1
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2025; 42:257-297. [PMID: 39911015 DOI: 10.1039/d4np00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Covering: January to the end of December 2023This review covers the literature published in 2023 for marine natural products (MNPs), with 582 citations (541 for the period January to December 2023) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1220 in 340 papers for 2023), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the progress in the study of prokaryote involvement in macro-invertebrate MNP production is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Patel S, Naik L, Rai A, Palit K, Kumar A, Das M, Nayak DK, Dandsena PK, Mishra A, Singh R, Dhiman R, Das S. Diversity of secondary metabolites from marine Streptomyces with potential anti-tubercular activity: a review. Arch Microbiol 2025; 207:64. [PMID: 39961874 DOI: 10.1007/s00203-024-04233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
The bacterial genus Streptomyces is known for the prolific production of secondary metabolites, which exhibit remarkable structural diversity and potent biological activities. Tuberculosis (TB) remains a formidable global health challenge exacerbated by the emergence of antimicrobial resistance (AMR), necessitating the discovery of novel therapeutic agents. The untapped potential of marine Streptomyces-derived secondary metabolites offers a promising avenue for screening anti-tubercular (anti-TB) compounds with unique chemical structures and potential bioactive properties. The review emphasizes the diverse marine habitats and Streptomyces with novel anti-TB bioactive metabolites. It discusses fermentation and bioprocessing strategies for screening anti-TB drugs. This review also covers the chemical diversity, potency, mechanism of action, and structures of about seventy anti-TB compounds discovered from marine Streptomyces. These compounds span various chemical classes, including quinones, macrolactams, macrolides, phenols, esters, anthracyclines, peptides, glycosides, alkaloids, piperidones, thiolopyrrolones, nucleosides, terpenes, flavonoids, polyketides, and actinomycins. It emphasizes the need to explore marine ecosystems to discover more novel anti-TB natural products.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ankita Rai
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
3
|
El-Seedi HR, Refaey MS, Elias N, El-Mallah MF, Albaqami FMK, Dergaa I, Du M, Salem MF, Tahir HE, Dagliaa M, Yosri N, Zhang H, El-Seedi AH, Guo Z, Khalifa SAM. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023). NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:13. [PMID: 39853457 PMCID: PMC11759743 DOI: 10.1007/s13659-024-00493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025]
Abstract
Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications, particularly in oncology. This review provides an updated overview of the significant advances made in the discovery and development of marine-derived anticancer drugs between 2019 and 2023. With a focus on recent research findings, the review explores the rich biodiversity of marine organisms, including sponges, corals, algae, and microorganisms, which have yielded numerous compounds exhibiting promising anticancer properties. Emphasizing the multifaceted mechanisms of action, the review discusses the molecular targets and pathways targeted by these compounds, such as cell cycle regulation, apoptosis induction, angiogenesis inhibition, and modulation of signaling pathways. Additionally, the review highlights the innovative strategies employed in the isolation, structural elucidation, and chemical modification of marine natural products to enhance their potency, selectivity, and pharmacological properties. Furthermore, it addresses the challenges and opportunities associated with the development of marine-derived anticancer drugs, including issues related to supply, sustainability, synthesis, and clinical translation. Finally, the review underscores the immense potential of marine natural products as a valuable reservoir of novel anticancer agents and advocates for continued exploration and exploitation of the marine environment to address the unmet medical needs in cancer therapy.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing, 210024, China.
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 31100107, Egypt.
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nizar Elias
- Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222, Dayr Atiyah, Syria
| | - Mohamed F El-Mallah
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 31100107, Egypt
| | - Faisal M K Albaqami
- Biology Department, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | | | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Mohamed F Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, P.O.Box:79, Sadat City, Egypt
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maria Dagliaa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Naples, NA, Italy
| | - Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Awg H El-Seedi
- International IT College of Sweden Stockholm, Arena Academy, Hälsobrunnsgatan 6, 11361, Stockholm, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden.
| |
Collapse
|
4
|
Ahmad M, Tahir M, Hong Z, Zia MA, Rafeeq H, Ahmad MS, Rehman SU, Sun J. Plant and marine-derived natural products: sustainable pathways for future drug discovery and therapeutic development. Front Pharmacol 2025; 15:1497668. [PMID: 39834812 PMCID: PMC11743463 DOI: 10.3389/fphar.2024.1497668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Plant- and marine-derived natural products are rich sources of bioactive compounds essential for drug discovery. These compounds contain complex mixtures of metabolites, which collectively contribute to their pharmacological properties. However, challenges arise in the isolation of individual bioactive compounds, owing to their intricate chemistry and low abundance in natural extracts. Despite these limitations, numerous plant and marine-derived compounds have achieved regulatory approval, particularly for treating cancer and infectious diseases. This review explores the therapeutic potential of plant and marine sources along with innovative extraction and isolation methods that support sustainable drug development. Future perspectives will highlight the role of responsible innovation, artificial intelligence, and machine learning in advancing drug discovery, underscoring the importance of continued research to meet global health needs.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Institute of Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maleha Tahir
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zibin Hong
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hamza Rafeeq
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shaheez Ahmad
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saif ur Rehman
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Ascer LG, Rozas E, Nascimento CAO, Mendes MA, Custódio MR. Putative signaling pathways for contraction and its recovery from DEHP arrest in Hymeniacidon heliophila. MARINE POLLUTION BULLETIN 2025; 210:117305. [PMID: 39602986 DOI: 10.1016/j.marpolbul.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
With sessile habits, sponges (phylum Porifera) are susceptible to marine pollution impacts and recently microplastics were identified as one source of contamination. Microplastics have a physical impact on filtration rates and plastics additives such as di(2-ethylhexyl)phthalate (DEHP), a ubiquitous marine contaminant, were already identified in their tissues indicating bioaccumulation. However, few studies assessed the impacts of such compounds in its physiology. One verified effect of phthalate exposure is the arrest of the contraction cycles observed in the sponge Hymeniacidon heliophila. In this work, proteomics of DEHP exposed organisms of this species was performed to identify modifications in signaling pathways that could lead to this arrest and recovery. The results indicate that exposed organisms had different expressed 5HT receptors, associated to intracellular calcium signaling, the principal pathway to contraction animals. The Myosin Light-Chain Kinase (MLCK) pathway is detected only in exposed organisms as well as components linked to binding of organic cyclic compounds. Results show that for healing from DEHP exposure, H. heliophila may activate an alternative contraction signaling pathway, the MLCK pathway. These coordinate mechanisms could restore contractions in H. heliophila after acute exposure to DEHP. SYNOPSIS: Research into the impact of microplastics on organisms uses animal models known to science such as mussels. In our work, we tested the effects of a plastic additive, DEHP, on the physiology of a much less studied marine organism: sponges.
Collapse
Affiliation(s)
- Liv G Ascer
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | - Enrique Rozas
- Dempster-Poli-USP, Chemical Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | - Claudio A O Nascimento
- Dempster-Poli-USP, Chemical Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | - Maria A Mendes
- Dempster-Poli-USP, Chemical Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | - Márcio R Custódio
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Quintana-Bulla JI, Tonon LAC, Michaliski LF, Hajdu E, Ferreira AG, Berlinck RGS. Testacosides A-D, glycoglycerolipids produced by Microbacterium testaceum isolated from Tedania brasiliensis. Appl Microbiol Biotechnol 2024; 108:112. [PMID: 38217254 PMCID: PMC10786734 DOI: 10.1007/s00253-023-12870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 01/15/2024]
Abstract
Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by 1H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.
Collapse
Affiliation(s)
- Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Luciane A C Tonon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Lamonielli F Michaliski
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal Do Rio de Janeiro, Quinta da Boa Vista, S/N, CEP , Rio de Janeiro, RJ, 20940-040, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP , São Carlos, SP, 13565-905, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Shaaban M, Ghani MA. Pyrane-based cembranoid and 2-dehydro-4-peroxy-sarcophine: two new diterpenes from Sarcophyton glaucum. Z NATURFORSCH C 2024; 79:81-87. [PMID: 38509702 DOI: 10.1515/znc-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Soft corals, particularly Sarcophyton sp. are rich in metabolites with variety of biological activities. In this study, a pyran-based 9-exo-methylene-10-hydroxy-sarcotrocheliol (1) and 2-dehydro-4-peroxy-sarcophine (2), two new cembranoide diterpenes, were isolated together with 9-hydroxy-10,11-dehydro-sarcotrocheliol, sarcotrocheliol, sarcotrocheliol acetate, sarcophine, (+)-7α,8β-dihydroxydeepoxysarcophine, (±)-sarcophytonine B, and peridinin from the organic extract of Sarcophyton glaucum collected at the coasts of Hurghada, Egypt. The structures of the new diterpenes 1-2 were identified based on cumulative analyses of HRESIMS and NMR (1D/2D NMR) spectra. The relative configurations of both compounds were verified by NOESY spectra and comparison with our recently reported analogues. The compounds showed no antimicrobial activity against a set of diverse tested microorganisms.
Collapse
Affiliation(s)
- Mohamed Shaaban
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Behoos St. 33 12622 Dokki-Cairo, Egypt
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | - Mohamed A Ghani
- Red Sea Marine Parks, PO Box 363, Red Sea, A.R, Hurghada, Egypt
| |
Collapse
|
8
|
Zhang H, Li X, Hui Z, Huang S, Cai M, Shi W, Lin Y, Shen J, Sui M, Lai Q, Shao Z, Dou J, Luo X, Ge Y, Tang X. A Semisynthesis Platform for the Efficient Production and Exploration of Didemnin-Based Drugs. Angew Chem Int Ed Engl 2024; 63:e202318784. [PMID: 38291557 DOI: 10.1002/anie.202318784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.
Collapse
Affiliation(s)
- Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xuyang Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Zhen Hui
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Shipeng Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518000, Shenzhen, China
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Wenguang Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yang Lin
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Jie Shen
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Minghao Sui
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Jie Dou
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yun Ge
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| |
Collapse
|
9
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
10
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Steven R, Humaira Z, Natanael Y, Dwivany FM, Trinugroho JP, Dwijayanti A, Kristianti T, Tallei TE, Emran TB, Jeon H, Alhumaydhi FA, Radjasa OK, Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Mar Drugs 2022; 20:352. [PMID: 35736155 PMCID: PMC9229179 DOI: 10.3390/md20060352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microbes in marine ecosystems are known to produce secondary metabolites. One of which are carotenoids, which have numerous industrial applications, hence their demand will continue to grow. This review highlights the recent research on natural carotenoids produced by marine microorganisms. We discuss the most recent screening approaches for discovering carotenoids, using in vitro methods such as culture-dependent and culture-independent screening, as well as in silico methods, using secondary metabolite Biosynthetic Gene Clusters (smBGCs), which involves the use of various rule-based and machine-learning-based bioinformatics tools. Following that, various carotenoids are addressed, along with their biological activities and metabolic processes involved in carotenoids biosynthesis. Finally, we cover the application of carotenoids in health and pharmaceutical industries, current carotenoids production system, and potential use of synthetic biology in carotenoids production.
Collapse
Affiliation(s)
- Ray Steven
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Zalfa Humaira
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Yosua Natanael
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Fenny M. Dwivany
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Joko P. Trinugroho
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK;
| | - Ari Dwijayanti
- CNRS@CREATE Ltd., 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore;
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Heewon Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ocky Karna Radjasa
- Oceanography Research Center, The Earth Sciences and Maritime Research Organization, National Research and Innovation Agency, North Jakarta 14430, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| |
Collapse
|
12
|
Tarazona G, Fernández R, Pérez M, Millán RE, Jiménez C, Rodríguez J, Cuevas C. Enigmazole C: A Cytotoxic Macrocyclic Lactone and Its Ring-Opened Derivatives from a New Species of Homophymia Sponge. JOURNAL OF NATURAL PRODUCTS 2022; 85:1059-1066. [PMID: 35234467 PMCID: PMC9040057 DOI: 10.1021/acs.jnatprod.1c01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/14/2023]
Abstract
A new macrolide, enigmazole C (1), and two additional analogues, enigmazoles E (2) and D (3), were obtained from a new species of the Homophymia genus as part of an ongoing discovery program at PharmaMar to study cytotoxic substances from marine sources. The structures were fully characterized by cumulative analyses of NMR, IR, and MS spectra, along with density functional theory computational calculations. All three of the new compounds feature an unusual 2,3-dihydro-4H-pyran-4-one moiety, but only enigmazoles C (1) and D (3) showed cytotoxic activity in the micromolar range against A-549 (lung), HT-29 (colon), MDA-MB-231 (breast), and PSN-1 (pancreas) tumor cells.
Collapse
Affiliation(s)
- Guillermo Tarazona
- R&D, PharmaMar, Avenida De los Reyes, 1, Pol. Ind. La Mina-Norte, 28770-Colmenar Viejo, Madrid, Spain
| | - Rogelio Fernández
- R&D, PharmaMar, Avenida De los Reyes, 1, Pol. Ind. La Mina-Norte, 28770-Colmenar Viejo, Madrid, Spain
| | - Marta Pérez
- R&D, PharmaMar, Avenida De los Reyes, 1, Pol. Ind. La Mina-Norte, 28770-Colmenar Viejo, Madrid, Spain
| | - Ramón E. Millán
- Departmento
de Química, Facultad de Ciencias and Centro de Investigacions
Científicas Avanzadas (CICA), Universidade
de A Coruña, 15071 A Coruña, Spain
| | - Carlos Jiménez
- Departmento
de Química, Facultad de Ciencias and Centro de Investigacions
Científicas Avanzadas (CICA), Universidade
de A Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- Departmento
de Química, Facultad de Ciencias and Centro de Investigacions
Científicas Avanzadas (CICA), Universidade
de A Coruña, 15071 A Coruña, Spain
| | - Carmen Cuevas
- R&D, PharmaMar, Avenida De los Reyes, 1, Pol. Ind. La Mina-Norte, 28770-Colmenar Viejo, Madrid, Spain
| |
Collapse
|
13
|
Zhang G, Pan X, Yang B, Li L, Liu Z. The Asymmetric Total Synthesis of (-)-Eurothiocin A and Its Enantiomer. JOURNAL OF NATURAL PRODUCTS 2022; 85:997-1005. [PMID: 35184555 DOI: 10.1021/acs.jnatprod.1c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The first asymmetric total synthesis of (-)-eurothiocin A was achieved in 14 linear steps with 2% overall yield from the commercially available materials. A Sharpless asymmetric dihydroxylation reaction was utilized as the key step to construct the stereogenic center. Additionally, (+)- and (±)-eurothiocin A were also synthesized.
Collapse
Affiliation(s)
- Guangyan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | - Xuan Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | - Beibei Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | - Zhanzhu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| |
Collapse
|
14
|
Dactylospongia elegans—A Promising Drug Source: Metabolites, Bioactivities, Biosynthesis, Synthesis, and Structural-Activity Relationship. Mar Drugs 2022; 20:md20040221. [PMID: 35447894 PMCID: PMC9033123 DOI: 10.3390/md20040221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Marine environment has been identified as a huge reservoir of novel biometabolites that are beneficial for medical treatments, as well as improving human health and well-being. Sponges have been highlighted as one of the most interesting phyla as new metabolites producers. Dactylospongia elegans Thiele (Thorectidae) is a wealth pool of various classes of sesquiterpenes, including hydroquinones, quinones, and tetronic acid derivatives. These metabolites possessed a wide array of potent bioactivities such as antitumor, cytotoxicity, antibacterial, and anti-inflammatory. In the current work, the reported metabolites from D. elegans have been reviewed, including their bioactivities, biosynthesis, and synthesis, as well as the structural-activity relationship studies. Reviewing the reported studies revealed that these metabolites could contribute to new drug discovery, however, further mechanistic and in vivo studies of these metabolites are needed.
Collapse
|
15
|
Anteneh YS, Yang Q, Brown MH, Franco CMM. Factors affecting the isolation and diversity of marine sponge-associated bacteria. Appl Microbiol Biotechnol 2022; 106:1729-1744. [PMID: 35103809 PMCID: PMC8882111 DOI: 10.1007/s00253-022-11791-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Marine sponges are an ideal source for isolating as yet undiscovered microorganisms with some sponges having about 50% of their biomass composed of microbial symbionts. This study used a variety of approaches to investigate the culturable diversity of the sponge-associated bacterial community from samples collected from the South Australian marine environment. Twelve sponge samples were selected from two sites and their bacterial population cultivated using seven different agar media at two temperatures and three oxygen levels over 3 months. These isolates were identified using microscopic, macroscopic, and 16S rRNA gene analysis. A total of 1234 bacterial colonies were isolated which consisted of four phyla: Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes, containing 21 genera. The diversity of the bacterial population was demonstrated to be influenced by the type of isolation medium, length of the incubation period and temperature, sponge type, and oxygen level. The findings of this study showed that marine sponges of South Australia can yield considerable bacterial culturable diversity if a comprehensive isolation strategy is implemented. Two sponges, with the highest and the lowest diversity of culturable isolates, were examined using next-generation sequencing to better profile the bacterial population. A marked difference in terms of phyla and genera was observed using culture-based and culture-independent approaches. This observed variation displays the importance of utilizing both methods to reflect a more complete picture of the microbial population of marine sponges. KEY POINTS: Improved bacterial diversity due to long incubations, 2 temperatures, and 3 oxygen levels. Isolates identified by morphology, restriction digests, and 16S rRNA gene sequencing. At least 70% of culturable genera were not revealed by NGS methods.
Collapse
Affiliation(s)
- Yitayal S Anteneh
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
- Department of Medical Microbiology, College of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Qi Yang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Christopher M M Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
16
|
Sánchez-Suárez J, Garnica-Agudelo M, Villamil L, Díaz L, Coy-Barrera E. Bioactivity and Biotechnological Overview of Naturally Occurring Compounds from the Dinoflagellate Family Symbiodiniaceae: A Systematic Review. ScientificWorldJournal 2021; 2021:1983589. [PMID: 34955690 PMCID: PMC8709762 DOI: 10.1155/2021/1983589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Marine invertebrates are a significant source of biologically active compounds. Recent studies have highlighted the role of microbiota associated with marine invertebrates in the production of bioactive compounds. Corals and sponges are the main marine invertebrates producing bioactive substances, and Symbiodiniaceae dinoflagellates are well-recognized endosymbionts with corals and sponges playing vital functions. The biological properties of Symbiodiniaceae-derived compounds have garnered attention in the past decades owing to their ecological implications and potentiality for bioprospecting initiatives. This study aims to systematically review studies on bioactivities and potential biotechnological applications of Symbiodiniaceae-derived compounds. The PRISMA guidelines were followed. Our study showed that anti-inflammatory and vasoconstrictive activities of Symbiodiniaceae-derived compounds have been the most investigated. However, very few studies have been published, with in vitro culturing of Symbiodiniaceae being the most significant challenge. Therefore, we surveyed for the metabolites reported so far, analyzed their chemodiversity, and discussed approaches to overcome culturing-related limitations.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Mariana Garnica-Agudelo
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Luisa Villamil
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Luis Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá, Colombia
| |
Collapse
|
17
|
Sánchez-Suárez J, Villamil L, Coy-Barrera E, Díaz L. Cliona varians-Derived Actinomycetes as Bioresources of Photoprotection-Related Bioactive End-Products. Mar Drugs 2021; 19:674. [PMID: 34940673 PMCID: PMC8707384 DOI: 10.3390/md19120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Sunscreen and sunblock are crucial skincare products to prevent photoaging and photocarcinogenesis through the addition of chemical filters to absorb or block ultraviolet (UV) radiation. However, several sunscreen and sunblock ingredients, mostly UV filters, have been associated with human and environmental safety concerns. Therefore, the exploration and discovery of promising novel sources of efficient and safer compounds with photoprotection-related activities are currently required. Marine invertebrates, particularly their associated microbiota, are promising providers of specialized metabolites with valuable biotechnological applications. Nevertheless, despite Actinobacteria members being a well-known source of bioactive metabolites, their photoprotective potential has been poorly explored so far. Hence, a set of methanolic extracts obtained from Cliona varians-derived actinomycetes was screened regarding their antioxidant and UV-absorbing capacities (i.e., photoprotection-related activities). The active extract-producing strains were identified and classified within genera Streptomyces, Micrococcus, Gordonia, and Promicromonospora. This is the first report of the isolation of these microorganisms from C. varians (an ecologically important Caribbean coral reef-boring sponge). The in vitro cytotoxicity on dermal fibroblasts of oxybenzone and the selected active extracts revealed that oxybenzone exerted a cytotoxic effect, whereas no cytotoxic effect of test extracts was observed. Accordingly, the most active (SPFi > 5, radical scavenging > 50%) and nontoxic (cell viability > 75%) extracts were obtained from Streptomyces strains. Finally, LC-MS-based characterization suggested a broad chemical space within the test strains and agreed with the reported streptomycetes' chemodiversity. The respective metabolite profiling exposed a strain-specific metabolite occurrence, leading to the recognition of potential hits. These findings suggest that marine Streptomyces produce photoprotectants ought to be further explored in skincare applications.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Luisa Villamil
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Luis Díaz
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| |
Collapse
|
18
|
Nurrachma MY, Sakaraga D, Nugraha AY, Rahmawati SI, Bayu A, Sukmarini L, Atikana A, Prasetyoputri A, Izzati F, Warsito MF, Putra MY. Cembranoids of Soft Corals: Recent Updates and Their Biological Activities. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:243-306. [PMID: 33890249 PMCID: PMC8141092 DOI: 10.1007/s13659-021-00303-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 05/31/2023]
Abstract
Soft corals are well-known as excellent sources of marine-derived natural products. Among them, members of the genera Sarcophyton, Sinularia, and Lobophytum are especially attractive targets for marine natural product research. In this review, we reported the marine-derived natural products called cembranoids isolated from soft corals, including the genera Sarcophyton, Sinularia, and Lobophytum. Here, we reviewed 72 reports published between 2016 and 2020, comprising 360 compounds, of which 260 are new compounds and 100 are previously known compounds with newly recognized activities. The novelty of the organic molecules and their relevant biological activities, delivered by the year of publication, are presented. Among the genera presented in this report, Sarcophyton spp. produce the most cembranoid diterpenes; thus, they are considered as the most important soft corals for marine natural product research. Cembranoids display diverse biological activities, including anti-cancer, anti-bacterial, and anti-inflammatory. As cembranoids have been credited with a broad range of biological activities, they present a huge potential for the development of various drugs with potential health and ecological benefits.
Collapse
Affiliation(s)
- Marsya Yonna Nurrachma
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Deamon Sakaraga
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Ahmad Yogi Nugraha
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Siti Irma Rahmawati
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Asep Bayu
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia.
| | - Linda Sukmarini
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Akhirta Atikana
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Anggia Prasetyoputri
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Fauzia Izzati
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Mega Ferdina Warsito
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java, Indonesia.
| |
Collapse
|
19
|
Li F, Kelly M, Tasdemir D. Chemistry, Chemotaxonomy and Biological Activity of the Latrunculid Sponges (Order Poecilosclerida, Family Latrunculiidae). Mar Drugs 2021; 19:27. [PMID: 33435402 PMCID: PMC7827931 DOI: 10.3390/md19010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Marine sponges are exceptionally prolific sources of natural products for the discovery and development of new drugs. Until now, sponges have contributed around 30% of all natural metabolites isolated from the marine environment. Family Latrunculiidae Topsent, 1922 (class Demospongiae Sollas, 1885, order Poecilosclerida Topsent, 1928) is a small sponge family comprising seven genera. Latrunculid sponges are recognized as the major reservoirs of diverse types of pyrroloiminoquinone-type alkaloids, with a myriad of biological activities, in particular, cytotoxicity, fuelling their exploration for anticancer drug discovery. Almost 100 pyrroloiminoquinone alkaloids and their structurally related compounds have been reported from the family Latrunculiidae. The systematics of latrunculid sponges has had a complex history, however it is now well understood. The pyrroloiminoquinone alkaloids have provided important chemotaxonomic characters for this sponge family. Latrunculid sponges have been reported to contain other types of metabolites, such as peptides (callipeltins), norditerpenes and norsesterpenes (trunculins) and macrolides (latrunculins), however, the sponges containing latrunculins and trunculins have been transferred to other sponge families. This review highlights a comprehensive literature survey spanning from the first chemical investigation of a New Zealand Latrunculia sp. in 1986 until August 2020, focusing on the chemical diversity and biological activities of secondary metabolites reported from the family Latrunculiidae. The biosynthetic (microbial) origin and the taxonomic significance of pyrroloiminoquinone related alkaloids are also discussed.
Collapse
Affiliation(s)
- Fengjie Li
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany;
| | - Michelle Kelly
- Coast and Oceans National Centre, National Institute of Water and Atmospheric Research (NIWA) Ltd., P.O. Box 109-695, Newmarket, Auckland 1149, New Zealand;
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany;
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
20
|
Fuwa H. Structure determination, correction, and disproof of marine macrolide natural products by chemical synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00481f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Integration of chemical synthesis, NMR spectroscopy, and various analytical means is key to success in the structure elucidation of stereochemically complex marine macrolide natural products.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| |
Collapse
|
21
|
Shreadah MA, El Moneam NM, El-Assar SA, Nabil-Adam A. Metabolomics and Pharmacological Screening of Aspergillus versicolor Isolated from Hyrtios erectus Red Sea Sponge; Egypt. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1573407215666191111122711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Aspergillus Versicolor is a marine-derived fungus isolated from Hyrtios Erectus
Red Sea sponge.
Methods:
The aim of this study was to carry out a pharmacological screening and investigation for the
in vitro biological activity (antioxidant, cholinergic, antidiabetic and anticancer) of Aspergillus Versicolor
crude extract’s active compounds by using different qualitative and quantitative methods.
Results:
The present study results showed that Aspergillus Versicolor crude extracts contain 0.6 mg
total phenolic/mg crude extract. Aspergillus Versicolor also showed a potent antioxidative capacity by
decreasing the oxidation of ABTS. The anticancer and inhibitory effects of Aspergillus Versicolor crude
extracts on PTK and SHKI were found to be 75.29 % and 80.76%; respectively. The AChE inhibitory
assay revealed that Aspergillus Versicolor extracts had an inhibitory percentage of 86.67%. Furthermore,
the anti-inflammatory activity using COX1, COX2, TNF, and IL6 was 77.32, 85.21 %, 59.83%,
and 56.15%; respectively. Additionally, the anti-viral effect using reverse transcriptase enzyme showed
high antiviral activity with 92.10 %.
Conclusion:
The current study confirmed that the Aspergillus versicolor crude extract and its active
constituents showed strong effects on diminishing the oxidative stress, neurodegenerative damage, antiinflammatory,
anti-cancer and anti-viral, suggesting their beneficial role as a promising fermented product
in the treatment of cancer, oxidative stress, Alzheimer's, anti-inflammatory and anti-viral diseases.
Collapse
Affiliation(s)
- Mohamed A. Shreadah
- Marine Biotechnology and Natural products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| | - Nehad M.A. El Moneam
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samy A. El-Assar
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
22
|
Ciavatta ML, Lefranc F, Vieira LM, Kiss R, Carbone M, van Otterlo WAL, Lopanik NB, Waeschenbach A. The Phylum Bryozoa: From Biology to Biomedical Potential. Mar Drugs 2020; 18:E200. [PMID: 32283669 PMCID: PMC7230173 DOI: 10.3390/md18040200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Less than one percent of marine natural products characterized since 1963 have been obtained from the phylum Bryozoa which, therefore, still represents a huge reservoir for the discovery of bioactive metabolites with its ~6000 described species. The current review is designed to highlight how bryozoans use sophisticated chemical defenses against their numerous predators and competitors, and which can be harbored for medicinal uses. This review collates all currently available chemoecological data about bryozoans and lists potential applications/benefits for human health. The core of the current review relates to the potential of bryozoan metabolites in human diseases with particular attention to viral, brain, and parasitic diseases. It additionally weighs the pros and cons of total syntheses of some bryozoan metabolites versus the synthesis of non-natural analogues, and explores the hopes put into the development of biotechnological approaches to provide sustainable amounts of bryozoan metabolites without harming the natural environment.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Leandro M. Vieira
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil;
| | - Robert Kiss
- Retired – formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS), 1000 Brussels, Belgium;
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | |
Collapse
|
23
|
From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules 2020; 10:biom10020248. [PMID: 32041255 PMCID: PMC7072248 DOI: 10.3390/biom10020248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.
Collapse
|
24
|
Kristiana R, Bedoux G, Pals G, Mudianta IW, Taupin L, Marty C, Asagabaldan MA, Ayuningrum D, Trianto A, Bourgougnon N, Radjasa OK, Sabdono A, Hanafi M. Bioactivity of compounds secreted by symbiont bacteria of Nudibranchs from Indonesia. PeerJ 2020; 8:e8093. [PMID: 31915568 PMCID: PMC6942679 DOI: 10.7717/peerj.8093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023] Open
Abstract
The aims of this work are to isolate bacterial symbionts from nudibranchs and subsequently to determine anti-Methicillin resistant Staphylococcus aureus (MRSA), cytotoxicity and anti-Herpes simplex virus type 1 (HSV-1) activities of bio compounds. A total of 15 species of nudibranchs were collected from Karimunjawa and five species from Bali, respectively. A total of 245 bacteria isolates were obtained. The anti-MRSA activity screening activity indicated two active bacteria. Ethyl acetate extracts from supernatants, indicating extracelullar compounds, showed an inhibition zone against MRSA at concentrations of 500–1,000 µg/ml. DNA sequence analysis showed that the strain KJB-07 from Phyllidia coelestis was closely related to Pseudoalteromonas rubra, whereas the strain NP31-01 isolated from Phyllidia varicosa was closely related to Virgibacillus salarius. The extract of Pseudoalteromonas rubra was cytotoxic to Vero cells at a concentration of 75 µg/ml. The extract of V. salarius presented no cytotoxicity at concentrations of 5–1,000 µg/ml. No anti HSV-1 was observed for both isolated bacteria. This is the first study describing research on anti-MRSA, cytotoxicity and anti HSV-1 activity of bacterial symbionts from the viscera of nudibranch. Compounds produced by Pseudoalteromonas rubra and V. salarius, had potential anti-MRSA activity. However, only extracts from Pseudoalteromonas rubra showed cytotoxic effects on Vero cells. Three compounds were identified by LC/MS after purification from culture supernatant.
Collapse
Affiliation(s)
- Rhesi Kristiana
- Department of Coastal Resources Management, Universities Diponegoro, Semarang, Central Java, Indonesia
| | - Gilles Bedoux
- Laboratory of Marine Biotechnology and Chemistry, Université de Bretagne Sud, Vannes, Bretagne, France
| | - Gerard Pals
- Center for Connective Tissue research, VU University medical center, Amsterdam, The Netherlands
| | - I Wayan Mudianta
- Chemical Analysis Study Program, Universitas Pendidikan Ganesha, Singaraja, Bali, Indonesia
| | - Laure Taupin
- Laboratory of Marine Biotechnology and Chemistry, Université de Bretagne Sud, Vannes, Bretagne, France
| | - Christel Marty
- Laboratory of Marine Biotechnology and Chemistry, Université de Bretagne Sud, Vannes, Bretagne, France
| | | | - Diah Ayuningrum
- Department of Coastal Resources Management, Universities Diponegoro, Semarang, Central Java, Indonesia.,Department of Aquatic Resource Management, Diponegoro University, Semarang, Central Java, Indonesia
| | - Agus Trianto
- Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universities Diponegoro, Semarang, Central Java, Indonesia
| | - Nathalie Bourgougnon
- Laboratory of Marine Biotechnology and Chemistry, Université de Bretagne Sud, Vannes, Bretagne, France
| | - Ocky Karna Radjasa
- Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universities Diponegoro, Semarang, Central Java, Indonesia
| | - Agus Sabdono
- Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universities Diponegoro, Semarang, Central Java, Indonesia
| | - Muhammad Hanafi
- Research Center for Chemistry, Indonesian Institute of Sciences., Tangerang Selatan, Banten, Indonesia.,Faculty of Pharmacy, Pancasila University, Srengseng Sawah Jakarta Selatan, Indonesia
| |
Collapse
|
25
|
Mhuantong W, Nuryadi H, Trianto A, Sabdono A, Tangphatsornruang S, Eurwilaichitr L, Kanokratana P, Champreda V. Comparative analysis of bacterial communities associated with healthy and diseased corals in the Indonesian sea. PeerJ 2019; 7:e8137. [PMID: 31875145 PMCID: PMC6925950 DOI: 10.7717/peerj.8137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/01/2019] [Indexed: 01/22/2023] Open
Abstract
Coral reef ecosystems are impacted by climate change and human activities, such as increasing coastal development, overfishing, sewage and other pollutant discharge, and consequent eutrophication, which triggers increasing incidents of diseases and deterioration of corals worldwide. In this study, bacterial communities associated with four species of corals: Acropora aspera, Acropora formosa, Cyphastrea sp., and Isopora sp. in the healthy and disease stages with different diseases were compared using tagged 16S rRNA sequencing. In total, 59 bacterial phyla, 190 orders, and 307 genera were assigned in coral metagenomes where Proteobacteria and Firmicutes were pre-dominated followed by Bacteroidetes together with Actinobacteria, Fusobacteria, and Lentisphaerae as minor taxa. Principal Coordinates Analysis (PCoA) showed separated clustering of bacterial diversity in healthy and infected groups for individual coral species. Fusibacter was found as the major bacterial genus across all corals. The lower number of Fusibacter was found in A. aspera infected with white band disease and Isopora sp. with white plaque disease, but marked increases of Vibrio and Acrobacter, respectively, were observed. This was in contrast to A. formosa infected by a black band and Cyphastrea sp. infected by yellow blotch diseases which showed an increasing abundance of Fusibacter but a decrease in WH1-8 bacteria. Overall, infection was shown to result in disturbance in the complexity and structure of the associated bacterial microbiomes which can be relevant to the pathogenicity of the microbes associated with infected corals.
Collapse
Affiliation(s)
- Wuttichai Mhuantong
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Handung Nuryadi
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Agus Trianto
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | | | - Lily Eurwilaichitr
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Pattanop Kanokratana
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Verawat Champreda
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| |
Collapse
|
26
|
A Natural Quinazoline Derivative from Marine Sponge Hyrtios erectus Induces Apoptosis of Breast Cancer Cells via ROS Production and Intrinsic or Extrinsic Apoptosis Pathways. Mar Drugs 2019; 17:md17120658. [PMID: 31771152 PMCID: PMC6950652 DOI: 10.3390/md17120658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Here, we report the therapeutic potential of a natural quinazoline derivative (2-chloro-6-phenyl-8H-quinazolino[4,3-b]quinazolin-8-one) isolated from marine sponge Hyrtios erectus against human breast cancer. The cytotoxicity of the compound was investigated on a human breast carcinoma cell line (MCF-7). Antiproliferative activity of the compound was estimated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MTT assay showed significant inhibition of MCF-7 cells viability with the IC50 value of 13.04 ± 1.03 µg/mL after 48 h. The compound induced down-regulation of anti-apoptotic Bcl-2 protein and increase in the pro-apoptotic Bax/Bcl-2 ratio in MCF-7 cells. The compound activated the expression of Caspases-9 and stimulated downstream signal transducer Caspase-7. In addition, Caspase-8 showed remarkable up-regulation in MCF-7 cells treated with the compound. Moreover, the compound was found to promote oxidative stress in MCF-7 cells that led to cell death. In conclusion, the compound could induce apoptosis of breast carcinoma cells via a mechanism that involves ROS production and either extrinsic or intrinsic apoptosis pathways. The systemic toxic potential of the compound was evaluated in an in vivo mouse model, and it was found non-toxic to the major organs.
Collapse
|
27
|
Xie CL, Chen R, Yang S, Xia JM, Zhang GY, Chen CH, Zhang Y, Yang XW. Nesteretal A, A Novel Class of Cage-Like Polyketide from Marine-Derived Actinomycete Nesterenkonia halobia. Org Lett 2019; 21:8174-8177. [DOI: 10.1021/acs.orglett.9b02634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Renzhi Chen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sihan Yang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin-Mei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Gai-Yun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Chao-Hong Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian 361005, China
| |
Collapse
|
28
|
Sakamoto K, Hakamata A, Iwasaki A, Suenaga K, Tsuda M, Fuwa H. Total Synthesis, Stereochemical Revision, and Biological Assessment of Iriomoteolide-2a. Chemistry 2019; 25:8528-8542. [PMID: 30882926 DOI: 10.1002/chem.201900813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Indexed: 01/14/2023]
Abstract
Iriomoteolide-2a is a marine macrolide metabolite isolated from a cultured broth of the benthic dinoflagellate Amphidinium sp. HYA024 strain. This naturally occurring substance was reported to show remarkable cytotoxic activity against human cancer cell lines HeLa and DG-75 and in vivo antitumor activity against murine leukemia P388 cell line. Herein, the total synthesis, stereochemical revision, and biological assessment of iriomoteolide-2a are reported in detail. Total synthesis of the proposed structure 1 of iriomoteolide-2a featured a late-stage convergent assembly of three components by a Suzuki-Miyaura coupling, an esterification, and a ring-closing metathesis. However, the NMR data of synthetic 1 were not identical to those of the natural product. Careful analysis of the NMR data of the authentic material and synthesis/NMR analysis of appropriately designed model compounds led to consideration of four possible stereoisomers 2-5 as candidates for the correct structure. Accordingly, total syntheses of 2-5 were achieved by taking advantage of the convergent strategy, and comparison of the NMR spectra of synthetic 2-5 with those of the natural product led to the conclusion that 5 shows the correct relative configuration of iriomoteolide-2a. The absolute configuration of this natural product was finally established through chiral HPLC analysis of synthetic 5/ent-5 with the authentic sample. The antiproliferative activity of the synthetic compounds was assessed against HeLa and A549 cells to show that, in contrast to expectation, synthetic 5 and ent-5 were only marginally active in these cell lines. This work clearly underscores the vital role of total synthesis in the establishment of the structure and biological activity of natural products.
Collapse
Affiliation(s)
- Keita Sakamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Akihiro Hakamata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Masashi Tsuda
- Center for Advanced Marine Core Research and Department of, Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
29
|
Gabbai-Armelin PR, Kido HW, Cruz MA, Prado JPS, Avanzi IR, Custódio MR, Renno ACM, Granito RN. Characterization and Cytotoxicity Evaluation of a Marine Sponge Biosilica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:65-75. [PMID: 30443837 DOI: 10.1007/s10126-018-9858-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/22/2018] [Indexed: 05/27/2023]
Abstract
Bone fractures characterize an important event in the medical healthcare, being related to traumas, aging, and diseases. In critical conditions, such as extensive bone loss and osteoporosis, the tissue restoration may be compromised and culminate in a non-union consolidation. In this context, the osteogenic properties of biomaterials with a natural origin have gained prominence. Particularly, marine sponges are promising organisms that can be exploited as biomaterials for bone grafts. Thus, the objectives of this study were to study the physicochemical and morphological properties of biosilica (BS) from sponges by using scanning electron microscopy, Fourier-transform infrared, X-ray diffraction (SEM, FTIR and XRD respectively), mineralization, and pH. In addition, tests on an osteoblast precursor cell line (MC3T3-E1) were performed to investigate its cytotoxicity and proliferation in presence of BS. Bioglass (BG) was used as gold standard material for comparison purposes. Sponge BS was obtained, and this fact was proven by SEM, FTIR, and XRD analysis. Calcium assay showed a progressive release of this ion from day 7 and a more balanced pH for BS was maintained compared to BG. Cytotoxicity assay indicated that BS had a positive influence on MC3T3-E1 cells viability and qRT-PCR showed that this material stimulated Runx2 and BMP4 gene expressions. Taken together, the results indicate a potential use of sponge biosilica for tissue engineering applications.
Collapse
Affiliation(s)
- P R Gabbai-Armelin
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, 136, Santos, SP, 11015-020, Brazil.
| | - H W Kido
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - M A Cruz
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - J P S Prado
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - I R Avanzi
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - M R Custódio
- Laboratory of Marine Invertebrates Cell Biology, Institute of Biosciences, University of São Paulo (USP), Rua do Matão, 101, São Paulo, SP, 05508-900, Brazil
| | - A C M Renno
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - R N Granito
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| |
Collapse
|
30
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Suo R, Takada K, Irie R, Watanabe R, Suzuki T, Ise Y, Ohtsuka S, Okada S, Matsunaga S. Poecillastrin H, a Chondropsin-Type Macrolide with a Conjugated Pentaene Moiety, from a Characella sp. Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2018; 81:1295-1299. [PMID: 29701963 DOI: 10.1021/acs.jnatprod.8b00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poecillastrin H (1), a chondropsin-type macrolide with a conjugated pentaene moiety, was isolated from the Characella sp. marine sponge. The planar structure of 1 was elucidated by analysis of spectroscopic data. The absolute configuration of the β-hydroxyaspartic acid residue (β-OHAsp) was determined to be d- threo by Marfey's analysis, and the mode of lactone ring formation through the OHAsp residue was determined by chemical degradation. Poecillastrin H was extremely sensitive toward light and showed potent cytotoxic activity against 3Y1 cells with an IC50 value of 4.1 nM.
Collapse
Affiliation(s)
- Rei Suo
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Kentaro Takada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Raku Irie
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Ryuichi Watanabe
- National Research Institute of Fisheries Science , 2-12-4 Fukuura , Kanazawa, Yokohama 236-8648 , Japan
| | - Toshiyuki Suzuki
- National Research Institute of Fisheries Science , 2-12-4 Fukuura , Kanazawa, Yokohama 236-8648 , Japan
| | - Yuji Ise
- Sugashima Marine Biological Laboratory, Graduate School of Science , Nagoya University , Toba , Mie 517-0004 , Japan
| | - Susumu Ohtsuka
- Takehara Marine Science Station , Hiroshima University , Takehara, Hiroshima 725-0024 , Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| |
Collapse
|
32
|
How to Succeed in Marketing Marine Natural Products for Nutraceutical, Pharmaceutical and Cosmeceutical Markets. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Taxonomic and Metabolite Diversity of Actinomycetes Associated with Three Australian Ascidians. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Lindequist U. Marine-Derived Pharmaceuticals - Challenges and Opportunities. Biomol Ther (Seoul) 2016; 24:561-571. [PMID: 27795450 PMCID: PMC5098534 DOI: 10.4062/biomolther.2016.181] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/23/2023] Open
Abstract
Marine biosphere is the largest one of the earth and harbors an enormous number of different organisms. Living conditions differ fundamentally from those in terrestrial environment. The production of specific secondary metabolites is an important adaption mechanism of marine organisms to survive in the sea. These metabolites possess biological activities which make them interesting as possible drugs for human. The review presents sources, chemistry, production and pharmacology of FDA approved marine derived pharmaceuticals arranged according to their therapeutic indication. Four of the presently seven approved drugs are used for the treatment of cancer. Each another one is applicated for treatment of viral diseases, chronic pain and to lower triglyceride level in blood. Some other products are of interest in diagnostic and as experimental tools. Besides, this article describes challenges in drug development from marine sources, especially the supply problem.
Collapse
Affiliation(s)
- Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald, Greifswald D17489, Germany
| |
Collapse
|
35
|
Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems. WATER 2016. [DOI: 10.3390/w8090369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Gomes NGM, Dasari R, Chandra S, Kiss R, Kornienko A. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem". Mar Drugs 2016; 14:E98. [PMID: 27213412 PMCID: PMC4882572 DOI: 10.3390/md14050098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal.
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Sunena Chandra
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
37
|
Abstract
Disease ailments are changing the patterns, and the new diseases are emerging due to changing environments. The enormous growth of world population has overburdened the existing resources for the drugs. And hence, the drug manufacturers are always on the lookout for new resources to develop effective and safe drugs for the increasing demands of the world population. Seventy-five percentage of earth's surface is covered by water but research into the pharmacology of marine organisms is limited, and most of it still remains unexplored. Marine environment represents countless and diverse resource for new drugs to combat major diseases such as cancer or malaria. It also offers an ecological resource comprising a variety of aquatic plants and animals. These aquatic organisms are screened for antibacterial, immunomodulator, anti-fungal, anti-inflammatory, anticancer, antimicrobial, neuroprotective, analgesic, and antimalarial properties. They are used for new drug developments extensively across the world. Marine pharmacology offers the scope for research on these drugs of marine origin. Few institutes in India offer such opportunities which can help us in the quest for new drugs. This is an extensive review of the drugs developed and the potential new drug candidates from marine origin along with the opportunities for research on marine derived products. It also gives the information about the institutes in India which offer marine pharmacology related courses.
Collapse
Affiliation(s)
- Harshad Malve
- Lead Medical, Asia Pacific Region, Ferring Pharmaceuticals Pvt. Ltd., Elphinstone (West), Mumbai, India
| |
Collapse
|
38
|
Goodheart JA, Bazinet AL, Collins AG, Cummings MP. Relationships within Cladobranchia (Gastropoda: Nudibranchia) based on RNA-Seq data: an initial investigation. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150196. [PMID: 26473045 PMCID: PMC4593679 DOI: 10.1098/rsos.150196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/26/2015] [Indexed: 05/28/2023]
Abstract
Cladobranchia (Gastropoda: Nudibranchia) is a diverse (approx. 1000 species) but understudied group of sea slug molluscs. In order to fully comprehend the diversity of nudibranchs and the evolution of character traits within Cladobranchia, a solid understanding of evolutionary relationships is necessary. To date, only two direct attempts have been made to understand the evolutionary relationships within Cladobranchia, neither of which resulted in well-supported phylogenetic hypotheses. In addition to these studies, several others have addressed some of the relationships within this clade while investigating the evolutionary history of more inclusive groups (Nudibranchia and Euthyneura). However, all of the resulting phylogenetic hypotheses contain conflicting topologies within Cladobranchia. In this study, we address some of these long-standing issues regarding the evolutionary history of Cladobranchia using RNA-Seq data (transcriptomes). We sequenced 16 transcriptomes and combined these with four transcriptomes from the NCBI Sequence Read Archive. Transcript assembly using Trinity and orthology determination using HaMStR yielded 839 orthologous groups for analysis. These data provide a well-supported and almost fully resolved phylogenetic hypothesis for Cladobranchia. Our results support the monophyly of Cladobranchia and the sub-clade Aeolidida, but reject the monophyly of Dendronotida.
Collapse
Affiliation(s)
- Jessica A. Goodheart
- Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- NMFS, National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, MRC-153, PO Box 37012, Washington, DC 20013, USA
| | - Adam L. Bazinet
- Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Allen G. Collins
- NMFS, National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, MRC-153, PO Box 37012, Washington, DC 20013, USA
| | - Michael P. Cummings
- Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
39
|
Deghrigue M, Festa C, Ghribi L, D'Auria MV, De Marino S, Ben Jannet H, Bouraoui A. Anti-inflammatory and analgesic activities with gastroprotective effect of semi-purified fractions and isolation of pure compounds from Mediterranean gorgonian Eunicella singularis. ASIAN PAC J TROP MED 2015; 8:606-11. [PMID: 26321512 DOI: 10.1016/j.apjtm.2015.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/20/2015] [Accepted: 07/15/2015] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To explore anti-inflammatory activities of organic extract and its semi-purified fractions (ethanol, acetone, methanol/dichloromethane) from the Mediterranean gorgonian Eunicella singularis. METHODS The anti-inflammatory and analgesic activities were evaluated, using the carrageenan-induced rat paw edema model and the acetic acid writhing test in mice. The gastroprotective activity was determined using HCl/EtOH induced gastric ulcers in rats. The purification and structure elucidation of compound(s) from the more effective fraction were determined by chromatographic and spectroscopic methods and in comparison with data reported in the literature. RESULTS The fraction F-EtOH showed an important anti-inflammatory activity associated with significant analgesic and gastroprotective properties. The purification and structure elucidation of compound(s) from this fraction lead to the identification of one diterpenoid and four sterols. CONCLUSIONS These results suggested that components from the active fraction can be used to treat various anti-inflammatory diseases.
Collapse
Affiliation(s)
- Monia Deghrigue
- Laboratoire de développement chimique, galénique et pharmacologique des médicaments (LR12ES09). Equipe de Pharmacologie marine, Faculté de pharmacie de Monastir, Université de Monastir, 5000 Monastir, Tunisia.
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I- 80131 Napoli, Italy
| | - Lotfi Ghribi
- Laboratoire de chimie hétérocyclique, produits naturels et réactivité. Equipe de chimie médicinale et produits naturels (LR11ES39), Faculté des sciences de Monastir, Université de Monastir, 5000 Monastir, Tunisia
| | - Maria Valeria D'Auria
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I- 80131 Napoli, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I- 80131 Napoli, Italy
| | - Hichem Ben Jannet
- Laboratoire de chimie hétérocyclique, produits naturels et réactivité. Equipe de chimie médicinale et produits naturels (LR11ES39), Faculté des sciences de Monastir, Université de Monastir, 5000 Monastir, Tunisia
| | - Abderrahman Bouraoui
- Laboratoire de développement chimique, galénique et pharmacologique des médicaments (LR12ES09). Equipe de Pharmacologie marine, Faculté de pharmacie de Monastir, Université de Monastir, 5000 Monastir, Tunisia
| |
Collapse
|
40
|
Santiago RF, de Brito TV, Dias JM, Dias GJ, da Cruz JS, Batista JA, Silva RO, Souza MHLP, de Albuquerque Ribeiro R, Gutierrez SJC, Freitas RM, Medeiros JVR, dos Reis Barbosa AL. Riparin B, a Synthetic Compound Analogue of Riparin, Inhibits the Systemic Inflammatory Response and Oxidative Stress in Mice. Inflammation 2015; 38:2203-15. [DOI: 10.1007/s10753-015-0203-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Activation of RAF1 (c-RAF) by the Marine Alkaloid Lasonolide A Induces Rapid Premature Chromosome Condensation. Mar Drugs 2015; 13:3625-39. [PMID: 26058013 PMCID: PMC4483648 DOI: 10.3390/md13063625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023] Open
Abstract
Lasonolide A (LSA), a potent antitumor polyketide from the marine sponge, Forcepia sp., induces rapid and reversible protein hyperphosphorylation and premature chromosome condensation (PCC) at nanomolar concentrations independent of cyclin-dependent kinases. To identify cellular targets of LSA, we screened 2951 shRNAs targeting a pool of human kinases and phosphatases (1140 RefSeqs) to identify genes that modulate PCC in response to LSA. This led to the identification of RAF1 (C-RAF) as a mediator of LSA-induced PCC, as shRNAs against RAF1 conferred resistance to LSA. We found that LSA induced RAF1 phosphorylation on Serine 338 within minutes in human colorectal carcinoma HCT-116, ovarian carcinoma OVCAR-8, and Burkitt’s lymphoma CA46 cell lines. RAF1 depletion by siRNAs attenuated LSA-induced PCC in HCT-116 and OVCAR-8 cells. Furthermore, mouse embryonic fibroblasts (MEF) with homozygous deletion in Raf1, but not deletion in the related kinase Braf, were resistant to LSA-induced PCC. Complementation of Raf1−/− MEFs with wild-type human RAF1, but not with kinase-dead RAF1 mutant, restored LSA-induced PCC. Finally, the Raf inhibitor sorafenib, but not the MEK inhibitor AZD6244, effectively suppressed LSA-induced PCC. Our findings implicate a previously unknown, MAPK-independent role of RAF1 in chromatin condensation and potent activation of this pathway by LSA.
Collapse
|
42
|
Dailler D, Danoun G, Ourri B, Baudoin O. Divergent Synthesis of Aeruginosins Based on a C(sp3)H Activation Strategy. Chemistry 2015; 21:9370-9. [DOI: 10.1002/chem.201501370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 02/03/2023]
|
43
|
Moura RM, Melo AA, Carneiro RF, Rodrigues CR, Delatorre P, Nascimento KS, Saker-Sampaio S, Nagano CS, Cavada BS, Sampaio AH. Hemagglutinating/Hemolytic activities in extracts of marine invertebrates from the Brazilian coast and isolation of two lectins from the marine sponge Cliona varians and the sea cucumber Holothuria grisea. ACTA ACUST UNITED AC 2015; 87:973-84. [DOI: 10.1590/0001-3765201520140399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/28/2014] [Indexed: 01/17/2023]
Abstract
Twenty species of marine invertebrates from the Brazilian coast were screened for hemagglutinating/hemolytic activity. In at least twelve tested species, hemagglutinating activity was different for different blood types, suggesting the presence of lectins. Extracts from four species showed hemolytic activity. Two new lectins were purified from the marine sponge Cliona varians (CvL-2) and sea cucumber Holothuria grisea (HGL). CvL-2 was able to agglutinate rabbit erythrocytes and was inhibited by galactosides. The hemagglutinating activity was optimal in pH neutral and temperatures below 70 °C. CvL-2 is a trimeric protein with subunits of 175 kDa. On the other hand, HGL showed both hemagglutinating and hemolytic activity in human and rabbit erythrocytes, but hemolysis could be inhibited by osmotic protection, and agglutination was inhibited by mucin. HGL was stable in pH values ranging from 4 to 10 and temperatures up to 90 °C. In electrophoresis and gel filtration, HGL was a monomeric protein with 15 kDa. CvL-2 and HGL showed different levels of toxicity to Artemia naplii. CvL-2 showed LC50 of 850.1 μg/mL, whereas HGL showed LC50 of 9.5 µg/mL.
Collapse
|
44
|
ALENCAR DANIELB, MELO ARTHURA, SILVA GISELLEC, LIMA REBECAL, PIRES-CAVALCANTE KELMAM, CARNEIRO RÔMULOF, RABELO ADRIANAS, SOUSA OSCARINAV, VIEIRA REGINEH, VIANA FRANCISCOA, SAMPAIO ALEXANDREH, SAKER-SAMPAIO SILVANA. Antioxidant, hemolytic, antimicrobial, and cytotoxic activities of the tropical Atlantic marine zoanthid Palythoa caribaeorum. ACTA ACUST UNITED AC 2015; 87:1113-23. [DOI: 10.1590/0001-3765201520140370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022]
Abstract
Marine invertebrates are capable of synthesizing bioactive compounds, which may be beneficial to human health. The aim of this study was to evaluate the antioxidant, hemolytic, antimicrobial and cytotoxic activities of crude extract (70% EtOH), and dichloromethane (DCM), ethyl acetate (EtOAc), and aqueous (Aq) fractions of the marine zoanthid Palythoa caribaeorum. The phenolic compound contents of the crude extract, DCM, EtOAc and Aq fractions were 12.33, 18.17, 10.53, and 3.18 mg GAE per gram, respectively. DPPH radical scavenging activity showed slight variation. IC50 of crude extract, DCM, EtOAc and Aq fractions were 11.13, 11.25, 11.74, and 11.28 µg mL-1, respectively. Among the sample, ferrous ion chelating was the highest in crude extract (IC50 302.90 µg mL-1), followed by EtOAc, Aq, and DCM fractions with 457.77, 547.91, and 641.82 µg mL-1, respectively. Ferric-reducing antioxidant power showed optical density at about 0.5. The samples tested exhibited low hemolytic activity under 10% up to a concentration of 50 μg mL-1. No antimicrobial activity was observed against any of the tested bacterial strains. For the cytotoxic activity, LC50 of DCM, crude extract, EtOAc, and Aq were 52.10, 83.06, 86.34, and 117.45 μg mL-1, showing high toxicity.
Collapse
|
45
|
Braña AF, Fiedler HP, Nava H, González V, Sarmiento-Vizcaíno A, Molina A, Acuña JL, García LA, Blanco G. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea. MICROBIAL ECOLOGY 2015; 69:512-524. [PMID: 25319239 DOI: 10.1007/s00248-014-0508-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
Streptomycetes are widely distributed in the marine environment, although only a few studies on their associations to algae and coral ecosystems have been reported. Using a culture-dependent approach, we have isolated antibiotic-active Streptomyces species associated to diverse intertidal marine macroalgae (Phyllum Heterokontophyta, Rhodophyta, and Chlorophyta), from the central Cantabrian Sea. Two strains, with diverse antibiotic and cytotoxic activities, were found to inhabit these coastal environments, being widespread and persistent over a 3-year observation time frame. Based on 16S rRNA sequence analysis, the strains were identified as Streptomyces cyaneofuscatus M-27 and Streptomyces carnosus M-40. Similar isolates to these two strains were also associated to corals and other invertebrates from deep-sea coral reef ecosystem (Phyllum Cnidaria, Echinodermata, Arthropoda, Sipuncula, and Anelida) living up to 4.700-m depth in the submarine Avilés Canyon, thus revealing their barotolerant feature. These two strains were also found to colonize terrestrial lichens and have been repeatedly isolated from precipitations from tropospheric clouds. Compounds with antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. Antitumor compounds with antibacterial activities and members of the anthracycline family (daunomycin, cosmomycin B, galtamycin B), antifungals (maltophilins), anti-inflamatory molecules also with antituberculosis properties (lobophorins) were identified in this work. Many other compounds produced by the studied strains still remain unidentified, suggesting that Streptomyces associated to algae and coral ecosystems might represent an underexplored promising source for pharmaceutical drug discovery.
Collapse
|
46
|
Milne BF, Norman P. Resonant-Convergent PCM Response Theory for the Calculation of Second Harmonic Generation in Makaluvamines A–V: Pyrroloiminoquinone Marine Natural Products from Poriferans of Genus Zyzzya. J Phys Chem A 2015; 119:5368-76. [DOI: 10.1021/jp5102362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bruce F. Milne
- Nano-Bio
Spectroscopy Group and ETSF Scientific Development Centre, Department
of Materials Physics, University of the Basque Country, CFM CSIC-UPV/EHU-MPC and DIPC, Avenida de Tolosa 72, E-20018 Donostia, Spain
- Centre
for Computational Physics, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - Patrick Norman
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
47
|
Zhao YM, Maimone TJ. Short, enantioselective total synthesis of chatancin. Angew Chem Int Ed Engl 2015; 54:1223-6. [PMID: 25470723 PMCID: PMC4300267 DOI: 10.1002/anie.201410443] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/06/2022]
Abstract
An enantioselective total synthesis of the polycyclic diterpene (+)-chatancin, a potent PAF antagonist, is reported. Proceeding in seven steps from dihydrofarnesal, this synthetic route was designed to circumvent macrocyclization-based strategies to complex, cyclized cembranoids. The described synthesis requires only six chromatographic purifications, is high yielding, and avoids protecting-group manipulations. An X-ray crystal structure of this fragile marine natural product was obtained.
Collapse
Affiliation(s)
- Yu-Ming Zhao
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA 94720 (USA)
| | | |
Collapse
|
48
|
Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 2015; 32:904-36. [DOI: 10.1039/c5np00010f] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organisms team up with symbiotic microbes for defense against predators, parasites, parasitoids, or pathogens. Here we review the known defensive symbioses in animals and the microbial secondary metabolites responsible for providing protection to the host.
Collapse
Affiliation(s)
- Laura V. Flórez
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Peter H. W. Biedermann
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| |
Collapse
|
49
|
|
50
|
Deghrigue M, Festa C, Ghribi L, D’auria MV, de Marino S, Ben Jannet H, Ben Said R, Bouraoui A. Pharmacological evaluation of the semi-purified fractions from the soft coral Eunicella singularis and isolation of pure compounds. Daru 2014; 22:64. [PMID: 25199994 PMCID: PMC4172910 DOI: 10.1186/s40199-014-0064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/04/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gorgonians of the genus Eunicella are known for possessing a wide range of pharmacological activities such as antiproliferative and antibacterial effect. The aim of this study was to evaluate the anti-inflammatory and gastroprotective effect of the organic extract and its semi-purified fractions from the white gorgonian Eunicella singularis and the isolation and identification of pure compound(s) from the more effective fraction. METHODS Anti-inflammatory activity was evaluated, using the carrageenan-induced rat paw edema test and in comparison to the reference drug Acetylsalicylate of Lysine. The gastroprotective activity was determined using HCl/EtOH induced gastric ulcers in rats. The purification of compound(s) from the more effective fraction was done by two chromatographic methods (HPLC and MPLC). The structure elucidation was determined by extensive spectroscopic analysis (1H and 13C NMR, COSY, HMBC, HMQC and NOESY) and by comparison with data reported in the literature. RESULTS The evaluation of the anti-inflammatory activity of different fractions from Eunicella singularis showed in a dependent dose manner an important anti-inflammatory activity of the ethanol fraction, the percentage of inhibition of edema, 3 h after carrageenan injection was 66.12%, more effective than the reference drug (56.32%). In addition, this ethanolic fraction showed an interesting gastroprotective effect compared to the reference drugs, ranitidine and omeprazol. The percentage of inhibition of gastric ulcer induced by HCl/ethanol in rats was 70.27%. The percentage of the reference drugs (ranitidine and omeprazol) were 65 and 87.53%, respectively. The purification and structure elucidation of compound(s) from this ethanolic fraction were leading to the isolation of five sterols: cholesterol (5α-cholest-5-en-3β-ol) (1); ergosterol (ergosta-5,22-dien-3β-ol) (2); stigmasterol (24-ethylcholesta-5,22-dien-3b-ol) (3); 5α,8α-epidioxyergosta 6,22-dien-3β-ol (4) and 3β-hydroxy-5α,8α-epidioxyergosta-6-ene (5); and one diterpenoid: palmonine D (6). CONCLUSION Based on data presented here, we concluded that diterpenoids and sterols detected in the ethanolic fraction can be responsible for its pharmacological activity.
Collapse
Affiliation(s)
- Monia Deghrigue
- />Laboratoire de développement chimique, galénique et pharmacologique des médicaments (LR12ES09). Equipe de Pharmacologie marine, Faculté de pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Carmen Festa
- />Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, I- 80131 Napoli, Italy
| | - Lotfi Ghribi
- />Laboratoire de chimie hétérocyclique, produits naturels et réactivité. Equipe de chimie médicinale et produits naturels (LR11ES39), Faculté des sciences de Monastir, Université de Monastir, Monastir, Tunisie
| | - Maria Valeria D’auria
- />Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, I- 80131 Napoli, Italy
| | - Simona de Marino
- />Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, I- 80131 Napoli, Italy
| | - Hichem Ben Jannet
- />Laboratoire de chimie hétérocyclique, produits naturels et réactivité. Equipe de chimie médicinale et produits naturels (LR11ES39), Faculté des sciences de Monastir, Université de Monastir, Monastir, Tunisie
| | - Rafik Ben Said
- />Institut National des Sciences et Technologie de la Mer (INSTM), Salambo Tunis, Tunisie
| | - Abderrahman Bouraoui
- />Laboratoire de développement chimique, galénique et pharmacologique des médicaments (LR12ES09). Equipe de Pharmacologie marine, Faculté de pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| |
Collapse
|