1
|
Karcz T, Szczepańska K, Mogilski S, Moroz A, Olejarz-Maciej A, Humphrys LJ, Pockes S, Siwek A, Dubiel K, Staszewski M, Calmels T, Waczyński K, Kieć-Kononowicz K. Guanidine Derivative ADS1017, a Potent Histamine H 3 Receptor Antagonist with Promising Analgesic Activity and Satisfactory Safety Profile. ACS Chem Neurosci 2024; 15:4441-4457. [PMID: 39652796 DOI: 10.1021/acschemneuro.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
In this study, we selected 12 guanidine derivatives from the previously described ligand library and determined their affinity at histamine H3 and H4 receptors (H3R and H4R, respectively). Moreover, we also checked their intrinsic activity toward H3R and muscarinic M1, M2, and M4 receptors (M1R, M2R, and M4R, respectively). Since ADS1017 has been proved to be the most selective and highly potent H3 antagonist in our series, we chose it as the lead structure for further biological evaluation. To extend the study of its in vivo efficacy, we proposed an alternative synthetic route that resulted in an increased yield. Interestingly, ADS1017 showed a broad spectrum of analgesic activity in both nociceptive and neuropathic pain models. Finally, as a result of comprehensive analysis of its off-target activity and ADMETox parameters, we confirmed the moderate selectivity of ADS1017 and its promising drug-like properties.
Collapse
Affiliation(s)
- Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Aleksandra Moroz
- R&D Centre, Celon Pharma S.A., Marymoncka 15, Kazuń Nowy 05-152, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Steffen Pockes
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Krzysztof Dubiel
- R&D Centre, Celon Pharma S.A., Marymoncka 15, Kazuń Nowy 05-152, Poland
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, Łódź 90-151, Poland
| | - Thierry Calmels
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, Saint-Gregoire Cedex 35762, France
| | - Krzysztof Waczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, Łódź 90-151, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| |
Collapse
|
2
|
Geremek M, Drozdzowska B, Łażewska D, Kieć-Kononowicz K, Jochem J. Effects of the DL76 Antagonist/Inverse Agonist of Histamine H 3 Receptors on Experimental Periodontitis in Rats: Morphological Studies. Pharmaceuticals (Basel) 2024; 17:792. [PMID: 38931459 PMCID: PMC11206559 DOI: 10.3390/ph17060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Periodontitis preceded by gingivitis is the most common form of periodontal disease and occurs due to the interaction of microorganisms present in the complex bacterial aggregates of dental plaque biofilm and their metabolism products with periodontal tissues. Histamine is a heterocyclic biogenic amine acting via four types of receptors. Histamine H3 receptors act as presynaptic auto/heteroreceptors to regulate the release of histamine and other neurotransmitters. AIM Since the nervous system is able to regulate the progression of the inflammatory process and bone metabolism, the aim of this study was to investigate the effects of DL76, which acts as an antagonist/inverse agonist of H3 receptors, on the course of experimental periodontitis. MATERIALS AND METHODS This study was conducted in 24 mature male Wistar rats weighing 245-360 g, aged 6-8 weeks. A silk ligature was placed on the second maxillary molar of the right maxilla under general anesthesia. From the day of ligating, DL76 and 0.9% NaCl solutions were administered subcutaneously for 28 days in the experimental and control groups, respectively. After the experiment, histopathological, immunohistochemical and radiological examinations were performed. RESULTS Ligation led to the development of the inflammatory process with lymphocytic infiltration, increased epithelial RANKL and OPG expression as well as bone resorption. DL76 evoked a reduction in (1) lymphocytic infiltration, (2) RANKL and OPG expression as well as (3) bone resorption since the medians of the mesial and distal interdental spaces in the molars with induced periodontitis were 3.56-fold and 10-fold lower compared to the corresponding values in saline-treated animals with periodontitis. CONCLUSION DL76 is able to inhibit the progression of experimental periodontitis in rats, as demonstrated by a reduction in the inflammatory cell infiltration, a decrease in the RANKL/RANK OPG pathway expression and a reduction in the alveolar bone resorption.
Collapse
Affiliation(s)
- Mariusz Geremek
- Department of Public Health, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Bogna Drozdzowska
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Kraków, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Bastaki SM, Abdulrazzaq YM, Zidan MA, Shafiullah M, Alaryani SG, Alnuaimi FA, Adeghate E, Mohsin S, Akour A, Siwek A, Łażewska D, Kieć-Kononowicz K, Sadek B. Reproductive and fetal toxicity studies of histamine H3 receptor antagonist DL76 used in mice to prevent maximal electroshock-induced seizure. Front Pharmacol 2024; 15:1364353. [PMID: 38903994 PMCID: PMC11188305 DOI: 10.3389/fphar.2024.1364353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Brain histamine is considered an endogenous anticonvulsant and histamine H1 receptor. H1R antagonists have, in earlier studies, been found to induce convulsions. Moreover, research during the last two decades has provided more information concerning the anticonvulsant activities of histamine H3R (H3R) antagonists investigated in a variety of animal epilepsy models. Methods: Therefore, the in vivo anticonvulsant effect of the H3R antagonist DL76, with proven high in vitro affinity, in vitro selectivity profile, and high in vivo antagonist potency in mice against maximal electroshock (MES)-induced seizures in mice, was assessed. Valproic acid (VPA) was used as a reference antiepileptic drug (AED). In addition, DL76 was tested for its reproductive and fetal toxicity in the same animal species. Results and discussion: Our observations showed that acute systemic administration (intraperitoneal; i.p.) of DL76 (7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg, i.p.) provided significant and dose-dependent protection against MES-induced seizures in female and male mice. Moreover, the DL76-provided protective effects were comparable to those offered by the VPA and were reversed when animals were co-administered the CNS-penetrant selective H3R agonist R-(α)-methylhistamine (RAM, 10 mg/kg, i.p.). Furthermore, the administration of single (7.5 mg/kg, 15 mg/kg, 30 mg/kg, or 60 mg/kg, i.p.) or multiple doses (3 × 15 mg/kg, i.p.) of H3R antagonist DL76 on gestation days (GD) 8 or 13 failed to affect the maternal body weight of mice when compared with the control mice group. No significant alterations were detected in the average number of implantations and resorptions between the control and DL76-treated groups at the early stages of gestation and the organogenesis period. In addition, no significant differences in the occurrence of skeletal abnormalities, urogenital abnormalities, exencephaly, exomphalos, facial clefts, and caudal malformations were observed. The only significant abnormalities witnessed in the treated groups of mice were in the length of long bones and body length. In conclusion, the novel H3R antagonist DL76 protected test animals against MES-induced seizures and had a low incidence of reproductive and fetal malformation with decreased long bone lengths in vivo, signifying the potential therapeutic value of H3R antagonist DL76 for future preclinical as well as clinical development for use in the management of epilepsy.
Collapse
Affiliation(s)
- Salim M. Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yousef M. Abdulrazzaq
- Department of Paediatrics and Neonatology, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Mohamed Shafiullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saif Ghdayer Alaryani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatima Awad Alnuaimi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Pyka P, Haberek W, Więcek M, Szymanska E, Ali W, Cios A, Jastrzębska-Więsek M, Satała G, Podlewska S, Di Giacomo S, Di Sotto A, Garbo S, Karcz T, Lambona C, Marocco F, Latacz G, Sudoł-Tałaj S, Mordyl B, Głuch-Lutwin M, Siwek A, Czarnota-Łydka K, Gogola D, Olejarz-Maciej A, Wilczyńska-Zawal N, Honkisz-Orzechowska E, Starek M, Dąbrowska M, Kucwaj-Brysz K, Fioravanti R, Nasim MJ, Hittinger M, Partyka A, Wesołowska A, Battistelli C, Zwergel C, Handzlik J. First-in-Class Selenium-Containing Potent Serotonin Receptor 5-HT 6 Agents with a Beneficial Neuroprotective Profile against Alzheimer's Disease. J Med Chem 2024; 67:1580-1610. [PMID: 38190615 PMCID: PMC10823479 DOI: 10.1021/acs.jmedchem.3c02148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.
Collapse
Affiliation(s)
- Patryk Pyka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Wawrzyniec Haberek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Małgorzata Więcek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewa Szymanska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wesam Ali
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Agnieszka Cios
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Grzegorz Satała
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Silvia Di Giacomo
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Italian
National Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Di Sotto
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Garbo
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Marocco
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sylwia Sudoł-Tałaj
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Barbara Mordyl
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kinga Czarnota-Łydka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Dawid Gogola
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Natalia Wilczyńska-Zawal
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Starek
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Dąbrowska
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Muhammad Jawad Nasim
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
- Department
of Drug Delivery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Anna Partyka
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Clemens Zwergel
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
5
|
Zaręba P, Łątka K, Mazur G, Gryzło B, Pasieka A, Godyń J, Panek D, Skrzypczak-Wiercioch A, Höfner GC, Latacz G, Maj M, Espargaró A, Sabaté R, Jóźwiak K, Wanner KT, Sałat K, Malawska B, Kulig K, Bajda M. Discovery of novel multifunctional ligands targeting GABA transporters, butyrylcholinesterase, β-secretase, and amyloid β aggregation as potential treatment of Alzheimer's disease. Eur J Med Chem 2023; 261:115832. [PMID: 37837674 DOI: 10.1016/j.ejmech.2023.115832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), β-secretase (BACE1), amyloid β aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 μM, mGAT4 IC50 = 12 μM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aβ40 aggregation inhibitory activity (IC50 = 1.57 μM and 99 % at 10 μM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 μM), Aβ aggregation (79 % at 10 μM) and mGATs (mGAT1 IC50 = 30 μM, mGAT4 IC50 = 25 μM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Skrzypczak-Wiercioch
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, Mickiewicz 24/28 St., 30-059, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
6
|
Mogilski S, Kubacka M, Świerczek A, Wyska E, Szczepańska K, Sapa J, Kieć-Kononowicz K, Łażewska D. Efficacy of the Multi-Target Compound E153 in Relieving Pain and Pruritus of Different Origins. Pharmaceuticals (Basel) 2023; 16:1481. [PMID: 37895952 PMCID: PMC10609854 DOI: 10.3390/ph16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Itch and pain are closely related but distinct sensations that share largely overlapping mediators and receptors. We hypothesized that the novel, multi-target compound E153 has the potential to attenuate pain and pruritus of different origins. After the evaluation of sigma receptor affinity and pharmacokinetic studies, we tested the compound using different procedures and models of pain and pruritus. Additionally, we used pharmacological tools, such as PRE-084, RAMH, JNJ 5207852, and S1RA, to precisely determine the role of histamine H3 and sigma 1 receptors in the analgesic and antipruritic effects of the compound. In vitro studies revealed that the test compound had potent affinity for sigma 1 and sigma 2 receptors, moderate affinity for opioid kappa receptors, and no affinity for delta or μ receptors. Pharmacokinetic studies showed that after intraperitoneal administration, the compound was present at high concentrations in both the peripheral tissues and the central nervous system. The blood-brain barrier-penetrating properties indicate its ability to act centrally at the levels of the brain and spinal cord. Furthermore, the test compound attenuated different types of pain, including acute, inflammatory, and neuropathic. It also showed a broad spectrum of antipruritic activity, attenuating histamine-dependent and histamine-independent itching. Finally, we proved that antagonism of both sigma 1 and histamine H3 receptors is involved in the analgesic activity of the compound, while the antipruritic effect to a greater extent depends on sigma 1 antagonism.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.Ś.); (E.W.)
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.Ś.); (E.W.)
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
| |
Collapse
|
7
|
Multitargeting Histamine H 3 Receptor Ligands among Acetyl- and Propionyl-Phenoxyalkyl Derivatives. Molecules 2023; 28:molecules28052349. [PMID: 36903593 PMCID: PMC10005104 DOI: 10.3390/molecules28052349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.
Collapse
|
8
|
Dual Targeting Ligands-Histamine H 3 Receptor Ligands with Monoamine Oxidase B Inhibitory Activity-In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:pharmaceutics14102187. [PMID: 36297622 PMCID: PMC9607599 DOI: 10.3390/pharmaceutics14102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical symptoms of Parkinson’s disease (PD) appear when dopamine (DA) concentrations in the striatum drops to around 20%. Simultaneous inhibitory effects on histamine H3 receptor (H3R) and MAO B can increase DA levels in the brain. A series of compounds was designed and tested in vitro for human H3R (hH3R) affinity and inhibitory activity to human MAO B (hMAO B). Results showed different activity of the compounds towards the two biological targets. Most compounds had poor affinity for hH3R (Ki > 500 nM), but very good inhibitory potency for hMAO B (IC50 < 50 nM). After further in vitro testing (modality of MAO B inhibition, permeability in PAMPA assay, cytotoxicity on human astrocyte cell lines), the most promising dual-acting ligand, 1-(3-(4-(tert-butyl)phenoxy)propyl)-2-methylpyrrolidine (13: hH3R: Ki = 25 nM; hMAO B IC50 = 4 nM) was selected for in vivo evaluation. Studies in rats of compound 13, in a dose of 3 mg/kg of body mass, confirmed its antagonistic effects for H3R (decline in food and a water consumption), decline in MAO B activity (>90%) in rat cerebral cortex (CTX), and an increase in DA content in CTX and striatum. Moreover, compound 13 caused a slight increase in noradrenaline, but a reduction in serotonin concentration in CTX. Thus, compound 13 is a promising dual-active ligand for the potential treatment of PD although further studies are needed to confirm this.
Collapse
|
9
|
Sobhani M, Figueira de Abreu RM, Villinger A, Ehlers P, Langer P. Synthesis of imidazo[1,2- a]benzoazepines by alkyne-carbonyl-metathesis. Org Biomol Chem 2022; 20:9207-9216. [DOI: 10.1039/d2ob01320g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Imidazo[1,2-a]benzoazepines were prepared in good yields by combination of Pd catalyzed cross coupling reactions with alkyne-carbonyl metathesis (ACM).
Collapse
Affiliation(s)
- Maryam Sobhani
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | | | - Alexander Villinger
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Ehlers
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz Institut für Katalyse an der Universität Rostock, A.-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
10
|
Godyń J, Zaręba P, Łażewska D, Stary D, Reiner-Link D, Frank A, Latacz G, Mogilski S, Kaleta M, Doroz-Płonka A, Lubelska A, Honkisz-Orzechowska E, Olejarz-Maciej A, Handzlik J, Stark H, Kieć-Kononowicz K, Malawska B, Bajda M. Cyanobiphenyls: Novel H 3 receptor ligands with cholinesterase and MAO B inhibitory activity as multitarget compounds for potential treatment of Alzheimer's disease. Bioorg Chem 2021; 114:105129. [PMID: 34217977 DOI: 10.1016/j.bioorg.2021.105129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex and incurable illness that requires the urgent approval of new effective drugs. However, since 2003, no new molecules have shown successful results in clinical trials, thereby making the common "one compound - one target" paradigm questionable. Recently, the multitarget-directed ligand (MTDL) approach has gained popularity, as compounds targeting at least two biological targets may be potentially more effective in treating AD. On the basis of these findings, we designed, synthesized, and evaluated through biological assays a series of derivatives of alicyclic amines linked by an alkoxy bridge to an aromatic lipophilic moiety of [1,1'-biphenyl]-4-carbonitrile. The research results revealed promising biological activity of the obtained compounds toward the chosen targets involved in AD pathophysiology; the compounds showed high affinity (mostly low nanomolar range of Ki values) for human histamine H3 receptors (hH3R) and good nonselective inhibitory potency (micromolar range of IC50 values) against acetylcholinesterase from electric eel (eeAChE) and equine serum butyrylcholinesterase (eqBuChE). Moreover, micromolar/submicromolar potency against human monoamine oxidase B (hMAO B) was detected for some compounds. The study identified compound 5 as a multiple hH3R/eeAChE/eqBuChE/hMAO B ligand (5: hH3R Ki = 9.2 nM; eeAChE IC50 = 2.63 µM; eqBuChE IC50 = 1.30 µM; hMAO B IC50 = 0.60 µM). Further in vitro studies revealed that compound 5 exhibits a mixed type of eeAChE and eqBuChE inhibition, good metabolic stability, and moderate hepatotoxicity effect on HepG2 cells. Finally, compound 5 showed a beneficial effect on scopolamine-induced memory impairments, as assessed by the passive avoidance test, thus revealing the potential of this compound as a promising agent for further optimization for AD treatment.
Collapse
Affiliation(s)
- Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Dorota Stary
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
11
|
Biphenylalkoxyamine Derivatives-Histamine H 3 Receptor Ligands with Butyrylcholinesterase Inhibitory Activity. Molecules 2021; 26:molecules26123580. [PMID: 34208297 PMCID: PMC8231170 DOI: 10.3390/molecules26123580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative diseases, e.g., Alzheimer’s disease (AD), are a key health problem in the aging population. The lack of effective therapy and diagnostics does not help to improve this situation. It is thought that ligands influencing multiple but interconnected targets can contribute to a desired pharmacological effect in these complex illnesses. Histamine H3 receptors (H3Rs) play an important role in the brain, influencing the release of important neurotransmitters, such as acetylcholine. Compounds blocking their activity can increase the level of these neurotransmitters. Cholinesterases (acetyl- and butyrylcholinesterase) are responsible for the hydrolysis of acetylcholine and inactivation of the neurotransmitter. Increased activity of these enzymes, especially butyrylcholinesterase (BuChE), is observed in neurodegenerative diseases. Currently, cholinesterase inhibitors: donepezil, rivastigmine and galantamine are used in the symptomatic treatment of AD. Thus, compounds simultaneously blocking H3R and inhibiting cholinesterases could be a promising treatment for AD. Herein, we describe the BuChE inhibitory activity of H3R ligands. Most of these compounds show high affinity for human H3R (Ki < 150 nM) and submicromolar inhibition of BuChE (IC50 < 1 µM). Among all the tested compounds, 19 (E153, 1-(5-([1,1′-biphenyl]-4-yloxy)pentyl)azepane) exhibited the most promising in vitro affinity for human H3R, with a Ki value of 33.9 nM, and for equine serum BuChE, with an IC50 of 590 nM. Moreover, 19 (E153) showed inhibitory activity towards human MAO B with an IC50 of 243 nM. Furthermore, in vivo studies using the Passive Avoidance Task showed that compound 19 (E153) effectively alleviated memory deficits caused by scopolamine. Taken together, these findings suggest that compound 19 can be a lead structure for developing new anti-AD agents.
Collapse
|
12
|
Łażewska D, Bajda M, Kaleta M, Zaręba P, Doroz-Płonka A, Siwek A, Alachkar A, Mogilski S, Saad A, Kuder K, Olejarz-Maciej A, Godyń J, Stary D, Sudoł S, Więcek M, Latacz G, Walczak M, Handzlik J, Sadek B, Malawska B, Kieć-Kononowicz K. Rational design of new multitarget histamine H 3 receptor ligands as potential candidates for treatment of Alzheimer's disease. Eur J Med Chem 2020; 207:112743. [PMID: 32882609 DOI: 10.1016/j.ejmech.2020.112743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
Design and development of multitarget-directed ligands (MTDLs) has become a very important approach in the search of new therapies for Alzheimer's disease (AD). In our present research, a number of xanthone derivatives were first designed using a pharmacophore model for histamine H3 receptor (H3R) antagonists/inverse agonists, and virtual docking was then performed for the enzyme acetylcholinesterase. Next, 23 compounds were synthesised and evaluated in vitro for human H3R (hH3R) affinity and inhibitory activity on cholinesterases. Most of the target compounds showed hH3R affinities in nanomolar range and exhibited cholinesterase inhibitory activity with IC50 values in submicromolar range. Furthermore, the inhibitory effects of monoamine oxidases (MAO) A and B were investigated. The results showed low micromolar and selective human MAO B (hMAO B) inhibition. Two azepane derivatives, namely 23 (2-(5-(azepan-1-yl)pentyloxy)-9H-xanthen-9-one) and 25 (2-(5-(azepan-1-yl)pentyloxy)-7-chloro-9H-xanthen-9-one), were especially very promising and showed high affinity for hH3R (Ki = 170 nM and 100 nM respectively) and high inhibitory activity for acetylcholinesterase (IC50 = 180 nM and 136 nM respectively). Moreover, these compounds showed moderate inhibitory activity for butyrylcholinesterase (IC50 = 880 nM and 394 nM respectively) and hMAO B (IC50 = 775 nM and 897 nM respectively). Furthermore, molecular docking studies were performed for hH3R, human cholinesterases and hMAO B to describe the mode of interactions with these biological targets. Next, the two most promising compounds 23 and 25 were selected for in vivo studies. The results showed significant memory-enhancing effect of compound 23 in dizocilpine-induced amnesia in rats in two tests: step-through inhibitory avoidance paradigm (SIAP) and transfer latency paradigm time (TLPT). In addition, favourable analgesic effects of compound 23 were observed in neuropathic pain models. Therefore, compound 23 is a particularly promising structure for further design of new MTDLs for AD.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland.
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 1766, Al Ain, United Arab Emirates
| | - Szczepan Mogilski
- Department of Pharmacodynamic, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 1766, Al Ain, United Arab Emirates
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Dorota Stary
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Sylwia Sudoł
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Maria Walczak
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str 9, 30-688, Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 1766, Al Ain, United Arab Emirates
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna Str. 9, 30-688, Kraków, Poland
| |
Collapse
|
13
|
Podlewska S, Latacz G, Łażewska D, Kieć-Kononowicz K, Handzlik J. In silico and in vitro studies on interaction of novel non-imidazole histamine H3R antagonists with CYP3A4. Bioorg Med Chem Lett 2020; 30:127147. [DOI: 10.1016/j.bmcl.2020.127147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
|
14
|
Ghamari N, Dastmalchi S, Zarei O, Arias-Montaño JA, Reiner D, Ustun-Alkan F, Stark H, Hamzeh-Mivehroud M. In silico and in vitro studies of two non-imidazole multiple targeting agents at histamine H 3 receptors and cholinesterase enzymes. Chem Biol Drug Des 2019; 95:279-290. [PMID: 31661597 DOI: 10.1111/cbdd.13642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022]
Abstract
Recently, multi-target directed ligands have been of research interest for multifactorial disorders such as Alzheimer's disease (AD). Since H3 receptors (H3 Rs) and cholinesterases are involved in pathophysiology of AD, identification of dual-acting compounds capable of improving cholinergic neurotransmission is of importance in AD pharmacotherapy. In the present study, H3 R antagonistic activity combined with anticholinesterase properties of two previously computationally identified lead compounds, that is, compound 3 (6-chloro-N-methyl-N-[3-(4-methylpiperazin-1-yl)propyl]-1H-indole-2-carboxamide) and compound 4 (7-chloro-N-[(1-methylpiperidin-3-yl)methyl]-1,2,3,4-tetrahydroisoquinoline-2-carboxamide), was tested. Moreover, molecular docking and binding free energy calculations were conducted for binding mode and affinity prediction of studied ligands toward cholinesterases. Biological evaluations revealed inhibitory activity of ligands in nanomolar (compound 3: H3 R EC50 = 0.73 nM; compound 4: H3 R EC50 = 31 nM) and micromolar values (compound 3: AChE IC50 = 9.09 µM, BuChE IC50 = 21.10 µM; compound 4: AChE IC50 = 8.40 µM, BuChE IC50 = 4.93 µM) for H3 R antagonism and cholinesterase inhibition, respectively. Binding free energies yielded good consistency with cholinesterase inhibitory profiles. The results of this study can be used for lead optimization where dual inhibitory activity on H3 R and cholinesterases is needed. Such ligands can exert their biological activity in a synergistic manner resulting in higher potency and efficacy.
Collapse
Affiliation(s)
- Nakisa Ghamari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de EstudiosAvanzados del IPN, Ciudad de México, México
| | - David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Bajda M, Łażewska D, Godyń J, Zaręba P, Kuder K, Hagenow S, Łątka K, Stawarska E, Stark H, Kieć-Kononowicz K, Malawska B. Search for new multi-target compounds against Alzheimer's disease among histamine H 3 receptor ligands. Eur J Med Chem 2019; 185:111785. [PMID: 31669851 DOI: 10.1016/j.ejmech.2019.111785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023]
Abstract
Multi-target-directed ligands seem to be an interesting approach to the treatment of complex disorders such as Alzheimer's disease. The aim of the present study was to find novel multifunctional compounds in a non-imidazole histamine H3 receptor ligand library. Docking-based virtual screening was applied for selection of twenty-six hits which were subsequently evaluated in Ellman's assay for the inhibitory potency toward acetyl- (AChE) and butyrylcholinesterase (BuChE). The virtual screening with high success ratio enabled to choose multi-target-directed ligands. Based on docking results, all selected ligands were able to bind both catalytic and peripheral sites of AChE and BuChE. The most promising derivatives combined the flavone moiety via a six carbon atom linker with a heterocyclic moiety, such as azepane, piperidine or 3-methylpiperidine. They showed the highest inhibitory activities toward cholinesterases as well as well-balanced potencies against H3R and both enzymes. Two derivatives were chosen - 5 (IC50 = 0.46 μM (AChE); 0.44 μM (BuChE); Ki = 159.8 nM (H3R)) and 17 (IC50 = 0.50 μM (AChE); 0.76 μM (BuChE); Ki = 228.2 nM (H3R)), and their inhibition mechanism was evaluated in kinetic studies. Both compounds displayed non-competitive mode of AChE and BuChE inhibition. Compounds 5 and 17 might serve as good lead structures for further optimization and development of novel multi-target anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Kamil Łątka
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Ewelina Stawarska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
16
|
Role of Histamine H₃ Receptor Antagonists on Intraocular Pressure Reduction in Rabbit Models of Transient Ocular Hypertension and Glaucoma. Int J Mol Sci 2019; 20:ijms20040981. [PMID: 30813468 PMCID: PMC6412827 DOI: 10.3390/ijms20040981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/03/2022] Open
Abstract
Intraocular pressure (IOP) has a tendency to fluctuate throughout the day, reaching its peak in the early morning in healthy subjects or glaucoma patients. Likewise, histamine tone also fluctuates over time, being lower at nighttime. Numerous studies have demonstrated a correlation between short-term IOP fluctuation and glaucoma progression; however, it has not yet been determined whether histamine plays a role in IOP fluctuations. The aim of this research was to establish the distribution of the histamine receptor proteins and respective mRNAs in the eye by western blot, immunohistochemistry and RT-PCR in New Zealand rabbits. Furthermore, we used a transient ocular hypertension (OHT) model induced by injection of 50 µL of 5% hypertonic saline into the vitreous and a stable OHT model (100 µL 0.1% carbomer in the anterior chamber) to address the potential IOP-lowering ability of H3 receptor (H3R) antagonists (ciproxifan, DL76 and GSK189254). IOPs were performed with a Tono-Pen at baseline and 60, 120 and 240 min post treatment after transient OHT induction and, every day for 12 days in the stable OHT model. All histamine receptor subtypes were localized in the rabbit retina and ciliary body/trabecular meshwork. All the treatments lowered IOP in a dose-dependent fashion between 0.3% and 1%. More specifically, the effects were maximal with ciproxifan at 60 min post-dose (IOP60 change = −18.84 ± 4.85 mmHg, at 1%), remained stable until 120 min (IOP120 change = −16.38 ± 3.8 mmHg, at 1%) and decayed thereafter to reach baseline values at 240 min. These effects were highly specific and dependent on histamine release as pre-treatment with imetit (H3R agonist, 1%) or pyrilamine (H1R antagonist, 1%) largely blocked ciproxifan-mediated effects. Color Doppler ultrasound examination was performed to evaluate changes in ophtalmic artery resistivity index (RI) before and after repeated dosing with DL 76, GSK189254, ciproxifan and timolol. Chronic treatments with H3R antagonists and timolol improved the vascular performance of ophthalmic arteries and reduced retinal ganglion cell death. Oxidative stress was also reduced and measured 8-Hydroxy-2′-deoxyguanosine (8OHdG) expression, and by dihidroethydium (DHE) staining. These results demonstrated that the histamine system participates in IOP regulation and that H3R antagonists could represent a future promising therapy for glaucoma. Further studies should be focused on the long-term IOP circadian fluctuations.
Collapse
|
17
|
Zha GF, Rakesh K, Manukumar H, Shantharam C, Long S. Pharmaceutical significance of azepane based motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162:465-494. [DOI: 10.1016/j.ejmech.2018.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/13/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
|