1
|
Wang H, Huang G, Zhang X. Analysis and properties of polysaccharides extracted from Brassica oleracea L. var. capitata L. by hot water extraction/ultrasonic-synergistic enzymatic method. ULTRASONICS SONOCHEMISTRY 2025; 114:107244. [PMID: 39889358 PMCID: PMC11833351 DOI: 10.1016/j.ultsonch.2025.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
In this study, the polysaccharides (BOLP) of Brassica oleracea L. var. capitata L. were extracted by ultrasound-assisted pectinase (UAEE) and hot water extraction (HAE), and the extraction conditions of the two methods were optimized by establishing response surface methodology (RSM), and the HAE-BOLP and UAEE-BOLP obtained under the optimal extraction conditions were analyzed for their chemical compositions, preliminary structural characterization and in vitro antioxidant activity tests. The findings demonstrated that, in the ideal circumstances investigated by RSM, the BOLP extracted by UAEE was superior to that of HAW, both in terms of sugar content and extraction rate, in which the extraction rate was 1.51 times higher than that of HAE, and the amount of solvent used for extraction was greatly reduced. As far as the antioxidant activity test is concerned, UAEE-extracted BOLP showed more reducing power and ABTS+ radical scavenging ability than HAE, reaching about 97.61 % scavenging of ABTS+ at 4 mg/mL. In addition, structural characterization showed that UAEE-BOLP is an acidic polysaccharide containing glucuronic acid with α- and β-glycosidic bonds, whereas HAE-BOLP contains only β-glycosidic bonds, and both polysaccharides contain furanose and pyranose ring structures. In this study, the ultrasound-assisted pectinase extraction method for BOLP was reported for the first time. Additionally, the in-vitro antioxidant activity of BOLP was measured for the first time. This work fills the gap regarding the antioxidant activity of BOLP, and it can provide a theoretical basis for the future development and utilization of BOLP in fields such as biopharmaceuticals and food additives.
Collapse
Affiliation(s)
- Huilin Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Xixin Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
2
|
Niu Y, Zhao T, Liu Z, Li D, Wen D, Li B, Huang X. Brassica rapa L. crude polysaccharide meditated synbiotic fermented whey beverage ameliorates hypobaric hypoxia induced intestinal damage. Food Funct 2024; 15:11975-11989. [PMID: 39555987 DOI: 10.1039/d4fo04667f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypobaric hypoxia causes oxidative stress and inflammatory responses and disrupts the gut microbiome and metabolome. In this study, we developed a synbiotic fermented whey beverage, combining kefir and Brassica rapa L. crude polysaccharides, to explore its protective effects against high-altitude induced injury in mice. The beverage, formulated with 0.8% (w/v) polysaccharides and kefir inoculation, demonstrated robust fermentation parameters and antioxidative capacity. When applied to a hypobaric hypoxia mouse model, the synbiotic fermented whey significantly reduced oxidation and protected the intestinal barrier by lowering inflammation, protecting the intestinal structure, increasing goblet cell counts, and reducing apoptosis. It also modulated the gut microbiota, enriching beneficial taxa as Intestinimonas and Butyricicoccaceae, while reducing harmful ones like Marvinbryantia and Proteus, and enhancing short-chain fatty acid (SCFA) production. Notably, the beverage increased berberine and nicotinic acid levels, activating the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway and influencing nicotinate and nicotinamide metabolites linked to the suppression of Marvinbryantia, thereby alleviating intestinal inflammation and barrier damage. These effects contributed to the alleviation of hypoxia-induced intestinal damage in mice. This study highlights the potential of synbiotics and whey fermentation in novel nutritional interventions in high altitude environments.
Collapse
Affiliation(s)
- Yuanlin Niu
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Zhenjiang Liu
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Diantong Li
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China.
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, China
| |
Collapse
|
3
|
Xu Z, Li J, Yan N, Liu X, Deng Y, Song Y. Phosphatidylserine and/or Sialic Acid Modified Liposomes Increase Uptake by Tumor-associated Macrophages and Enhance the Anti-tumor Effect. AAPS PharmSciTech 2024; 25:125. [PMID: 38834759 DOI: 10.1208/s12249-024-02837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.
Collapse
Affiliation(s)
- Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Jie Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Na Yan
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
4
|
Kong H, Yang J, Wang X, Mamat N, Xie G, Zhang J, Zhao H, Li J. The combination of Brassica rapa L. polysaccharides and cisplatin enhances the anti liver cancer effect and improves intestinal microbiota and metabolic disorders. Int J Biol Macromol 2024; 265:130706. [PMID: 38458274 DOI: 10.1016/j.ijbiomac.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Polysaccharides are commonly used as low-toxicity anticancer active substances to enhance the chemotherapeutic effect of cisplatin and reduce toxicity. Brassica rapa L. polysaccharides have been shown to have hepatoprotective effects; however, their anticancer effects in combination with cisplatin and their mechanisms have not been reported. An acidic polysaccharide from Brassica rapa L. (BRCPe) using hydroalcohol precipitation-assisted sonication was Characterized. The effects of BRCPe combined with cisplatin treatment on tumor growth in hepatocellular carcinoma mouse model were investigated. The impact of the combined treatment on the composition of intestinal flora, levels of short-chain fatty acids and endogenous metabolites in tumor mice were analyzed based on macrogenomic and metabolomic data Our results showed that the BRCPe combined with low-dose Cisplatin group showed better inhibitory activity against hepatocellular carcinoma cell growth in terms of tumor volume, tumor weight, and tumor suppression rate compared with the BRCPe and Cisplation alone group, and reduced the side effects of cisplatin-induced body weight loss, immune deficiency, and liver injury. Furthermore, BRCPe combined with cisplatin was found to induce apoptosis in hepatocellular carcinoma cell through the activation of the caspase cascade reaction. In addition, the intervention of BRCPe were observed to modulate the composition, structure and functional structure of intestinal flora affected by cisplatin. Notably, Lachnospiraceae bacteria, Lactobacillus murinus, Muribaculaceae, and Clostridiales bacteria were identified as significant contributors to microbial species involved in metabolic pathways. Moreover, BRCPe effectively regulate the metabolic disorders in cisplatin-induced hepatocellular carcinoma mice. In conclusion, BRCPe could potentially function as an adjuvant or dietary supplement to augment the effectiveness of cisplatin chemotherapy through the preservation of a more efficient intestinal microenvironmental homeostasis.
Collapse
Affiliation(s)
- Hanrui Kong
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jun Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaojing Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Nuramina Mamat
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Guoxuan Xie
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jing Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China.
| | - Jinyu Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
5
|
Matsui R, Endo K, Saiki T, Haga H, Shen W, Wang X, Yamazaki S, Katayama S, Nagata K, Kitamura H, Tanaka S. Characterization and anti-tumor activities of polysaccharide isolated from Brassica rapa L. via activation of macrophages through TLR2-and TLR4-Dependent pathways. Arch Biochem Biophys 2024; 752:109879. [PMID: 38160699 DOI: 10.1016/j.abb.2023.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
We have previously shown the immunostimulatory effects by Nozawana (Brassica rapa L.). In this report, we determined the characteristics of Nozawana polysaccharide (NPS) and evaluated the immunomodulatory effects and anti-tumor activity of NPS mediated by macrophage activation. The molecular weight of NPS was determined by gel filtration chromatography with an average molecular weight of approximately 100.6 kDa. HPLC analysis showed that NPS contained glucose, galacturonic acid, galactose, and arabinose. NPS increased cytokine and nitric oxide (NO) production by macrophages in a Toll-like receptor (TLR)2 and TLR4-dependent manner. Furthermore, NPS induced apoptosis significantly against 4T1 murine breast cancer cells cultured in conditioned medium from NPS-treated macrophages through tumor necrosis factor-α. In tumor-bearing mouse model, tumor growth was significantly reduced in NPS-treated mice compared with control mice. These results support the potential use of NPS as an immunotherapeutic material found in health food products.
Collapse
Affiliation(s)
- Rina Matsui
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Katsunori Endo
- Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Takeru Saiki
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Hazuki Haga
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Weidong Shen
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido, 090-0815, Japan
| | - Xiangdong Wang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido, 090-0815, Japan
| | - Shinya Yamazaki
- Food Technology Department, Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano, Nagano, 380-0921, Japan
| | - Shigeru Katayama
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan; Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Kenji Nagata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido, 090-0815, Japan; Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Sachi Tanaka
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan; Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan.
| |
Collapse
|
6
|
Hamed YS, Ahsan HM, Hussain M, Ahmad I, Tian B, Wang J, Zou XG, Bu T, Ming C, Rayan AM, Yang K. Polysaccharides from Brassica rapa root: Extraction, purification, structural features, and biological activities. A review. Int J Biol Macromol 2024; 254:128023. [PMID: 37952795 DOI: 10.1016/j.ijbiomac.2023.128023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Brassica rapa (B. rapa) roots are attracting increased attention from nutritionists and health-conscious customers because of their remarkable performance in supplying necessary nutrients. Polysaccharides are major biologically active substances in B. rapa roots, which come in a variety of monosaccharides with different molar ratios and glycosidic bond types. Depending on the source, extraction, separation, and purification methods of B. rapa roots polysaccharides (BRP); different structural features, and pharmacological activities are elucidated. Polysaccharides from B. rapa roots possess a range of nutritional, biological, and health-enhancing characteristics, including anti-hypoxic, antifatigue, immunomodulatory, hypoglycemic, anti-tumor, and antioxidant activities. This paper reviewed extraction and purification methods, structural features, and biological activities as well as correlations between the structural and functional characteristics of polysaccharides from the B. rapa roots. Ultimately, this work will serve as useful reference for understanding the connections between polysaccharide structure and biological activity and developing novel BRP-based functional foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahahuddin Zakaria University, Multan, Pakistan
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| |
Collapse
|
7
|
Saeed RA, Maqsood M, Saeed RA, Muzammil HS, Khan MI, Asghar L, Nisa SU, Rabail R, Aadil RM. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit Rev Food Sci Nutr 2023; 63:11750-11783. [PMID: 35796706 DOI: 10.1080/10408398.2022.2095974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regardless of etiology, hepatocarcinogenesis is frequently preceded by a distinctive sequence of chronic necroinflammation, compensatory hepatic regeneration, development of hepatic fibrosis, and ultimately cirrhosis. The liver being central immunomodulators, closely maintains immunotolerance. Any dysregulation in this management of immunotolerance is a hallmark of chronic hepatic disease and hepatocellular carcinoma (HCC). Apart from other malignancies, hepatocellular carcinoma accounts for 90% of liver cancers. Several emerging evidences have recognized diet as lifestyle associated risk factor in HCC development. However, natural compounds have the potential to fight hepatoma aggressiveness via inhibition of cellular proliferation and modulation of oncogenic pathways. This review aimed to identify the several plant-based foods for their protective role in HCC prevention by understating the molecular mechanisms involved in inhibition of progression and proliferation of cancer. Information from relevant publications in which several plant-based foods demonstrated protective potential against HCC has been integrated as well as evaluated. For data integration, Science direct, Google scholar, and Scopus websites were used. Nutrition-based approaches in the deterrence of several cancers offer a substantial benefit to currently used medical therapies and should be implemented more often as an adjunct to first-line medical therapy. Furthermore, the inclusion of these plant-based foods (vegetables, fruits, herbs, and spices) may improve general health and decline cancer incidence.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raafia Anam Saeed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Laiba Asghar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Un Nisa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Taoerdahong H, Kadeer G, Chang J, Kang J, Ma X, Yang F. A Review Concerning the Polysaccharides Found in Edible and Medicinal Plants in Xinjiang. Molecules 2023; 28:molecules28052054. [PMID: 36903300 PMCID: PMC10004434 DOI: 10.3390/molecules28052054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/25/2023] Open
Abstract
Approximately 110 types of medicinal materials are listed in the Chinese Pharmacopoeia, both for medicinal purposes and for use as food. There are several domestic scholars who have carried out research on edible plant medicine in China and the results are satisfactory. Though these related articles have appeared in domestic magazines and journals, many of them are yet to be translated into English. Most of the research stays in the extraction and quantitative testing stage, and there are a few medicinal and edible plants that are still under in-depth study. A majority of these edible and herbal plants are also highly enriched in polysaccharides, and this has an effect on immune systems for the prevention of cancer, inflammation, and infection. Comparing the polysaccharide composition of medicinal and edible plants, the monosaccharide and polysaccharide species were identified. It is found that different polysaccharides of different sizes have different pharmacological properties, with some polysaccharides containing special monosaccharides. The pharmacological properties of polysaccharides can be summarized as immunomodulatory, antitumor, anti-inflammatory, antihypertensive and anti-hyperlipemic, antioxidant, and antimicrobial properties. There have been no poisonous effects found in studies of plant polysaccharides, probably because the substances have a long history of use and are safe. In this paper, the application potential of polysaccharides in medicinal and edible plants in Xinjiang was reviewed, and the research progress in the extraction, separation, identification, and pharmacology of these plant polysaccharides was reviewed. At present, the research progress of plant polysaccharides in medicines and food in Xinjiang has not been reported. This paper will provide a data summary for the development and utilization of medical and food plant resources in Xinjiang.
Collapse
|
9
|
Qiang M, Cai P, Ao M, Li X, Chen Z, Yu L. Polysaccharides from Chinese materia medica: Perspective towards cancer management. Int J Biol Macromol 2023; 224:496-509. [PMID: 36265542 DOI: 10.1016/j.ijbiomac.2022.10.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
Cancer has always been a focus of global attention, and the difficulty of treatment and poor prognosis have always plagued humanity. Conventional chemotherapeutics and treatment with synthetic disciplines will cause adverse side effects and drug resistance. Therefore, searching for a safe, valid, and clinically effective drug is necessary. At present, some natural compounds have proved to have the potential to fight cancer. Polysaccharides obtained from Chinese materia medica are good anti-cancer ingredients. Polysaccharides are macromolecular compounds of equal or distinct monosaccharides with an α- or β-glycosidic bonds. The anti-cancer activity has been fully demonstrated in vivo and in vitro. However, Chinese materia medica polysaccharides are only used as adjuvant therapy for cancer-related diseases. Hence, this review mainly discusses the chemical composition, biological activity, absorption in vivo, and clinical application of Chinese materia medica polysaccharides. Also, we discussed the anti-cancer mechanism. We also discussed the current research's limitations on treating cancer with Chinese materia medica polysaccharides and insights into future research.
Collapse
Affiliation(s)
- Mengqin Qiang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Pingjun Cai
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Mingyue Ao
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Li
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Zhimin Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Lingying Yu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
10
|
Zhang C, Shu Y, Li Y, Guo M. Extraction and immunomodulatory activity of the polysaccharide obtained from Craterellus cornucopioides. Front Nutr 2022; 9:1017431. [PMID: 36424922 PMCID: PMC9678937 DOI: 10.3389/fnut.2022.1017431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we investigated the structural features of the polysaccharide obtained from Craterellus cornucopioides (CCP2) by high-performance liquid chromatography, Fourier transform infrared spectroscopy and ion chromatography. The results showed that CCP2 was a catenarian pyranose that principally comprised of mannose, galactose, glucose, and xylose in the ratio of 1.86: 1.57: 1.00: 1.14, with a molecular weight of 8.28 × 104 Da. Moreover, the immunoregulation effect of CCP2 was evaluated both in vitro and in vivo. It displayed a remarkable immunological activity and activation in RAW264.7 cells by enhancing the phagocytosis of macrophages in a dose-dependent manner without showing cytotoxicity at the concentrations of 10–200 μg/mL in vitro. Additionally, Histopathological analysis indicated the protective function of CCP2 against immunosuppression induced by cyclophosphamide (Cy). Meanwhile, the intake of CCP2 had better immunoregulatory activity for immunosuppression BALB/c mice model. After prevention by CCP2, the spleen and thymus weight indexes of BALB/c mice model were significantly increased. The RT-qPCR and Western Blot results provided comprehensive evidence that the CCP2 could activate macrophages by enhancing the production of cytokines (IL-2, IL-6, and IL-8) and upregulating the protein expression of cell membrane receptor TLR4 and its downstream protein kinase (TRAF6, TRIF, and NF-κB p65) production of immunosuppressive mice through TLR4-NFκB p65 pathway. The results demonstrated that CCP2 could be a potential prebiotic and might provide meaningful information for further research on the immune mechanism.
Collapse
|
11
|
Rizzi J, Moro TR, Winnischofer SMB, Colusse GA, Tamiello CS, Trombetta-Lima M, Noleto GR, Dolga AM, Duarte MER, Noseda MD. Chemical structure and biological activity of the (1 → 3)-linked β-D-glucan isolated from marine diatom Conticribra weissflogii. Int J Biol Macromol 2022; 224:584-593. [DOI: 10.1016/j.ijbiomac.2022.10.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
12
|
Li J, Nan J, Wu H, Park HJ, Zhao Q, Yang L. Middle purity soy lecithin is appropriate for food grade nanoliposome: Preparation, characterization, antioxidant and anti-inflammatory ability. Food Chem 2022; 389:132931. [PMID: 35500405 DOI: 10.1016/j.foodchem.2022.132931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
The purity of soy lecithin exerts significant impact on nanoliposome (NL) properties for food applications. In this study, three soy lecithin of different purity were used to prepare NL. LC-MS analysis confirmed soy lecithin of relatively low purify (50% and 70%) contains multiple natural phospholipids. NL produced by soy lecithin of middle purity (70%) is smaller and more stable than other counterparts. Ultimately, soy lecithin of 70% purity was selected to develop NL encapsulated crocetin (CR) as model payload and further coated by chitosan (CS). The structure characteristic, physicochemical properties, antioxidant activity and anti-inflammatory activity of crocetin nanoliposome (CR-NL) and chitosan coated crocetin nanoliposome (CS-CR-NL) were evaluated. NL encapsulation and CS coating significantly improve antioxidant and anti-inflammatory ability of CR, and prolong storage period of CR (p < 0.05). For food applications, soy lecithin of middle purity (70%) is cheaper and more appropriate than soy lecithin of high purity.
Collapse
Affiliation(s)
- Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Jian Nan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haishan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Qingsheng Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.
| |
Collapse
|
13
|
Bo R, Liu X, Wang J, Wei S, Wu X, Tao Y, Xu S, Liu M, Li J, Pang H. Polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles: Characterization, immunological effect and mechanism. Front Nutr 2022; 9:992502. [PMID: 36185684 PMCID: PMC9520191 DOI: 10.3389/fnut.2022.992502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Atractylodes macrocephala Koidz (A. macrocephala) has been used both as a traditional medicine and functional food for hundreds of years in Asia. And it has a variety of biological activities, such as enhancing the ability of immunity and modulating effect on gastrointestinal motility. In this study, a water-soluble polysaccharide with molecular weight of 2.743 × 103 Da was isolated from the root of A. macrocephala. Polysaccharide from A. macrocephala (AMP) consisted of arabinose, galactose, glucose, xylose, mannose, ribose, galactose uronic acid, glucose uronic acid, with a percentage ratio of 21.86, 12.28, 34.19, 0.43, 0.92, 0.85, 28.79, and 0.67%, respectively. Zinc plays an important role in immune system. Therefore, we supposed that AMP binding with zinc oxide (ZnO) nanoparticles (AMP-ZnONPs) might be an effective immunostimulator. AMP-ZnONPs was prepared by Borch reduction, and its structural features were characterized by Scanning Electron Microscope (SEM), Transmission electron microscope (TEM), TEM-energy dispersive spectroscopy mapping (TEM-EDS mapping), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), X-ray diffraction (XRD), particle size and zeta-potential distribution analysis. Then, its immunostimulatory activity and the underlying mechanism were evaluated using RAW264.7 cells. The results showed that AMP-ZnONPs remarkably promoted cell proliferation, enhanced phagocytosis, the release of nitric oxide (NO), cytokines (IL-6 and IL-1β) and the expression of co-stimulatory molecules (CD80, CD86 and MHCII). Moreover, AMP-ZnONPs could promote the expression of Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (MyD88), TNF receptor associated factor 6 (TRAF6), phospho-IκBα (P-IκBα) and phospho-p65 (P-p65), and TLR4 inhibitor (TAK242) inhibited the expression of these proteins induced by AMP-ZnONPs. Therefore, AMP-ZnONPs activated macrophages by TLR4/MyD88/NF-κB signaling pathway, indicating that AMP-ZnONPs could act as a potential immunostimulator in medicine and functional food.
Collapse
Affiliation(s)
- Ruonan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaopan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Simin Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ya Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuya Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Jingui Li,
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
- Huan Pang,
| |
Collapse
|
14
|
Cao W, Wang C, Mayhesumu X, Pan L, Dang Y, Yili A, Abuduwaili A, Mansur S. Isolation, Structural Elucidation, Antioxidant and Hypoglycemic Activity of Polysaccharides of Brassica rapa L. Molecules 2022; 27:molecules27093002. [PMID: 35566352 PMCID: PMC9104227 DOI: 10.3390/molecules27093002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this study was to investigate the effects of microwave ultrasonic-assisted extraction (MUAE) on the content, structure, and biological functions of Brassica rapa L. polysaccharide (BRP). Response surface methodology (RSM) was used to optimize the parameters of MUAE, and it obtained a polysaccharide with yield of 21.802%. Then, a neutral polysaccharide named BRP-1-1 with a molecular weight of 31.378 kDa was isolated and purified from BRP using DEAE-650 M and Sephadex G-100. The structures of the BRP-1-1 were elucidated through a combination of FT-IR, GC-MS, NMR, and methylation analysis. The results showed that BRP-1 consisted of mannose (Man) and glucose (Glu) in a molar ratio of 7.62:1. The backbone of BRP-1-1 mainly consisted of →6)-α-D-Glup-(1→4-β-D-Glup-(1→2)-α-D-Manp-(1→2)-α-D-Glup-(1→, the branch was [T-α-D-Manp-(1]n→. BRP-1-1 intervention significantly inhibited α-glucosidase activity; an inhibition rate of 44.623% was achieved at a concentration of 0.5 mg/mL. The results of the in vitro biological activity showed that BRP-1-1 has good antioxidant and hypoglycemic activity, suggesting that BRP-1-1 could be developed as a functional medicine.
Collapse
Affiliation(s)
- Wenyang Cao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Chenxi Wang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Xiayidan Mayhesumu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Yan Dang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Abulimiti Yili
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Aytursun Abuduwaili
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
- Correspondence: (A.A.); (S.M.); Tel.: +86-152-7667-9155 (A.A.); +86-139-9921-2592 (S.M.)
| | - Sanawar Mansur
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
- Correspondence: (A.A.); (S.M.); Tel.: +86-152-7667-9155 (A.A.); +86-139-9921-2592 (S.M.)
| |
Collapse
|
15
|
Lv Y, Liu Z, Duan X, Cui J, Zhang W, Ma W, Liu Y, Song X, Fan Y. Immunoenhancement and antioxidative damage effects of Polygonum Cillinerve polysaccharide on RAW264.7 cells. J Pharm Pharmacol 2021; 74:435-445. [PMID: 34894135 DOI: 10.1093/jpp/rgab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The effects of Polygonum Cillinerve polysaccharide (PCP) on the immune and antioxidant activity were studied. METHODS The effects of PCP on cell proliferation, phagocytic activity, cell uptake, the secretion of NO, iNOS, IL-6, IL-12, CAT and POD, intracellular ROS, cell apoptosis and antioxidative mechanism were measured by MTT, ELISA, fluorescence staining, flow cytometry and western blot. KEY FINDINGS The results showed that PCP had no toxic effect at 31.25-1.95 µg/ml, could improve the uptake of neutral red and fluorescein isothiocyanate-labelled ovalbumin and promote the release of nitric oxide and nitric oxide synthase. Moreover, PCP also could promote the secretion of IL-6 and IL-12. The damage of RAW264.7 cells induced by hydrogen peroxide was significantly alleviated by PCP at 15.63-0.975 µg/ml. The mechanism of antioxidative damage might be that PCP inhibited the upstream p38 and the phosphorylation of JNK and ERK proteins, and down-regulated caspase 3 and up-regulated the protein expressions of cytochrome C and Bcl-2, finally PCP improved the antioxidative capacity and protected the oxidative damage of cells. CONCLUSIONS These results indicated that PCP had the better immunopotentiation and antioxidative damage activity.
Collapse
Affiliation(s)
- Yizhou Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Zhenxiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Jing Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
16
|
Halike X, Li J, Yuan P, Yasheng K, Chen M, Xia L, Li J. The petroleum ether extract of Brassica rapa L. induces apoptosis of lung adenocarcinoma cells via the mitochondria-dependent pathway. Food Funct 2021; 12:10023-10039. [PMID: 34523644 DOI: 10.1039/d1fo01547h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Brassica rapa L. is one of the most popular traditional foods with a variety of biological activities. In this study, the petroleum ether extract of B. rapa was separated by silica gel column chromatography, and named BRPS, which was identified by LC-MS. The effects and pharmacological mechanisms of BRPS on the treatment of lung cancer were investigated both in vitro and in vivo. The results showed that BRPS significantly inhibited the proliferation of both human lung cancer A549 and mouse lung cancer LLC cells, while its toxicity to normal cells was lower than that of cancer cells. BRPS induced cell cycle arrest at the G2/M phase and significantly reduced the levels of CDK1 and CyclinB1 in A549 cells. Moreover, BRPS induced apoptosis in a dose-dependent manner, and increased the Bax/Bcl-2 ratio, while it decreased mitochondrial membrane potential, promoted the release of cytochrome c, activated caspase 9 and 3, and enhanced the degradation of PARP in A549 cells. Furthermore, the levels of reactive oxygen species (ROS) were also upregulated by BRPS and ROS inhibitor reversed BRPS-induced apoptosis. Importantly, BRPS significantly suppressed the growth of LLC cells in vivo without any obvious side effect on body weight and organs of mice, and increased the proportion of B cells, CD4+ T cells, CD8+ T cells and CD44+CD8+ T cells in the spleen. These results revealed that BRPS inhibited the growth of lung cancer cells through inducing cell cycle arrest, mitochondria-dependent apoptosis, and activating immunity of mice, and BRPS might be a potential anti-tumor functional food and promising agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xierenguli Halike
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyu Li
- College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Kaimeiliya Yasheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Min Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| |
Collapse
|
17
|
Zhong C, Liu Z, Zhang X, Pu Y, Yang Z, Bao Y. Physicochemical properties of polysaccharides from Ligusticum chuanxiong and analysis of their anti-tumor potential through immunoregulation. Food Funct 2021; 12:1719-1731. [PMID: 33502414 DOI: 10.1039/d0fo02978e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the extraction, purification, physicochemical properties and biological activity of Ligusticum chuanxiong polysaccharides (LCXPs). Two polysaccharide fractions (Ligusticum chuanxiong [LCX]P-1a and LCXP-3a) were obtained by DEAE Sepharose™ Fast Flow and Sephacryl™S-300 high resolution column chromatography. The results showed that the molecular weight of LCXP-1a and LCXP-3a was 11.159 kDa and 203.486 kDa, respectively. LCXP-1a is composed of rhamnose, glucuronic acid, galacturonic acid, and glucose at a molar percentage of 0.52 : 1.88 : 1.06 : 95.36, But LCXP-3a has another molar percentage of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose of 0.64 : 6.69 : 1.03 : 43.74 : 2.20 : 26.90 : 0.82 : 15.94 : 1.80. Both LCXP-1a and LCXP-3a could stimulate macrophages to produce NO, TNF-α, IL-6, and IL-12p70. Co-culturing macrophages and hepatocellular carcinoma cells showed that LCXP-1a and LCXP-3a inhibited the growth of HepG2 and Hep3B through immunoregulation. They arrested the cell cycle at the G0/G1 phase and promoted apoptosis. Moreover, there was no cytotoxicity to the hepatocyte cell line, LO2. We also noted that the immunomodulatory activity and anti-tumor activity of LCXP-3a were significantly better than those of LCXP-1a. Our data demonstrate that LCXP-3a is potentially a well-tolerated and effective immunomodulatory adjuvant cancer treatment.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zijing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xuyu Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zhongwei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
18
|
Xiong B, Zhang W, Wu Z, Liu R, Yang C, Hui A, Huang X, Xian Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int J Biol Macromol 2021; 181:824-834. [PMID: 33836194 DOI: 10.1016/j.ijbiomac.2021.03.202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Currently, there are few studies on acid-soluble pectin from okra, especially in biological activity for antioxidant and anti-inflammatory. In this study, the antioxidant properties of acid-soluble okra pectin components and their anti-inflammatory were explored. Firstly, two acid-soluble okra pectic fractions, namely crude acid-soluble okra pectin (CAOP) and acid-soluble okra pectin (AOP), were obtained and exhibited structural and compositional variation. The two pectic fractions contained a low degree of esterification (42.0-46.5%) and a relatively high uronic acid content (31.6-37.3%). AOP was composed of galacturonic acid (79.1 mol/%), galactose (4.3 mol/%), rhamnose (14.5 mol/%) and xylose (2.1 mol/%), and the molecular weight was 92.8 kDa. Morphological and thermal properties of acid-soluble okra pectin components were also investigated. Compared to CAOP, AOP expressed better antioxidant activity, and suppressed the NO production in LPS-induced RAW 264.7 macrophages. All the above results indicated that AOP had the potential to act as a natural antioxidant or a functional anti-inflammatory food, which would broaden the development and utilization of okra resources.
Collapse
Affiliation(s)
- Baoyi Xiong
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xusheng Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Zhaojun Xian
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| |
Collapse
|
19
|
Wang N, Wu Y, Jia G, Wang C, Xiao D, Goff HD, Guo Q. Structural characterization and immunomodulatory activity of mycelium polysaccharide from liquid fermentation of Monascus purpureus (Hong Qu). Carbohydr Polym 2021; 262:117945. [PMID: 33838822 DOI: 10.1016/j.carbpol.2021.117945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Alkaline extracted endopolysaccharides (MPS) from Monascus purpureus (Hong Qu) mycelium were successfully separated into four sub-fractions, namely MPS-1 (18.0 %), MPS-2 (27.1 %), MPS-3 (12.6 %) and MPS-4 (14.7 %), by DEAE-Cellulose column chromatography. By combining monosaccharide composition analysis, methylation analysis and 1D & 2D NMR, the structure of sub-fractions was systematically characterized. Both MPS-1 and MPS-2 were comprised of mannose, glucose and galactose in the molar ratio of 1.5:1.6:1.0 and 10.6:1.0:13.8, respectively. The backbone of them both consisted of 2-α-Manp with several different branched chains. However, MPS-1 contained glucose based sugar residues such as 3-Glcp and 4-Glcp which were not shown on MPS-2. The proposed structures of MPS-3 and MPS-4 were not obtained due to the fairly complex molecular structure and relatively low yield. Moreover, based on the RAW 264.7 cells model, MPS-2 could significantly promote cytokines secretion including IL-6, TNF-α, and IL-10 and improve expression levels of the related mRNA.
Collapse
Affiliation(s)
- Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Gege Jia
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
20
|
Cao RA, Ji R, Tabarsa M, Zhang J, Meng L, Zhang C, Zhang J, Wang L, Wu R, Wang C, Jin C, You S. Purification, characterization and immunostimulatory effects of polysaccharides from Anemarrhena asphodeloides rhizomes. Int J Biol Macromol 2021; 172:550-559. [PMID: 33465362 DOI: 10.1016/j.ijbiomac.2021.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023]
Abstract
The crude polysaccharide was extracted from A. asphodeloides rhizomes and further purified to produce two fractions F1 (50.0%) and F2 (19.6%). The chemical constitutions of the polysaccharides were neutral sugars (51.4%-89.7%), uronic acids (1.0%-30.2%) and sulfate esters (3.4%-8.1%), with various ratios of monosaccharides including rhamnose (1.4%-6.1%), arabinose (7.1%-21.2%), xylose (0.2%-4.8%), mannose (39.9%-79.0%), glucose (6.0%-11.1%) and galactose (2.6%-22.0%). The molecular properties of the polysaccharides were investigated by the HPSEC-UV-MALLS-RI system, revealing the Mw 130.0 × 103-576.5 × 103 g/moL, Rg 87.6-382.6 nm and SVg 0.3-54.3 cm3/g. The polysaccharides stimulated RAW264.7 cells to produce considerable amounts of NO and up-regulate the expression of TNF-α, IL-1 and COX-2 genes. Polysaccharides exhibited the growth inhibitory effects on cancer cells lines of AGS, MKN-28 and MKN-45, in which F2 fraction exhibited prominent bioactivities. The AGS cells treated with F2 experienced condensed cytoplasm, shrinkage of nucleus and chromatin marginalization with the highest number of cells at early-stage apoptosis reaching 54.6%. The inhibitory effect of F2 polysaccharide on AGS cells was through MAPKs and STAT3 signaling pathways. The backbone of the F2 was mainly linked by (1 → 4)-linked mannopyranosyl and (1 → 3)-linked galactopyranosyl. Taken together, the polysaccharide from A. asphodeloides rhizomes could be utilized as medicinal, pharmacological and functional food ingredients.
Collapse
Affiliation(s)
- Rong-An Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Agri-Food Processing and Engineering Technology Research Center of Heilongjiang Province, Daqing 163319, China
| | - RuiXue Ji
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor 46414-356, Iran
| | - JianQiang Zhang
- Heilongjiang Heyi Dairy Technology Co. Ltd., Daqing 163000, China
| | - LingQi Meng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - ChengTai Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - JiaMiao Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - LiDong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - ChangYuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - ChengHao Jin
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea.
| |
Collapse
|
21
|
Feng YN, Zhang XF. Polysaccharide extracted from Huperzia serrata using response surface methodology and its biological activity. Int J Biol Macromol 2020; 157:267-275. [PMID: 32339584 DOI: 10.1016/j.ijbiomac.2020.04.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/07/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
In this study, Huperzia serrata polysaccharide (HSP) fraction was isolated using response surface methodology (RSM) and Box-Behnken design (BBD). The extraction time, temperature and ratio of water to raw material were employed effects. And properties of four polysaccharide (60%-HSP, 70%-HSP, 80%-HSP and 90%-HSP) were evaluated. The results indicated that the optimal extraction conditions were the following: 3.07 h, 49.46 °C and a liquid material ratio of 20.73:1. The four HSP presented irregular aggregation of shape. And all HSP exhibited antioxidant and anticancer activities.
Collapse
Affiliation(s)
- Yan-Ni Feng
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|