1
|
Wang Y, Mulder IA, Westendorp WF, Coutinho JM, van de Beek D. Immunothrombosis in Acute Ischemic Stroke. Stroke 2025; 56:553-563. [PMID: 39479751 DOI: 10.1161/strokeaha.124.048137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ischemic stroke is one of the leading causes of disability and mortality worldwide. Thrombosis is the main pathological process of stroke and is therefore an important therapeutic target in stroke prevention. In recent years, with the development of endovascular treatment and therefore retrieving the thrombus for further investigation, evidence is accumulating that immune cells are inextricably linked to stroke pathogenesis. Circulating immune cells have been found to induce immunothrombosis, and they actively participate in the formation of the thrombus by promoting platelet recruitment and thrombin activation. Additionally, the formation of thromboinflammation leads to increased instability of atherosclerotic plaques. We review the concepts of stroke immunothrombosis and thromboinflammation and the effect of immune cells on vessel recanalization and patient outcome. In addition, we elaborate on the possible mechanism of immune cells being activated and participating in thrombosis in ischemic stroke.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Inge A Mulder
- Department of Biomedical Engineering and Physics (I.A.M.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, the Netherlands (I.A.M.)
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Willeke F Westendorp
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Jonathan M Coutinho
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| | - Diederik van de Beek
- Department of Neurology (Y.W., W.F.W., J.M.C., D.v.d.B.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, the Netherlands (Y.W., I.A.M., W.F.W., J.M.C., D.v.d.B.)
| |
Collapse
|
2
|
Aghayan AH, Mirazimi Y, Nasehi L, Atashi A. The toxic effects of neutrophil extracellular traps on mesenchymal stem cells. Mol Biol Rep 2024; 52:30. [PMID: 39614028 DOI: 10.1007/s11033-024-10134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Sepsis, a systemic inflammatory response syndrome resulting from an uncontrolled inflammatory reaction to infection, remains without a definitive cure despite therapeutic advancements. Mesenchymal stem cells (MSCs), renowned for their capacity to alleviate inflammation and modulate the immune system, have emerged as a potential treatment avenue for sepsis. In sepsis pathophysiology, hyperactivated neutrophils release extracellular neutrophil traps (NETs). NETs are essential for eradicating pathogens; however, excessive formation leads to tissue damage. Given the limited knowledge regarding the impact of NETs on MSCs used in sepsis therapy and the established interaction between MSCs and NETs, this study investigates the effects of NETs on MSCs in vitro. NETs were isolated from stimulated neutrophils, and MSCs were sourced from umbilical cord blood. After co-culturing MSCs with isolated NETs, MSCs' viability, migration, intracellular antioxidant capacity, and changes in gene expression were analyzed. Following exposure to NETs, MSCs exhibited obvious apoptosis and necrosis. NETs disrupt MSCs' mitochondrial activity. Also, NETs upregulate the pro-apoptotic gene BAX and downregulate the anti-apoptotic gene BCL2 in MSCs. Additionally, NETs reduce MSCs' intracellular antioxidant capacity. Furthermore, MSC migration is significantly impaired by NETs. This study collectively demonstrates that NETs have toxic and detrimental effects on MSCs. These effects on MSCs indicate a potential barrier to their functionality and therapeutic efficacy. Therefore, it appears that reducing the undesirable effects of NETs could serve as a novel target to enhance the therapeutic efficacy of MSCs in septic patients.
Collapse
Affiliation(s)
- Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
3
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Zang T, Fear MW, Parker TJ, Holland AJA, Martin L, Langley D, Kimble R, Wood FM, Cuttle L. Inflammatory proteins and neutrophil extracellular traps increase in burn blister fluid 24h after burn. Burns 2024; 50:1180-1191. [PMID: 38490838 DOI: 10.1016/j.burns.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Burn wound blister fluid is a valuable matrix for understanding the biological pathways associated with burn injury. In this study, 152 blister fluid samples collected from paediatric burn wounds at three different hospitals were analysed using mass spectrometry proteomic techniques. The protein abundance profile at different days after burn indicated more proteins were associated with cellular damage/repair in the first 24 h, whereas after this point more proteins were associated with antimicrobial defence. The inflammatory proteins persisted at a high level in the blister fluid for more than 7 days. This may indicate that removal of burn blisters prior to two days after burn is optimal to prevent excessive or prolonged inflammation in the wound environment. Additionally, many proteins associated with the neutrophil extracellular trap (NET) pathway were increased after burn, further implicating NETs in the post-burn inflammatory response. NET inhibitors may therefore be a potential treatment to reduce post-burn inflammation and coagulation pathology and enhance burn wound healing outcomes.
Collapse
Affiliation(s)
- Tuo Zang
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Tony J Parker
- Queensland University of Technology (QUT), School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Andrew J A Holland
- The Children's Hospital at Westmead Burns Unit, Kids Research Institute, Department of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Lisa Martin
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Donna Langley
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Roy Kimble
- Children's Health Queensland, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, WA, Australia
| | - Leila Cuttle
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Darkwah S, Kotey FCN, Ahenkorah J, Adutwum-Ofosu KK, Donkor ES. Sepsis-Related Lung Injury and the Complication of Extrapulmonary Pneumococcal Pneumonia. Diseases 2024; 12:72. [PMID: 38667530 PMCID: PMC11049144 DOI: 10.3390/diseases12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 04/28/2024] Open
Abstract
Globally, sepsis and pneumonia account for significant mortality and morbidity. A complex interplay of immune-molecular pathways underlies both sepsis and pneumonia, resulting in similar and overlapping disease characteristics. Sepsis could result from unmanaged pneumonia. Similarly, sepsis patients have pneumonia as a common complication in the intensive care unit. A significant percentage of pneumonia is misdiagnosed as septic shock. Therefore, our knowledge of the clinical relationship between pneumonia and sepsis is imperative to the proper management of these syndromes. Regarding pathogenesis and etiology, pneumococcus is one of the leading pathogens implicated in both pneumonia and sepsis syndromes. Growing evidence suggests that pneumococcal pneumonia can potentially disseminate and consequently induce systemic inflammation and severe sepsis. Streptococcus pneumoniae could potentially exploit the function of dendritic cells (DCs) to facilitate bacterial dissemination. This highlights the importance of pathogen-immune cell crosstalk in the pathophysiology of sepsis and pneumonia. The role of DCs in pneumococcal infections and sepsis is not well understood. Therefore, studying the immunologic crosstalk between pneumococcus and host immune mediators is crucial to elucidating the pathophysiology of pneumonia-induced lung injury and sepsis. This knowledge would help mitigate clinical diagnosis and management challenges.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - John Ahenkorah
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| |
Collapse
|
6
|
Islam MM, Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int J Mol Sci 2023; 24:15805. [PMID: 37958788 PMCID: PMC10649138 DOI: 10.3390/ijms242115805] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neutrophils are the principal trouper of the innate immune system. Activated neutrophils undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack. This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clearance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host's protection. However, recent accumulated evidence shows that dysregulated and enhanced NET formation has various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases and focus on some updated potential therapeutic approaches against NETs.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram 4202, Bangladesh
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
7
|
González-Jiménez P, Méndez R, Latorre A, Mengot N, Piqueras M, Reyes S, Moscardó A, Alonso R, Amara-Elori I, Menéndez R. Endothelial Damage, Neutrophil Extracellular Traps and Platelet Activation in COVID-19 vs. Community-Acquired Pneumonia: A Case-Control Study. Int J Mol Sci 2023; 24:13194. [PMID: 37686001 PMCID: PMC10488034 DOI: 10.3390/ijms241713194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
COVID-19 has been a diagnostic and therapeutic challenge. It has marked a paradigm shift when considering other types of pneumonia etiology. We analyzed the biomarkers related to endothelial damage and immunothrombosis in COVID-19 in comparison to community-acquired pneumonia (CAP) through a case-control study of 358 patients with pneumonia (179 hospitalized with COVID-19 vs. 179 matched hospitalized with CAP). Endothelial damage markers (endothelin and proadrenomedullin), neutrophil extracellular traps (NETs) (citrullinated-3 histone, cell-free DNA), and platelet activation (soluble P-selectin) were measured. In-hospital and 1-year follow-up outcomes were evaluated. Endothelial damage, platelet activation, and NET biomarkers are significantly higher in CAP compared to COVID-19. In-hospital mortality in COVID-19 was higher compared to CAP whereas 1-year mortality and cardiovascular complications were higher in CAP. In the univariate analysis (OR 95% CIs), proADM and endothelin were associated with in-hospital mortality (proADM: CAP 3.210 [1.698-6.070], COVID-19 8.977 [3.413-23.609]; endothelin: CAP 1.014 [1.006-1.022], COVID-19 1.024 [1.014-1.034]), in-hospital CVE (proADM: CAP 1.623 [1.080-2.439], COVID-19 2.146 [1.186-3.882]; endothelin: CAP 1.005 [1.000-1.010], COVID-19 1.010 [1.003-1.018]), and 1-year mortality (proADM: CAP 2.590 [1.644-4.080], COVID-19 13.562 [4.872-37.751]; endothelin: CAP 1.008 [1.003-1.013], COVID-19 1.026 [1.016-1.037]). In conclusion, COVID-19 and CAP showed different expressions of endothelial damage and NETs. ProADM and endothelin are associated with short- and long-term mortality.
Collapse
Affiliation(s)
- Paula González-Jiménez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
| | - Raúl Méndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Ana Latorre
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
| | - Noé Mengot
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
| | - Mónica Piqueras
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Soledad Reyes
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
| | - Antonio Moscardó
- Hemostasis and Thrombosis Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Ricardo Alonso
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Isabel Amara-Elori
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
| | - Rosario Menéndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
8
|
Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023; 90:104499. [PMID: 36870200 PMCID: PMC10009451 DOI: 10.1016/j.ebiom.2023.104499] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.
Collapse
|
9
|
Shahidi M, Amirzargar MR. The impact of neutrophil extracellular traps in coronavirus disease - 2019 pathophysiology. Blood Coagul Fibrinolysis 2023; 34:87-92. [PMID: 36719805 DOI: 10.1097/mbc.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by novel coronavirus-2019 (nCoV-2019), is a highly contagious disease with high mortality and morbidity risk. Infected people may suffer from respiratory infections, which may be more progressive in patients with a defective immune system and underlying medical problems. In this regard, the cells involved in the innate immune system, play a decisive role in disease progression and complication development. Pathogen entrapment is the critical role of neutrophil extracellular traps (NETosis). This process involves the widespread release of fibrous structures by the stimulant-activated neutrophils. These fibrous structures are composed of cytosolic proteins and granular contents brought together by a network of released chromatins. This network can inhibit the spread of pathogens by their entrapment. Moreover, NETosis damage the host by producing toxic agents and triggering thrombosis. Therefore, this phenomenon may act as a double-edged sword. Regarding the rapid expansion of COVID-19, it is crucial to examine the involvement of NETosis in infected patients. This study aims to discuss NETosis participation to show its probable association with increased risk of thrombogenicity and help develop new therapeutic approaches in the battle against this viral disease.
Collapse
Affiliation(s)
- Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Sun L, Zhang M, Jiang J, Liu W, Zhao W, Li F. Neutrophil extracellular traps promote bronchopulmonary dysplasia-like injury in neonatal mice via the WNT/β-catenin pathway. Front Cell Infect Microbiol 2023; 13:1126516. [PMID: 37180448 PMCID: PMC10174450 DOI: 10.3389/fcimb.2023.1126516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is one of the most common and severe chronic diseases in preterm infants. Premature infants are susceptible to BPD due to immature lungs and adverse perinatal episodes of infection, hyperoxia, and mechanical ventilation. Methods Neutrophils are the first line of host defence, and the release of neutrophil extracellular traps (NETs) is an important strategy to immobilize and kill invading microorganisms. This study examined whether NETs were associated with BPD in preterm infants and contributed to hyperoxia-induced lung injury in neonatal mice via the WNT/β-catenin pathway. Results In this study, we found that preterm infants with BPD had higher levels of NETs in their tracheal aspirates than those without BPD. Neonatal mice treated with NETs after birth exhibited BPD-like changes in their lungs. Furthermore, the levels of Aquaporin 5 (AQP5) and surfactant-associated protein C (SPC), which represent alveolar differentiation and development, were significantly lower than those in the controls. The WNT/β-catenin pathway is one of the most well-known signalling pathways involved in lung growth. We found that the expression of the target genes c-MYC, cyclin D, and vascular endothelial growth factor (VEGF) and the important proteins WNT3a and β-catenin significantly decreased. Moreover, heparin, which is a NET inhibitor, attenuated changes in gene and protein expression, thereby attenuating BPD-like changes. Discussion This finding indicates that NETs are associated with BPD and can induce BPD-like changes in neonatal mice via the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Liujuan Sun
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Meiyu Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Jin Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Wanjiao Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Wenhao Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Fang Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
- *Correspondence: Fang Li,
| |
Collapse
|
11
|
Popp SK, Vecchio F, Brown DJ, Fukuda R, Suzuki Y, Takeda Y, Wakamatsu R, Sarma MA, Garrett J, Giovenzana A, Bosi E, Lafferty AR, Brown KJ, Gardiner EE, Coupland LA, Thomas HE, Chong BH, Parish CR, Battaglia M, Petrelli A, Simeonovic CJ. Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice. JCI Insight 2022; 7:153993. [PMID: 35076023 PMCID: PMC8855805 DOI: 10.1172/jci.insight.153993] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Platelet-neutrophil aggregates (PNAs) facilitate neutrophil activation and migration and could underpin the recruitment of neutrophils to the pancreas during type 1 diabetes (T1D) pathogenesis. PNAs, measured by flow cytometry, were significantly elevated in the circulation of autoantibody-positive (Aab+) children and new-onset T1D children, as well as in pre-T1D (at 4 weeks and 10–12 weeks) and T1D-onset NOD mice, compared with relevant controls, and PNAs were characterized by activated P-selectin+ platelets. PNAs were similarly increased in pre-T1D and T1D-onset NOD isolated islets/insulitis, and immunofluorescence staining revealed increased islet-associated neutrophil extracellular trap (NET) products (myeloperoxidase [MPO] and citrullinated histones [CitH3]) in NOD pancreata. In vitro, cell-free histones and NETs induced islet cell damage, which was prevented by the small polyanionic drug methyl cellobiose sulfate (mCBS) that binds to histones and neutralizes their pathological effects. Elevated circulating PNAs could, therefore, act as an innate immune and pathogenic biomarker of T1D autoimmunity. Platelet hyperreactivity within PNAs appears to represent a previously unrecognized hematological abnormality that precedes T1D onset. In summary, PNAs could contribute to the pathogenesis of T1D and potentially function as a pre-T1D diagnostic.
Collapse
Affiliation(s)
- Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Federica Vecchio
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Riho Fukuda
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Yuri Suzuki
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Yuma Takeda
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Rikako Wakamatsu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Mahalakshmi A. Sarma
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Jessica Garrett
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Anna Giovenzana
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- San Raffaele Vita Salute University, Milan, Italy
| | - Antony R.A. Lafferty
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Department of Pediatrics, The Canberra Hospital, Canberra, Australia
| | - Karen J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Department of Pediatrics, The Canberra Hospital, Canberra, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Lucy A. Coupland
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Helen E. Thomas
- St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Beng H. Chong
- Hematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Christopher R. Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| |
Collapse
|
12
|
Neutrophil extracellular traps and organ dysfunction in sepsis. Clin Chim Acta 2021; 523:152-162. [PMID: 34537216 DOI: 10.1016/j.cca.2021.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a clinical syndrome resulting from infection followed by inflammation and is one of the significant causes of mortality worldwide. The underlying reason is the host's uncontrolled inflammatory response due to an infection led to multiple organ dysfunction/failure. Neutrophils, an innate immune cell, are forerunners to reach the site of infection/inflammation for clearing the infection and resolute the inflammation during sepsis. A relatively new neutrophil effector function, neutrophil extracellular traps (NETs), have been demonstrated to kill the pathogens by releasing DNA decorated with histone and granular proteins. A growing number of pieces of shreds of evidence suggest that unregulated incidence of NETs have a significant influence on the pathogenesis of sepsis-induced multiple organ damage, including arterial hypotension, hypoxemia, coagulopathy, renal, neurological, and hepatic dysfunction. Thus, excessive production and improper resolution of NETs are of significant therapeutic value in combating sepsis-induced multiple organ failure. The purpose of this review is intended to highlight the role of NETs in sepsis-induced organ failure. Furthermore, the current status of therapeutic strategies to intersect the harmful effects of NETs to restore organ functions is discussed.
Collapse
|
13
|
Significance of Mast Cell Formed Extracellular Traps in Microbial Defense. Clin Rev Allergy Immunol 2021; 62:160-179. [PMID: 34024033 PMCID: PMC8140557 DOI: 10.1007/s12016-021-08861-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Mast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.
Collapse
|
14
|
Pecchiari M, Pontikis K, Alevrakis E, Vasileiadis I, Kompoti M, Koutsoukou A. Cardiovascular Responses During Sepsis. Compr Physiol 2021; 11:1605-1652. [PMID: 33792902 DOI: 10.1002/cphy.c190044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605-1652, 2021.
Collapse
Affiliation(s)
- Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Emmanouil Alevrakis
- 4th Department of Pulmonary Medicine, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Ioannis Vasileiadis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Maria Kompoti
- Intensive Care Unit, Thriassio General Hospital of Eleusis, Magoula, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| |
Collapse
|
15
|
Prasad JM, Negrón O, Du X, Mullins ES, Palumbo JS, Gilbertie JM, Höök M, Grover SP, Pawlinski R, Mackman N, Degen JL, Flick MJ. Host fibrinogen drives antimicrobial function in Staphylococcus aureus peritonitis through bacterial-mediated prothrombin activation. Proc Natl Acad Sci U S A 2021; 118:e2009837118. [PMID: 33443167 PMCID: PMC7817220 DOI: 10.1073/pnas.2009837118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The blood-clotting protein fibrinogen has been implicated in host defense following Staphylococcus aureus infection, but precise mechanisms of host protection and pathogen clearance remain undefined. Peritonitis caused by staphylococci species is a complication for patients with cirrhosis, indwelling catheters, or undergoing peritoneal dialysis. Here, we sought to characterize possible mechanisms of fibrin(ogen)-mediated antimicrobial responses. Wild-type (WT) (Fib+) mice rapidly cleared S. aureus following intraperitoneal infection with elimination of ∼99% of an initial inoculum within 15 min. In contrast, fibrinogen-deficient (Fib-) mice failed to clear the microbe. The genotype-dependent disparity in early clearance resulted in a significant difference in host mortality whereby Fib+ mice uniformly survived whereas Fib- mice exhibited high mortality rates within 24 h. Fibrin(ogen)-mediated bacterial clearance was dependent on (pro)thrombin procoagulant function, supporting a suspected role for fibrin polymerization in this mechanism. Unexpectedly, the primary host initiator of coagulation, tissue factor, was found to be dispensable for this antimicrobial activity. Rather, the bacteria-derived prothrombin activator vWbp was identified as the source of the thrombin-generating potential underlying fibrin(ogen)-dependent bacterial clearance. Mice failed to eliminate S. aureus deficient in vWbp, but clearance of these same microbes in WT mice was restored if active thrombin was administered to the peritoneal cavity. These studies establish that the thrombin/fibrinogen axis is fundamental to host antimicrobial defense, offer a possible explanation for the clinical observation that coagulase-negative staphylococci are a highly prominent infectious agent in peritonitis, and suggest caution against anticoagulants in individuals susceptible to peritoneal infections.
Collapse
Affiliation(s)
- Joni M Prasad
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Oscar Negrón
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Xinli Du
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Eric S Mullins
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Joseph S Palumbo
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Jessica M Gilbertie
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technologies, Texas A&M Health Sciences Center, Houston, TX 77030
| | - Steven P Grover
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Rafal Pawlinski
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Nigel Mackman
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Jay L Degen
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599;
| |
Collapse
|
16
|
Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediators Inflamm 2020; 2020:9254087. [PMID: 32774152 PMCID: PMC7407020 DOI: 10.1155/2020/9254087] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are characterized as extracellular DNA fibers comprised of histone and cytoplasmic granule proteins. NETs were first described as a form of innate response against pathogen invasion, which can capture pathogens, degrade bacterial toxic factors, and kill bacteria. Additionally, NETs also provide a scaffold for protein and cell binding. Protein binding to NETs further activate the coagulation system which participates in thrombosis. In addition, NETs also can damage the tissues due to the proteins they carry. Many studies have suggested that the excessive formation of NETs may contribute to a range of diseases, including thrombosis, atherosclerosis, autoimmune diseases, and sepsis. In this review, we describe the structure and components of NETs, models of NET formation, and detection methods. We also discuss the molecular mechanism of NET formation and their disease relevance. Modulation of NET formation may provide a new route for the prevention and treatment of releated human diseases.
Collapse
|
17
|
Sun Y, Chen C, Zhang X, Wang S, Zhu R, Zhou A, Chen S, Feng J. Heparin improves alveolarization and vascular development in hyperoxia-induced bronchopulmonary dysplasia by inhibiting neutrophil extracellular traps. Biochem Biophys Res Commun 2020; 522:33-39. [PMID: 31735330 DOI: 10.1016/j.bbrc.2019.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
The objective of this study was to assess the role of NETs in BPD of hyperoxia-induced rat model and the effect of heparin on alveolarization and vascular development in BPD. The neonatal rats exposed to 90% oxygen continuously for 7 days to mimic BPD, meanwhile, the rats were injected by different doses of histones to evaluate the impact on lung injury. The newborn rats exposed to hyperoxia were injected by different doses of heparin (250 U/kg, 500 U/kg) or anti-H4 antibody to evaluate the effect of heparin. Histones and hyperoxia impaired alveolarization with the increase of mean linear intercept (MLI) and the decrease of radial alveolar count (RAC), decreased lung angiogenesis with the decrease expression of VEGF, and increased the expression of NETs, histones and pro-inflammatory factor. However, low dose heparin (250U/kg) administration enhanced survival, improved alveolarization and vascular development in hyperoxia-induced BPD, as well as reduced expression of NETs, histones and pro-inflammatory factor. We concluded that heparin improves alveolarization and vascularization in BPD by inhibiting NETs.
Collapse
Affiliation(s)
- Yuanyuan Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cuie Chen
- Yiwu Maternity and Children Health Care Hospital, Jinhua, China
| | - Xixi Zhang
- Yuhuan People's Hospital, Taizhou, China
| | - Shi Wang
- Wenzhou Medical University, Wenzhou, China
| | - Ronghe Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Aihua Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujun Chen
- Yiwu Maternity and Children Health Care Hospital, Jinhua, China
| | - Jianhua Feng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
18
|
Peña-Martínez C, Durán-Laforet V, García-Culebras A, Ostos F, Hernández-Jiménez M, Bravo-Ferrer I, Pérez-Ruiz A, Ballenilla F, Díaz-Guzmán J, Pradillo JM, Lizasoain I, Moro MA. Pharmacological Modulation of Neutrophil Extracellular Traps Reverses Thrombotic Stroke tPA (Tissue-Type Plasminogen Activator) Resistance. Stroke 2019; 50:3228-3237. [DOI: 10.1161/strokeaha.119.026848] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background and Purpose—
Recanalization of the occluded artery is a primary goal in stroke treatment. Unfortunately, endovascular treatment is not always available, and tPA (tissue-type plasminogen activator) therapy is limited by its narrow therapeutic window; importantly, the rate of early arterial recanalization after tPA administration is low, especially for platelet-rich thrombi. The mechanisms for this tPA resistance are not well known. Since neutrophil extracellular traps (NETs) have been implicated in this setting, our aim was to study whether NET pharmacological modulation can reverse tPA resistance and the role of TLR4 (Toll-like receptor 4), previously related to NET formation, in thrombosis.
Methods—
To this goal, we have used a mouse photothrombotic stroke model, which produces a fibrin-free thrombus composed primarily of aggregated platelets and thrombi obtained from human stroke patients.
Results—
Our results demonstrate that (1) administration of DNase-I, which promotes NETs lysis, but not of tPA, recanalizes the occluded vessel improving photothrombotic stroke outcome; (2) a preventive treatment with Cl-amidine, impeding NET formation, completely precludes thrombotic occlusion; (3) platelet TLR4 mediates NET formation after photothrombotic stroke; and (4) ex vivo fresh platelet-rich thrombi from ischemic stroke patients are effectively lysed by DNase-I.
Conclusions—
Hence, our data open new avenues for recanalization of platelet-rich thrombi after stroke, especially to overcome tPA resistance.
Collapse
Affiliation(s)
- Carolina Peña-Martínez
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Violeta Durán-Laforet
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Alicia García-Culebras
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Fernando Ostos
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
- Servicio de Neurología (F.O., J.D.-G.), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Macarena Hernández-Jiménez
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Isabel Bravo-Ferrer
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Alberto Pérez-Ruiz
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Federico Ballenilla
- Servicio de Radiología (F.B.), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jaime Díaz-Guzmán
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
- Servicio de Neurología (F.O., J.D.-G.), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús M. Pradillo
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Ignacio Lizasoain
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - María A. Moro
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| |
Collapse
|
19
|
Fan F, Huang X, Yuan K, Zhu B, Zhao Y, Hu R, Wan T, Zhu L, Jin X. Glucocorticoids May Exacerbate Fungal Keratitis by Increasing Fungal Aggressivity and Inhibiting the Formation of Neutrophil Extracellular Traps. Curr Eye Res 2019; 45:124-133. [PMID: 31429304 DOI: 10.1080/02713683.2019.1657464] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purpose: To evaluate whether glucocorticoids affect the prognosis of fungal keratitis by inhibiting the formation of neutrophil extracellular traps (NETs).Methods: A mouse model of Candida albicans (C.albicans) keratitis was established. Animals were randomly assigned to treatment with 0.1% dexamethasone (DXM) eye drops and normal saline (3 times each day for 3 days). The effects of DXM on fungal keratitis were assessed using clinical scores, immunofluorescence staining, histopathological examination, scanning electron microscopy (SEM), and pathogen burden assay. All the analyses were performed using SPSS software version 17.0 (Chicago, IL).Results: NETs formation was noteworthy in the cornea lesions of fungal keratitis. The clinical score of the DXM-treated group was significantly higher than that of the control group (P < .05). During the measured period, corneas from DXM-treated group contained more C.albicans than those from the control group by histology and pathogen burden assay. Compared with the control group, the DXM treatment group had a higher depth of infiltration of C.albicans. Histological and immunofluorescence staining showed that there were fewer neutrophils in the cornea focus of DXM-treated group (P < .05), and the number of NETs formed in scrapings from control group was higher than that in the DXM treatment group on day 3 (P < .05, Z = -3.56)) and day 5 (P < .05, Z = -3.69). In a similar amount of cell scraping, the NETs of neutrophils formation from the DXM-treated group were also less than that from the control group.Conclusion: Our results indicated that NETs were involved in the immune response in C.albicans keratitis. Glucocorticoids may exacerbate fungal keratitis not only by increasing fungal aggressivity and reducing the infiltration of neutrophils but also by inhibiting the formation of NETs.
Collapse
Affiliation(s)
- Fangli Fan
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Ophthalmology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kelan Yuan
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binbin Zhu
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Zhao
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renjian Hu
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Wan
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lian Zhu
- Department of Ophthalmology, The people's Hospital of SND, Suzhou, China
| | - Xiuming Jin
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Weller CD, Gardiner EE, Arthur JF, Southey M, Andrews RK. Autologous platelet-rich plasma for healing chronic venous leg ulcers: Clinical efficacy and potential mechanisms. Int Wound J 2019; 16:788-792. [PMID: 30864220 PMCID: PMC7949463 DOI: 10.1111/iwj.13098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022] Open
Abstract
The overall quality of evidence of autologous platelet-rich plasma (PRP) for treating chronic wounds remains low. While further well-designed clinical studies are clearly required to convincingly demonstrate the efficacy of autologous PRP in improved healing of venous leg ulcers (VLUs) and other chronic wounds, there is also an increasing need to better define the underlying mechanisms of action and whether positive outcomes can be predicted based on the analysis of PRP. This brief review will discuss the current understanding of autologous PRP in VLUs and whether molecular evaluation of PRP at the time of collection could potentially be informative to clinical outcomes. Benefits of the autologous PRP treatment strategy include that PRP is easily accessible and is relatively inexpensive and safe. Better understanding of the mechanisms involved could improve treatment, enable supplementation, and/or lead to gains in product development. Analysis of PRP could also add value to future clinical trials on efficacy and potentially personalised treatment regimens.
Collapse
Affiliation(s)
- Carolina D. Weller
- School of Nursing and MidwiferyMonash UniversityMelbourneVictoriaAustralia
| | - Elizabeth E. Gardiner
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Jane F. Arthur
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| | - Melissa Southey
- Precision MedicineMonash UniversityMelbourneVictoriaAustralia
- Cancer Epidemiology and Intelligence DivisionCancer Council VictoriaMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Robert K. Andrews
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
21
|
Tong S, Yang S, Li T, Gao R, Hu J, Luo T, Qing H, Zhen Q, Hu R, Li X, Yang Y, Peng C, Li Q. Role of neutrophil extracellular traps in chronic kidney injury induced by bisphenol-A. J Endocrinol 2019; 241:JOE-18-0608.R2. [PMID: 30798321 DOI: 10.1530/joe-18-0608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 01/17/2023]
Abstract
Bisphenol-A (BPA) is a common environmental pollutant, and exposure to it is associated with proteinuria and may predict the progression of chronic kidney disease,however, the mechanism is not clear. Neutrophil extracellular traps (NETs) is a DNA skeleton coated with various proteases, and it is associated with various autoimmune nephritis. In this study, we examine whether NETs is involved in BPA-induced chronic kidney injury. In vivo, BPA exposure resulted in impaired renal function and altered renal morphology, including glomerular mesangial matrix expansion and increased renal interstitial fibroblast markers. Meanwhile, more dsDNA can be detected in the serum, and the NETs-associated proteins, MPO and citH3 were deposited in the renal system. In vitro, BPA and NETs treatment caused podocyte injury, a loss of marker proteins, and disorder in the actin skeleton. After NETs inhibition via DNase administration, BPA-induced injuries were significantly relieved. In conclusion, the increase of NETosis in circulation and the renal system during BPA exposure suggests that NETs may be involved in BPA-induced chronic kidney injury.
Collapse
Affiliation(s)
- Shiyun Tong
- S Tong, Department of Endocrinology , The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- S Yang, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Li
- T Li, Department of Endocrinology, Department of Endocrinology, the First Affiliated Hospital of Chengdu Medical College, ChengDu, China
| | - Rufei Gao
- R Gao, Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China, Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- J Hu, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China., Chongqing, 400016, China
| | - Ting Luo
- T Luo, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qing
- H Qing, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, ChongQing, China
| | - Qianna Zhen
- Q Zhen, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renzhi Hu
- R Hu, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Xuan Li
- X Li, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Yi Yang
- Y Yang, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Chuan Peng
- C Peng, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Qifu Li
- Q Li, Department of Endocrine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med 2018; 7:E400. [PMID: 30380785 PMCID: PMC6262336 DOI: 10.3390/jcm7110400] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute vascular endothelial dysfunction is a central event in the pathogenesis of sepsis, increasing vascular permeability, promoting activation of the coagulation cascade, tissue edema and compromising perfusion of vital organs. Aging and chronic diseases (hypertension, dyslipidaemia, diabetes mellitus, chronic kidney disease, cardiovascular disease, cerebrovascular disease, chronic pulmonary disease, liver disease, or cancer) are recognized risk factors for sepsis. In this article we review the features of endothelial dysfunction shared by sepsis, aging and the chronic conditions preceding this disease. Clinical studies and review articles on endothelial dysfunction in sepsis, aging and chronic diseases available in PubMed were considered. The main features of endothelial dysfunction shared by sepsis, aging and chronic diseases were: (1) increased oxidative stress and systemic inflammation, (2) glycocalyx degradation and shedding, (3) disassembly of intercellular junctions, endothelial cell death, blood-tissue barrier disruption, (4) enhanced leukocyte adhesion and extravasation, (5) induction of a pro-coagulant and anti-fibrinolytic state. In addition, chronic diseases impair the mechanisms of endothelial reparation. In conclusion, sepsis, aging and chronic diseases induce similar features of endothelial dysfunction. The potential contribution of pre-existent endothelial dysfunction to sepsis pathogenesis deserves to be further investigated.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| | - Marta Martín-Fernandez
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Cristina López-Mestanza
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Patricia Duque
- Anesthesiology and Reanimation Service, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
23
|
Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018; 9:1366. [PMID: 29988379 PMCID: PMC6023974 DOI: 10.3389/fimmu.2018.01366] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths worldwide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues and organs and cause infections. Pneumonia is currently the most common pneumococcal disease. Pneumococcal pneumonia is a global health concern and vastly affects children under the age of five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has a large selection of virulence factors that promote adherence, invasion of host tissues, and allows it to escape host immune defenses. A clear understanding of S. pneumoniae's virulence factors, host immune responses, and examining the current techniques available for diagnosis, treatment, and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of disease prevention, other considerations must include the effects of age on responses to vaccines and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including the use of serotype-independent vaccines, such as protein and whole cell vaccines. Extending our knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount for our improvement of pneumococcal disease diagnosis, treatment, and improvement of patient outlook.
Collapse
Affiliation(s)
- Lavida R. K. Brooks
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
Sperling C, Fischer M, Maitz MF, Werner C. Neutrophil extracellular trap formation upon exposure of hydrophobic materials to human whole blood causes thrombogenic reactions. Biomater Sci 2018; 5:1998-2008. [PMID: 28745733 DOI: 10.1039/c7bm00458c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neutrophil extracellular trap (NET) formation, a reaction of the innate immune system to fight pathogens, was shown to be involved in thrombus formation. In the present study blood-contacting biomaterials with graded surface characteristics were investigated as a potential cause of NET formation on medical devices. Surface properties are known to govern protein adsorption, cell adhesion and ultimately the activation of several other host defense pathways - potentially also the formation of NETs. Model materials of defined hydrophilic or hydrophobic properties (glass, and thin films of poly(ethylene-alt-maleic anhydride), self-assembled monolayers of methyl terminated alkanethiols, and Teflon AF™) were incubated either with isolated human granulocytes after pre-adsorption with plasma proteins or with human whole blood. NET formation - detected as extracellular DNA, citrullinated histones, elastase and reactive oxygen species (ROS) - was observed on hydrophobic surfaces. Furthermore, NET formation on the hydrophobic surface Teflon AF™ resulted in elevated thrombin generation in hirudin-anticoagulated whole blood, but not in heparinized whole blood. Disintegration of surface-bound NETs by DNase treatment resulted in significantly lower pro-coagulant effects. Thus, NET formation can contribute to the thrombogenicity of clinically applied hydrophobic materials, suggesting NETosis as well as NET surface anchorage as new targets of anticoagulation strategies.
Collapse
Affiliation(s)
- Claudia Sperling
- Institute of Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany.
| | | | | | | |
Collapse
|
25
|
Sepsis Induces a Dysregulated Neutrophil Phenotype That Is Associated with Increased Mortality. Mediators Inflamm 2018; 2018:4065362. [PMID: 29849488 PMCID: PMC5925119 DOI: 10.1155/2018/4065362] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/29/2018] [Indexed: 01/18/2023] Open
Abstract
Background Neutrophil dysfunction in sepsis has been implicated in the pathogenesis of multiorgan failure; however, the role of neutrophil extracellular traps (NETs) remains uncertain. We aimed to determine the sequential changes in ex vivo NETosis and its relationship with mortality in patients with sepsis and severe sepsis. Methods This was a prospective observational cohort study enrolling 21 healthy age-matched controls and 39 sepsis and 60 severe sepsis patients from acute admissions to two UK hospitals. Patients had sequential bloods for the ex vivo assessment of NETosis in response to phorbol-myristate acetate (PMA) using a fluorometric technique and chemotaxis using time-lapse video microscopy. Continuous data was tested for normality, with appropriate parametric and nonparametric tests, whilst categorical data was analysed using a chi-squared test. Correlations were performed using Spearman's rho. Results Ex vivo NETosis was reduced in patients with severe sepsis, compared to patients with sepsis and controls (p = 0.002). PMA NETosis from patients with septic shock was reduced further (p < 0.001) compared to controls. The degree of metabolic acidosis correlated with reduced NETosis (p < 0.001), and this was replicated when neutrophils from healthy donors were incubated in acidotic media. Reduced NETosis at baseline was associated with an increased 30-day (p = 0.002) and 90-day mortality (p = 0.014) in sepsis patients. These findings were accompanied by defects in neutrophil migration and delayed apoptosis. Resolution of sepsis was not associated with the return to baseline levels of NETosis or migration. Conclusions Sepsis induces significant changes in neutrophil function with the degree of dysfunction corresponding to the severity of the septic insult which persists beyond physiological recovery from sepsis. The changes induced lead to the failure to effectively contain and eliminate the invading pathogens and contribute to sepsis-induced immunosuppression. For the first time, we demonstrate that reduced ex vivo NETosis is associated with poorer outcomes from sepsis.
Collapse
|
26
|
Mechanisms of I/R-Induced Endothelium-Dependent Vasodilator Dysfunction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:331-364. [PMID: 29310801 DOI: 10.1016/bs.apha.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion (I/R) induces leukocyte/endothelial cell adhesive interactions (LECA) in postcapillary venules and impaired endothelium-dependent, NO-mediated dilatory responses (EDD) in upstream arterioles. A large body of evidence has implicated reactive oxygen species, adherent leukocytes, and proteases in postischemic EDD dysfunction in conduit arteries. However, arterioles represent the major site for the regulation of vascular resistance but have received less attention with regard to the mechanisms underlying their reduced responsiveness to EDD stimuli in I/R. Even though leukocytes do not roll along, adhere to, or emigrate across arteriolar endothelium in postischemic intestine, recent work indicates that I/R-induced venular LECA is causally linked to EDD in arterioles. An emerging body of evidence suggests that I/R-induced EDD in arterioles occurs by a mechanism that is triggered by LECA in postcapillary venules and involves the formation of signals in the interstitium elicited by the proteolytic activity of emigrated leukocytes. This activity releases matricryptins from or exposes matricryptic sites in the extracellular matrix that interact with the integrin αvβ3 to induce mast cell chymase-dependent formation of angiotensin II (Ang II). Subsequent activation of NAD(P)H oxidase by Ang II leads to the formation of oxidants which inactivate NO and leads to eNOS uncoupling, resulting in arteriolar EDD dysfunction. This work establishes new links between LECA in postcapillary venules, signals generated in the interstitium by emigrated leukocytes, mast cell degranulation, and impaired EDD in upstream arterioles. These fundamentally important findings have enormous implications for our understanding of blood flow dysregulation in conditions characterized by I/R.
Collapse
|
27
|
Galuska CE, Dambon JA, Kühnle A, Bornhöfft KF, Prem G, Zlatina K, Lütteke T, Galuska SP. Artificial Polysialic Acid Chains as Sialidase-Resistant Molecular-Anchors to Accumulate Particles on Neutrophil Extracellular Traps. Front Immunol 2017; 8:1229. [PMID: 29033944 PMCID: PMC5626807 DOI: 10.3389/fimmu.2017.01229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are involved in numerous immunological events. One mechanism of neutrophils to combat pathogens is the formation of neutrophil extracellular traps (NETs). Thereby, neutrophils use DNA fibers to form a meshwork of DNA and histones as well as several antimicrobial components to trap and kill invaders. However, the formation of NETs can lead to pathological conditions triggering among other things (e.g., sepsis or acute lung failure), which is mainly a consequence of the cytotoxic characteristics of accumulated extracellular histones. Interestingly, the carbohydrate polysialic acid represents a naturally occurring antagonist of the cytotoxic properties of extracellular histones. Inspired by polysialylated vesicles, we developed polysialylated nanoparticles. Since sialidases are frequently present in areas of NET formation, we protected the sensitive non-reducing end of these homopolymers. To this end, the terminal sialic acid residue of the non-reducing end was oxidized and directly coupled to nanoparticles. The covalently linked sialidase-resistant polysialic acid chains are still able to neutralize histone-mediated cytotoxicity and to initiate binding of these polysialylated particles to NET filaments. Furthermore, polysialylated fluorescent microspheres can be used as a bioanalytical tool to stain NET fibers. Thus, polySia chains might not only be a useful agent to reduce histone-mediated cytotoxicity but also an anchor to accumulate nanoparticles loaded with active substances in areas of NET formation.
Collapse
Affiliation(s)
- Christina E Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Jan A Dambon
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Andrea Kühnle
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Gerlinde Prem
- Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
28
|
Banerjee A, Shukla S, Pandey AD, Goswami S, Bandyopadhyay B, Ramachandran V, Das S, Malhotra A, Agarwal A, Adhikari S, Rahman M, Chatterjee S, Bhattacharya N, Basu N, Pandey P, Sood V, Vrati S. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients. Transl Res 2017; 186:62-78.e9. [PMID: 28683259 DOI: 10.1016/j.trsl.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Patients infected with Dengue virus usually present a mild, self-limiting febrile dengue infection (DI) that occasionally leads to a potentially lethal complication, called the severe dengue (DS). The ability to identify the prognostic markers of DS could allow an improved disease intervention and management. To identify the transcriptional signatures associated with the dengue disease progression, we carried out the high-throughput sequencing of the RNA isolated from the peripheral blood mononuclear cells (PBMCs) of the dengue patients of varying severity and compared with that in the patients with other febrile illnesses (OFIs) or the healthy controls. The transcriptional signatures that discriminated the DS patients from OFI and DI patients were broadly related to the pathways involving glycine, serine, and threonine metabolisms, extracellular matrix organization, ubiquitination, and cytokines and inflammatory response. Several upregulated genes in the inflammatory process (MPO, DEFA4, ELANE, AUZ1, CTSG, OLFM4, SLC16A14, and CRISP3) that were associated with the dengue disease progression are known to facilitate leukocyte-mediated migration, and neutrophil activation and degranulation process. High activity of MPO and ELANE in the plasma samples of the follow-up and recovered dengue patients, as well as and the presence of a larger amount of cell-free dsDNA in the DS patients, suggested an association of neutrophil-mediated immunity with dengue disease progression. Careful monitoring of some of these gene transcripts, and control of the activity of proteins encoded by them, may have a great translational significance for the prognosis and management of the dengue patients.
Collapse
Affiliation(s)
- Arup Banerjee
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| | - Shweta Shukla
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Abhay Deep Pandey
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Saptamita Goswami
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Bhaswati Bandyopadhyay
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Shukla Das
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Arjun Malhotra
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Amitesh Agarwal
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Srima Adhikari
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Mehebubar Rahman
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Nemai Bhattacharya
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Nandita Basu
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Priyanka Pandey
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - Vikas Sood
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
29
|
Preissner KT, Herwald H. Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease. Thromb Haemost 2017; 117:1272-1282. [PMID: 28594050 DOI: 10.1160/th-16-11-0858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022]
Abstract
Severe inflammatory complications are a potential consequence in patients with predetermined conditions of infections, pulmonary diseases, or cardiovascular disorders. Notably, the amplitude of the inflammatory response towards these complications can dictate the disease progression and outcome. During the recent years, evidence from basic research as well as from clinical studies has identified self-extracellular nucleic acids as important players in the crosstalk between immunity and cardiovascular diseases. These stress- or injury-induced endogenous polymeric macromolecules not only serve as "alarmins" or "Danger-associated molecular patterns" (DAMPs), but their functional repertoire goes far beyond such activities in innate immunity. In fact, (patho-) physiological functions of self-extracellular DNA and RNA are associated and in many cases causally related to arterial and venous thrombosis, atherosclerosis, ischemia-reperfusion injury or tumour progression. Yet, the underlying molecular mechanisms are far from being completely understood. Interestingly enough, however, novel antagonistic approaches in vitro and in vivo, particularly using natural endonucleases or synthetic nucleic acid binding polymers, appear to be promising and safe therapeutic options for future studies. The aim of this review article is to provide an overview of the current state of (patho-) physiological functions of self-extracellular nucleic acids with special emphasis on their role as beneficial / alerting or adverse / damaging factors in connection with immune responses, inflammation, thrombosis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Klaus T Preissner
- Klaus T. Preissner, PhD, Department of Biochemistry, Medical School, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany, Tel.: +49 641 994 7500, E-mail:
| | | |
Collapse
|
30
|
Abstract
OBJECTIVES Coagulopathy and mesenteric thrombosis are common in premature neonates with necrotizing enterocolitis (NEC). This pilot study aimed to investigate the hypothesis that there are changes in the gene expression related to the coagulation and anticoagulation systems in NEC. METHODS Consecutive neonates (n = 11) with NEC (Bell stages 2-3) were recruited. Two comparison groups, matched for birth weight and corrected gestational age, were selected based on the absence of inflammation and coagulopathy (healthy control, n = 10), or the presence of a confirmed blood infection (sepsis control, n = 12). A pathway-specific quantitative polymerase chain reaction array was used to determine the expression of 94 genes involved in human blood coagulation and anticoagulation cascade. RESULTS Twelve genes of the coagulation and anticoagulation systems were significantly altered in the patients with NEC compared with healthy controls. In particular, neutrophil elastase, CD63, PROS1, HGF, and F12 were significantly upregulated (mean fold changes [FCs] +2.74, P < 0.05) with an overall procoagulant effect; MFGE8, factor II (thrombin) receptor-like 1 (F2RL1), FGL2, PLAT, PROCR, SERPIND1, and HNF4A were significantly downregulated (mean FCs -2.45, P < 0.05) with a reduction in fibrinolysis and endothelial regeneration. In the comparison between NEC and sepsis, we did observe a significant difference in expression of F2RL1 (FC -2.50, P = 0.01). CONCLUSIONS We have identified potential biomarkers associated with coagulopathy and disease progression in NEC. In particular, the overall procoagulant status, at the transcriptional level, should be further investigated to unveil molecular mechanisms leading to intestinal necrosis, multiorgan failure, and death.
Collapse
|
31
|
Yu Y, Koehn CD, Yue Y, Li S, Thiele GM, Hearth-Holmes MP, Mikuls TR, O'Dell JR, Klassen LW, Zhang Z, Su K. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med 2016; 15:401-10. [PMID: 25941817 PMCID: PMC4527119 DOI: 10.2174/1566524015666150505160743] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures released by activated
neutrophils. Recent studies suggest that NETs play an active role in driving autoimmunity
and tissue injury in diseases including rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE). The purpose of this study was to investigate if celastrol, a triterpenoid
compound, can inhibit NET formation induced by inflammatory stimuli associated with RA
and SLE. We found that celastrol can completely inhibit neutrophil oxidative burst and NET formation induced
by tumor necrosis factor alpha (TNFα) with an IC50 of 0.34 µM and by ovalbumin:anti-ovalbumin immune
complexes (Ova IC) with an IC50 of 1.53 µM. Celastrol also completely inhibited neutrophil oxidative burst and
NET formation induced by immunoglobulin G (IgG) purified from RA and SLE patient sera. Further
investigating into the mechanisms, we found that celastrol treatment downregulated the activation of spleen
tyrosine kinase (SYK) and the concomitant phosphorylation of mitogen-activated protein kinase kinase
(MAPKK/MEK), extracellular-signal-regulated kinase (ERK), and NFκB inhibitor alpha (IκBα), as well as
citrullination of histones. Our data reveals that celastrol potently inhibits neutrophil oxidative burst and NET
formation induced by different inflammatory stimuli, possibly through downregulating the SYK-MEK-ERK-NFκB
signaling cascade. These results suggest that celastrol may have therapeutic potentials for the treatment of
inflammatory and autoimmune diseases involving neutrophils and NETs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - K Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, LTC 11724, 987660 Nebraska Medical Center, Omaha, NE 68198- 7660, USA.
| |
Collapse
|
32
|
Bendjersi FZ, Tazerouti F, Belkhelfa-Slimani R, Djerdjouri B, Meklati BY. Phytochemical composition of the Algerian Laurus nobilis L. leaves extracts obtained by solvent-free microwave extraction and investigation of their antioxidant activity. JOURNAL OF ESSENTIAL OIL RESEARCH 2016. [DOI: 10.1080/10412905.2015.1129992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Walters KA, D'Agnillo F, Sheng ZM, Kindrachuk J, Schwartzman LM, Kuestner RE, Chertow DS, Golding BT, Taubenberger JK, Kash JC. 1918 pandemic influenza virus and Streptococcus pneumoniae co-infection results in activation of coagulation and widespread pulmonary thrombosis in mice and humans. J Pathol 2015; 238:85-97. [PMID: 26383585 DOI: 10.1002/path.4638] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
To study bacterial co-infection following 1918 H1N1 influenza virus infection, mice were inoculated with the 1918 influenza virus, followed by Streptococcus pneumoniae (SP) 72 h later. Co-infected mice exhibited markedly more severe disease, shortened survival time and more severe lung pathology, including widespread thrombi. Transcriptional profiling revealed activation of coagulation only in co-infected mice, consistent with the extensive thrombogenesis observed. Immunohistochemistry showed extensive expression of tissue factor (F3) and prominent deposition of neutrophil elastase on endothelial and epithelial cells in co-infected mice. Lung sections of SP-positive 1918 autopsy cases showed extensive thrombi and prominent staining for F3 in alveolar macrophages, monocytes, neutrophils, endothelial and epithelial cells, in contrast to co-infection-positive 2009 pandemic H1N1 autopsy cases. This study reveals that a distinctive feature of 1918 influenza virus and SP co-infection in mice and humans is extensive expression of tissue factor and activation of the extrinsic coagulation pathway leading to widespread pulmonary thrombosis.
Collapse
Affiliation(s)
| | - Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Food and Drug Administration, Silver Spring, MD, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Jason Kindrachuk
- Critical Care Medicine Department, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Louis M Schwartzman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | | | - Daniel S Chertow
- Critical Care Medicine Department, National Institutes of Health (NIH), Bethesda, MD, USA.,Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Basil T Golding
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Food and Drug Administration, Silver Spring, MD, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Enhanced formation of neutrophil extracellular traps in patients with graft versus host disease. Ann Hematol 2015; 94:2081-3. [PMID: 26344600 DOI: 10.1007/s00277-015-2495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
35
|
Frelinger AL, Torres AS, Caiafa A, Morton CA, Berny-Lang MA, Gerrits AJ, Carmichael SL, Neculaes VB, Michelson AD. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation. Platelets 2015; 27:128-35. [PMID: 26030682 DOI: 10.3109/09537104.2015.1048214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.
Collapse
Affiliation(s)
- A L Frelinger
- a Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA and
| | - A S Torres
- b GE Global Research Center , Niskayuna , NY , USA
| | - A Caiafa
- b GE Global Research Center , Niskayuna , NY , USA
| | - C A Morton
- b GE Global Research Center , Niskayuna , NY , USA
| | - M A Berny-Lang
- a Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA and
| | - A J Gerrits
- a Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA and
| | - S L Carmichael
- a Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA and
| | - V B Neculaes
- b GE Global Research Center , Niskayuna , NY , USA
| | - A D Michelson
- a Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA and
| |
Collapse
|
36
|
Makino I, Tajima H, Kitagawa H, Nakagawara H, Miyashita T, Nakanuma S, Hayashi H, Takamura H, Fushida S, Ohta T. A case of severe sepsis presenting marked decrease of neutrophils and interesting findings on dynamic CT. AMERICAN JOURNAL OF CASE REPORTS 2015; 16:322-7. [PMID: 26020838 PMCID: PMC4460910 DOI: 10.12659/ajcr.893351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patient: Male, 60 Final Diagnosis: Sepsis Symptoms: Fever • shock Medication: Sivelestat sodium hydrate Clinical Procedure: PMX-DHP • CHDF Specialty: Infectious Diseases
Collapse
Affiliation(s)
- Isamu Makino
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hidehiro Tajima
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hirohisa Kitagawa
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hironori Hayashi
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sachio Fushida
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuo Ohta
- Department of Gastroenterologic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
37
|
Abstract
The endothelium provides an essential and selective membrane barrier that regulates the movement of water, solutes, gases, macromolecules and the cellular elements of the blood from the tissue compartment in health and disease. Its structure and continuous function is essential for life for all vertebrate organisms. Recent evidence indicates that the endothelial surface does not have a passive role in systemic inflammatory states such as septic shock. In fact, endothelial cells are in dynamic equilibrium with a myriad of inflammatory mediators and elements of the innate immune and coagulation systems to orchestrate the host response in sepsis. The barrier function of the endothelial surface is almost uniformly impaired in septic shock, and it is likely that this contributes to adverse outcomes. In this review, we will highlight recent advances in the understanding of the signalling events that regulate endothelial function and molecular events that induce endothelial dysfunction in sepsis. Endothelial barrier repair strategies as a treatment for sepsis include modulation of C5a, high-mobility group box 1 and VEGF receptor 2; stimulation of angiopoietin-1, sphingosine 1 phosphate receptor 1 and Slit; and a number of other innovative approaches.
Collapse
Affiliation(s)
- S M Opal
- Infectious Disease Division, Alpert Medical School of Brown University, Pawtucket, RI, USA
| | - T van der Poll
- Academic Medical Center, Division of Infectious Diseases & The Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
38
|
PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 2015; 125:1948-56. [PMID: 25624317 DOI: 10.1182/blood-2014-07-587709] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neutrophil extracellular traps (NETs), consisting of nuclear DNA with histones and microbicidal proteins, are expelled from activated neutrophils during sepsis. NETs were shown to trap microbes, but they also fuel cardiovascular, thrombotic, and autoimmune disease. The role of NETs in sepsis, particularly the balance between their antimicrobial and cytotoxic actions, remains unclear. Neutrophils from peptidylarginine deiminase 4-(PAD4(-/-)) deficient mice, which lack the enzyme allowing for chromatin decondensation and NET formation, were evaluated. We found that neutrophil functions involved in bacterial killing, other than NETosis, remained intact. Therefore, we hypothesized that prevention of NET formation might not have devastating consequences in sepsis. To test this, we subjected the PAD4(-/-) mice to mild and severe polymicrobial sepsis produced by cecal ligation and puncture. Surprisingly, under septic conditions, PAD4(-/-) mice did not fare worse than wild-type mice and had comparable survival. In the presence of antibiotics, PAD4-deficiency resulted in slightly accelerated mortality but bacteremia was unaffected. PAD4(-/-) mice were partially protected from lipopolysaccharide-induced shock, suggesting that PAD4/NETs may contribute to the toxic inflammatory and procoagulant host response to endotoxin. We propose that preventing NET formation by PAD4 inhibition in inflammatory or thrombotic diseases is not likely to increase host vulnerability to bacterial infections.
Collapse
|
39
|
Berndt MC, Metharom P, Andrews RK. Primary haemostasis: newer insights. Haemophilia 2014; 20 Suppl 4:15-22. [PMID: 24762270 DOI: 10.1111/hae.12427] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
At the same time as biophysical and omics approaches are drilling deeper into the molecular details of platelets and other blood cells, as well as their receptors and mechanisms of regulation, there is also an increasing awareness of the functional overlap between human vascular systems. Together, these studies are redefining the intricate networks linking haemostasis and thrombosis with inflammation, infectious disease, cancer/metastasis and other vascular pathophysiology. The focus of this state-of-the-art review is some of the newer advances relevant to primary haemostasis. Of particular interest, platelet-specific primary adhesion-signalling receptors and associated activation pathways control platelet function in flowing blood and provide molecular links to other systems. Platelet glycoprotein (GP)Ibα of the GPIb-IX-V complex and GPVI not only initiate platelet aggregation and thrombus formation by primary interactions with von Willebrand factor and collagen, respectively, but are also involved in coagulation, leucocyte engagement, bacterial or viral interactions, and are relevant as potential risk markers in a range of human diseases. Understanding these systems in unprecedented detail promises significant advances in evaluation of individual risk, in new diagnostic or therapeutic possibilities and in monitoring the response to drugs or other treatment.
Collapse
Affiliation(s)
- M C Berndt
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
40
|
Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D'Angelo A, Bianchi ME, Rovere-Querini P, Manfredi AA. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12:2074-88. [PMID: 25163512 DOI: 10.1111/jth.12710] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Increasing evidence implicates both platelets and neutrophils in the formation, stabilization, and growth of peripheral and coronary thrombi. Neutrophil extracellular traps (NETs) play a key role. The early events in the deregulated cross-talk between platelets and neutrophils are poorly characterized. OBJECTIVES To identify at the molecular level the mechanism through which platelets induce the generation of NETs in sterile conditions. PATIENTS/METHODS The presence of NETs was determined in 26 thrombi from patients with acute myocardial infarction by immunohistochemistry and immunofluorescence and markers of NETs assessed in the plasma. In vitro NET generation was studied in static and in physiological flow conditions. RESULTS Coronary thrombi mainly consist of activated platelets, neutrophils, and NETs in close proximity of platelets. Activated platelets commit neutrophils to NET generation. The event abates in the presence of competitive antagonists of the high mobility group box 1 (HMGB1) protein. Hmgb1(-/-) platelets fail to elicit NETs, whereas the HMGB1 alone commits neutrophils to NET generation. Integrity of the HMGB1 receptor, Receptor for Advanced Glycation End products (RAGE), is required for NET formation, as assessed using pharmacologic and genetic tools. Exposure to HMGB1 prevents depletion of mitochondrial potential, induces autophagosome formation, and prolongs neutrophil survival. These metabolic effects are caused by the activation of autophagy. Blockade of the autophagic flux reverts platelet HMGB1-elicited NET generation. CONCLUSIONS Activated platelets present HMGB1 to neutrophils and commit them to autophagy and NET generation. This chain of events may be responsible for some types of thromboinflammatory lesions and indicates novel paths for molecular intervention.
Collapse
Affiliation(s)
- N Maugeri
- Division of Regenerative Medicine, Gene Therapy and Stem Cells, Department of Medicine, San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Saffarzadeh M, Preissner KT. Moonlighting proteins dictate the crosstalk between thrombosis and innate immunity. J Thromb Haemost 2014; 12:2070-3. [PMID: 25315144 DOI: 10.1111/jth.12754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 01/14/2023]
Affiliation(s)
- M Saffarzadeh
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany
| | | |
Collapse
|
42
|
Tripathi S, Verma A, Kim EJ, White MR, Hartshorn KL. LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol 2014; 96:931-8. [PMID: 25082153 DOI: 10.1189/jlb.4a1113-604rr] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent studies have shown that the human cathelicidin, LL-37, has antiviral activity against IAV in vitro and in vivo. Neutrophils are important cellular components of the initial innate response to IAV infection. In addition to its direct antimicrobial activities, LL-37 has important immunomodulatory effects. In this study, we explore how LL-37 affects interactions of IAV with human neutrophils. LL-37 did not alter neutrophil uptake of IAV but significantly increased neutrophil H2O2 responses to the virus. IAV stimulated production of NETs in vitro, and this response was increased by preincubating the virus with LL-37. NADPH-oxidase blockade did not reduce IAV-induced NET formation or the increased NET response stimulated by LL-37 + IAV. The increased respiratory burst and NET responses were, however, inhibited by preincubating cells with a formyl peptide receptor blocker, indicating that LL-37 engages these receptors when complexed with IAV. Responses to IAV alone were not inhibited by formyl peptide receptor blockade. It has been reported that LL-37 reduces proinflammatory cytokine responses during IAV infection in vivo. We now show that IAV alone potentiated release of IL-8 from neutrophils, and preincubation with LL-37 reduced IAV-stimulated IL-8 release. These results confirm that LL-37 modulates human neutrophil responses to IAV in a distinctive manner and could have important bearing on the protective effects of LL-37 during IAV infection in vivo.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, USA
| | - Anamika Verma
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, USA
| | - Eun-Jeong Kim
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Kono M, Saigo K, Takagi Y, Takahashi T, Kawauchi S, Wada A, Hashimoto M, Minami Y, Imoto S, Takenokuchi M, Morikawa T, Funakoshi K. Heme-related molecules induce rapid production of neutrophil extracellular traps. Transfusion 2014; 54:2811-9. [PMID: 24865940 DOI: 10.1111/trf.12700] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pulmonary endothelial cell damages caused by neutrophil overactivation could result in acute lung injuries including transfusion-related acute lung injury (TRALI). We previously reported that heme-related molecules derived from hemolysis induced the production of reactive oxygen species from neutrophils. Recently, neutrophil extracellular traps (NETs) have been demonstrated to associate with the onset of TRALI. STUDY DESIGN AND METHODS In this study, neutrophils' morphologic changes induced by the heme-related molecule hemin were confirmed to be NETs via confocal laser scanning microscopy and electron microscopy (EM). Additionally, concentrations of hemin in red blood cell (RBC) components were measured via enzyme-linked immunosorbent assay and possible contribution of these molecules to the onset of TRALI was discussed. RESULTS SYTOX green staining observation via confocal laser scanning microscopy revealed that neutrophil morphology changed rapidly upon addition of hemin. The nuclei began to be enlarged and become segmented after 5 minutes, and NET-like structures were released from neutrophils after 15 minutes. In EM observation, NET-like structures appeared after 10 minutes and the nucleoplasm was partially separated from the nuclear membrane, which were consistent with the features of NET formation. These structures stained positively for both myeloperoxidase and histone H3 antibodies. CONCLUSION Thus, our results suggest that hemin induced NETs in 15 minutes, a quicker reaction than NET induction by phorbol myristate acetate requiring 3 hours. Moreover, since RBC components, especially those with long-term storage, contained sufficient hemin concentration to induce NETs, special attention to hemolysis of stored RBC components is important.
Collapse
Affiliation(s)
- Mari Kono
- Cell Analysis Center, Scientific Affairs, Sysmex Corporation, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chargui A, El May MV. Autophagy mediates neutrophil responses to bacterial infection. APMIS 2014; 122:1047-58. [PMID: 24735202 DOI: 10.1111/apm.12271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
Neutrophils constitute the first line of cellular defense against pathogens and autophagy is a fundamental cellular homeostasis pathway that operates with the intracellular degradation/recycling system. Induction of the autophagic process in neutrophils, in response to invading pathogens, constitutes a crucial mechanism in innate immunity. Exploration of autophagy has greatly progressed and diverse strategies have been reported for studying this molecular process in different biological systems; especially in infectious and inflammatory diseases. Furthermore, the role of autophagy in neutrophils, during pathogenic infection, continues to be of interest, due to the role of the cell in immunity function, its recruitment to the site of infection and its implication in inflammatory diseases. This review focuses on the known role of autophagy in neutrophils defence against pathogenic infections. A more detailed discussion will concern the recent findings highlighting the role of autophagy in inflammation and cell death in infected neutrophils.
Collapse
Affiliation(s)
- Abderrahman Chargui
- Laboratory of Histology, Embryology and Cell Biology, Faculty of Medicine, Tunis, Tunisia; Higher School of Agriculture, Kef, Tunisia
| | | |
Collapse
|
45
|
Pathophysiologic mechanisms in septic shock. J Transl Med 2014; 94:4-12. [PMID: 24061288 PMCID: PMC5656285 DOI: 10.1038/labinvest.2013.110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/16/2022] Open
Abstract
The systemic inflammatory response that occurs in the septic patient as a result of an infectious insult affects multiple organs and systems, causing numerous physiological derangements. Alterations in phagocytic, lymphocytic and endothelial cell function and immune regulation are evident, leading to heterogeneity in a host's response to a septic challenge. In addition, the normal hemostatic balance shifts toward a procoagulant state through alterations in tissue factor, antithrombin, protein C and the inhibition of fibinolysis, which can result in thrombus formation and paradoxical hemostatic failure. In an effort to diagnose sepsis and predict outcomes, biomarkers such as C-reactive protein, pro-calcitonin, pro- and anti-inflammatory cytokines have been investigated with varying results. Targeted therapies for sepsis, most notably Xigris (recombinant human activated protein C), have proven unsuccessful and treatment continues to remain reliant on source control, antibiotics and supportive interventions, specifically early goal-directed therapy. This brief review gives an overview of the immunopathologic and coagulopathic alterations that occur in sepsis, soluble inflammatory mediators as potential diagnostic and prognostic biomarkers, and the clinical management of the septic patient.
Collapse
|
46
|
Abstract
The contributions by blood cells to pathological venous thrombosis were only recently appreciated. Both platelets and neutrophils are now recognized as crucial for thrombus initiation and progression. Here we review the most recent findings regarding the role of neutrophil extracellular traps (NETs) in thrombosis. We describe the biological process of NET formation (NETosis) and how the extracellular release of DNA and protein components of NETs, such as histones and serine proteases, contributes to coagulation and platelet aggregation. Animal models have unveiled conditions in which NETs form and their relation to thrombogenesis. Genetically engineered mice enable further elucidation of the pathways contributing to NETosis at the molecular level. Peptidylarginine deiminase 4, an enzyme that mediates chromatin decondensation, was identified to regulate both NETosis and pathological thrombosis. A growing body of evidence reveals that NETs also form in human thrombosis and that NET biomarkers in plasma reflect disease activity. The cell biology of NETosis is still being actively characterized and may provide novel insights for the design of specific inhibitory therapeutics. After a review of the relevant literature, we propose new ways to approach thrombolysis and suggest potential prophylactic and therapeutic agents for thrombosis.
Collapse
|
47
|
Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. THE JOURNAL OF IMMUNOLOGY 2013; 191:6022-9. [PMID: 24190656 DOI: 10.4049/jimmunol.1301821] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus secretes numerous virulence factors that facilitate evasion of the host immune system. Among these molecules are pore-forming cytolytic toxins, including Panton-Valentine leukocidin (PVL), leukotoxin GH (LukGH; also known as LukAB), leukotoxin DE, and γ-hemolysin. PVL and LukGH have potent cytolytic activity in vitro, and both toxins are proinflammatory in vivo. Although progress has been made toward elucidating the role of these toxins in S. aureus virulence, our understanding of the mechanisms that underlie the proinflammatory capacity of these toxins, as well as the associated host response toward them, is incomplete. To address this deficiency in knowledge, we assessed the ability of LukGH to prime human PMNs for enhanced bactericidal activity and further investigated the impact of the toxin on neutrophil function. We found that, unlike PVL, LukGH did not prime human neutrophils for increased production of reactive oxygen species nor did it enhance binding and/or uptake of S. aureus. Unexpectedly, LukGH promoted the release of neutrophil extracellular traps (NETs), which, in turn, ensnared but did not kill S. aureus. Furthermore, we found that electropermeabilization of human neutrophils, used as a separate means to create pores in the neutrophil plasma membrane, similarly induced formation of NETs, a finding consistent with the notion that NETs can form during nonspecific cytolysis. We propose that the ability of LukGH to promote formation of NETs contributes to the inflammatory response and host defense against S. aureus infection.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | | | | | | | | |
Collapse
|
48
|
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:181-218. [PMID: 24050624 DOI: 10.1146/annurev-pathol-020712-164023] [Citation(s) in RCA: 903] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 20115;
| | | | | |
Collapse
|