetics Group, Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program Research Center, National Cancer Institute, Rio de Janeiro, Brazil
| | - Flávia R G Carneiro
- FIOCRUZ, Center of Technological Development in Health (CDTS), Rio de Janeiro, Brazil.,FIOCRUZ, Laboratório Interdisciplinar de Pesquisas Médicas-Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|