1
|
Tiwari MK, Goslinski T. Searching for the Holy Grail - Highly Potent Bridged Endoperoxides for Targeted Cancer Therapy. Bioorg Chem 2024; 153:107893. [PMID: 39454496 DOI: 10.1016/j.bioorg.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The International Agency for Research on Cancer (IARC) recently estimated the global cancer burden in 2050. The statistics are startling, with a 77% hike and 35 million new cancer cases per year. The present discoveries have recommended plant-derived bridged endoperoxides or artemisinin-based semisynthetic analogues as safe, well-tolerated and powerful substitutes that could be effectively utilized as a warhead to fight against global enemies like cancer. In addition, artemisinin-based drug repositioning crucially can reduce overriding drug development expenditures and establish accessibility of approved drugs with low risk to patients. Hence, the present review article provides a comprehensive account of the recent chemical and synthetic advancement of diverse cytotoxic artemisinin derivatives such as C(10)-O, C, N, S linked artemisinin analogues, artemisinin-derived metal complexes, artemisinin-derived hybrids/conjugates with other pharmaceutically active substances, and artemisinin-derived dimers, trimers and tetramers perceived during the last three decades (1997-2024). Moreover, the current preclinical and clinical anticancer application prospects of artemisinin derivatives with other defined drugs and their utilization in combination therapy and also nanoformulation approaches for targeted drug delivery have been discussed.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland.
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
2
|
El-Demerdash AS, Alfaraj R, Farid FA, Yassin MH, Saleh AM, Dawwam GE. Essential oils as capsule disruptors: enhancing antibiotic efficacy against multidrug-resistant Klebsiella pneumoniae. Front Microbiol 2024; 15:1467460. [PMID: 39282565 PMCID: PMC11392748 DOI: 10.3389/fmicb.2024.1467460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant global health threat due to its involvement in severe infections and high mortality rates. The emergence of MDR strains necessitates the exploration of alternative therapeutic strategies. Methods K. pneumoniae isolates were obtained from human and animal sources. Antibacterial susceptibility testing was performed, followed by the evaluation of essential oil activity through inhibition zone, MIC, and MBC determinations. Checkerboard assays were conducted to assess synergistic effects with amikacin. Gene expression analysis and transmission electron microscopy were employed to elucidate the mechanisms of action. Molecular docking studies were performed to identify potential binding targets of bioactive compounds. Results Klebsiella pneumoniae was isolated from 25 of the100 samples examined, representing a prevalence rate of 25%. All isolates were found to be multidrug-resistant. Tea tree and thyme essential oils exhibited potent antibacterial activity and synergistic effects with amikacin. Notably, these combinations significantly downregulated the expression of key capsule virulence genes (wcaG, rmpA, magA, uge, and wabG), suggesting a novel mechanism for enhancing amikacin efficacy. Transmission electron microscopy revealed disrupted cell integrity in MDR-KP cells treated with the combinations. Molecular docking analysis identified Terpinen-4-ol, Farnesol, 1,4-Dihydroxy-p-menth-2-ene, and 7-Oxabicyclo [4.1.0] heptane as potential bioactive compounds responsible for the observed effects. Conclusion By effectively combating MDR-KP, this research holds promise for reducing antibiotic resistance, improving treatment outcomes, and ultimately enhancing potential care.
Collapse
Affiliation(s)
- Azza SalahEldin El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faten A Farid
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed H Yassin
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
3
|
Sarkar D, Monzote L, Gille L, Chatterjee M. Natural endoperoxides as promising anti-leishmanials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155640. [PMID: 38714091 DOI: 10.1016/j.phymed.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.
Collapse
Affiliation(s)
- Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Havana 10400, Cuba
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India.
| |
Collapse
|
4
|
Zeng ZW, Chen D, Chen L, He B, Li Y. A comprehensive overview of Artemisinin and its derivatives as anticancer agents. Eur J Med Chem 2023; 247:115000. [PMID: 36538859 DOI: 10.1016/j.ejmech.2022.115000] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Artemisinin is the crucial ingredient of artemisia annua, a traditional Chinese medicine used for the therapy of malaria in China for hundreds of years. In recent years, the anticancer properties of artemisinin and its derivatives have also been reported. This review has summarized the research and development of artemisinin and its derivatives as anticancer agents, which included both natural and synthetic monomers as well as their dimers. In addition, it highlights the antitumor effects of artemisinin and its derivatives after site-modification or after transformation to a nano-delivery system. Moreover, we have further explored their potential mechanisms of action and also discussed the clinical trials of ARTs used to treat cancer, which will facilitate in further development of novel anticancer drugs based on the scaffold of artemisinin.
Collapse
Affiliation(s)
- Zi-Wei Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
5
|
Ul Haq S, Wang L, Guo W, Aqib AI, Muneer A, Saqib M, Ahmad S, Ghafoor M, Iftikhar A, Chen K, Liang J. Enhancing activity of β-lactam and fluoroquinolones antibiotics by artemisinin and its derivatives against MDR Escherichia coli. Front Vet Sci 2022; 9:1048531. [PMID: 36439355 PMCID: PMC9686389 DOI: 10.3389/fvets.2022.1048531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Artemisinin and its derivatives had played a biocidal role in biomedical remedies, while they were expected to enhance the activity of antibiotics against multiple drug-resistant (MDR) bacteria. The current study evaluated the interaction of artemisinin (ART), dihydroartemisinin (DHA), artesunate (AS), and artemisinic acid (AA) with β-lactam and fluoroquinolones antibiotics against Escherichia coli. Antibiotic strip test (E-test), Kirby Bauer's disc test (KB method), and broth microdilution method were adopted for susceptibility analysis, while the checkerboard method was applied to assess synergisms. ART, DHA, AS, and AA showed significantly enhanced antibacterial effects of β-lactam antibiotics against different strains of E. coli. The study showed ciprofloxacin to be most effective by presenting the least MIC (0.017125 ± 0.0022 μg/ml), while oxacillin was least effective (MIC 256 μg/ml) against E. coli. Synergism between AA and penicillin G (75%), ampicillin (25%), and oxacillin (50%) was observed in all isolates tested. AA and AS significantly decreased the MIC of ampicillin (-0.912 ± 0.908 μg/ml) and ciprofloxacin (-0.901 ± 0.893 g/ml), respectively. Artemisinin and its derivatives increased antibiotic accumulation within E. coli in a dose-dependent manner. The time-kill assay significantly reduced the bacterial number within 24 h of incubation. The study thus concludes greater room for improvement in enhancing the efficacy of antibiotics if used with artemisinin and its derivatives.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Ling Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Wenzhou Guo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Saad Ahmad
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Muzafar Ghafoor
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Amir Iftikhar
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Keyuan Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| |
Collapse
|
6
|
LC-MS/TOF Characterization and Stability Study of Artesunate in Different Solvent Systems. SEPARATIONS 2022. [DOI: 10.3390/separations9080218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artemisinin (ART) is a sesquiterpene lactone and a popular malaria drug used in many parts of the world. Artesunate (ARTS) is a semi-synthetic derivative of ART with improved pharmacokinetic properties. However, the half-life of ARTS is less than an hour in vivo. The analysis of this drug in vitro in different solvent systems using LC-MS/TOF showed a solvent-driven breakdown. ARTS breakdown formed several derivatives, including dihydroartemisinin (DHA), artemether (ARTM) and DHA-dimer among others, at different rates in different solvent composition systems. The change in temperature from room temperature to physiological temperature (37 °C) was found to enhance the rate of the ARTS breakdown. In methanol, ARTS mainly formed ARTM with a chromatographic peak decrease of about 3.13%, while methanol and water (90:10) v/v mainly gave rise to DHA and ARTM with about an 80% chromatographic peak decrease. On the other hand, ARTS in methanol and ammonium acetate (85:15) v/v formed DHA, ARTM, DHA-dimer and other reaction peaks with about a 97% peak decrease and the formation of an orange solution pointing to a molecular re-arrangement reaction. These results have an important bearing on research on the analysis of artemisinin drugs conducted on these common solvents.
Collapse
|
7
|
Artemisinin derivative FO-ARS-123 as a novel VEGFR2 inhibitor suppresses angiogenesis, cell migration, and invasion. Chem Biol Interact 2022; 365:110062. [DOI: 10.1016/j.cbi.2022.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
|
8
|
In Vitro Activity of the Arylaminoartemisinin GC012 against Helicobacter pylori and Its Effects on Biofilm. Pathogens 2022; 11:pathogens11070740. [PMID: 35889986 PMCID: PMC9324866 DOI: 10.3390/pathogens11070740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the in vitro activity of the arylaminoartemisinin GC012, readily obtained from dihydroartemisinin (DHA), against clinical strains of Helicobacter pylori (H. pylori) with different antibiotic susceptibilities in the planktonic and sessile state. The activity was assessed in terms of bacteriostatic and bactericidal potential. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by the broth microdilution method. After treatment with GC012, all bacterial strains showed significantly lower MIC and MBC values compared to those of DHA. The effect of combination of GC012 with antibiotics was examined using the checkerboard method. GC012 displayed synergistic interactions with metronidazole, clarithromycin, and amoxicillin in all the strains. The antibiofilm activity was evaluated via crystal violet staining, AlamarBlue® assay, colony-forming unit count, and fluorescence microscopy. At ½ MIC and ¼ MIC concentration, both GC012 and DHA inhibited biofilm formation, but only GC012 showed a minimal biofilm eradication concentration (MBEC) on mature biofilm. Furthermore, both compounds induced structural changes in the bacterial membrane, as observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is thereby demonstrated that GC012 has the potential to be efficacious against H. pylori infection.
Collapse
|
9
|
Biotechnological Approaches for Production of Artemisinin, an Anti-Malarial Drug from Artemisia annua L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093040. [PMID: 35566390 PMCID: PMC9103073 DOI: 10.3390/molecules27093040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Artemisinin is an anti-malarial sesquiterpene lactone derived from Artemisia annua L. (Asteraceae family). One of the most widely used modes of treatment for malaria is an artemisinin-based combination therapy. Artemisinin and its associated compounds have a variety of pharmacological qualities that have helped achieve economic prominence in recent years. So far, research on the biosynthesis of this bioactive metabolite has revealed that it is produced in glandular trichomes and that the genes responsible for its production must be overexpressed in order to meet demand. Using biotechnological applications such as tissue culture, genetic engineering, and bioreactor-based approaches would aid in the upregulation of artemisinin yield, which is needed for the future. The current review focuses on the tissue culture aspects of propagation of A. annua and production of artemisinin from A. annua L. cell and organ cultures. The review also focuses on elicitation strategies in cell and organ cultures, as well as artemisinin biosynthesis and metabolic engineering of biosynthetic genes in Artemisia and plant model systems.
Collapse
|
10
|
Zou X, Liu C, Li C, Fu R, Xu W, Bian H, Dong X, Zhao X, Xu Z, Zhang J, Shen Z. Study on the structure-activity relationship of dihydroartemisinin derivatives: Discovery, synthesis, and biological evaluation of dihydroartemisinin-bile acid conjugates as potential anticancer agents. Eur J Med Chem 2021; 225:113754. [PMID: 34399390 DOI: 10.1016/j.ejmech.2021.113754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
A series of dihydroartemisinin derivatives was synthesized, and their anti-proliferation activity against cancer cells was evaluated. Structure-activity relationship studies led to the discovery of dihydroartemisinin-bile acid conjugates that exhibit broad-spectrum anti-proliferation activities. Among them, the dihydroartemisinin-ursodeoxycholic acid conjugate (49) was the most potent, with IC50 values between 0.04 and 0.96 μM when tested to determine its inhibitory properties against 15 various cancer cell lines. In vivo experiments showed that compound 49 effectively suppressed tumor growth in an A549 cell xenograft model at the dosage of 10 mg/kg body weight and in Lewis lung cancer cell transplant model at the dosage of 12 mg/kg body weight.
Collapse
Affiliation(s)
- Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Chang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Congcong Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Rong Fu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wei Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xun Dong
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xiaozhen Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China.
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China.
| |
Collapse
|
11
|
Çapcı A, Herrmann L, Sampath Kumar HM, Fröhlich T, Tsogoeva SB. Artemisinin-derived dimers from a chemical perspective. Med Res Rev 2021; 41:2927-2970. [PMID: 34114227 DOI: 10.1002/med.21814] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Considerable progress has been made with the rather recently developed dimer approach, which has already found applications in the development of new effective artemisinin-derived antimalarial, anticancer, and antiviral agents. One observation common to these potential applications is the significant (i.e., much more than double) improvement in activity of artemisinin based dimers, which are not toxic to normal cells and have fewer or less harmful side effects, with respect to monomers against parasites, cancer cells and viruses. Due to the high potential of the dimerization concept, many new artemisinin-derived dimer compounds and their biological activities have been recently reported. In this review an overview of the synthesis of dimer drug candidates based on the clinically used drug artemisinin and its semisynthetic derivatives is given. Besides the highlighting of biological activities of the selected dimers, the main focus is set on different synthetic approaches toward the dimers containing a broad variety of symmetric and nonsymmetric linking moieties.
Collapse
Affiliation(s)
- Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.,CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Rolta R, Sharma A, Sourirajan A, Mallikarjunan PK, Dev K. Combination between antibacterial and antifungal antibiotics with phytocompounds of Artemisia annua L: A strategy to control drug resistance pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113420. [PMID: 32998023 DOI: 10.1016/j.jep.2020.113420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. is a traditional Chinese medicine used for the treatment of malaria, jaundice and intense fever. AIM OF THE STUDY The aim of the present study was to investigate the phytochemicals, antioxidants, antimicrobial and synergistic potential of methanolic and petroleum ether extracts of A. annua against bacterial and fungal pathogens. METHOD Antioxidant activity of different concentrations of methanolic and petroleum ether extracts of A. annua was determined by DPPH free radical scavenging assay. Antimicrobial activity was determined by agar well diffusion, whereas MIC and synergistic activity was done by broth dilution method.TLC and GC-MS were done to identify active phytocompounds present in methanolic and petroleum ether extracts. RESULTS Methanolic extract of A. annua showed higher antioxidant potential (IC50 37 0.75 ± 0.34 μg ml-1) as compared to petroleum ether extract. In antimicrobial analysis, methanolic and petroleum ether extracts of A. annua produced potent inhibitory activity against Candida strains as compared to bacterial strains. Methanolic and petroleum ether extracts of A. annua produced synergistic potential with decrease in MIC from 4 to 264 folds against bacterial (S. aureus and E. coli) and Candida strains in combination with antibacterial and antifungal antibiotics. Sub fraction I of methanolic and petroleum ether extracts was isolated through silica TLC and showed 10-fold more antimicrobial activity as compared to crude extract. GC-MS analysis of sub-fraction I of A. annua revealed 13 major phytocompounds with area more than 1%. Interestingly, 2-Propenoic acid and ridecyl ester (25.88%) were the major phytocompounds. CONCLUSION Phytocompounds of A. annua can be used as bioenhancer of antibacterial and antifungal agents to control drug resistance.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anshika Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | | | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
13
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Li Y, Zhou X, Liu J, Yuan X, He Q. Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis. Anticancer Agents Med Chem 2021; 20:520-535. [PMID: 31958040 DOI: 10.2174/1871520620666200120100252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor recurrence and metastasis are still leading causes of cancer mortality worldwide. The influence of traditional treatment strategies against metastatic tumors may still be limited. To search for novel and powerful agents against tumors has become a major research focus. In this study, Artemisinin (ARM), a natural compound isolated from herbs, Artemisia annua L., proceeding from drug repurposing methods, attracts more attention due to its good efficacy and tolerance in antimalarial practices, as well as newly confirmed anticancer activity. METHODS We have searched and reviewed the literatures about ARM and its derivatives (ARMs) for cancer using keywords "artemisinin" until May 2019. RESULTS In preclinical studies, ARMs can induce cell cycle arrest and cell death by apoptosis etc., to inhibit the progression of tumors, and suppress EMT and angiogenesis to inhibit the metastasis of tumors. Notably, the complex relationships of ARMs and autophagy are worth exploring. Inspired by the limitations of its antimalarial applications and the mechanical studies of artemisinin and cancer, people are also committed to develop safer and more potent ARM-based modified compounds (ARMs) or combination therapy, such as artemisinin dimers/ trimers, artemisinin-derived hybrids. Some clinical trials support artemisinins as promising candidates for cancer therapy. CONCLUSION ARMs show potent therapeutic potentials against carcinoma including metastatic tumors. Novel compounds derived from artemisinin and relevant combination therapies are supposed to be promising treatment strategies for tumors, as the important future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
15
|
Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021; 213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Malaria is a life-threatening infectious disease caused by protozoal parasites belonging to the genus Plasmodium. It caused an estimated 405,000 deaths and 228 million malaria cases globally in 2018 as per the World Malaria Report released by World Health Organization (WHO) in 2019. Artemisinin (ART), a "Nobel medicine" and its derivatives have proven potential application in antimalarial drug discovery programs. In this review, antimalarial activity of the most active artemisinin derivatives modified at C-10/C-11/C-16/C-6 positions and synthetic peroxides (endoperoxides, 1,2,4-trioxolanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes) are systematically summarized. The developmental trend of ART derivatives, and cyclic peroxides along with their antimalarial activity and how the activity is affected by structural variations on different sites of the compounds are discussed. This compilation would be very useful towards scaffold hopping aimed at avoiding the unnecessary complexity in cyclic peroxides, and ultimately act as a handy resource for the development of potential chemotherapeutics against Plasmodium species.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
16
|
Muñoz JE, Rossi DCP, Jabes DL, Barbosa DA, Cunha FFM, Nunes LR, Arruda DC, Pelleschi Taborda C. In Vitro and In Vivo Inhibitory Activity of Limonene against Different Isolates of Candida spp. J Fungi (Basel) 2020; 6:E183. [PMID: 32971732 PMCID: PMC7559214 DOI: 10.3390/jof6030183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Commensal yeast from the genus Candida is part of the healthy human microbiota. In some cases, Candida spp. dysbiosis can result in candidiasis, the symptoms of which may vary from mild localized rashes to severe disseminated infections. The most prevalent treatments against candidiasis involve fluconazole, itraconazole, miconazole, and caspofungin. Moreover, amphotericin B associated with prolonged azole administration is utilized to control severe cases. Currently, numerous guidelines recommend echinocandins to treat invasive candidiasis. However, resistance to these antifungal drugs has increased dramatically over recent years. Considering this situation, new therapeutic alternatives should be studied to control candidiasis, which has become a major medical concern. Limonene belongs to the group of terpene molecules, known for their pharmacological properties. In this study, we evaluated in vitro the limonene concentration capable of inhibiting the growth of yeast from the genus Candida susceptible or resistant to antifungal drugs and its capacity to induce fungal damage. In addition, intravaginal fungal infection assays using a murine model infected by Candida albicans were carried out and the fungal burden, histopathology, and scanning electron microscopy were evaluated. All of our results suggest that limonene may play a protective role against the infection process by yeast from the genus Candida.
Collapse
Affiliation(s)
- Julián E. Muñoz
- Studies in Translational Microbiology and Emerging Diseases Research Group (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C 111221, Colombia;
| | - Diego C. P. Rossi
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-060, Brazil;
| | - Daniela L. Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - David Aciole Barbosa
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - Fernanda F. M. Cunha
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - Luiz R. Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09210-580, Brazil;
| | - Denise C. Arruda
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-060, Brazil;
- Laboratory of Medical Mycology, Institute of Tropical Medicine of São Paulo-LIM53/Medical School, University of São Paulo (USP), São Paulo 05403-000, Brazil
| |
Collapse
|
17
|
Sampath Kumar HM, Herrmann L, Tsogoeva SB. Structural hybridization as a facile approach to new drug candidates. Bioorg Med Chem Lett 2020; 30:127514. [PMID: 32860980 DOI: 10.1016/j.bmcl.2020.127514] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Structural hybridization of preclinically and clinically validated pharmacologically active molecules has emerged as a promising tool to develop new generations of safe and highly efficient drug candidates against various diseases including microbial infections, virus infections and cancer. Strategies of drug-drug combinations have been adopted to generate hybrid conjugates of many clinically used drugs, designed to address inherent problems associated with these drugs. Thus, the design of hybrids was aimed to achieve higher efficacy through possible multi-target interactions, selective delivery of the drug to the site of action with the aim to improve bioavailability, alleviate toxicity and circumvent drug resistances. In this review article, we summarize the progress made in recent years in the rapidly growing field of drug discovery, focusing on the rationality of the hybrid design with particular emphasis on the linker architecture, which plays a crucial role in the overall success of a hybrid drug.
Collapse
Affiliation(s)
- Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
18
|
Ahmad F, Sarder A, Gour R, Karna SKL, Arora P, Kartha KPR, Pokharel YR. Inhibition of prostate cancer cell line (PC-3) by anhydrodihydroartemisinin (ADHA) through caspase-dependent pathway. EXCLI JOURNAL 2020; 19:613-619. [PMID: 32483407 PMCID: PMC7257247 DOI: 10.17179/excli2020-1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
Cancer is a generic term for a large group of diseases characterized by the growth of abnormal cells, which is the second leading cause of death globally. To treat cancer, currently, a number of anticancer drugs belonging to various classes chemically are available. The discovery of artemisinin and its derivatives such as artesunate, arteether, and artemether became a milestone in the cure for malaria. Here, we report the anti-cancer property of anhydrodihydroartemisinin (ADHA) - a semisynthetic derivative of artemisinin against prostate cancer cell line PC-3. ADHA was found to be inhibiting growth of PC-3 cells. ADHA was also found to be inhibiting migration of PC-3 cells. At molecular level, ADHA was found to be inhibiting the expression of c-Jun, p-c-Jun, p-Akt and NF-κB and activated caspase 3 and 7. The results show that ADHA like few other artemisinin derivatives hold potential to be used as an anti-cancer agent against prostate cancer cells.
Collapse
Affiliation(s)
- Faiz Ahmad
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Amit Sarder
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Rajesh Gour
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab-160062, India
| | | | - Priya Arora
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab-160062, India
| | - Yuba Raj Pokharel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| |
Collapse
|
19
|
Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: Chronological advancements and future challenges. Med Res Rev 2020; 40:1220-1275. [PMID: 31930540 DOI: 10.1002/med.21657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
According to WHO World Malaria Report (2018), nearly 219 million new cases of malaria occurred and a total no. of 435 000 people died in 2017 due to this infectious disease. This is due to the rapid spread of parasite-resistant strains. Artemisinin (ART), a sesquiterpene lactone endoperoxide isolated from traditional Chinese herb Artemisia annua, has been recognized as a novel class of antimalarial drugs. The 2015 "Nobel Prize in Physiology or Medicine" was given to Prof Dr Tu Youyou for the discovery of ART. Hence, ART is termed as "Nobel medicine." The present review article accommodates insights from the chronological advancements and direct statistics witnessed during the past 48 years (1971-2019) in the medicinal chemistry of ART-derived antimalarial endoperoxides, and their clinical utility in malaria chemotherapy and drug discovery.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
20
|
Yang P, Lu M, Li K, Xie Y. Artemisinin‐derived dimers and their antimalarial activities. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Yang
- Hunan Province Key Laboratory for Antibody‐based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of Medicine Huaihua China
| | - MeiLong Lu
- Hunan Province Key Laboratory for Antibody‐based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of Medicine Huaihua China
| | - Ke Li
- Hunan Province Key Laboratory for Antibody‐based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of Medicine Huaihua China
| | - Yang Xie
- Department of Orthopedics, Xiangya HospitalCentral South University Changsha China
| |
Collapse
|
21
|
Zhang B. Artemisinin‐derived dimers as potential anticancer agents: Current developments, action mechanisms, and structure–activity relationships. Arch Pharm (Weinheim) 2019; 353:e1900240. [DOI: 10.1002/ardp.201900240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/26/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Bo Zhang
- School of Chemistry and Life ScienceAnshan Normal University Anshan Liaoning China
| |
Collapse
|
22
|
Vil’ VA, Terent’ev AO, Mulina OM. Bioactive Natural and Synthetic Peroxides for the Treatment of Helminth and Protozoan Pathogens: Synthesis and Properties. Curr Top Med Chem 2019; 19:1201-1225. [DOI: 10.2174/1568026619666190620143848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
The significant spread of helminth and protozoan infections, the uncontrolled intake of the
known drugs by a large population, the emergence of resistant forms of pathogens have prompted people
to search for alternative drugs. In this review, we have focused attention on structures and synthesis of
peroxides active against parasites causing neglected tropical diseases and toxoplasmosis. To date, promising
active natural, semi-synthetic and synthetic peroxides compounds have been found.
Collapse
Affiliation(s)
- Vera A. Vil’
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Alexander O. Terent’ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| |
Collapse
|
23
|
Artemisinin and its derivatives; ancient tradition inspiring the latest therapeutic approaches against malaria. Future Med Chem 2019; 11:1443-1459. [PMID: 31298579 DOI: 10.4155/fmc-2018-0337] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Artemisinin (ART) is an endoperoxide sesquiterpene lactone, commonly used in the treatment of malaria. Although it was isolated from Artemisia annua L., a plant widely applied in Chinese Traditional Medicine, its mechanism of action remains uncertain and its clinical use is still limited due to its low solubility, its poor bioavailability and short in vivo half-life. Over time, several studies have been aimed towards the discovery of potent ART derivatives that could overcome clinical drawbacks. In this review, we focus on the multifaced aspects of ART and on the efforts spent to improve its pharmacological profile that so far culminated in the discovery of more effective drugs. Lastly, we outline the new perspectives in the ART-derivatives scenario.
Collapse
|
24
|
Liu J, Ren Z, Fan L, Wei J, Tang X, Xu X, Yang D. Design, synthesis, biological evaluation, structure-activity relationship, and toxicity of clinafloxacin-azole conjugates as novel antitubercular agents. Bioorg Med Chem 2019; 27:175-187. [DOI: 10.1016/j.bmc.2018.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
|
25
|
Kumari A, Karnatak M, Singh D, Shankar R, Jat JL, Sharma S, Yadav D, Shrivastava R, Verma VP. Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem 2018; 163:804-829. [PMID: 30579122 DOI: 10.1016/j.ejmech.2018.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 11/17/2022]
Abstract
Human malaria, one of the most striking, reemerging infectious diseases, is caused by several types of Plasmodium parasites. Whilst advances have been made in lowering the numbers of cases and deaths, it is clear that a strategy based solely on disease control year on year, without reducing transmission and ultimately eradicating the parasite, is unsustainable. Natural products have served as a template for the design and development of antimalarial drugs currently in the clinic or in the development phase. Artemisinin combine potent, rapid antimalarial activity with a wide therapeutic index and an absence of clinically important resistance. The alkylating ability of artemisinin and its semi-synthetic analogues toward heme related to their antimalarial efficacy are underlined. Although impressive results have already been achieved in malaria research, more systematization and concentration of efforts are required if real breakthroughs are to be made. This review will concisely cover the clinical, preclinical antimalarial and current updates in artemisinin based antimalarial drugs. Diverse classes of semi-synthetic analogs of artemisinin reported in the last decade have also been extensively studied. The experience gained in this respect is discussed.
Collapse
Affiliation(s)
- Akriti Kumari
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Davinder Singh
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Ravi Shankar
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Jawahar L Jat
- Department of Applied Chemistry, BabaSaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar Raebareli Road, Lucknow, 226025, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Dinesh Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur, 303007, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India.
| |
Collapse
|
26
|
Zeng H, Yuan L, Huang J. Negative effects of artemisinin on phosphorus solubilizing bacteria in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:108-113. [PMID: 29665557 DOI: 10.1016/j.ecoenv.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The anti-malarial drug artemisinin is extracted from the leaves of Artemisia annua L. Due to toxicity to some microorganisms, the release of artemisinin from this medicinal plant in commercial cultivation might produce a potential risk for phosphorus (P) solubilizing bacteria (PSB). Therefore, the growth, P mobilization, and proton and organic acid efflux by two PSB isolates, Bacillus subtilis and Pseudomonas fluorescens, obtained from the soil without growing A. annua L. in history in the region for growing A. annua L., Chongqing, China, were studied through soil and solution incubations with different nominal concentrations of artemisinin (0, 2.5, 5.0, and 10.0 mg/kg or mg/L). Addition of artemisinin into soil and culture solutions decreased significantly the number of PSB except P. fluorescens at a low artemisinin concentration (2.5 mg/L) in culture solution which remained unchanged in comparison with the control (without artemisinin). This suggests high artemisinin inhibited the cell division or led to the death of PSB, and the different species responded differently to artemisinin. Compared with original soil, PSB inoculation significantly increased Olsen P, whilst the addition of artemisinin decreased this P form in soil. There was a positive correlation between the number of PSB and Olsen P content in soils (r2 = 0.824, n = 8), indicating the involvement of PSB in P mobilization of insoluble minerals. Oxalate and acetate were commonly found in the bacterial culture solutions, which accounted for 73.6-84.4% of all organic acids in the culture medium without artemisinin. Malate was detected in the culture solution of B. subtilis, and citrate and succinate in P. fluorescens. The percentage of tricalcium phosphate solubilization (PTPS) positively correlated to the concentrations of protons and all organic acids (r2proton=0.901, n=8, P<0.01; r2organic acids=0.923, n=8, P<0.01). The concentrations of protons, organic acids and soluble inorganic P in culture solutions, and PTPS were decreased simultaneously as nominal artemisinin concentrations increased. For these decreases it implies the metabolic inhibition and the death of PSB caused by artemisinin could be the main reasons for the less efflux of protons and organic acids, presumably resulting in the decreased ability of PSB to mobilize inorganic P. Therefore, artemisinin released from A. annua L. in commercial and continual cultivation could adversely affect the community structure and inorganic P mobilization of PSB in soils.
Collapse
Affiliation(s)
- Huiwen Zeng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ling Yuan
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jianguo Huang
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
27
|
Ismail M, Ling L, Du Y, Yao C, Li X. Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria. Biomaterials 2018; 163:76-87. [DOI: 10.1016/j.biomaterials.2018.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
|
28
|
Venkatraj M, Salado IG, Heeres J, Joossens J, Lewi PJ, Caljon G, Maes L, Van der Veken P, Augustyns K. Novel triazine dimers with potent antitrypanosomal activity. Eur J Med Chem 2018; 143:306-319. [DOI: 10.1016/j.ejmech.2017.11.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022]
|
29
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
30
|
Vil' VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO. Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions. Molecules 2017; 22:E1881. [PMID: 29099089 PMCID: PMC6150334 DOI: 10.3390/molecules22111881] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
The biological activity of organic peroxides is usually associated with the antimalarial properties of artemisinin and its derivatives. However, the analysis of published data indicates that organic peroxides exhibit a variety of biological activity, which is still being given insufficient attention. In the present review, we deal with natural, semi-synthetic and synthetic peroxides exhibiting anthelmintic, antiprotozoal, fungicidal, antiviral and other activities that have not been described in detail earlier. The review is mainly concerned with the development of methods for the synthesis of biologically active natural peroxides, as well as its isolation from natural sources and the modification of natural peroxides. In addition, much attention is paid to the substantially cheaper biologically active synthetic peroxides. The present review summarizes 217 publications mainly from 2000 onwards.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| |
Collapse
|
31
|
The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review. Med Chem Res 2017. [DOI: 10.1007/s00044-016-1778-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Abstract
Many natural products that consist of quinoline core are found to be bioactive and the versatility of quinoline and its derivatives have attracted great attention in the field of drug development. As a result, in recent years, many green and sustainable synthetic approaches for the synthesis of structurally diverse quinolines have been developed. This review covers four main aspects, namely bioactive quinoline alkaloids, the biological activity and mechanism of action of quinoline-based compounds as well as various quinoline syntheses.
Collapse
|
33
|
Fröhlich T, Çapcı Karagöz A, Reiter C, Tsogoeva SB. Artemisinin-Derived Dimers: Potent Antimalarial and Anticancer Agents. J Med Chem 2016; 59:7360-88. [PMID: 27010926 DOI: 10.1021/acs.jmedchem.5b01380] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of new efficient therapeutics for the treatment of malaria and cancer is an important endeavor. Over the past 15 years, much attention has been paid to the synthesis of dimeric structures, which combine two units of artemisinin, as lead compounds of interest. A wide variety of atemisinin-derived dimers containing different linkers demonstrate improved properties compared to their parent compounds (e.g., circumventing multidrug resistance), making the dimerization concept highly compelling for development of efficient antimalarial and anticancer drugs. The present Perspective highlights recent developments on different types of artemisinin-derived dimers and their structural and functional features. Particular emphasis is put on the respective in vitro and in vivo studies, exploring the role of the length and nature of linkers on the activities of the dimers, and considering the future prospects of the dimerization concept for drug discovery.
Collapse
Affiliation(s)
- Tony Fröhlich
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Aysun Çapcı Karagöz
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Christoph Reiter
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| |
Collapse
|
34
|
Binh LH, Van NTT, Kien VT, My NTT, Van Chinh L, Nga NT, Tien HX, Thao DT, Vu TK. Synthesis and in vitro cytotoxic evaluation of new triazole derivatives based on artemisinin via click chemistry. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1524-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Buragohain P, Surineni N, Barua NC, Bhuyan PD, Boruah P, Borah JC, Laisharm S, Moirangthem DS. Synthesis of a novel series of fluoroarene derivatives of artemisinin as potent antifungal and anticancer agent. Bioorg Med Chem Lett 2015; 25:3338-41. [DOI: 10.1016/j.bmcl.2015.05.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/12/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
|
36
|
Antimicrobial activity of artemisinin and precursor derived from in vitro plantlets of Artemisia annua L. BIOMED RESEARCH INTERNATIONAL 2014; 2014:215872. [PMID: 24575401 PMCID: PMC3915762 DOI: 10.1155/2014/215872] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/07/2013] [Accepted: 11/01/2013] [Indexed: 01/27/2023]
Abstract
Artemisia annua L., a medicinal herb, produces secondary metabolites with antimicrobial property. In Malaysia due to the tropical hot climate, A. annua could not be planted for production of artemisinin, the main bioactive compound. In this study, the leaves of three in vitro A. annua L. clones were, extracted and two bioactive compounds, artemisinin and a precursor, were isolated by thin layer chromatography. These compounds were found to be effective in inhibiting the growth of Gram-positive and Gram-negative bacteria but not Candida albicans. Their antimicrobial activity was similar to that of antibactericidal antibiotic streptomycin. They were found to inhibit the growth of the tested microbes at the minimum inhibition concentration of 0.09 mg/mL, and toxicity test using brine shrimp showed that even the low concentration of 0.09 mg/mL was very lethal towards the brine shrimps with 100% mortality rate. This study hence indicated that in vitro cultured plantlets of A. annua can be used as the alternative method for production of artemisinin and its precursor with antimicrobial activities.
Collapse
|
37
|
Synthesis of a novel series of highly functionalized Baylis–Hillman adducts of artemisinin with potent anticancer activity. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Antimalarial and anticancer activities of artemisinin–quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur J Pharm Sci 2012; 47:834-41. [DOI: 10.1016/j.ejps.2012.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/12/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022]
|
39
|
Thøfner ICN, Liebhart D, Hess M, Schou TW, Hess C, Ivarsen E, Fretté XC, Christensen LP, Grevsen K, Engberg RM, Christensen JP. Antihistomonal effects of artemisinin and Artemisia annua extracts in vitro could not be confirmed by in vivo experiments in turkeys and chickens. Avian Pathol 2012; 41:487-96. [PMID: 22978517 DOI: 10.1080/03079457.2012.714459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Five different Artemisia annua-derived materials (i.e. dry leaves, pure artemisinin, and hexane, dichloromethane or methanol extracts of leaves) were screened for their in vitro activities against six clonal cultures of Histomonas meleagridis. Except for the methanol extract, all tested materials displayed in vitro activity against all tested protozoal clones. Neither the dry plant material, extracts nor artemisinin showed any antibacterial activity against the xenic bacteria accompanying the six H. meleagridis clones at concentration levels identical to the antihistomonal setting. The dichloromethane extract of dry leaves (Ext-DCM) (minimal lethal concentration=1.0 mg/ml) and artemisinin (half-maximal inhibitory concentration=1.295 mg/ml) had the most promising antihistomonal properties and were therefore subsequently tested in a standardized experimental infection model in both turkeys and chickens infected with clonal H. meleagridis. There were no differences between treatment groups, where all infected turkeys showed severe clinical histomonosis and demonstrated severe typhlohepatitis typical for histomonosis. Consistent with the infection model used, the infected chickens did not show any adverse clinical signs but contracted severe lesions in their caeca 7 and 10 days post infection (d.p.i.), liver lesions were absent to mild after 7 d.p.i. and progressed to severe lesions at 10 d.p.i.; thus no differences between treatment groups were observed. In conclusion, neither artemisinin nor Ext-DCM was able to prevent experimental histomonosis in turkeys and chickens at the given concentrations, which is contrary to the antihistomonal effect noticed in vitro even though the same clonal culture was used. The results of this study therefore clearly demonstrate the importance of defined in vivo experimentation in order to assess and verify in vitro results.
Collapse
Affiliation(s)
- I C N Thøfner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Herath W, Khan SI, Khan IA. Microbial metabolism. Part 14. Isolation and bioactivity evaluation of microbial metabolites of resveratrol. Nat Prod Res 2012; 27:1437-44. [PMID: 22950854 DOI: 10.1080/14786419.2012.722089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The fungi, Beauveria bassiana (ATCC 13144) and Penicillium chrysogenium (ATCC 9480) transformed resveratrol to resveratrol-3-O-sulphate. The former, in addition, gave 5-methoxyresveratrol-3-O-β-glucoside with the latter yielding 5-methoxyresveratrol-3-O-sulphate. The structures were established by spectroscopic methods. Evaluation of biological activity of metabolites through a series of mammalian cell based assays indicated that resveratrol tends to lose its anti-inflammatory, cytotoxic and anti-oxidant activities with the substitution of its hydroxyl groups.
Collapse
Affiliation(s)
- Wimal Herath
- a National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi , University , MS 38677 , USA
| | | | | |
Collapse
|
41
|
Islamuddin M, Farooque A, Dwarakanath BS, Sahal D, Afrin F. Extracts of Artemisia annua leaves and seeds mediate programmed cell death in Leishmania donovani. J Med Microbiol 2012; 61:1709-1718. [PMID: 22956747 DOI: 10.1099/jmm.0.049387-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Leishmaniasis is one of the major tropical parasitic diseases, and the condition ranges in severity from self-healing cutaneous lesions to fatal visceral manifestations. There is no vaccine available against visceral leishmaniasis (VL) (also known as kala-azar in India), and current antileishmanial drugs face major drawbacks, including drug resistance, variable efficacy, toxicity and parenteral administration. We report here that n-hexane fractions of Artemisia annua leaves (AAL) and seeds (AAS) possess significant antileishmanial activity against Leishmania donovani promastigotes, with GI(50) of 14.4 and 14.6 µg ml(-1), respectively, and the IC(50) against intracellular amastigotes was found to be 6.6 and 5.05 µg ml(-1), respectively. Changes in the morphology of promastigotes and growth reversibility analysis following treatment confirmed the leishmanicidal effect of the active fractions, which presented no cytotoxic effect on mammalian cells. The antileishmanial activity was mediated via apoptosis, as evidenced by externalization of phosphatidylserine, in situ labelling of DNA fragments by terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) and cell-cycle arrest at the sub-G(0)/G(1) phase. High-performance thin-layer chromatography (HPTLC) fingerprinting showed that the content of artemisinin in crude bioactive extracts (~1.4 µg per 100 µg n-hexane fraction) was too low to account for the observed antileishmanial activity. Characterization of the active constituents by GC-MS showed that α-amyrinyl acetate, β-amyrine and derivatives of artemisinin were the major constituents in AAL and cetin, EINECS 211-126-2 and artemisinin derivatives in AAS. Our findings indicate the presence of antileishmanial compounds besides artemisinin in the n-hexane fractions of A. annua leaves and seeds.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Parasite Immunology Lab., Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Abdullah Farooque
- Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi 110 054, India
| | - B S Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi 110 054, India
| | - Dinkar Sahal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Farhat Afrin
- Parasite Immunology Lab., Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| |
Collapse
|
42
|
Development of artemisinin compounds for cancer treatment. Invest New Drugs 2012; 31:230-46. [DOI: 10.1007/s10637-012-9873-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022]
|
43
|
Slack RD, Jacobine AM, Posner GH. Antimalarial peroxides: advances in drug discovery and design. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00277a] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Lombard MC, N’Da DD, Breytenbach JC, Smith PJ, Lategan CA. Artemisinin–quinoline hybrid-dimers: Synthesis and in vitro antiplasmodial activity. Bioorg Med Chem Lett 2010; 20:6975-7. [DOI: 10.1016/j.bmcl.2010.09.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
|
45
|
Baldé ES, Megalizzi V, Traoré MS, Cos P, Maes L, Decaestecker C, Pieters L, Baldé AM. In vitro antiprotozoal, antimicrobial and antitumor activity of Pavetta crassipes K. Schum leaf extracts. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:529-535. [PMID: 20561931 DOI: 10.1016/j.jep.2010.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY To study the potential benefit of the traditional medicinal plant Pavetta crassipes K. Schum (Rubiaceae), which is widely distributed throughout West Africa, the methanol and dichloromethane extracts were isolated from the plant leaves to determine if they exhibited antiprotozoal, antibacterial, antifungal or antitumor activity in vitro. MATERIALS AND METHODS The methanol and dichloromethane extracts and their specific fractions were obtained using bioassay-guided fractionation and investigated for antiproliferative activity in vitro in microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans), protozoans (Trypanosoma cruzi, Trypanosoma brucei, Leishmania infantum and Plasmodium falciparum), and cancer (U373, PC3, MXT and A549) and normal cell lines (NHDF and MRC-5). RESULTS Most of the alkaloid fractions investigated exhibited antiproliferative activity in all the cancer cell lines, microorganisms and protozoans studied. CONCLUSIONS The benefit of Pavetta crassipes as a traditional medicinal remedy was confirmed using antiprotozoal and cytotoxicity assays in vitro. These analyses revealed that the components present in the alkaloid extract of Pavetta crassipes are responsible for its antiprotozoal and cytotoxic efficacy.
Collapse
Affiliation(s)
- Elhadj S Baldé
- Département de Pharmacie, Faculté de Médecine, Pharmacie et Odontostomatologie, Université de Conakry, Conakry, Guinea
| | | | | | | | | | | | | | | |
Collapse
|