1
|
Bellapukonda SM, Bandela R, Singampalli A, Srikanth D, Kumar P, Nanduri S, Yaddanapudi VM. A systematic review on the anti-microbial activities and structure-activity relationship (SAR) of quinoxaline derivatives. Eur J Med Chem 2025; 289:117472. [PMID: 40048800 DOI: 10.1016/j.ejmech.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Anti-microbial resistance has become a serious global health issue affecting millions of people worldwide. Despite extensive drug discovery efforts aimed at identifying potent molecules for effective anti-microbial treatments, the emergence of superbugs remains a significant challenge. Thus, developing novel therapeutic agents is required to combat these evolving threats. The quinoxaline scaffold emerges as a promising heterocyclic framework for developing novel anti-microbial agents. It's simple, flexible structure, coupled with its bioisosteric relationship to extensively explored quinoline and naphthalene scaffolds, offers a potential avenue for circumventing bacterial resistance developed against these established classes. Hence it has sparked interest in researchers to develop novel antibiotics based on the quinoxaline core. This review focuses on the recent advances of quinoxaline derivatives as anti-microbial agents and their structure-activity relationship studies based on the literature published from 2015 to 2024. The systematic presentation of this information will assist researchers in identifying key substitution patterns around the quinoxaline nucleus, facilitating the development of structure-activity relationship (SAR), and guiding the design of novel anti-microbial drugs to combat the growing threat of anti-microbial resistance.
Collapse
Affiliation(s)
- Sri Mounika Bellapukonda
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Rani Bandela
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Anuradha Singampalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Danaboina Srikanth
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pardeep Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
2
|
Elgammal WE, Elkady H, Dahab MA, Mahdy HA, Hagras M, Nofal A, Alsfouk BA, Elkaeed EB, Eissa IH, Metwaly AM. Design and synthesis of thiadiazoles as anticancer, apoptotic, and VEGFR-2 inhibitors. Future Med Chem 2025; 17:915-927. [PMID: 40197130 DOI: 10.1080/17568919.2025.2485863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Vascular endothelial growth factor receptor (VEGFR-2) inhibitors are critical in cancer therapy due to their role in suppressing tumor angiogenesis. Herein, we report a new series of thiadiazole-based derivatives as potential VEGFR-2 inhibitors with promising anticancer activity. METHODS The synthesized compounds were evaluated for anti-proliferative activity against human cancer cell lines (HCT-116, MCF-7, and HepG-2), and WI-38 as normal cells. Sorafenib was used as a reference drug. VEGFR-2 inhibitory activity was determined, followed by cell cycle analysis, apoptosis assays, Q-RT-PCR analysis, and wound-healing assays. In silico molecular docking was conducted to explore binding interactions. RESULTS Among the tested compounds, 13b exhibited potent anti-proliferative activity (IC50: 3.98-11.81 µM) and strong VEGFR-2 inhibition (IC50: 41.51 nM), surpassing sorafenib (IC50: 53.32 nM). Cell cycle analysis revealed that 13b induced G2/M phase arrest in MCF-7 cells. Apoptosis levels increased from 2% to 52%, accompanied by a > 12-fold rise in the Bax/Bcl-2 ratio and activation of caspase-8/9. Additionally, 13b significantly suppressed MCF-7 cell migration, with only 5.28% wound closure. In silico studies confirmed its strong VEGFR-2 binding interactions. CONCLUSION Thiadiazole-based derivatives, particularly compound 13b, exhibit potent VEGFR-2 inhibition, anti-proliferative effects, apoptosis induction, and anti-migratory activity, supporting their potential as promising anticancer agents.
Collapse
Affiliation(s)
- Walid E Elgammal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Nofal
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Lai Y, Zhang R. Green one-pot synthesis of quinoxaline derivatives using sulfo-anthranilic acid functionalized alginate-MCFe 2O 4 nanostructures: a novel superparamagnetic catalyst with antiproliferative potential. RSC Adv 2025; 15:1698-1712. [PMID: 39835215 PMCID: PMC11744772 DOI: 10.1039/d4ra07892f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
This study reports a green, multi-component synthesis of 2-aminoimidazole-linked quinoxaline Schiff bases using a novel superparamagnetic acid catalyst. The catalyst consists of sulfo-anthranilic acid (SAA) immobilized on MnCoFe2O4@alginate magnetic nanorods (MNRs), achieving high SAA loading (1.8 mmol g-1) and product yields (91-97%). Characterization of the MCFe2O4@Alginate@SAA MNR catalyst revealed an inverse spinel structure (XRD), a saturation magnetization of 31 emu g-1 (VSM), 17.5% organic content (TGA), and a rod-like morphology with diameters of 30-60 nm and lengths of 150-250 nm (SEM). Elemental composition confirmed by EDX analysis indicated successful SAA immobilization and high catalyst purity. The synthesized quinoxaline derivatives were evaluated for antiproliferative activity against SKOV3 and HCT-116 cancer cell lines using the MTT assay. Several compounds, notably 4a, 4s, 4t, 4w, and 4x, exhibited potent activity, inhibiting HCT-116 proliferation by >50% at 50 μg mL-1. Compound 4a demonstrated the most significant inhibition, with 82.3% against SKOV3 cells after 48 h and 69.0% against HCT-116 cells after 24 h, both at 50 μg mL-1. These results suggest the potential of 2-aminoimidazole-linked quinoxaline Schiff bases, particularly 4a, as promising multi-target chemotherapy agents.
Collapse
Affiliation(s)
- Ying Lai
- Department of Life Science and Agriculture, Zhoukou Normal University Zhoukou Henan 466001 China
| | - Ruoyu Zhang
- Department of Life Science and Agriculture, Zhoukou Normal University Zhoukou Henan 466001 China
| |
Collapse
|
4
|
Alasmary FAS, Abdullah DA, Masand VH, Ben Bacha A, Omar Ebeid AM, El-Araby ME, Alafeefy AM. Synthesis, molecular modelling, and biological evaluation of novel quinoxaline derivatives for treating type II diabetes. J Enzyme Inhib Med Chem 2024; 39:2395985. [PMID: 39311475 PMCID: PMC11421147 DOI: 10.1080/14756366.2024.2395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024] Open
Abstract
Quinoxalines are benzopyrazine derivatives with significant therapeutic impact in the pharmaceutical industry. They proved to be useful against inflammation, bacterial, fungal, viral infection, diabetes and other applications. Very recently, in January 2024, the FDA approved new quinoxaline containing drug, erdafitinib for treatment of certain carcinomas. Despite the diverse biological activities exhibited by quinoxaline derivatives and the role of secretory phospholipase A2 (sPLA2) in diabetes-related complications, the potential of sPLA2-targeting quinoxaline-based inhibitors to effectively address these complications remains unexplored. Therefore, we designed novel sPLA2- and α-glucosidase-targeting quinoxaline-based heterocyclic inhibitors to regulate elevated post-prandial blood glucose linked to patients with diabetes-related cardiovascular complications. Compounds 5a-d and 6a-d were synthesised by condensing quinoxaline hydrazides with various aryl sulphonyl chlorides. Biological screening revealed compound 6a as a potent sPLA2 inhibitor (IC50 = 0.0475 µM), whereas compound 6c most effectively inhibited α-glucosidase (IC50 = 0.0953 µM), outperforming the positive control acarbose. Moreover, compound 6a was the best inhibitor for both enzymes. Molecular docking revealed pharmacophoric features, highlighting the importance of a sulfonohydrazide moiety in the structural design of these compounds, leading to the development of potent sPLA2 and α-glucosidase inhibitors. Collectively, our findings helped identify promising candidates for developing novel therapeutic agents for treating diabetes mellitus.
Collapse
Affiliation(s)
| | - Dalal A. Abdullah
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati College, Amravati, Maharashtra, India
| | - Abir Ben Bacha
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Moustafa E. El-Araby
- Pharmaceutical Chemistry Department, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Alafeefy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Kampus, Malaysia
| |
Collapse
|
5
|
Liu Y, Tian J, Zeng W, Wang Y, Hu C, Luo X, Qiu Y, Pu H, Wu Y, Xue W. Novel Flavonol Derivatives Containing Quinoxaline: Insights into the Antifungal Mechanism against Sclerotinia sclerotiorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23766-23775. [PMID: 39418190 DOI: 10.1021/acs.jafc.4c07799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this study, 12 pairs of tautomeric flavonol derivatives containing quinoxaline were synthesized. The results of antifungal activity showed that in the enol-keto tautomerism, the target compounds containing keto (YB series) had better inhibitory activity against Sclerotinia sclerotiorum (S.s.) than compounds containing enol (YA series). YB9 showed the strongest antifungal activity against S.s., and the median effective concentration (EC50) value was 1.0 μg/mL, which was better than azoxystrobin (Az, 35.3 μg/mL). In vivo fungal inhibition experiments showed that the protective activity of YB9 against rape leaves was 83.4% at 200 μg/mL, which was superior to that of Az (70.2%). The activity of succinate dehydrogenase and molecular docking results showed that YB9 had a stronger antifungal effect than YA9. The results of oxalic acid content determination showed that YB9 could reduce the pathogenic ability of S.s. Then, the inhibitory effect of YB9 against S.s. was further verified by scanning electron microscopy, fluorescence microscopy, cell membrane permeability, cell content leakage, and malondialdehyde content.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Jiao Tian
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Zeng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yuhong Wang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Chunmei Hu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yujiao Qiu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Haotao Pu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yongjun Wu
- College of Life Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
6
|
Sumrra SH, Hassan AU, Zafar W, Chohan ZH, Alrashidi KA. Molecular Engineering for UV-Vis to NIR Absorption/Emission Bands of Pyrazine-based A-π-D- π-A Switches to Design TiO 2 Tuned Dyes: DFT Insights. J Fluoresc 2024:10.1007/s10895-024-03891-7. [PMID: 39276306 DOI: 10.1007/s10895-024-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/02/2024] [Indexed: 09/16/2024]
Abstract
This study investigates the tuning of the UV-Vis/NIR absorption bands of pyrazine-based A-D-A switches for designing efficient UV retardancy over TiO2 surfaces. The electronic properties and optical characteristics of seven dyes (DP1-DP7) were analyzed using computational methods. The results indicate that the dyes possessed distinct UV-Vis/NIR absorption properties. Their absorption wavelengths ranged from 389 to 477 nm, with corresponding energies ranging from 2.59 to 3.19 eV. The major contributions to the absorption were found to be the HOMO-LUMO transitions, varying from 86 to 96%. The dyes exhibited different donor (D) and acceptor (A) groups, influencing their electronic properties and absorption characteristics. The tunable electronic and optical properties of these dyes make them promising candidates for applications requiring UV protection for TiO2-based materials. The results contribute to understand the structure-property relationships in the design of UV-Vis/NIR absorbers and provide a foundation for further experimental investigations in the field of UV retardancy.
Collapse
Affiliation(s)
| | - Abrar Ul Hassan
- Department of Chemistry, Lunaan Institute of Research Technology, Tangzou, 277509, China.
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Punjab, 50700, Pakistan
| | | | - Khalid Abdullah Alrashidi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Liu Y, Xin H, Wang Y, Zhou Q, Tian J, Hu C, Luo X, Pu H, Xue W. Flavonol derivatives containing piperazine and quinoxaline fragments: synthesis and antifungal activity. Mol Divers 2024:10.1007/s11030-024-10977-8. [PMID: 39225906 DOI: 10.1007/s11030-024-10977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC50) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Hui Xin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuhong Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jiao Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Chunmei Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Haotao Pu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Nafie MS, Kahwash SH, Youssef MM, Dawood KM. Recent advances on quinoxalines as target-oriented chemotherapeutic anticancer agents through apoptosis. Arch Pharm (Weinheim) 2024; 357:e2400225. [PMID: 38822393 DOI: 10.1002/ardp.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaima H Kahwash
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Kamal M Dawood
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Choithramani A, Das R, Bothra G, Patel Vatsa P, Muthukumar V, Bhuvana BKS, Kapoor S, Moola D, Chowdhury MG, Mandoli A, Shard A. Targeted suppression of oral squamous cell carcinoma by pyrimidine-tethered quinoxaline derivatives. RSC Med Chem 2024; 15:2729-2744. [PMID: 39149105 PMCID: PMC11324040 DOI: 10.1039/d4md00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/17/2024] [Indexed: 08/17/2024] Open
Abstract
Oral cancer (OC) stands as a prominent cause of global mortality. Despite numerous efforts in recent decades, the efficacy of novel therapies to extend the lifespan of OC patients remains disappointingly low. Consequently, the demand for innovative therapeutic agents has become all the more pressing. In this context, we present our work on the design and synthesis of twenty-five novel quinoxaline-tethered imidazopyri(mi)dine derivatives. This was followed by comprehensive investigations into the impact of these molecules on the OC cell line. The in vitro cytotoxicity studies performed in CAL-27 and normal oral epithelial (NOE) cell lines revealed that some of the synthesized molecules like 12d have potent antiproliferative activity specifically towards OC cells with an IC50 of 0.79 μM and show negligible cytotoxicity over NOE cells. Further, 12d arrested cell growth in the S phase of the cell cycle and induced cell death by early apoptosis. The in silico studies validated that 12d binds to the activator binding site on pyruvate kinase M2 (PKM2) overexpressed in OC while the lactate dehydrogenase (LDH)-coupled enzyme assay established 12d as a potent PKM2 activator with an AC50 of 0.6 nM. Hence, this study provides fruitful evidence for the designed compounds as anticancer agents against OC.
Collapse
Affiliation(s)
- Asmita Choithramani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Gourav Bothra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Priyanka Patel Vatsa
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Venkatesh Muthukumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Bombothu Kavya Sai Bhuvana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Deepshika Moola
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat - 382355 India
| |
Collapse
|
10
|
Iqbal A, Alam MT, Khan A, Siddiqui T, Ali A. Inhibition of protein misfolding and aggregation by steroidal quinoxalin-2(1H)-one and their molecular docking studies. Int J Biol Macromol 2024; 269:132020. [PMID: 38704061 DOI: 10.1016/j.ijbiomac.2024.132020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
A series of D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one attached to an electron-releasing (ER) or electron-withdrawing (EW) groups via steroidal oxoacetate intermediate were synthesized to investigate their protein aggregation inhibition potential using human lysozyme (HLZ). The influence of the type of substituent at the C-6 positions of the quinoxalin-2(1H)-one ring on the protein aggregation inhibition potential was observed, showing that the EW moiety improved the protein aggregation inhibition potency. Of all the evaluated compounds, NO2-substituted quinoxalin-2(1H)-one derivative 13 was the most active compound and had a maximum protein aggregation inhibition effect. Significant stabilization effects strongly support the binding of the most biologically active steroidal quinoxalin-2(1H)-one with docking studies. The predicted physicochemical and ADME properties lie within a drug-like space which shows no violation of Lipinski's rule of five except compounds 12 and 13. Combined, our results suggest that D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one has the potential to modulate the protein aggregation inhibition effect.
Collapse
Affiliation(s)
- Arfeen Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Asna Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
11
|
Shi SH, Li HY, Liu HY, Tian R, Zhu HT. Redox Relay-Induced C-S Radical Cross-Coupling Strategy: Application in Nontraditional Site-Selective Thiocyanation of Quinoxalinones. J Org Chem 2024; 89:6826-6837. [PMID: 38669146 DOI: 10.1021/acs.joc.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Oxidative cross-coupling is a powerful strategy to form C-heteroatom bonds. However, oxidative cross-coupling for constructing C-S bond is still a challenge due to sulfur overoxidation and poisoning transition-metal catalysts. Now, electrochemical redox relay using sulfur radicals formed in situ from inorganic sulfur source offers a solution to this problem. Herein, electrochemical redox relay-induced C-S radical cross-coupling of quinoxalinones and ammonium thiocyanate with bromine anion as mediator is presented. The electrochemical redox relay comprised initially the formation of sulfur radical via indirect electrochemical oxidation, simultaneous electrochemical reduction of the imine bond, electro-oxidation-triggered radical coupling involving dearomatization-rearomatization, and the reformation of the imine bond through anodic oxidation. Applying this strategy, various quinoxalinones bearing multifarious electron-deficient/-rich substituents at different positions were well compatible with moderate to excellent yields and good steric hindrance compatibility under constant current conditions in an undivided cell without transition-metal catalysts and additional redox reagents. Synthetic applications of this methodology were demonstrated through gram-scale preparation and follow-up transformation. Notably, such a unique strategy may offer new opportunities for the development of new quinoxalinone-core leads.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yu Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yang Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Rui Tian
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
12
|
Wang L, Yang P, Yuan J, Lian W, Jin X, Zhang S, Yang L, Xing D. Visible-Light-Promoted Deoxygenative Alkylation of Quinoxalin-2(1 H)-ones with Activated Alcohols. J Org Chem 2024; 89:6334-6344. [PMID: 38616699 DOI: 10.1021/acs.joc.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A one-pot strategy for deoxygenative alkylation of alcohols with quinoxalin-2(1H)-ones was developed by using xanthate salts as alcohol-activating groups for radical generation in the presence of tricyclohexylphosphine under visible-light-promoted conditions. The remarkable features of this reaction include a broad substrate scope, excellent functional group tolerance, mild conditions, and simple operation. Moreover, the synthetic utility of this reaction was validated by the success of two-step one-pot reactions, scale-up synthesis, and chemoselective radical monodeoxygenation of diols.
Collapse
Affiliation(s)
- Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Lian
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xinrong Jin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Sanyu Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
13
|
Köksal Karayildirim Ç. Preparation, Characterization, and Antiangiogenic Evaluation of a Novel 5-Fluorouracil Derivative Solid Lipid Nanoparticle with a Hen's Egg Chorioallantoic Membrane Assay and Wound Healing Response in HaCaT Keratinocytes. ACS OMEGA 2024; 9:16640-16647. [PMID: 38617689 PMCID: PMC11007769 DOI: 10.1021/acsomega.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
5-Fluorouracil is a heterocyclic aromatic organic compound, and it is commonly used as a chemotherapeutic agent in many cancers. The present goal is to analyze and characterize the physicochemical and biological properties of a new therapeutic formulation of 5-FUD-Gal under simulated chronic wound and oxidative stress conditions. After synthesis of a new 5-fluorouracil derivative, preparation and characterization of the formulation were carried out. The antiangiogenic effect, wound healing, and oxidative stress responses were conducted with a HET-CAM assay and in vitro cell culture technique. The results initially demonstrated that 5-FUD-Gal synthesized by a series of reactions and the SLN formulation were prepared successfully. A strong cell protective effect above 98% cell viability was detected at 20 μM at 48 h. The wound closure of the HaCaT scratch assay was calculated to be 90.12 and 98.98% at 10 and 20 μM concentrations, respectively, at 48 h. Moreover, the strongest effect of 5-FUD-Gal-F was observed at 20 μM concentration on chicken embryos. This study provides novel insights that a new derivative of semisynthetic 5-FUD-Gal-F can be further evaluated as a therapeutic chemical compound in cancer disease.
Collapse
|
14
|
Nafie MS, Ali MA, Youssef MM. N-allyl quinoxaline derivative exhibited potent and selective cytotoxicity through EGFR/VEGFR-mediated apoptosis: In vitro and in vivo studies. J Biochem Mol Toxicol 2024; 38:e23690. [PMID: 38493304 DOI: 10.1002/jbt.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The cytotoxic activity, EGFR/VEGFR2 target inhibition, apoptotic activity, RT-PCR gene expression, in vivo employing a solid-Ehrlich carcinoma model, and in silico investigations for highlighting the binding affinity of eight quinoxaline derivatives were tested for anticancer activities. The results showed that compound 8 (N-allyl quinoxaline) had potent cytotoxicity against A594 and MCF-7 cancer cells with IC50 values of 0.86 and 1.06 µM, respectively, with noncytotoxic activity against WISH and MCF-10A cells having IC50 values more than 100 µM. Furthermore, it strongly induced apoptotic cell death in A549 and MCF-7 cells by 43.13% and 34.07%, respectively, stopping the cell cycle at S and G1-phases. For the molecular target, the results showed that compound 8 had a promising EGFR inhibition activity with an IC50 value of 0.088 µM compared to Sorafenib (IC50 = 0.056 µM), and it had a promising VEGFR2 inhibition activity with an IC50 value of 0.108 µM compared to Sorafenib (IC50 = 0.049 µM). Treatment with compound 8 ameliorated biochemical and histochemical parameters near normal in the in vivo investigation, with a tumor inhibition ratio of 68.19% compared to 64.8% for 5-FU treatment. Finally, the molecular docking study demonstrated the binding affinity through binding energy and interactive binding mode inside the EGFR/VEGFR2 proteins. Potent EGFR and VEGFR2 inhibition of compound 8 suggests its potential for development as a selective anticancer drug.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohab A Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Dorababu A. Role of heterocycles in inhibition of VEGFR-2 - a recent update (2019-2022). RSC Med Chem 2024; 15:416-432. [PMID: 38389872 PMCID: PMC10880944 DOI: 10.1039/d3md00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/10/2023] [Indexed: 02/24/2024] Open
Abstract
The literature reveals that oncogenic protein kinase inhibition has been proved to be a successful anticancer approach. The vascular endothelial growth factor receptor (VEGFR) kinase plays an important role in angiogenesis and metastasis. VEGFR-2 has an upper hand in the angiogenesis process. Vascular endothelial growth factor activates VEGFR-2 which initiates tumor angiogenesis. In addition, VEGFRs are associated with numerous other diseases. Hence, inhibition of VEGFRs is an attractive approach for cancer treatment. In view of this, researchers designed and discovered small molecular heterocycle-based VEGFR-2 inhibitors and some of them have been approved by the Food and Drug Administration (FDA). However, these VEGFR-2 inhibitors pose adverse side effects such as cardiovascular problems, diarrhea, and renal function impairment. Research indicates that combination of certain pharmacophores exhibits excellent VEGFR inhibitory activity. In particular, combination of heterocycles paved the way to efficient VEGFR inhibitors. In this review, the research focusing on VEGFR inhibitory activity has been discussed along with the structure-activity relationship. In addition to emphasizing the most potent molecule among the set of designed molecules, structural features responsible for such an activity are described. This review may aid in designing potent VEGFR inhibitors.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College Huvinahadagali 583219 India
| |
Collapse
|
16
|
Le DL, Nguyen LA, Vo NB, Nguyen TTT, Ngo QA, Retailleau P, Nguyen TB. Sodium sulfide-promoted regiodefined redox condensation of o-nitroanilines with aryl ketones to benzo[ a]phenazines and quinoxalines. Org Biomol Chem 2024; 22:1167-1171. [PMID: 38226902 DOI: 10.1039/d3ob02028b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Inexpensive sodium sulfide trihydrate was found to promote unprecedented 6e-regio-predefined redox condensation of o-nitroanilines with α-tetralones to benzo[a]phenazines. The method was also successfully extended to acetophenones and higher homologs as reducing partners to provide 2-phenylquinoxalines. Compared to traditional approaches toward benzo[a]phenazine and quinoxaline cores starting with o-phenylenediamines, the present strategy could afford these heterocycles with well-defined regiochemistry based on the structure of starting o-nitroanilines.
Collapse
Affiliation(s)
- Duc Long Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Le Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Thi Thu Tram Nguyen
- Department of Chemistry, Faculty of Basic Science, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Abchir O, Yamari I, Shtaiwi AM, Nour H, Kouali ME, Talbi M, Errougui A, Chtita S. Insights into the inhibitory potential of novel hydrazinyl thiazole-linked indenoquinoxaline against alpha-amylase: a comprehensive QSAR, pharmacokinetic, and molecular modeling study. J Biomol Struct Dyn 2024:1-18. [PMID: 38305802 DOI: 10.1080/07391102.2024.2310778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The rising prevalence of diabetes necessitates the development of novel drugs, especially given the side effects associated with current medications like Acarbose and Voglibose. A series of 36 Hydrazinyl thiazole-linked indenoquinoxaline derivatives with notable activity against alpha-amylase were studied. To create a molecular model predicting alpha-amylase activity, a QSAR study was performed on these compounds. Molecular descriptors were calculated using Chem3D and Gaussian software and then correlated with their IC50 biological activities to form a dataset. This model data was refined using PCA and modeled with MLR. The model's performance was statistically verified (R2 =0.800; R adj 2 = 0.767; R cv 2 = 0.651) and its applicability domain was defined. It was predicted to possess high predictive power (R test 2 = 0.872). Based on this, new compounds were proposed, and their activities were predicted using the developed model. Additionally, their binding ability to the biological target was studied through molecular docking and dynamics. Their pharmacokinetics were also evaluated using ADMET predictions. Two designed compounds named AE and AB emerged as particularly promising, displaying properties that suggest substantial therapeutic potential and they can form stable complexes into the binding pocket of alpha-amylase enzyme.
Collapse
Affiliation(s)
- Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | | | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mhammed El Kouali
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohammed Talbi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
18
|
Cui Q, Huang C, Liu JY, Zhang JT. Small Molecule Inhibitors Targeting the "Undruggable" Survivin: The Past, Present, and Future from a Medicinal Chemist's Perspective. J Med Chem 2023; 66:16515-16545. [PMID: 38092421 PMCID: PMC11588358 DOI: 10.1021/acs.jmedchem.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.
Collapse
Affiliation(s)
- Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
19
|
Mamedov VA, Galimullina VR, Qu ZW, Zhu H, Syakaev VV, Shamsutdinova LR, Sergeev MA, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. AlCl 3-Promoted Intramolecular Indolinone-Quinolone Rearrangement of Spiro[indoline-3,2'-quinoxaline]-2,3'-diones: Easy Access to Quinolino[3,4- b]quinoxalin-6-ones. J Org Chem 2023. [PMID: 38151045 DOI: 10.1021/acs.joc.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A facile and direct intramolecular indolinone-quinolone rearrangement was developed for the synthesis of quinolino[3,4-b]quinoxalin-6-ones from spiro[indoline-3,2'-quinoxaline]-2,3'-diones, which are readily available with use of isatines, malononitrile, and 1,2-phenylenediamines under quite mild conditions. This efficient approach provides excellent yields and could potentially be used for the construction of a diverse library of quinolino[3,4-b]quinoxalin-6-ones for high-throughput screening in medicinal chemistry. The reaction mechanism is explored by extensive DFT calculations.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Mikhail A Sergeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
20
|
Khade VV, Bhowmick A, Thube AS, Bhat RG. Direct Access to Strained Fused Dihalo-Aziridino Quinoxalinones via C3-Alkylation Followed by Tandem Cyclization. J Org Chem 2023. [PMID: 37262098 DOI: 10.1021/acs.joc.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quinoxalinones are a privileged class of compounds, and their structural framework is found in many bioactive compounds, natural compounds, and pharmaceuticals. Quinoxalinone is a promising scaffold for different types of functionalization, and the slight modification of the quinoxalinone skeleton is known to offer a wide range of compounds for drug discovery. Owing to the importance of the quinoxalinone scaffold, we have developed a base-mediated protocol for the C3-alkylation of quinoxalinone followed by tandem cyclization to access novel types of strenuous and fused dihalo-aziridino-quinoxalinone heterocycles via the construction of C-C and C-N bonds. The protocol proved to be simple and practical to access desired fused quinoxalinone heterocycles in excellent yields (up to 98% yield). As an application, the highly functionalized fused dihalo-aziridino-quinoxalinone molecule has been further utilized for mono-dehalogenation under visible light irradiation and selective amide reduction. Moreover, the protocol has also been demonstrated on a gram scale.
Collapse
Affiliation(s)
- Vikas V Khade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Archana S Thube
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008, India
| |
Collapse
|
21
|
Das A, Dey S, Naresh Yadav R, Jyoti Boruah P, Bakli P, Sarkar S, Mahata P, Kumar Paul A, Hossain F. An Expeditious One‐Pot Two‐Component Synthesis of Quinoxaline Derivatives in Natural Deep Eutectic Solvents (NADESs). ChemistrySelect 2023. [DOI: 10.1002/slct.202204651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Arindam Das
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling 734013 India
| | - Sovan Dey
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling 734013 India
| | - Ram Naresh Yadav
- Department of Chemistry Faculty of Engineering & Technology Veer Bahadur Singh Purvanchal University Jaunpur 222003 (U.P) India
| | | | - Prerana Bakli
- Department of Chemistry, NIT Meghalaya Shillong 793003 India
| | - Sourav Sarkar
- Department of Chemistry Jadavpur University Raja Subodh Chandra Mallick Rd, Jadavpur Kolkata West Bengal 700032
| | - Partha Mahata
- Department of Chemistry Jadavpur University Raja Subodh Chandra Mallick Rd, Jadavpur Kolkata West Bengal 700032
| | - Amit Kumar Paul
- Department of Chemistry, NIT Meghalaya Shillong 793003 India
| | - Firoj Hossain
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling 734013 India
| |
Collapse
|
22
|
Shi SH, Yao YF, He J, Li HY, Han SJ, Zhang LL, Zhao Y. Metal-free sulfonylation of quinoxalinones to access 2-sulfonyl-oxylated quinoxalines via oxidative O-S cross coupling. Org Biomol Chem 2023; 21:1903-1909. [PMID: 36757292 DOI: 10.1039/d2ob02304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The C2 sulfonylation of quinoxalinones via a metal-free oxidative S-O cross-coupling strategy for synthesizing 2-sulfonyloxylated quinoxalines is established. It effectively solved the long-standing problems in the C2 transformation of quinoxalinones via a metal-free oxidative O-S coupling strategy. Compared with the traditional C2 transformed quinoxalinones-C2 chlorination method, this protocol is mild, facile, and environmentally friendly and exhibits good atomic economy and excellent functional group tolerance. Moreover, the utility of this methodology and the sulfonyloxyl handles was demonstrated through the synthesis of 2-substituted quinoxaline-based bioactive molecules.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Yi-Fan Yao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Jiao He
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Hao-Yu Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Shao-Jie Han
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Le-Le Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Yu Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
23
|
Li YN, Zhou MX, Wu JB, Wang Z, Zeng YF. Tandem reduction and trifluoroethylation of quinolines and quinoxalines with trifluoroacetic acid and trimethylamine borane. Org Biomol Chem 2022; 20:9613-9617. [PMID: 36420677 DOI: 10.1039/d2ob01923j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A metal-free tandem reduction and N-trifluoroethylation of quinolines and quinoxalines has been developed. It provided a convenient route to access trifluoroethylated tetrahydroquinolines and tetrahydroquinoxalines. This one-pot method avoids the purification process of the intermediate. Mechanistically, the in situ-generated boryl acetal species reacted with tetrahydroquinolines to generate iminiums followed by reduction to give the target compounds.
Collapse
Affiliation(s)
- Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Ming-Xi Zhou
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
24
|
One pot synthesis of two potent Ag(I) complexes with quinoxaline ligand, X-ray structure, Hirshfeld analysis, antimicrobial, and antitumor investigations. Sci Rep 2022; 12:20881. [PMID: 36463246 PMCID: PMC9719528 DOI: 10.1038/s41598-022-24030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
In one pot, the self-assembly of AgNO3 and 2-chloroquinoxaline (2Cl-quinox) in water-ethanol mixture afforded two novel crystalline Ag(I) complexes. The major product is the polymeric complex [Ag(2Cl-quinox)(NO3)]n; (1), while the minor product (2) comprises two molecules which are the monomeric [Ag(2Cl-quinox)2(NO3)]; (2a) and polymeric [Ag(2Cl-quinox)(NO3)]n; (2b) complexes. The single crystal X-ray structure revealed that 1 and 2b are made up of two-dimensional infinite sheets. In contrast, 2a is a monomeric complex which has a highly distorted tetrahedral geometry around Ag(I) center. In all cases, the 2Cl-quinox molecule acts as a terminal monodentate ligand. Complexes 1 and 2b have similar molecular structures and also have almost similar crystal packing. Using Hirshfeld surface analysis, the O…H hydrogen bonds and π-π stacking interactions contributed significantly to the molecular packing. Both complexes have broad-spectrum action towards multi drug-resistance bacteria. The most effective function of 2 is against Proteus morganii, with a MIC value of 8 μg/mL. Complex 2 (IC50 = 5.93 ± 0.52 μg/mL) has remarkably greater cytotoxic effect against lung carcinoma (A-549) than cis-platin (IC50 = 7.5 ± 0.69 μg/mL) and AgNO3 (IC50 = 14.7 ± 0.53 μg/mL). The higher Ag-content in 2 could be the main reason for its higher cytotoxicity than 1.
Collapse
|
25
|
Rh(III)-catalyzed twofold unsymmetrical C H alkenylation-annulation/amidation reaction enabled delivery of diverse furoquinazolinones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Aksenov AV, Arutiunov NA, Aksenov DA, Samovolov AV, Kurenkov IA, Aksenov NA, Aleksandrova EA, Momotova DS, Rubin M. A Convenient Way to Quinoxaline Derivatives through the Reaction of 2-(3-Oxoindolin-2-yl)-2-phenylacetonitriles with Benzene-1,2-diamines. Int J Mol Sci 2022; 23:ijms231911120. [PMID: 36232422 PMCID: PMC9570350 DOI: 10.3390/ijms231911120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Microwave-assisted reaction between 2-(3-oxoindolin-2-yl)-2-phenylacetonitriles andbenzene-1,2-diamines leads to the high-yielding formation of the corresponding quinoxalines as sole, easily isolaable products. The featured transformation involves unusual extrusion of phenylacetonitrile molecule and could be performed in a short sequence starting from commonly available indoles and nitroolefins.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
- Correspondence: (A.V.A.); (M.R.)
| | - Nikolai A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Artem V. Samovolov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Igor A. Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Elena A. Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Daria S. Momotova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA
- Correspondence: (A.V.A.); (M.R.)
| |
Collapse
|
27
|
Fıstıkçı M, Eşsiz S. Revisiting the pyrolysis of 1,5‐diaryl‐1,2,5‐triazapentadienes: A computational reaction mechanism study. ChemistrySelect 2022. [DOI: 10.1002/slct.202202957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meryem Fıstıkçı
- Hakkari University Vocational School of Health Services Department of Medical Services and Techniques Hakkari 30000 Turkey
| | - Selçuk Eşsiz
- Hakkari University Vocational School of Health Services Department of Medical Services and Techniques Hakkari 30000 Turkey
| |
Collapse
|
28
|
Hameed S, Khan KM, Salar U, Özil M, Baltaş N, Saleem F, Qureshi U, Taha M, Ul-Haq Z. Hydrazinyl thiazole linked indenoquinoxaline hybrids: Potential leads to treat hyperglycemia and oxidative stress; Multistep synthesis, α-amylase, α-glucosidase inhibitory and antioxidant activities. Int J Biol Macromol 2022; 221:1294-1312. [PMID: 36113601 DOI: 10.1016/j.ijbiomac.2022.09.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
A library of hydrazinyl thiazole-linked indenoquinoxaline hybrids 1-36 were synthesized via a multistep reaction scheme. All synthesized compounds were characterized by various spectroscopic techniques including EI-MS (electron ionization mass spectrometry) and 1H NMR (nuclear magnetic resonance spectroscopy). Compounds 1-36 were evaluated for their inhibitory potential against α-amylase, and α-glucosidase enzymes. Among thirty-six, compounds 2, 9, 10, 13, 15, 17, 21, 22, 31, and 36 showed excellent inhibition against α-amylase (IC50 = 0.3-76.6 μM) and α-glucosidase (IC50 = 1.1-92.2 μM). Results were compared to the standard acarbose (IC50 = 13.5 ± 0.2 μM). All compounds were also evaluated for their DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and compounds 2, 9, 10, 17, 21, 31, and 36 showed (SC50 = 7.58-125.86 μM) as compared to the standard ascorbic acid (SC50 = 21.50 ± 0.18 μM). Among this library, compounds 9 and 10 with a hydroxy group on the phenyl rings and thiosemicarbazide bearing intermediate 21 were identified as the most potent inhibitors against α-amylase, and α-glucosidase enzymes. The remaining compounds were found to be moderately active. The molecular docking studies were conducted to understand the binding mode of active inhibitors and kinetic studies of the active compounds followed competitive modes of inhibition.
Collapse
Affiliation(s)
- Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
29
|
Zinc ferrite as reusable and green catalyst for synthesis of quinoxaline derivatives. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Xi Q, Jiang W, Wang H, Liu J, Sun F, Wen B, Zhao X, Gao S, Li Y. A Facile Synthesis and Antitumor Activity of Novel 2-Aryl-2,3- dihydro-1 H-pyrrolo[3,4- b]quinoxalin-1-ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1881130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Qian Xi
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Wenting Jiang
- College of Life Science, Yan’an University, Yan’an, China
| | - Hongxue Wang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Jia Liu
- Chaoyang Inspection and Testing Certification Center, Chaoyang, China
| | - Fuze Sun
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Baohan Wen
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Xinyue Zhao
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Siyang Gao
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Yang Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
31
|
KÜÇÜK C, YURDAKUL S, CELİK S, ERDEM B. Experimental and DFT studies of 2-Methyl-quinoxaline and its Silver (I) complex: Non-covalent interaction analysis, antimicrobial activity and molecular docking study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Nguyen LA, Nguyen TTT, Ngo QA, Nguyen TB. Sulfur‐Catalyzed Oxidative Condensation of Aryl Alkyl Ketones with o‐Phenylenediamines: Access to Quinoxalines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Quoc Anh Ngo
- Vietnam Academy of Science and Technology VIET NAM
| | | |
Collapse
|
33
|
Hameed S, Khan KM, Taslimi P, Salar U, Taskin-Tok T, Kisa D, Saleem F, Solangi M, Ahmed MHU, Rani K. Evaluation of synthetic 2-aryl quinoxaline derivatives as α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitors. Int J Biol Macromol 2022; 211:653-668. [PMID: 35568155 DOI: 10.1016/j.ijbiomac.2022.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 01/13/2023]
Abstract
Variety of 2-aryl quinoxaline derivatives 1-23 were synthesized in good yields, by reacting 1,2-phenylenediamine with varyingly substituted phenacyl bromides in the presence of pyridine catalyst. All molecules 1-23 were characterized by spectroscopic techniques and evaluated for their diverse biological potential against α-amylase (α-AMY), α-glucosidase (α-GLU), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. Synthetic derivatives possess enhanced inhibitory potential against all enzymes at nanomolar concentrations. In particular, compound 14 was found much superior with IC50 = 294.35, 198.21, 17.04, and 21.46 nM against α-AMY, α-GLU, AChE, and BChE, respectively, as compared to standard inhibitors. Furthermore, selected potent compounds, including 3, 4, 8, 14, 15, 17, and 18, were subjected to molecular docking studies to decipher the binding energies and interactions of ligands (synthetic molecules) with all four target enzymes.
Collapse
Affiliation(s)
- Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tugba Taskin-Tok
- Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, Gaziantep, Turkey; Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep, Turkey
| | - Dursun Kisa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Hassaan Uddin Ahmed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kiran Rani
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
34
|
Sun Z, Wei C, Wu S, Zhang W, Song R, Hu D. Synthesis, Anti-Potato Virus Y Activities, and Interaction Mechanisms of Novel Quinoxaline Derivatives Bearing Dithioacetal Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7029-7038. [PMID: 35649047 DOI: 10.1021/acs.jafc.2c01898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quinoxaline and its derivatives are important functional molecules with a broad range of applications. Disclosed here is a design and synthesis of a series of novel quinoxaline derivatives containing dithioacetal moieties as well as their antiviral activities against potato virus Y (PVY). The compound D30 was developed on the basis of the three-dimensional quantitative structure-activity relationship. The anti-PVY activity test showed that the half maximal effective concentration of the anti-PVY protective activity of compound D30 is 197 μg/mL, which was better than the control agents ningnanmycin (423 μg/mL) and xiangcaoliusuobingmi (281 μg/mL). Significantly, compound D30 can increase defense enzyme activity and chlorophyll content, promote photosynthesis by accelerating carbon fixation in tobacco, and further improve plant disease resistance. All of these results suggest that compound D30 could be employed as a lead compound for novel PVY inhibitor discovery.
Collapse
Affiliation(s)
- Zhongrong Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Wenbo Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
35
|
Agrawal N, Bhardwaj A. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold. Chem Biol Drug Des 2022; 100:346-363. [PMID: 35610776 DOI: 10.1111/cbdd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) exhibit multifaceted biological properties, wherein antimicrobial, anticancer, antitrypanosomal, and anti-inflammatory properties are included. Because of their various activities in clinical practice and research, they have a wide spectrum of uses and possibilities. QdNOs have received a significant amount of attention, and research into their medicinal chemistry is still a part of experimental investigation and analytical studies. In this review, QdNOs are classified depending on their actions, which include antibacterial and anti-mycobacterial, anticancer or antitumor, antimalarial, antifungal, and other activities. In a conclusion, it's important to base the development of novel synthetic techniques and the design of new QdNO derivatives on the most up-to-date knowledge gleaned from recent research. With the summarised structure-activity relationship of fascinating QdNOs, this review aims to provide insights into the developments in the chemistry and biological activity of QdNO derivatives.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aditya Bhardwaj
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
36
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
37
|
Design and synthesis of 6-amino-quinoxaline-alkynyl as potential aromatase (CYP19A1) inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Feng LS, Gao C, Liu FW, Wang XP, Zhang ZL. Recent updates on the anticancer activity of quinoxaline hybrids (Jan. 2017-Jan. 2022). Curr Top Med Chem 2022; 22:1426-1441. [DOI: 10.2174/1568026622666220428093955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer as one of the leading causes of death among non-communicable diseases has already posed a heavy burden on the world health system. Chemotherapy is one of the most effective approaches for cancer treatment, but multidrug resistance, lack of efficacy, and toxic side effects hamper efficacious cancer chemotherapy, creating an urgent need to develop novel, more effective and less toxic anticancer therapeutics. Quinoxalines as fascinating structures constitute an important class of heterocycles in drug discovery. Quinoxaline hybrids could exert anticancer activity through diverse mechanisms and possess profound in vitro and in vivo efficacy against various cancers including multidrug-resistant forms. Thus, quinoxaline hybrids represent useful templates for the control and eradication of cancer. The purpose of the present review article is to provide an emphasis on the recent developments (Jan. 2017-Jan. 2022) in quinoxaline hybrids with insights into their in vitro and in vivo anticancer potential as well as structure-activity relationships (SARs) to facilitate further rational design of more effective candidates.
Collapse
|
39
|
Yan J, Zheng L, Wang J, Liu X, Hu Y. Indoles Oxidative Ring-Opening/Cyclization Cascade with the 1,2-Diaminoarenes: Direct Synthesis of 2-Aryl-3-(2-aminoaryl)quinoxalines. J Org Chem 2022; 87:6347-6351. [PMID: 35420817 DOI: 10.1021/acs.joc.1c03120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A mild oxidative sequential tandem reaction was developed to rapidly generate 2-aryl-3-(2-aminoaryl) quinoxalines. This method exploited 2-substituted indoles as substrate to form quinoxalines in a one-pot reaction. The key to this tandem reaction was the formation of 3-iodoindoles, which underwent Kornblum-type oxidation with DMSO to generate active imine 2-substitued 3H-indol-3-ones. The active imines were captured in situ by 1,2-diaminobenzenes to construct diverse quinoxalines. The transformation can be accomplished at room temperature with excellent functional group tolerance.
Collapse
Affiliation(s)
- Jianwei Yan
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Linxia Zheng
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Jiangfei Wang
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Xiaomin Liu
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
40
|
Alanazi MM, Elkady H, Alsaif NA, Obaidullah AJ, Alanazi WA, Al-Hossaini AM, Alharbi MA, Eissa IH, Dahab MA. Discovery of new quinoxaline-based derivatives as anticancer agents and potent VEGFR-2 inhibitors: Design, synthesis, and in silico study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Kaushal T, Khan S, Fatima K, Luqman S, Khan F, Negi AS. Synthesis, molecular docking, and 2D-QSAR modeling of quinoxaline derivatives as potent anticancer agents against triple-negative breast cancer. Curr Top Med Chem 2022; 22:855-867. [PMID: 35331094 DOI: 10.2174/1568026622666220324151808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast carcinomas aka triple-negative breast cancers (TNBC) are one of the most complex and aggressive forms of cancers in females. Recently, studies have shown that these carcinomas are resistant to hormone-targeted therapies, which makes it a priority to search for effective and potential anticancer drugs. The present study was aimed to synthesize and develop the 2D-quantitative structural activity relationship model (QSAR) of quinoxaline derivatives as a potential anticancer agent. METHODS Quinoxaline derivatives were designed and synthesized (8a-8i and 9a-9d) and the 2D-QSAR model against TNBC was developed using VLife MDS v4.4. The anticancer activity was investigated against the TNBC MDA-MB-231 cell line using an MTT cytotoxicity assay. Molecular docking studies along with the estimation of ADMET parameters were done, using Discovery Studio. The most potent compound was docked against the β-tubulin protein target (PDB: 4O2B), using the Autodock Vina v0.8 program. RESULTS Eleven derivatives of quinoxaline were designed and synthesized (8a-8i and 9a-9d) and a 2D-QSAR model was developed against the TNBC MDA-MB231 cell line. The regression coefficient values for the training set were (r2) 0.78 and (q2) 0.71. Further, external test set regression (pred_r2) was 0.68. Five molecular descriptors viz., energy dispersive (Epsilon3), protein-coding gene (T_T_C_6), molecular force field (MMFF_6), most hydrophobic hydrophilic distance (XA), and Zcomp Dipole were identified. After ADMET, the best analog 8a showed the best activity against the TNBC cell line. The best-predicted hit '8a' was found to bind within the active site of the β-tubulin protein target. Conclusion The newly synthesized quinoxaline compounds could serve as potent leads for the development of novel anti-cancer agents against TNBC.
Collapse
Affiliation(s)
- Tanu Kaushal
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal & Aromatic Plants (CSIR-CIMAP), Lucknow-226015 (U.P.) INDIA.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.) INDIA
| | - Sana Khan
- Computational Biology Unit, CSIR-Central Institute of Medicinal & Aromatic Plants (CSIR-CIMAP), Lucknow-226015 (U.P.) INDIA.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.) INDIA
| | - Kaneez Fatima
- Molecular Bioprospecting Department, CSIR-Central Institute of Medicinal & Aromatic Plants (CSIR-CIMAP), Lucknow-226015 (U.P.) INDIA.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.) INDIA
| | - Suaib Luqman
- Molecular Bioprospecting Department, CSIR-Central Institute of Medicinal & Aromatic Plants (CSIR-CIMAP), Lucknow-226015 (U.P.) INDIA.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.) INDIA
| | - Feroz Khan
- Computational Biology Unit, CSIR-Central Institute of Medicinal & Aromatic Plants (CSIR-CIMAP), Lucknow-226015 (U.P.) INDIA.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.) INDIA
| | - Arvind Singh Negi
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal & Aromatic Plants (CSIR-CIMAP), Lucknow-226015 (U.P.) INDIA.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.) INDIA
| |
Collapse
|
42
|
Wang M, Zhang Y, Yang X, Sun P. Phenanthrenequinone (PQ) catalyzed cross-dehydrogenative coupling of alkanes with quinoxalin-2(1 H)-ones and simple N-heteroarenes under visible light irradiation. Org Biomol Chem 2022; 20:2467-2472. [PMID: 35262545 DOI: 10.1039/d2ob00278g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and convenient strategy to 3-alkylquinoxalin-2(1H)-ones and other alkyl N-heteroarenes via a photocatalyzed alkylation of quinoxalin-2(1H)-ones and other N-heterocycles with commercially available, low-cost alkanes under ambient conditions using phenanthrenequinone (PQ) as a photocatalyst was developed. This transformation has advantages of environment-friendly protocol, mild conditions, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China. .,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Xinyu Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
43
|
Kayogolo CW, Vegi MR, Srivastava BBL, Sahini MG. Therapeutical potential of metal complexes of quinoxaline derivatives: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2049767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chrisant William Kayogolo
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Maheswara Rao Vegi
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Bajarang Bali Lal Srivastava
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Mtabazi Geofrey Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
44
|
Synthesis, structural characterization, Hirshfeld surface analysis and anti-corrosion on mild steel in 1M HCl of ethyl 2-(3-methyl-2-oxo-1,2-dihydroquinoxaline-1-yl)acetate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Zhanataev AK, Pigarev SE, Fedoros EI, Panchenko AV, Anisina EA, Chayka ZV, Durnev AD, Anisimov VN. Antigenotoxic and antimutagenic effects of lignin derivative BP-C2 against dioxidine and cyclophosphamide in vivo in murine cells. Toxicol Rep 2022; 9:743-749. [DOI: 10.1016/j.toxrep.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
|
46
|
Shi SH, Wei J, Liang CM, Bai H, Zhu HT, Zhang Y, Fu F. Electro-oxidation induced O–S cross-coupling of quinoxalinones with sodium sulfinates for synthesizing 2-sulfonyloxylated quinoxalines. Chem Commun (Camb) 2022; 58:12357-12360. [DOI: 10.1039/d2cc04524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel C2–O sulfonylation of quinoxalinones via electro-oxidation induced O–S coupling strategy under mild conditions was reported.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Jian Wei
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chun-Miao Liang
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Huan Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yantu Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Feng Fu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| |
Collapse
|
47
|
reda R, Al-Karmalawy AA, Alotaibi M, saleh M. Quinoxaline Derivatives as a Promising Scaffold for Breast Cancer Treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj00050d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
According to Global Cancer Statistics 2021, female breast cancer has exceeded lung cancer as the most frequently diagnosed cancer. As a result of this widespread breast cancer, it was necessary...
Collapse
|
48
|
Pinto FE, Olsen P, Glud M, Wulf HC, Lerche CM. Topical Brimonidine Delays Ultraviolet Radiation-Induced Squamous Cell Carcinoma in Hairless Mice. Photochem Photobiol 2022; 98:1390-1394. [PMID: 35338500 PMCID: PMC9790565 DOI: 10.1111/php.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022]
Abstract
We investigated whether topical brimonidine delayed or enhanced the development of squamous cell carcinoma (SCC) when ultraviolet radiation (UVR) was applied to a well-established murine model. Hairless female mice (n = 125) were randomized into five groups and treated as follows: 1% brimonidine cream before UVR (Group 1), 0.33% brimonidine gel before UVR (Group 2), 1% brimonidine cream after UVR (Group 3), UVR only (control; Group 4) and 1% brimonidine cream only (control; Group 5). For each animal, the first four tumors were recorded and followed until three tumors reached 4 mm or one tumor reached 12 mm in diameter. All animal experiments continued for up to 365 days or until death. Application of 1% brimonidine cream before UVR delayed tumor development relative to control mice treated with UVR alone (P = 0.000006). However, when 0.33% brimonidine gel was applied before UVR (P = 0.313) or 1% brimonidine cream was applied after UVR (P = 0.252), there was no significant delay in tumor development relative to control mice treated with UVR alone. The development of the second and third tumors followed a similar pattern. Topical 1% brimonidine cream applied before UVR exposure delayed SCC development in hairless mice. In contrast, when brimonidine was applied after UVR there was no significant delay in tumor development. These results suggest that the 1% brimonidine cream probably absorbed the UVR, and therefore, a delay in tumor formation was only seen when brimonidine was applied before irradiation. However, there can be multiple reasons for this delay in photocarcinogenesis.
Collapse
Affiliation(s)
- Fernanda E. Pinto
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark
| | - Peter Olsen
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark
| | - Martin Glud
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark
| | | | - Catharina M. Lerche
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark,Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
49
|
Suzuki Y, Takehara R, Miura K, Ito R, Suzuki N. Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents. J Org Chem 2021; 86:16892-16900. [PMID: 34797078 DOI: 10.1021/acs.joc.1c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A facile and regioselective synthesis of quinoxalines, an important motif in medicinal chemistry and materials sciences, was developed. Despite their prospective utility, the regioselective preparation of trisubstituted quinoxalines has not been previously established. In the reported system, hypervalent iodine reagents catalyzed the annulation between α-iminoethanones and o-phenylenediamines in a chemo/regioselective manner to afford trisubstituted quinoxalines. Excellent regioselectivities (6:1 to 1:0) were achieved using [bis(trifluoroacetoxy)iodo]benzene and [bis(trifluoroacetoxy)iodo]pentafluorobenzene as annulation catalysts.
Collapse
Affiliation(s)
- Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ren Takehara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Kasumi Miura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ryota Ito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| |
Collapse
|
50
|
Rational drug design, synthesis, and biological evaluation of novel N-(2-arylaminophenyl)-2,3-diphenylquinoxaline-6-sulfonamides as potential antimalarial, antifungal, and antibacterial agents. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|