1
|
Rahnama R, Kizerwetter M, Yang H, Christodoulou I, Guaraca C, Holl NJ, Choe J, Vorri SC, Zinsky M, Jones DG, Garcia Espinoza N, Kuo YH, Zahurak M, Varadhan R, Spangler JB, Bonifant CL. Single-chain variable fragment affinity tuning can optimize anti-AML CAR-NK cell functionality. J Immunother Cancer 2025; 13:e010763. [PMID: 39915004 PMCID: PMC11804205 DOI: 10.1136/jitc-2024-010763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Natural Killer (NK) cells have intrinsic anticancer activity that can be redirected toward acute myeloid leukemia (AML) with chimeric antigen receptor (CAR) engineering. Here, we study the functional consequences of CAR binding affinity and targeted epitope on CAR-NK cell activation, cytolytic synapse formation, and antitumor activity. METHODS We characterized NK-92 and primary NK cell populations expressing variant affinity AML-specific CARs containing single-chain variable fragments (scFvs, 26292 or 7G3) targeting two epitopes on CD123. 26292 affinity variants were discovered through directed evolution of an error-prone mutagenic library, while 7G3 affinity variants were previously reported. The resulting CAR-NK cell panel was studied with in vitro binding, activation, and cytotoxicity studies and in mouse xenograft models. RESULTS 26292 and 7G3 CARs of variable CD123 binding affinities were highly expressed in NK cells and conferred antigen-specific activation in vitro. High-resolution imaging demonstrated greater clustering of high-affinity 7G3 CAR-NK cells and consequent AML target cell death in a short-term time lapse. Low-affinity 7G3 CAR-NK cells exhibited enhanced antigen density discrimination with greater membrane-proximal signaling, cytokine production, and cytotoxicity. In longer-term assays, low-affinity 7G3 CAR-NK cells demonstrated more sustained killing of AML cells. In vivo testing highlighted greater expansion of low-affinity 7G3 CAR-NK cells in two xenograft models. CONCLUSIONS Expression of 26292 and 7G3 CARs with a range of CD123 binding affinities in NK cells leads to antigen-specific activation and cytotoxicity against AML. Affinity-based differences in functional activation and antitumor activity are dependent on time course and are scFv/epitope specific.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Single-Chain Antibodies/pharmacology
- Single-Chain Antibodies/immunology
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
Collapse
Affiliation(s)
- Ruyan Rahnama
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Monika Kizerwetter
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ilias Christodoulou
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Christian Guaraca
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalie Jordan Holl
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Jun Choe
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Stamatia C Vorri
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Megan Zinsky
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Danielle G Jones
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Nikol Garcia Espinoza
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marianna Zahurak
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Ravi Varadhan
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Challice L Bonifant
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Rejeski HA, Hartz A, Rackl E, Li L, Schwepcke C, Rejeski K, Schmid C, Rank A, Schmohl J, Kraemer D, Bojko P, Schmetzer HM. Concentration-dependent effects of immunomodulatory cocktails on the generation of leukemia-derived dendritic cells, DC leu mediated T-cell activation and on-target/off-tumor toxicity. Front Immunol 2025; 15:1527961. [PMID: 39949718 PMCID: PMC11821930 DOI: 10.3389/fimmu.2024.1527961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 02/16/2025] Open
Abstract
Acute myeloid leukemia (AML) remains a devastating diagnosis in clear need of therapeutic advances. Both targeted dendritic cells (DC) and particularly leukemia-derived dendritic cells (DCleu) can exert potent anti-leukemic activity. By converting AML blasts into immune activating and leukemia-antigen presenting cells, DC/DCleu-generating protocols can induce immune responses against AML blasts. Such protocols combine approved response modifiers (i.e., GM-CSF and PGE1/OK-432/PGE2) that synergistically improve the conversion of AML blasts into (mature) DC/DCleu. To guide potential clinical application of these response modifiers, we analyzed three different DC-generating protocols that combine a constant GM-CSF dose with varying concentrations of PGE1 (Kit-M), OK-432 (Kit-I), and PGE2 (Kit-K). Here, we specifically aimed to assess how different response modifier concentrations impact DC/DCleu generation, immune cell activation and leukemic blast lysis. We found that all immunomodulatory kits were effective in generating mature and leukemia-derived DCs from healthy and leukemic whole blood. For Kit-M, we noted optimal generation of DC-subsets at intermediary concentration ranges of PGE1 (0.25-4.0 µg/mL), which facilitated upregulation of activated and memory T-cells upon mixed lymphocyte culture, and efficient anti-leukemic activity in cytotoxicity assays. For Kit-I, we observed DC/DCleu generation and enhanced T- and immune cell activation across a broader range of OK-432 concentrations (5-40 µg/mL), which also facilitated improved leukemic blast killing. In conclusion, our results highlight that Kit-mediated DC/DCleu generation, immune cell activation and blast lysis are dependent on the concentration of response modifiers, which will guide future clinical development. Overall, DCleu-based immunotherapy represents a promising treatment strategy for AML patients.
Collapse
Affiliation(s)
- Hazal Aslan Rejeski
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
| | - Anne Hartz
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
| | - Elias Rackl
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
| | - Lin Li
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
| | - Christoph Schwepcke
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
| | - Kai Rejeski
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, University Hospital of Augsburg, Augsburg, Germany
- Department of Hematology and Oncology, Diakonieklinikum Stuttgart, Stuttgart, Germany
| | - Andreas Rank
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
- Department of Hematology and Oncology, University Hospital of Augsburg, Augsburg, Germany
| | - Jörg Schmohl
- Department of Hematology and Oncology, Diakonieklinikum Stuttgart, Stuttgart, Germany
| | - Doris Kraemer
- Department of Hematology and Oncology, St.-Josefs-Hospital, Hagen, Germany
| | - Peter Bojko
- Department of Hematology and Oncology, Rotkreuzklinikum Munich, Munich, Germany
| | - Helga Maria Schmetzer
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich Site, Munich, Germany
| |
Collapse
|
3
|
Shan M, Xu L, Yang W, Liu S, Cui Z. Identification of hub genes and immune-related pathways in acute myeloid leukemia: insights from bioinformatics and experimental validation. Front Immunol 2025; 15:1511824. [PMID: 39867885 PMCID: PMC11757261 DOI: 10.3389/fimmu.2024.1511824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Background This study aims to identify the hub genes and immune-related pathways in acute myeloid leukemia (AML) to provide new theories for immunotherapy. Methods We use bioinformatics methods to find and verify the hub gene. At the same time, we use the results of GSEA enrichment analysis to find immune-related mediators. Through Mendelian randomization(MR) analysis, on the one hand, we look for related immune cells, and on the other hand, we use it to determine the causal relationship among immune cells, immune mediators, and AML. Finally, in vitro experiments are conducted to further verify and improve the reliability and physiological functions of the hub gene and its immune-related pathways. Results Complement Factor D(CFD) gene is identified as the highly expressed hub gene and is positively correlated with IL-2. IL-2 is also positively correlated with CD27 on CD24+CD27+B cells, JAK/STAT, and PI3K/Akt. The latter three are positively correlated with the occurrence and development of AML. Conclusion We conclude that CFD gene uses IL-2 as a mediator to promote the disease progression of AML by promoting the CD27 on CD24+CD27+B cells, JAK-STAT, and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Mingliang Shan
- Postdoctoral Workstation, Liaocheng People’s Hospital, Liaocheng, China
- Postdoctoral Mobile Stations, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Management, Shandong Second Medical University, Weifang, China
| | - Li Xu
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Yang
- Post - Doctoral Innovation Practice Base, Gaomi Maternity and Child Health Hospital, Gaomi, China
| | - Shiguo Liu
- Postdoctoral Mobile Stations, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaoqing Cui
- Postdoctoral Workstation, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
4
|
Farokhi-Fard A, Rahmati S, Hashemi Aval NS, Barkhordari F, Bayat E, Komijani S, Aghamirza Moghim Aliabadi H, Davami F. Anti-IL-1RAP scFv-mSA-S19-TAT fusion carrier as a multifunctional platform for versatile delivery of biotinylated payloads to myeloid leukemia cells. Sci Rep 2024; 14:25080. [PMID: 39443595 PMCID: PMC11500005 DOI: 10.1038/s41598-024-76851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with frequently poor clinical outcomes. This heterogeneous malignancy encompasses genetically, molecularly, and even clinically different subgroups. This makes it difficult to develop therapeutic agents that are effective for all subtypes of the disease. Therefore, a selective, universal, and adaptable delivery platform capable of carrying various types of anti-neoplastic agents is an unmet requirement in this area. Two multifunctional fusion proteins were designed for the delivery of biotinylated cargoes to human myeloid leukemia cells by fusing an anti-IL-1RAP single-chain antibody with streptavidin (tetramer or monomer), a cell-penetrating peptide (CPP), and an endosomolytic peptide in a single biomacromolecule. The designed fusions were analyzed primarily in silico, and the biofunctionality of the selected fusion was fully characterized via several binding assays, hemolysis assay, confocal microscopy and cell cytotoxicity assay after production via the Escherichia coli (E. coli) system. The refolded protein exhibited desirable binding activity to leukemic cells, pure antigen and biotinylated BSA. Further analyses revealed efficient cellular uptake, endosomolytic activity, and nuclear penetration without any detectable cytotoxicity toward normal epithelial cells. The described platform seems to have great potential for targeted delivery of different therapeutics to malignant myeloid cells.
Collapse
MESH Headings
- Humans
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Recombinant Fusion Proteins/genetics
- Biotinylation
- Cell-Penetrating Peptides/chemistry
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Cell Line, Tumor
- Drug Delivery Systems
- Streptavidin/chemistry
- Drug Carriers/chemistry
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/therapy
Collapse
Affiliation(s)
- Aref Farokhi-Fard
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Komijani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
- Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran.
| |
Collapse
|
5
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Seel K, Schirrmann RL, Stowitschek D, Ioseliani T, Roiter L, Knierim A, André MC. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia. Cancer Immunol Immunother 2024; 73:180. [PMID: 38967649 PMCID: PMC11226419 DOI: 10.1007/s00262-024-03766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.
Collapse
Affiliation(s)
- Katharina Seel
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Ronja Larissa Schirrmann
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Daniel Stowitschek
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Tamar Ioseliani
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Lea Roiter
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Alina Knierim
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Maya C André
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany.
- Division of Respiratory and Critical Care Medicine, University Children`s Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Liu L, Yang C, Zhu L, Wang Y, Zheng F, Liang L, Cao P, Liu J, Han X, Zhang J. RSL3 enhances ROS-mediated cell apoptosis of myelodysplastic syndrome cells through MYB/Bcl-2 signaling pathway. Cell Death Dis 2024; 15:465. [PMID: 38956026 PMCID: PMC11219730 DOI: 10.1038/s41419-024-06866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic malignancies and seriously threaten people's health. Current therapies include bone marrow transplantation and several hypomethylating agents. However, many elderly patients cannot benefit from bone marrow transplantation and many patients develop drug resistance to hypomethylating agents, making it urgent to explore novel therapy. RSL3 can effectively induce ferroptosis in various tumors and combination of RSL3 and hypomethylating agents is promising to treat many tumors. However, its effect in MDS was unknown. In this study, we found that RSL3 inhibited MDS cell proliferation through inducing ROS-dependent apoptosis. RSL3 inhibited Bcl-2 expression and increased caspase 3 and PARP cleavage. RNA-seq analysis revealed that MYB may be a potential target of RSL3. Rescue experiments showed that overexpression of MYB can rescue MDS cell proliferation inhibition caused by RSL3. Cellular thermal shift assay showed that RSL3 binds to MYB to exert its function. Furthermore, RSL3 inhibited tumor growth and decreased MYB and Bcl-2 expression in vivo. More importantly, RSL3 decreased the viability of bone marrow mononuclear cells (BMMCs) isolated from MDS patients, and RSL3 had a synergistic effect with DAC in MDS cells. Our studies have uncovered RSL3 as a promising compound and MYB/Bcl-2 signaling pathway as a potential target for MDS treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, China
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Chaoying Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Lin Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Yanyan Wang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, China.
- MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
8
|
Sampaio LR, Dias RDB, Goes JVC, de Melo RPM, de Paula Borges D, de Lima Melo MM, de Oliveira RTG, Ribeiro-Júnior HL, Magalhães SMM, Pinheiro RF. Role of the STING pathway in myeloid neoplasms: a prospero-registered systematic review of principal hurdles of STING on the road to the clinical practice. Med Oncol 2024; 41:128. [PMID: 38656461 DOI: 10.1007/s12032-024-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.
Collapse
Affiliation(s)
- Leticia Rodrigues Sampaio
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ricardo Dyllan Barbosa Dias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - João Vitor Caetano Goes
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Renata Pinheiro Martins de Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Mayara Magna de Lima Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
9
|
Yang J, Chen M, Ye J, Ma H. Targeting PRAME for acute myeloid leukemia therapy. Front Immunol 2024; 15:1378277. [PMID: 38596687 PMCID: PMC11002138 DOI: 10.3389/fimmu.2024.1378277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Despite significant progress in targeted therapy for acute myeloid leukemia (AML), clinical outcomes are disappointing for elderly patients, patients with less fit disease characteristics, and patients with adverse disease risk characteristics. Over the past 10 years, adaptive T-cell immunotherapy has been recognized as a strategy for treating various malignant tumors. However, it has faced significant challenges in AML, primarily because myeloid blasts do not contain unique surface antigens. The preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, is abnormally expressed in AML and does not exist in normal hematopoietic cells. Accumulating evidence has demonstrated that PRAME is a useful target for treating AML. This paper reviews the structure and function of PRAME, its effects on normal cells and AML blasts, its implications in prognosis and follow-up, and its use in antigen-specific immunotherapy for AML.
Collapse
Affiliation(s)
- Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wang W, Li H, Guo Y, Zhang L, Jiang W, Zheng N, Peng S, Guan X, Fan G, Shen L. Immunological dynamic characteristics in acute myeloid leukemia predict the long-term outcomes and graft-versus host-disease occurrences post-transplantation. Clin Exp Immunol 2024; 215:148-159. [PMID: 37971356 PMCID: PMC10847816 DOI: 10.1093/cei/uxad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/16/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
To investigate the relationship between immune dynamic and graft-versus-host-disease (GVHD) risk, 111 initial diagnostic acute myeloid leukemia patients were reviewed. The flow cytometry data of 12 major lymphocyte subsets in bone marrow (BM) from 60 transplant patients at four different time points were analyzed. Additionally, 90 immune subsets in peripheral blood (PB) of 11 post-transplantation on day 100 were reviewed. Our results demonstrated that transplant patients had longer OS compared to non-transplant patients (P < 0.001). Among transplant patients, those who developed GVHD showed longer OS than those without GVHD (P < 0.05). URD donors and CMV-negative status donors were associated with improved OS in transplant patients (P < 0.05). Importantly, we observed a decreased Th/Tc ratio in BM at initial diagnostic in patients with GVHD compared to those without GVHD (P = 0.034). Receiver operating characteristic analysis indicated that a low Th/Tc ratio predicted an increased risk of GVHD with a sensitivity of 44.44% and specificity of 87.50%. Moreover, an increased T/NK ratio in BM of post-induction chemotherapy was found to be associated with GVHD, with a sensitivity of 75.76% and specificity of 65.22%. Additionally, we observed a decreased percentage of NK1 (CD56-CD16+NK) in PB on day 100 post-transplantation in the GVHD group (P < 0.05). These three indicators exhibit promising potential as specific and useful biomarkers for predicting GVHD. These findings provide valuable insights for the early identification and management of GVHD risk, thereby facilitating the possibility of improving patient outcomes.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Haibo Li
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Hematology/Flow Cytometry lab, Department of Pathology, University of California Irvine Medical Center, Orange, CA, 92868, USA
| | - Yukun Guo
- Casey Eye Institution, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lihua Zhang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Wenli Jiang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Naisheng Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Se Peng
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, 519015, China
| | - Xiaolin Guan
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, 200070, China
| |
Collapse
|
11
|
Ou L, Su C, Liang L, Duan Q, Li Y, Zang H, He Y, Zeng R, Li Y, Zhou H, Xiao L. Current status and future prospects of chimeric antigen receptor-T cell therapy in lymphoma research: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2267865. [PMID: 37846106 PMCID: PMC10583622 DOI: 10.1080/21645515.2023.2267865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
CAR-T cell therapy, a novel therapeutic approach that has attracted much attention in the field of cancer treatment at present, has become the subject of many studies and has shown great potential in the treatment of hematological malignancies, such as leukemia and lymphoma. This study aims to analyze the characteristics of articles published on CAR-T cell therapy in the lymphoma field and explore the existing hotspots and frontiers. The relevant articles published from 2013 to 2022 were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, Bibliometric online analysis platform, Microsoft Excel, and R software were used for bibliometric analysis and visualization. The number of publications related to the research has been increasing year by year, including 1023 articles and 760 reviews from 62 countries and regions, 2092 institutions, 1040 journals, and 8727 authors. The United States, China, and Germany are the main publishing countries in this research field. The top 10 institutions are all from the United States, the journal with the highest impact factor is BLOOD, the author with the most publications is Frederick L Locke, and the most influential author is Carl H June. The top three keywords are "Lymphoma," "Immunotherapy," and "Therapy." "Maude (2014)" is the most cited and strongest burstiness reference over the past decade. This study provides a comprehensive bibliometric analysis of CAR-T cell therapy in lymphoma, which can help researchers understand the current research hotspots in this field, explore potential research directions, and identify future development trends.
Collapse
Affiliation(s)
- Lijia Ou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chang Su
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liang Liang
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qintong Duan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yufeng Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Zang
- Department of Human Anatomy and Histoembryology of School of Basic Medical Sciences, Yiyang Medical College, Yiyang, Hunan, China
| | - Yizi He
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ruolan Zeng
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yajun Li
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ling Xiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Chen EC, Garcia JS. Immunotherapy for Acute Myeloid Leukemia: Current Trends, Challenges, and Strategies. Acta Haematol 2023; 147:198-218. [PMID: 37673048 DOI: 10.1159/000533990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND In the past decade, there have been significant breakthroughs in immunotherapies for B-cell lymphoid malignancies and multiple myeloma, but progress has been much less for acute myeloid leukemia (AML). Nevertheless, challenge begets innovation and several therapeutic strategies are under investigation. SUMMARY In this review, we review the state of the art in AML immunotherapy including CD33- and CD123-targeted agents, immune checkpoint inhibition, and adoptive cell therapy strategies. We also share conceptual frameworks for approaching the growing catalog of investigational AML immunotherapies and propose future directions for the field. KEY MESSAGES Immunotherapies for AML face significant challenges but novel strategies are in development.
Collapse
Affiliation(s)
- Evan C Chen
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Ou Y, Yang Y, Li X, Zhang X, Zhao L, Yang C, Wu Y. Arginine metabolism key enzymes affect the prognosis of myelodysplastic syndrome by interfering with macrophage polarization. Cancer Med 2023; 12:16444-16454. [PMID: 37366304 PMCID: PMC10469818 DOI: 10.1002/cam4.6287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
INTRODUCTION Immune factors contribute to the onset of myelodysplastic syndrome (MDS). Arginine metabolism affects tumor-associated macrophage (TAM) polarization. This study investigated the infiltration of TAMs and effect of arginine metabolism key enzymes on MDS prognosis. METHODS We used the GEO (Gene Express Omnibus database) dataset "GSE19429" to analyze and compare metabolism-associated pathways between MDS patients with excess blasts and those without. The markers of TAMs and arginine metabolism key enzymes, including CD68, iNOS, ARG1 and ASS1 were included in this study. A cohort of 79 patients with acute myeloid leukemia or MDS extracted from GenomicScape's online data mining platform was used to analyze the prognostic significance of the mRNA levels. Fifty-eight patients with primary MDS admitted to Sichuan University's West China Hospital from 2013 to 2017 were evaluated for protein levels. The coexpression of CD68, iNOS, and ARG1 was investigated using an Opal polychromatic immunofluorescence kit. RESULTS The "Arginine and proline metabolism" pathways (padjusted = 0.01) were associated with excess blasts in patients with MDS. In the mRNA expression cohort, patients with low NOS2 (or iNOS) and high ARG1, ASS1, and CD68 expression levels had worse prognosis. Patients with high CD68 (p = 0.01), high iNOS (p < 0.01), low ARG1 (p = 0.01), and negative ASS1 (p = 0.02) protein expression levels had better prognoses. iNOS and ARG1 were coexpressed with CD68 in MDS patients with or without excess blasts, respectively. CONCLUSIONS Arginine metabolism may contribute to the prognosis of patients with MDS by affecting TAM polarization.
Collapse
Affiliation(s)
- Yang Ou
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Yan Yang
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Xuefeng Li
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Xin Zhang
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Lei Zhao
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Chenlu Yang
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Yu Wu
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
14
|
Al-Shaibani E, Novitzky-Basso I, Mattsson J, Kim DDH. Post-transplant maintenance therapy in acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation harmonizing multiple therapeutic modalities including targeted therapy, immunotherapy and cellular therapy. Int J Hematol 2023:10.1007/s12185-023-03614-x. [PMID: 37212948 DOI: 10.1007/s12185-023-03614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Allogeneic hematopoietic stem cell transplant (HCT) has improved survival for patients with acute myeloid leukemia (AML), especially for those at high risk of relapse. However, relapse remains the leading cause of treatment failure post-HCT, occurring in around 35-45% of patients, and leading to dismal outcomes. Strategies to reduce relapse risk are urgently needed, especially in the early post-transplant period before activation of the graft-versus-leukemia (GVL) effect. Maintenance therapy is a course of treatment given post-HCT with the expectation of reducing relapse risk. While there are currently no therapies approved for maintenance therapy for AML after HCT, there are a number of studies and ongoing investigations examining the role of maintenance therapies that include targeted agents against FLT3-ITD, BCL2, or IDH mutations, hypomethylating agents, immunomodulatory therapies and cellular therapies. In this review, we discuss the mechanistic and clinical data for post-transplant maintenance therapies in AML and strategies for maintenance therapy for AML after HCT.
Collapse
Affiliation(s)
- Eshrak Al-Shaibani
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada
| | - Igor Novitzky-Basso
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Jonas Mattsson
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, OPG Rm 6-222, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
15
|
Beck RJ, Sloot S, Matsushita H, Kakimi K, Beltman JB. Mathematical modeling identifies LAG3 and HAVCR2 as biomarkers of T cell exhaustion in melanoma. iScience 2023; 26:106666. [PMID: 37182110 PMCID: PMC10173735 DOI: 10.1016/j.isci.2023.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 12/15/2022] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) control tumors via lysis of antigen-presenting targets or through secretion of cytokines such as interferon-γ (IFNG), which inhibit tumor cell proliferation. Improved understanding of CTL interactions within solid tumors will aid the development of immunotherapeutic strategies against cancer. In this study, we take a systems biology approach to compare the importance of cytolytic versus IFNG-mediated cytostatic effects in a murine melanoma model (B16F10) and to dissect the contribution of immune checkpoints HAVCR2, LAG3, and PDCD1/CD274 to CTL exhaustion. We integrated multimodal data to inform an ordinary differential equation (ODE) model of CTL activities inside the tumor. Our model predicted that CTL cytotoxicity played only a minor role in tumor control relative to the cytostatic effects of IFNG. Furthermore, our analysis revealed that within B16F10 melanomas HAVCR2 and LAG3 better characterize the development of a dysfunctional CTL phenotype than does the PDCD1/CD274 axis.
Collapse
Affiliation(s)
- Richard J. Beck
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Sander Sloot
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Hirokazu Matsushita
- Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Corresponding author
| |
Collapse
|
16
|
Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev 2023; 42:113-142. [PMID: 36640224 PMCID: PMC9840433 DOI: 10.1007/s10555-023-10079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Collapse
|
17
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
18
|
Dong M, Zhang G, Meng J, Liu B, Jiang D, Liu F. MMP9-Associated Tumor Stem Cells, CCL1-Silenced Dendritic Cells, and Cytokine-Induced Killer Cells Have a Remarkable Therapeutic Efficacy for Acute Myeloid Leukemia by Activating T Cells. Stem Cells Int 2023; 2023:2490943. [PMID: 37200633 PMCID: PMC10188259 DOI: 10.1155/2023/2490943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose Dendritic cells (DC) are specialized antigen-presenting cells, and cytokine-induced killer (CIK) cells have a specific killing activity to a variety of tumors. However, the underlining mechanism and function of DC-CIK cells in acute myeloid leukemia (AML) remain largely elusive. Methods Gene expression profiles of leukemia patients were obtained from TCGA, DC cell components were evaluated using the quanTIseq method, and cancer stem cell scores were estimated using machine learning methods. The transcriptomes were obtained in DC-CIK cells from normal and AML patients by high-throughput sequencing. Large differentially expressed mRNAs were verified by RT-qPCR assay, and MMP9 and CCL1 were selected for subsequent studies in vivo and in vitro experiments. Results Significant positive correlations were found with DC versus cancer stem cells (p = 0.008) and the expression of MMP9 versus cancer stem cells (p = 0.018). MMP9 and CCL1 were found to be highly expressed in DC-CIK cells from AML patients. DC-CIK cells with MMP9 and CCL1 knockout alone had little effect on leukemia cells, while knockdown of MMP9 and CCL1 in DC-CIK cells increased cytotoxicity, suppressed proliferation, and induced apoptosis of leukemia cells. In addition, we proved that MMP9- and CCL1-silenced DC-CIK cells significantly elevated the CD3+CD4+ and CD3+CD8+ cells and lowered the CD4+PD-1+ and CD8+PD-1+ T cells. Meanwhile, blockage of MMP9 and CCL1 in DC-CIK cells dramatically increased IL-2 and IFN-γ, increased CD107aþ (LAMP-1) and granzyme B (GZMB), and downregulated PD-1, CTLA4, TIM3, and LAG3 T cells from AML patients and AML model mice. Furthermore, activated T cells in DC-CIK cells knocking down MMP9 and CCL1 also prevented proliferation and accelerated apoptosis of AML cells. Conclusion Our findings demonstrated that blockage of MMP9 and CCL1 in DC-CIK cells could markedly enhance the therapeutic efficiency in AML via activating T cells.
Collapse
Affiliation(s)
- Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Guozhen Zhang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Jie Meng
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Biou Liu
- Department of Hematology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Duanfeng Jiang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Feng Liu
- Department of Hematology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
19
|
Wang S, Zhang P. Bioinformatics Analysis Identifies EPAS1 as a Novel Prognostic Marker Correlated with Immune Infiltration in Acute Myeloid Leukemia. DISEASE MARKERS 2023; 2023:6072782. [PMID: 37124944 PMCID: PMC10137199 DOI: 10.1155/2023/6072782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 05/02/2023]
Abstract
EPAS1 plays an important role in the development and progression of multiple tumor types by interacting with a series of other molecules. However, the prognostic and diagnostic values of EPAS1 in acute myeloid leukemia (AML) remain unknown. Here, we systematically explored and clarified the potential functions of EPAS1 in AML using data from Xena Browser and TCGA database. The expression of EPAS1 was significantly lower in AML patients than that in healthy people. The GO, KEGG, GSEA, and GSVA were performed to explore the potential functions and signaling pathways. The survival analysis was conducted using Cox regression analysis and the Kaplan-Meier method. Immune cell infiltration was evaluated via single-sample GSEA (ssGSEA). The results of enrichment analyses suggested that low-EPAS1 expression was related to the initiation, development, and prognosis of AML. The immune microenvironment landscape in AML was described by ssGSEA. ROC analysis of EPAS1 showed high discrimination ability between AML patients and healthy people. Kaplan-Meier method indicated that low-EPAS1 expression correlated significantly with a poor overall survival. Multivariate Cox regression analysis revealed that both age and EPAS1 expression were independent prognostic factors in AML patients. Furthermore, the nomogram based on these two variables performed well in discrimination and calibration. In summary, our study may provide new insights into the molecular mechanisms underlying AML and demonstrate the diagnostic and prognostic value of EPAS1 in AML for the first time.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengyu Zhang
- Department of Blood Transfusion, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
20
|
Zhu K, Lang Z, Zhan Y, Tao Q, Yu Z, Chen L, Fan C, Jin Y, Yu K, Zhu B, Gao Y, Wang C, Jiang S, Shi Y. A novel 10-gene ferroptosis-related prognostic signature in acute myeloid leukemia. Front Oncol 2022; 12:1023040. [PMID: 36338716 PMCID: PMC9630338 DOI: 10.3389/fonc.2022.1023040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies and exhibits a high rate of relapse and unfavorable outcomes. Ferroptosis, a relatively recently described type of cell death, has been reported to be involved in cancer development. However, the prognostic value of ferroptosis-related genes (FRGs) in AML remains unclear. In this study, we found 54 differentially expressed ferroptosis-related genes (DEFRGs) between AML and normal marrow tissues. 18 of 54 DEFRGs were correlated with overall survival (OS) (P<0.05). Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we selected 10 DEFRGs that were associated with OS to build a prognostic signature. Data from AML patients from the International Cancer Genome Consortium (ICGC) cohort as well as the First Affiliated Hospital of Wenzhou Medical University (FAHWMU) cohort were used for validation. Notably, the prognostic survival analyses of this signature passed with a significant margin, and the riskscore was identified as an independent prognostic marker using Cox regression analyses. Then we used a machine learning method (SHAP) to judge the importance of each feature in this 10-gene signature. Riskscore was shown to have the highest correlation with this 10-gene signature compared with each gene in this signature. Further studies showed that AML was significantly associated with immune cell infiltration. In addition, drug-sensitive analysis showed that 8 drugs may be beneficial for treatment of AML. Finally, the expressions of 10 genes in this signature were verified by real-time quantitative polymerase chain reaction. In conclusion, our study establishes a novel 10-gene prognostic risk signature based on ferroptosis-related genes for AML patients and FRGs may be novel therapeutic targets for AML.
Collapse
Affiliation(s)
- Kai Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Fan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bihan Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengchi Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center For Hematological disorders, Wenzhou, China
- *Correspondence: Yifen Shi, ; Songfu Jiang,
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center For Hematological disorders, Wenzhou, China
- *Correspondence: Yifen Shi, ; Songfu Jiang,
| |
Collapse
|
21
|
Huerga-Domínguez S, Villar S, Prósper F, Alfonso-Piérola A. Updates on the Management of Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:4756. [PMID: 36230677 PMCID: PMC9563665 DOI: 10.3390/cancers14194756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia is a heterogeneous disease defined by a large spectrum of genetic aberrations that are potential therapeutic targets. New targeted therapies have changed the landscape for a disease with poor outcomes. They are more effective than standard chemotherapy with a good safety profile. For "fit patients" in first-line, the combination of gemtuzumab ozogamicin or midostaurin with intensive chemotherapy or Vyxeos is now considered the "standard of care" for selected patients. On the other hand, for "unfit patients", azacitidine-venetoclax has been consolidated as a frontline treatment, while other combinations with magrolimab or ivosidenib are in development. Nevertheless, global survival results, especially in relapsed or refractory patients, remain unfavorable. New immunotherapies or targeted therapies, such as Menin inhibitors or sabatolimab, represent an opportunity in this situation. Future directions will probably come from combinations of different targeted therapies ("triplets") and maintenance strategies guided by measurable residual disease.
Collapse
Affiliation(s)
| | | | | | - Ana Alfonso-Piérola
- Hematology and Hemotherapy Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
22
|
Hao L, Chen Q, Chen X, Zhou Q. The Role of Gender-Related Immune Genes in Childhood Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3235238. [PMID: 36193320 PMCID: PMC9525781 DOI: 10.1155/2022/3235238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
The study of immune genes and immune cells is highly focused in recent years. To find immunological genes with prognostic value, the current study examines childhood acute myeloid leukemia according to gender. The TARGET database was used to gather the "mRNA expression profile data" and relevant clinical data of children with AML. To normalize processing and find differentially expressed genes (DEG) between male and female subgroups, the limma software package is utilized. We identified prognostic-related genes and built models using LASSO, multivariate Cox, and univariate Cox analysis. The prognostic significance of prognostic genes was then examined through the processing of survival analysis and risk score (RS) calculation. We investigated the connections between immune cells and prognostic genes as well as the connections between prognostic genes and medications. Finally, five immune genes from the TARGET database have been identified. These immune genes are considerably correlated to the prognosis of male patients.
Collapse
Affiliation(s)
- Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Wang Q, Gong R. Immunotherapy targeting mesothelin in acute myeloid leukemia. J Leukoc Biol 2022; 112:813-821. [PMID: 35946307 DOI: 10.1002/jlb.5mr0622-483r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Mesothelin (MSLN) is an emerging target that exists in soluble and membrane-associated forms. It is usually used for the diagnosis and treatment of MSLN-positive solid tumors. Interestingly, recent studies have shown that MSLN is highly expressed in 36% of acute myeloid leukemia (AML) patients and barely expressed in normal hematopoietic cells, which makes MSLN a promising target for the treatment of AML. It has been shown that MSLN is detectable as a diagnostic marker in its soluble form. Although the mechanism of action is unclear, MSLN remains a promising target for immunotherapy. Most MSLN research has been conducted in solid tumors, and less research has been conducted in hematopoietic tumors. Increasing research on MSLN is underway in AML, a hematopoietic neoplasm. For example, MSLN is related to extramedullary disease, minimal residual disease, and relapse in AML patients. Decreasing the expression of MSLN reduces the severity of the disease course. This information suggests that MSLN may be an ideal target for the treatment of many AML-related diseases to improve the prognosis and survival rate. At present, there are a few immunotherapies targeting MSLN in AML in preclinical and clinical trials, such as antibody-drug conjugates, bispecific T-cell engagers, and chimeric antigen receptor-T cells, which opens new room for the treatment of MSLN-related AML.
Collapse
Affiliation(s)
- Qingguang Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Nayak RK, Chen YB. Maintenance therapy for AML after allogeneic HCT. Front Oncol 2022; 12:895771. [PMID: 36016625 PMCID: PMC9397403 DOI: 10.3389/fonc.2022.895771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic cell transplant (allo-HCT) for eligible patients with acute myeloid leukemia (AML) in first complete remission is a central treatment paradigm to achieve durable remission. However, disease relapse after allo-HCT remains a significant concern and generally portends a poor prognosis. There is significant interest regarding the role for maintenance therapy after allo-HCT for patients with high risk of relapse, regardless of the presence of measurable residual disease. While there are currently no therapies approved for maintenance therapy for AML after allo-HCT, there are a number of ongoing investigations examining the role of maintenance therapies that include targeted agents against FLT3-ITD or IDH mutations, hypomethylating agents, immunomodulatory therapies and cellular therapies. In this review, we examine the current landscape and future strategies for maintenance therapy for AML after allo-HCT.
Collapse
Affiliation(s)
- Rahul K. Nayak
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
25
|
Gallazzi M, Ucciero MAM, Faraci DG, Mahmoud AM, Al Essa W, Gaidano G, Mouhssine S, Crisà E. New Frontiers in Monoclonal Antibodies for the Targeted Therapy of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Int J Mol Sci 2022; 23:ijms23147542. [PMID: 35886899 PMCID: PMC9320300 DOI: 10.3390/ijms23147542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represent an unmet clinical need whose prognosis is still dismal. Alterations of immune response play a prominent role in AML/MDS pathogenesis, revealing novel options for immunotherapy. Among immune system regulators, CD47, immune checkpoints, and toll-like receptor 2 (TLR2) are major targets. Magrolimab antagonizes CD47, which is overexpressed by AML and MDS cells, thus inducing macrophage phagocytosis with clinical activity in AML/MDS. Sabatolimab, an inhibitor of T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which disrupts its binding to galectin-9, has shown promising results in AML/MDS, enhancing the effector functions of lymphocytes and triggering tumor cell death. Several other surface molecules, namely CD33, CD123, CD45, and CD70, can be targeted with monoclonal antibodies (mAbs) that exert different mechanisms of action and include naked and conjugated antibodies, bispecific T-cell engagers, trispecific killer engagers, and fusion proteins linked to toxins. These novel mAbs are currently under investigation for use as monotherapy or in combination with hypomethylating agents, BCL2 inhibitors, and chemotherapy in various clinical trials at different phases of development. Here, we review the main molecular targets and modes of action of novel mAb-based immunotherapies, which can represent the future of AML and higher risk MDS treatment.
Collapse
|
26
|
Greiner J, Goetz M, Schuler PJ, Bulach C, Hofmann S, Schrezenmeier H, Dӧhner H, Schneider V, Guinn BA. Enhanced stimulation of antigen-specific immune responses against nucleophosmin 1 mutated acute myeloid leukaemia by an anti-programmed death 1 antibody. Br J Haematol 2022; 198:866-874. [PMID: 35799423 DOI: 10.1111/bjh.18326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
Nucleophosmin1 (NPM1) is one of the most commonly mutated genes in AML and is often associated with a favourable prognosis. Immune responses play an increasing role in AML treatment decisions; however, the role of immune checkpoint inhibition is still not clear. To address this, we investigated specific immune responses against NPM1, and three other leukaemia-associated antigens (LAA), PRAME, Wilms' tumour 1 and RHAMM in AML patients. We investigated T cell responses against leukaemic progenitor/stem cells (LPC/LSC) using colony-forming immunoassays and flow cytometry. We examined whether immune checkpoint inhibition with the anti-programmed death 1 antibody increases the immune response against stem cell-like cells, comparing cells from NPM1 mutated and NPM1 wild-type AML patients. We found that the anti-PD-1 antibody, nivolumab, increases LAA stimulated cytotoxic T lymphocytes and the cytotoxic effect against LPC/LSC. The effect was strongest against NPM1mut cells when the immunogenic epitope was derived from the mutated region of NPM1 and these effects were enhanced through the addition of anti-PD-1. The data suggest that patients with NPM1 mutated AML could be treated with the immune checkpoint inhibitor anti-PD-1 and that this treatment combined with NPM1-mutation specific directed immunotherapy could be even more effective for this unique group of patients.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine, Diakonie Hospital Stuttgart, Stuttgart, Germany.,Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Marlies Goetz
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, Ulm, Germany
| | - Christiane Bulach
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Susanne Hofmann
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg-Hessen and Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Harmut Dӧhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Vanessa Schneider
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
27
|
Cheng P, Chen X, Dalton R, Calescibetta A, So T, Gilvary D, Ward G, Smith V, Eckard S, Fox JA, Guenot J, Markowitz J, Cleveland JL, Wright KL, List AF, Wei S, Eksioglu EA. Immunodepletion of MDSC by AMV564, a novel bivalent, bispecific CD33/CD3 T cell engager, ex vivo in MDS and melanoma. Mol Ther 2022; 30:2315-2326. [PMID: 35150889 PMCID: PMC9171150 DOI: 10.1016/j.ymthe.2022.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022] Open
Abstract
We have reported previously that CD33hi myeloid-derived suppressor cells (MDSCs) play a direct role in the pathogenesis of myelodysplastic syndromes (MDSs) and that their sustained activation contributes to hematopoietic and immune impairment, including modulation of PD1/PDL1. MDSCs can also limit the clinical activity of immune checkpoint inhibition in solid malignancies. We hypothesized that depletion of MDSCs may ameliorate resistance to checkpoint inhibitors and, hence, targeted them with AMV564 combined with anti-PD1 in MDS bone marrow (BM) mononuclear cells (MNCs) enhanced activation of cytotoxic T cells. AMV564 was active in vivo in a leukemia xenograft model when co-administered with healthy donor peripheral blood MNCs (PBMCs). Our findings provide a strong rationale for clinical investigation of AMV564 as a single agent or in combination with an anti-PD1 antibody and in particular for treatment of cancers resistant to checkpoint inhibitors.
Collapse
Affiliation(s)
- Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Grace Ward
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Victoria Smith
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Sterling Eckard
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Judith A Fox
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Jeanmarie Guenot
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Joseph Markowitz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Precision BioSciences, Durham, NC 27701, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Erika A Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Kramer CS, Dimitrakopoulou-Strauss A. Immuno-Imaging (PET/SPECT)-Quo Vadis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103354. [PMID: 35630835 PMCID: PMC9147562 DOI: 10.3390/molecules27103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The use of immunotherapy has revolutionized the treatment regimen of certain cancer types, but response assessment has become a difficult task with conventional methods such as CT/MRT or FDG PET-CT and the classical response criteria such as RECIST or PERCIST which have been developed for chemotherapeutic treatment. Plenty of new tracers have been published to improve the assessment of treatment response and to stratify the patient population. We gathered the information on published tracers (in total, 106 individual SPECT/PET tracers were identified) and performed a descriptor-based analysis; in this way, we classify the tracers with regard to target choice, developability (probability to progress from preclinical stage into the clinic), translatability (probability to be widely applied in the 'real world'), and (assumed) diagnostic quality. In our analysis, we show that most tracers are targeting PD-L1, PD-1, CTLA-4, and CD8 receptors by using antibodies or their fragments. Another finding is that plenty of tracers possess only minor iterations regarding chelators and nuclides instead of approaching the problem in a new innovative way. Based on the data, we suggest an orthogonal approach by targeting intracellular targets with PET-activatable small molecules that are currently underrepresented.
Collapse
Affiliation(s)
- Carsten S. Kramer
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, D-65191 Wiesbaden, Germany
- Correspondence:
| | | |
Collapse
|
29
|
Abstract
Despite FDA approval of nine new drugs for patients with acute myeloid leukemia (AML) in the United States over the last 4 years, AML remains a major area of unmet medical need among hematologic malignancies. In this review, we discuss the development of promising new molecular targeted approaches for AML, including menin inhibition, novel IDH1/2 inhibitors, and preclinical means to target TET2, ASXL1, and RNA splicing factor mutations. In addition, we review progress in immune targeting of AML through anti-CD47, anti-SIRPα, and anti-TIM-3 antibodies; bispecific and trispecific antibodies; and new cellular therapies in development for AML.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Omar Abdel-Wahab
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
30
|
Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev 2022; 51:2121-2144. [PMID: 35188506 DOI: 10.1039/d1cs00755f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yingyu Qiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Huangjuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jing Zang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer J 2022; 28:78-84. [DOI: 10.1097/ppo.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
A Randomized Phase 2 Trial of Azacitidine ± Durvalumab as First-line Therapy for Higher-Risk Myelodysplastic Syndromes. Blood Adv 2021; 6:2207-2218. [PMID: 34972214 PMCID: PMC9006291 DOI: 10.1182/bloodadvances.2021005487] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
This is the first reported randomized trial of immune checkpoint inhibitor therapy in HR-MDS. Azacitidine combined with the PD-L1 inhibitor durvalumab was feasible but did not improve outcomes over azacitidine alone.
Azacitidine-mediated hypomethylation promotes tumor cell immune recognition but may increase the expression of inhibitory immune checkpoint molecules. We conducted the first randomized phase 2 study of azacitidine plus the immune checkpoint inhibitor durvalumab vs azacitidine monotherapy as first-line treatment for higher-risk myelodysplastic syndromes (HR-MDS). In all, 84 patients received 75 mg/m2 subcutaneous azacitidine (days 1-7 every 4 weeks) combined with 1500 mg intravenous durvalumab on day 1 every 4 weeks (Arm A) for at least 6 cycles or 75 mg/m² subcutaneous azacitidine alone (days 1-7 every 4 weeks) for at least 6 cycles (Arm B). After a median follow-up of 15.25 months, 8 patients in Arm A and 6 in Arm B remained on treatment. Patients in Arm A received a median of 7.9 treatment cycles and those in Arm B received a median of 7.0 treatment cycles with 73.7% and 65.9%, respectively, completing ≥4 cycles. The overall response rate (primary end point) was 61.9% in Arm A (26 of 42) and 47.6% in Arm B (20 of 42; P = .18), and median overall survival was 11.6 months (95% confidence interval, 9.5 months to not evaluable) vs 16.7 months (95% confidence interval, 9.8-23.5 months; P = .74). Durvalumab-related adverse events (AEs) were reported by 71.1% of patients; azacitidine-related AEs were reported by 82% (Arm A) and 81% (Arm B). Grade 3 or 4 hematologic AEs were reported in 89.5% (Arm A) vs 68.3% (Arm B) of patients. Patients with TP53 mutations tended to have a worse response than patients without these mutations. Azacitidine increased programmed cell death ligand 1 (PD-L1 [CD274]) surface expression on bone marrow granulocytes and monocytes, but not blasts, in both arms. In summary, combining azacitidine with durvalumab in patients with HR-MDS was feasible but with more toxicities and without significant improvement in clinical outcomes over azacitidine alone. This trial was registered at www.clinicaltrials.gov as #NCT02775903.
Collapse
|
33
|
Aureli A, Marziani B, Sconocchia T, Del Principe MI, Buzzatti E, Pasqualone G, Venditti A, Sconocchia G. Immunotherapy as a Turning Point in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246246. [PMID: 34944865 PMCID: PMC8699368 DOI: 10.3390/cancers13246246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite recent progress achieved in the management of acute myeloid leukemia (AML), it remains a life-threatening disease with a poor prognosis, particularly in the elderly, having an average 5-year survival of approximately 28%. However, recent evidence suggests that immunotherapy can provide the background for developing personalized targeted therapy to improve the clinical course of AML patients. Our review aimed to assess the immunotherapy effectiveness in AML by discussing the impact of monoclonal antibodies, immune checkpoint inhibitors, chimeric antigen receptor T cells, and vaccines in AML preclinical and clinical studies. Abstract Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it is associated with significant morbidity and mortality. However, increasing understanding of AML immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy is considered an attractive strategy for controlling and eliminating the disease. It can be a real breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor T cells (CAR-T cells), and vaccine therapeutic choices.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| | - Beatrice Marziani
- Emergency and Urgent Department, University Hospital Sant’Anna of Ferrara, 44124 Ferrara, Italy;
| | | | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Gianmario Pasqualone
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| |
Collapse
|
34
|
Camacho V, Kuznetsova V, Welner RS. Inflammatory Cytokines Shape an Altered Immune Response During Myeloid Malignancies. Front Immunol 2021; 12:772408. [PMID: 34804065 PMCID: PMC8595317 DOI: 10.3389/fimmu.2021.772408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The immune microenvironment is a critical driver and regulator of leukemic progression and hematological disease. Recent investigations have demonstrated that multiple immune components play a central role in regulating hematopoiesis, and dysfunction at the immune cell level significantly contributes to neoplastic disease. Immune cells are acutely sensitive to remodeling by leukemic inflammatory cytokine exposure. Importantly, immune cells are the principal cytokine producers in the hematopoietic system, representing an untapped frontier for clinical interventions. Due to a proinflammatory cytokine environment, dysregulation of immune cell states is a hallmark of hematological disease and neoplasia. Malignant immune adaptations have profound effects on leukemic blast proliferation, disease propagation, and drug-resistance. Conversely, targeting the immune landscape to restore hematopoietic function and limit leukemic expansion may have significant therapeutic value. Despite the fundamental role of the immune microenvironment during the initiation, progression, and treatment response of hematological disease, a detailed examination of how leukemic cytokines alter immune cells to permit, promote, or inhibit leukemia growth is lacking. Here we outline an immune-based model of leukemic transformation and highlight how the profound effect of immune alterations on the trajectory of malignancy. The focus of this review is to summarize current knowledge about the impacts of pro- and anti-inflammatory cytokines on immune cells subsets, their modes of action, and immunotherapeutic approaches with the potential to improve clinical outcomes for patients suffering from hematological myeloid malignancies.
Collapse
Affiliation(s)
- Virginia Camacho
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Innate Immune Mechanisms and Immunotherapy of Myeloid Malignancies. Biomedicines 2021; 9:biomedicines9111631. [PMID: 34829860 PMCID: PMC8615731 DOI: 10.3390/biomedicines9111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Similar to other cancers, myeloid malignancies are thought to subvert the immune system during their development. This subversion occurs via both malignant cell-autonomous and non-autonomous mechanisms and involves manipulation of the innate and adaptive immune systems. Multiple strategies are being studied to rejuvenate, redirect, or re-enforce the immune system in order to fight off myeloid malignancies. So far, the most successful strategies include interferon treatment and antibody-based therapies, though chimeric antigen receptor (CAR) cells and immune checkpoint inhibitors are also promising therapies. In this review, we discuss the inherent immune mechanisms of defense against myeloid malignancies, currently-approved agents, and agents under investigation. Overall, we evaluate the efficacy and potential of immuno-oncology in the treatment of myeloid malignancies.
Collapse
|
36
|
Kapoor S, Champion G, Basu A, Mariampillai A, Olnes MJ. Immune Therapies for Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:5026. [PMID: 34638510 PMCID: PMC8507987 DOI: 10.3390/cancers13195026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic malignancies arising from the bone marrow. Despite recent advances in treating these diseases, patients with higher-risk MDS and AML continue to have a poor prognosis with limited survival. It has long been recognized that there is an immune component to the pathogenesis of MDS and AML, but until recently, immune therapies have played a limited role in treating these diseases. Immune suppressive therapy exhibits durable clinical responses in selected patients with MDS, but the question of which patients are most suitable for this treatment remains unclear. Over the past decade, there has been remarkable progress in identifying genomic features of MDS and AML, which has led to an improved discernment of the molecular pathogenesis of these diseases. An improved understanding of immune and inflammatory molecular mechanisms of MDS and AML have also recently revealed novel therapeutic targets. Emerging treatments for MDS and AML include monoclonal antibodies such as immune checkpoint inhibitors, bispecific T-cell-engaging antibodies, antibody drug conjugates, vaccine therapies, and cellular therapeutics including chimeric antigen receptor T-cells and NK cells. In this review, we provide an overview of the current understanding of immune dysregulation in MDS and AML and an update on novel immune therapies for these bone marrow malignancies.
Collapse
Affiliation(s)
- Sargam Kapoor
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr., Anchorage, AK 99508, USA; (S.K.); (A.B.); (A.M.)
- School of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
| | - Grace Champion
- School of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
| | - Aparna Basu
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr., Anchorage, AK 99508, USA; (S.K.); (A.B.); (A.M.)
| | - Anu Mariampillai
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr., Anchorage, AK 99508, USA; (S.K.); (A.B.); (A.M.)
- School of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
| | - Matthew J. Olnes
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr., Anchorage, AK 99508, USA; (S.K.); (A.B.); (A.M.)
- School of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| |
Collapse
|
37
|
Abstract
The outcomes associated with pediatric acute myeloid leukemia (AML) have improved over the last few decades, with the implementation of intensive chemotherapy, hematopoietic stem cell transplant, and improved supportive care. However, even with intensive therapy and the use of HSCT, both of which carry significant risks of short- and long-term side effects, approximately 30% of children are not able to be cured. The characterization of AML in pediatrics has evolved over time and it currently involves use of a variety of diagnostic tools, including flow cytometry and comprehensive genomic sequencing. Given the adverse effects of chemotherapy and the need for additional therapeutic options to improve outcomes in these patients, the genomic and molecular architecture is being utilized to inform selection of targeted therapies in pediatric AML. This review provides a summary of current, targeted therapy options in pediatric AML.
Collapse
|
38
|
Can the New and Old Drugs Exert an Immunomodulatory Effect in Acute Myeloid Leukemia? Cancers (Basel) 2021; 13:cancers13164121. [PMID: 34439275 PMCID: PMC8393879 DOI: 10.3390/cancers13164121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and of a tolerogenic microenvironment for acute myeloid leukemia (AML) fitness. We reviewed the “off-target” effects on the immune system of different drugs used in the treatment of AML to explore the advantages of this unexpected interaction. Abstract Acute myeloid leukemia (AML) is considered an immune-suppressive neoplasm capable of evading immune surveillance through cellular and environmental players. Increasing knowledge of the immune system (IS) status at diagnosis seems to suggest ever more attention of the crosstalk between the leukemic clone and its immunologic counterpart. During the last years, the advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and suppression for leukemia fitness. Considering all these premises, we reviewed the “off-target” effects on the IS of different drugs used in the treatment of AML, focusing on the main advantages of this interaction. The data reported support the idea that a successful therapeutic strategy should consider tailored approaches for performing leukemia eradication by both direct blasts killing and the engagement of the IS.
Collapse
|
39
|
Gu W, Qu R, Meng F, Cornelissen JJLM, Zhong Z. Polymeric nanomedicines targeting hematological malignancies. J Control Release 2021; 337:571-588. [PMID: 34364920 DOI: 10.1016/j.jconrel.2021.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Hematological malignancies (HMs) typically persisting in the blood, lymphoma, and/or bone marrow invalidate surgery and local treatments clinically used for solid tumors. The presence and drug resistance nature of cancer stem cells (CSCs) further lends HMs hard to cure. The development of new treatments like molecular targeted drugs and antibodies has improved the clinical outcomes for HMs but only to a certain extent, due to issues of low bioavailability, moderate response, occurrence of drug resistance, and/or dose-limiting toxicities. In the past years, polymeric nanomedicines targeting HMs including refractory and relapsed lymphoma, leukemia and multiple myeloma have emerged as a promising chemotherapeutic approach that is shown capable of overcoming drug resistance, delivering drugs not only to cancer cells but also CSCs, and increasing therapeutic index by lessening drug-associated adverse effects. In addition, polymeric nanomedicines have shown to potentiate next-generation anticancer modalities such as therapeutic proteins and nucleic acids in effectively treating HMs. In this review, we highlight recent advance in targeted polymeric nanoformulations that are coated with varying ligands (e.g. cancer cell membrane proteins, antibodies, transferrin, hyaluronic acid, aptamer, peptide, and folate) and loaded with different therapeutic agents (e.g. chemotherapeutics, molecular targeted drugs, therapeutic antibodies, nucleic acid drugs, and apoptotic proteins) for directing to distinct targets (e.g. CD19, CD20, CD22, CD30, CD38, CD44, CD64, CXCR, FLT3, VLA-4, and bone marrow microenvironment) in HMs. The advantages and potential challenges of different designs are discussed.
Collapse
Affiliation(s)
- Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
40
|
CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy. Blood 2021; 137:1037-1049. [PMID: 33094319 DOI: 10.1182/blood.2020006921] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Emerging immunotherapies such as chimeric antigen receptor T cells have advanced the treatment of acute lymphoblastic leukemia. In contrast, long-term control of acute myeloid leukemia (AML) cannot be achieved by single lineage-specific targeting while sparing benign hematopoiesis. In addition, heterogeneity of AML warrants combinatorial targeting, and several suitable immunotargets (HAVCR2/CD33 and HAVCR2/CLEC12A) have been identified in adult AML. However, clinical and biologic characteristics of AML differ between children and the elderly. Here, we analyzed 36 bone marrow (BM) samples of pediatric AML patients and 13 age-matched healthy donors using whole RNA sequencing of sorted CD45dim and CD34+CD38-CD45dim BM populations and flow cytometry for surface expression of putative target antigens. Pediatric AML clusters apart from healthy myeloid BM precursors in principal-component analysis. Known immunotargets of adult AML, such as IL3RA, were not overexpressed in pediatric AML compared with healthy precursors by RNA sequencing. CD33 and CLEC12A were the most upregulated immunotargets on the RNA level and showed the highest surface expression on AML detected by flow cytometry. KMT2A-mutated infant AML clusters separately by RNA sequencing and overexpresses FLT3, and hence, CD33/FLT3 cotargeting is an additional specific option for this subgroup. CLEC12A and CD33/CLEC12Adouble-positive expression was absent in CD34+CD38-CD45RA-CD90+ hematopoietic stem cells (HSCs) and nonhematopoietic tissue, while CD33 and FLT3 are expressed on HSCs. In summary, we show that expression of immunotargets in pediatric AML differs from known expression profiles in adult AML. We identify CLEC12A and CD33 as preferential generic combinatorial immunotargets in pediatric AML and CD33 and FLT3 as immunotargets specific for KMT2A-mutated infant AML.
Collapse
|
41
|
Allen C, Zeidan AM, Bewersdorf JP. BiTEs, DARTS, BiKEs and TriKEs-Are Antibody Based Therapies Changing the Future Treatment of AML? Life (Basel) 2021; 11:465. [PMID: 34071099 PMCID: PMC8224808 DOI: 10.3390/life11060465] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
Nearly four decades after their conceptualization, antibody-based therapies are slowly being added to the treatment landscape of acute myeloid leukemia (AML). While the antibody-drug conjugate gemtuzumab ozogamicin is the only antibody-based therapy that has been approved for AML treatment thus far, several bispecific antibodies have been developed and shown early encouraging results. Bispecific antibodies comprise a wide variety of constructs that share the common concept of simultaneous binding of a surface target on malignant cells and most commonly CD3 on T cells leading to an endogenous, HLA-independent, immune response against malignant cells. However, the use of bispecific antibodies in AML has been limited by the absence of highly specific leukemia-associated antigens leading to on-target, off-leukemia side effects as well as reduced efficacy due to antigen escape. Herein, we discuss the history and evolution of bispecific T cell engagers as well as various adaptations such as dual affinity retargeting antibodies, bi- and tri-specific killer engager antibodies. Common side effects including cytokine release syndrome and management thereof are highlighted. Lastly, we expound on the future direction and integration of such antibody-based therapies with other immunotherapies (programmed cell death-1 inhibitors and chimeric antigen receptor T cells).
Collapse
|
42
|
Patterns of care and clinical outcomes with cytarabine-anthracycline induction chemotherapy for AML patients in the United States. Blood Adv 2021; 4:1615-1623. [PMID: 32311013 DOI: 10.1182/bloodadvances.2020001728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 01/01/2023] Open
Abstract
Cytarabine-anthracycline based intensive induction chemotherapy (IC) remains the standard of care for remission induction among fit patients with newly diagnosed acute myeloid leukemia (AML) in the United States (US). However, the mortality rate outside of clinical IC trials, predictors of death, and resource utilization during admission for IC have not been thoroughly examined. We used the Premier Healthcare database to identify adult patients (aged 18-89 years) treated with cytarabine-anthracycline-based IC during their first recorded inpatient stay for AML during the contemporary period of 2010 to 2017. We identified factors associated with inpatient death or discharge to hospice, using multivariable logistic regression models. We also assessed the patterns of inpatient healthcare resource utilization. A total of 6442 patients with AML from 313 hospitals who were treated with IC were identified. Median age was 61 years (interquartile range [IQR], 50-68 years), and 56% were men. Median length of stay was 29 (IQR, 25-38) days, with rates of in-hospital death and discharge to hospice of 12.3% and 3.7% (17.9% and 6.3% among patients aged ≥65 years), respectively. Predictors of in-hospital death or discharge to hospice included older age, geographic region, and lower hospital volume. During admission, 28.0%, 12.6%, and 4.0% of patients required treatment in intensive care units, mechanical ventilation, and dialysis, respectively. Despite improvements in supportive care in the contemporary era, inpatient mortality during first hospitalization for adult patients with AML treated with IC in the US remains high particularly among older patients.
Collapse
|
43
|
Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol 2021; 14:75. [PMID: 33941237 PMCID: PMC8091790 DOI: 10.1186/s13045-021-01084-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Harnessing the power of immune cells, especially T cells, to enhance anti-tumor activities has become a promising strategy in clinical management of hematologic malignancies. The emerging bispecific antibodies (BsAbs), which recruit T cells to tumor cells, exemplified by bispecific T cell engagers (BiTEs), have facilitated the development of tumor immunotherapy. Here we discussed the advances and challenges in BiTE therapy developed for the treatment of hematologic malignancies. Blinatumomab, the first BiTE approved for the treatment of acute lymphocytic leukemia (ALL), is appreciated for its high efficacy and safety. Recent studies have focused on improving the efficacy of BiTEs by optimizing treatment regimens and refining the molecular structures of BiTEs. A considerable number of bispecific T cell-recruiting antibodies which are potentially effective in hematologic malignancies have been derived from BiTEs. The elucidation of mechanisms of BiTE action and neonatal techniques used for the construction of BsAbs can improve the treatment of hematological malignancies. This review summarized the features of bispecific T cell-recruiting antibodies for the treatment of hematologic malignancies with special focus on preclinical experiments and clinical studies.
Collapse
Affiliation(s)
- Zheng Tian
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
44
|
Xie X, Hu Y, Ye T, Chen Y, Zhou L, Li F, Xi X, Wang S, He Y, Gao X, Wei W, Ma G, Li Y. Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nat Biomed Eng 2021; 5:414-428. [PMID: 33046865 DOI: 10.1038/s41551-020-00624-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic leukaemia vaccines have shown modest potency. Here, we show that the co-encapsulation of a leukaemia-associated epitope peptide highly expressed in leukaemia patients and of the immune checkpoint inhibitor anti-programmed-cell-death-protein-1 (anti-PD-1) in degradable poly(lactic acid) microcapsules resulted in the sustained release of the peptide and of the antibody, which led to the recruitment of activated antigen-presenting cells to the injection site, their uptake of the peptide and the transportation of the anti-PD-1 antibody to lymph nodes, enhancing the expansion of epitope-specific T cells and the activation of cytotoxic T cells. After single subcutaneous injections of vaccine formulations with different epitope peptides, mice bearing leukaemia xenografts derived from humanized cell lines or from primary cells from patients showed better therapeutic outcomes than mice receiving repeated injections of free antigen, antibody and a commercial adjuvant. The sustained release of a tumour-associated peptide and of anti-PD-1 may represent a generalizable strategy for boosting antitumour immune responses to leukaemia.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Yiran Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, P R China.
| |
Collapse
|
45
|
Tu H, Wu Z, Xia Y, Chen H, Hu H, Ding Z, Zhou F, Guo S. Profiling of immune-cancer interactions at the single-cell level using a microfluidic well array. Analyst 2021; 145:4138-4147. [PMID: 32409799 DOI: 10.1039/d0an00110d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has achieved great success in hematological cancers. However, immune cells are a highly heterogeneous population and can vary highly in clonal expansion, migration and function status, making it difficult to evaluate and predict patient response to immune therapy. Conventional technologies only yield information on the average population information of the treatment, masking the heterogeneity of the individual T cell activation status, the formation of immune synapse, as well as the efficacy of tumor cell killing at the single-cell level. To fully interrogate these single-cell events in detail, herein, we present a microfluidic microwell array device that enables the massive parallel analysis of the immunocyte's heterogeneity upon its interaction pairs with tumor cells at the single-cell level. By precisely controlling the number and ratio of tumor cells and T cells, our technique can interrogate the dynamics of the CD8+ T cell and leukemia cell interaction inside 6400 microfluidic wells simultaneously. We have demonstrated that by investigating the interactions of T cell and tumor cell pairs at the single-cell level using our microfluidic chip, details hidden in bulk investigations, such as heterogeneity in T cell killing capacity, time-dependent killing dynamics, as well as drug treatment-induced dynamic shifts, can be revealed. This method opens up avenues to investigate the efficacy of cancer immunotherapy and resistance at the single-cell level and can explore our understanding of fundamental cancer immunity as well as determine cancer immunotherapy efficacy for personalized therapy.
Collapse
Affiliation(s)
- Honglei Tu
- Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yu Xia
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hui Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hang Hu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Fuling Zhou
- Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
46
|
Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol 2021; 18:805-828. [PMID: 32879472 PMCID: PMC7463107 DOI: 10.1038/s41423-020-00530-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system is a fascinating world of cells, soluble factors, interacting cells, and tissues, all of which are interconnected. The highly complex nature of the immune system makes it difficult to view it as a whole, but researchers are now trying to put all the pieces of the puzzle together to obtain a more complete picture. The development of new specialized equipment and immunological techniques, genetic approaches, animal models, and a long list of monoclonal antibodies, among many other factors, are improving our knowledge of this sophisticated system. The different types of cell subsets, soluble factors, membrane molecules, and cell functionalities are some aspects that we are starting to understand, together with their roles in health, aging, and illness. This knowledge is filling many of the gaps, and in some cases, it has led to changes in our previous assumptions; e.g., adaptive immune cells were previously thought to be unique memory cells until trained innate immunity was observed, and several innate immune cells with features similar to those of cytokine-secreting T cells have been discovered. Moreover, we have improved our knowledge not only regarding immune-mediated illnesses and how the immune system works and interacts with other systems and components (such as the microbiome) but also in terms of ways to manipulate this system through immunotherapy. The development of different types of immunotherapies, including vaccines (prophylactic and therapeutic), and the use of pathogens, monoclonal antibodies, recombinant proteins, cytokines, and cellular immunotherapies, are changing the way in which we approach many diseases, especially cancer.
Collapse
Affiliation(s)
- Jezabel Varadé
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Susana Magadán
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - África González-Fernández
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain.
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
47
|
Wong KK, Hassan R, Yaacob NS. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front Oncol 2021; 11:624742. [PMID: 33718188 PMCID: PMC7947882 DOI: 10.3389/fonc.2021.624742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory effects against cancer cells. This includes stimulation of anti-tumor immunity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens (CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity. Moreover, decitabine and guadecitabine induce the expression of immune checkpoint molecules in AML cells. In this review, the accumulating knowledge on the immunopotentiating properties of decitabine and guadecitabine in AML and MDS patients are presented and discussed. In summary, combination of decitabine or guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover, decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen receptor-engineered T cells antileukemic activities against AML. Furthermore, combination of either HMAs with immune checkpoint blockade (ICB) therapy may circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS patients are currently underway, highlighting the promising efficacy of HMAs and immunotherapy synergy against these malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
48
|
Shallis RM, Bewersdorf JP, Swoboda DM, Wei W, Gowda L, Prebet T, Halene S, Pillai MM, Parker T, Neparidze N, Podoltsev NA, Seropian S, Sallman DA, Gore SD, Zeidan AM. Challenges in the Evaluation and Management of Toxicities Arising From Immune Checkpoint Inhibitor Therapy for Patients With Myeloid Malignancies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e483-e487. [PMID: 33551344 DOI: 10.1016/j.clml.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - David M Swoboda
- Department of Hematology and Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Manoj M Pillai
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Terri Parker
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Natalia Neparidze
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Stuart Seropian
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - David A Sallman
- Department of Hematology and Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT.
| |
Collapse
|
49
|
Russkamp NF, Myburgh R, Kiefer JD, Neri D, Manz MG. Anti-CD117 immunotherapy to eliminate hematopoietic and leukemia stem cells. Exp Hematol 2021; 95:31-45. [PMID: 33484750 DOI: 10.1016/j.exphem.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Precise replacement of diseased or dysfunctional organs is the goal of regenerative medicine and has appeared to be a distant goal for a long time. In the field of hematopoietic stem cell transplantation, this goal is now becoming tangible as gene-editing technologies and novel conditioning agents are entering the clinical arena. Targeted immunologic depletion of hematopoietic stem cells (HSCs), which are at the very root of the hematopoietic system, will enable more selective and potentially more effective hematopoietic stem cell transplantation in patients with hematological diseases. In contrast to current conditioning regimes based on ionizing radiation and chemotherapy, immunologic conditioning will spare mature hematopoietic cells and cause substantially less inflammation and unspecific collateral damage to other organs. Biological agents that target the stem cell antigen CD117 are the frontrunners for this purpose and have exhibited preclinical activity in depletion of healthy HSCs. The value of anti-CD117 antibodies as conditioning agents is currently being evaluated in early clinical trials. Whereas mild, antibody-based immunologic conditioning concepts might be appropriate for benign hematological disorders in which incomplete replacement of diseased cells is sufficient, higher efficacy will be required for treatment and elimination of hematologic stem cell malignancies such as acute myeloid leukemia and myelodysplastic syndrome. Antibody-drug conjugates, bispecific T-cell engaging and activating antibodies (TEAs), or chimeric antigen receptor (CAR) T cells might offer increased efficacy compared with naked antibodies and yet higher tolerability and safety compared with current genotoxic conditioning approaches. Here, we summarize the current state regarding immunologic conditioning concepts for the treatment of HSC disorders and outline potential future developments.
Collapse
Affiliation(s)
- Norman F Russkamp
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Jonathan D Kiefer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
50
|
Zeidan AM, Komrokji RS, Brunner AM. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev Anticancer Ther 2021; 21:523-534. [PMID: 33334180 DOI: 10.1080/14737140.2021.1865814] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Dysfunction of the immune system is a hallmark of cancer. Through increased understanding of the complex interactions between immunity and cancer, immunotherapy has emerged as a treatment modality for different types of cancer. Promising activity with immunotherapy has been reported in numerous malignancies, but challenges such as limited response rates and treatment resistance remain. Furthermore, outcomes with this therapeutic approach in hematologic malignancies are even more limited than in solid tumors. T-cell immunoglobulin domain and mucin domain 3 (TIM-3) has emerged as a potential immune checkpoint target in both solid tumors and hematologic malignancies. TIM-3 has been shown to promote immune tolerance, and overexpression of TIM-3 is associated with more aggressive or advanced disease and poor prognosis. AREAS COVERED This review examines what is currently known regarding the biology of TIM-3 and clinical implications of targeting TIM-3 in cancer. Particular focus is given to myeloid malignancies. EXPERT OPINION The targeting of TIM-3 is a promising therapeutic approach in cancers, including hematologic cancers such as myeloid malignancies which have not benefited much from current immunotherapeutic treatment approaches. We anticipate that with further clinical evaluation, TIM-3 blockade will emerge as an important treatment strategy in myeloid malignancies.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Rami S Komrokji
- Malignant Hematology Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|