1
|
Vasconcelos-Silva AA, Paula SM, Lima-Silva K, de Gadelha KKL, de Siqueira RJB, Dos Santos AA, Lahlou S, de Freitas Lima R, Magalhães PJC. In vitro evidence that the vasorelaxant effects of 2-nitro-1-phenyl-1-propanol on rat coronary arteries involve cyclic nucleotide pathways. Fundam Clin Pharmacol 2025; 39:e13038. [PMID: 39367643 DOI: 10.1111/fcp.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
The synthetic nitro-alcohol 2-nitro-1-phenyl-1-propanol (NPP) has endothelium-independent relaxing properties in isolated preparations of rat aorta and mesenteric artery. In this study, we investigated whether the vasodilator effects occur in coronary vessels and explored whether hyperpolarization is involved in the underlying mechanism of NPP-induced smooth muscle relaxation. The relaxing responses were studied in isolated preparations of the left anterior descending coronary (ADC) and the septal coronary (SC) arteries, which had been previously maintained under sustained contraction induced by the thromboxane A2 analogue U-46619. Administered cumulatively, NPP elicited concentration-dependent vasorelaxation with similar potency in both vessels. The relaxant effect remained unaffected by the nitric oxide synthase inhibitor L-NAME, the protein kinase C inhibitor bisindolylmaleimide IV and the Rho-associated protein kinase inhibitor Y-27632. However, it was significantly diminished by the adenylyl cyclase inhibitor MDL-12,330A, the guanylyl cyclase inhibitor ODQ, as well as the K+ channel inhibitors tetraethylammonium and CsCl. In ADC preparations impaled with intracellular micropipettes, NPP hyperpolarized the vascular preparation. When the isolated preparation was precontracted by 5-hydroxytryptamine or 80 mM KCl, NPP-induced relaxation with lower pharmacological potency compared to the vessels contracted by U-46619. In conclusion, NPP exhibits vasorelaxant effects on rat coronary arteries, likely involving pathways that include cyclic nucleotide production and membrane hyperpolarization.
Collapse
Affiliation(s)
| | - Suliana Mesquita Paula
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Karine Lima-Silva
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Armenio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Saad Lahlou
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Ricardo de Freitas Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
2
|
Taheri E, Jafarpour F. Developing a straightforward route toward the synthesis of arylaminomaleimides by palladium-catalyzed arylation of one-pot synthesized aminomaleimides. Org Biomol Chem 2023; 22:169-174. [PMID: 38051284 DOI: 10.1039/d3ob01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
3-Aryl-4-aminomaleimides have well-demonstrated applications, such as being used as fluorophores and inhibitors. However, their previous synthesis methods have involved tedious multi-step procedures or methods that need pre-functionalized maleimides and toxic or unstable reagents. Here, a feasible method is developed to synthesize these useful compounds. This includes the one-pot preparation of 3-aminomaleimides, followed by their direct arylation through a palladium-catalyzed Heck reaction with various aryl iodides regioselectively at the β-position of their amine substituents. The results show that this method efficiently exhibits a broad scope.
Collapse
Affiliation(s)
- Elmira Taheri
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
3
|
Small-molecule inhibition of pyruvate phosphate dikinase targeting the nucleotide binding site. PLoS One 2017; 12:e0181139. [PMID: 28700696 PMCID: PMC5507339 DOI: 10.1371/journal.pone.0181139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/27/2017] [Indexed: 01/27/2023] Open
Abstract
Pyruvate phosphate dikinase (PPDK) is an essential enzyme of C4 photosynthesis in plants, catalyzing the ATP-driven conversion of pyruvate to phosphoenolpyruvate (PEP). It is further used by some bacteria and unicellular protists in the reverse, ATP-forming direction. Many weed species use C4 photosynthesis in contrast to world’s major crops, which are C3 plants. Hence inhibitors of PPDK may be used as C4-specific herbicides. By screening a library of 80 commercially available kinase inhibitors, we identified compounds derived from bisindolylmaleimide (bisindolylmaleimide IV, IC50 = 0.76 ± 0.13 μM) and indirubin (indirubin-3’-monoxime, IC50 = 4.2 ± 0.9 μM) that showed high inhibitory potency towards PPDK and are among the most effective PPDK inhibitors described today. Physiological studies on leaf tissues of a C4 model plant confirmed in vivo inhibition of C4-driven photosynthesis by these substances. Moreover, comparative docking studies of non-inhibitory bisindolylmaleimide derivatives suggest that the selectivity towards PPDK may be increased by addition of functional groups to the core structure.
Collapse
|
4
|
Joo HK, Lee YR, Choi S, Park MS, Kang G, Kim CS, Jeon BH. Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:377-384. [PMID: 28706451 PMCID: PMC5507776 DOI: 10.4196/kjpp.2017.21.4.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023]
Abstract
Activation of protein kinase C (PKC) is closely linked with endothelial dysfunction. However, the effect of PKCβII on endothelial dysfunction has not been characterized in cultured endothelial cells. Here, using adenoviral PKCβII gene transfer and pharmacological inhibitors, the role of PKCβII on endothelial dysfucntion was investigated in cultured endothelial cells. Phorbol 12-myristate 13-acetate (PMA) increased reactive oxygen species (ROS), p66shc phosphorylation, intracellular adhesion molecule-1, and monocyte adhesion, which were inhibited by PKCβi (10 nM), a selective inhibitor of PKCβII. PMA increased the phosphorylation of CREB and manganese superoxide dismutase (MnSOD), which were also inhibited by PKCβi. Gene silencing of CREB inhibited PMA-induced MnSOD expression, suggesting that CREB plays a key role in MnSOD expression. Gene silencing of PKCβII inhibited PMA-induced mitochondrial ROS, MnSOD, and ICAM-1 expression. In contrast, overexpression of PKCβII using adenoviral PKCβII increased mitochondrial ROS, MnSOD, ICAM-1, and p66shc phosphorylation in cultured endothelial cells. Finally, PKCβII-induced ICAM-1 expression was inhibited by Mito-TEMPO, a mitochondrial ROS scavenger, suggesting the involvement of mitochondrial ROS in PKC-induced vascular inflammation. Taken together, the results suggest that PKCβII plays an important role in PMA-induced endothelial dysfunction, and that the inhibition of PKCβII-dependent p66shc signaling acts as a therapeutic target for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yu Ran Lee
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sunga Choi
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Myoung Soo Park
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gun Kang
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Cuk-Seong Kim
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
5
|
An YL, Zhang HH, Yang ZH, Lin L, Zhao SY. Cu/Ag-Cocatalyzed Aerobic Oxidative Amination and CuCl2-Mediated Aerobic Oxidative Chloroamination of Maleimides. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yu-Long An
- Department of Chemistry; Donghua University; 2999 North Renmin Road 201620 Shanghai P.R. China
| | - He-Hui Zhang
- Department of Chemistry; Donghua University; 2999 North Renmin Road 201620 Shanghai P.R. China
| | - Zhen-Hua Yang
- Department of Chemistry; Donghua University; 2999 North Renmin Road 201620 Shanghai P.R. China
| | - Long Lin
- Department of Chemistry; Donghua University; 2999 North Renmin Road 201620 Shanghai P.R. China
| | - Sheng-Yin Zhao
- Department of Chemistry; Donghua University; 2999 North Renmin Road 201620 Shanghai P.R. China
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 200032 Shanghai P.R. China
| |
Collapse
|
6
|
Suppression of macrophage-mediated phagocytosis of apoptotic cells by soluble β-glucan due to a failure of PKC-βII translocation. Int Immunopharmacol 2016; 31:195-9. [DOI: 10.1016/j.intimp.2015.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022]
|
7
|
Poli A, Ramazzotti G, Matteucci A, Manzoli L, Lonetti A, Suh PG, McCubrey JA, Cocco L. A novel DAG-dependent mechanism links PKCɑ and Cyclin B1 regulating cell cycle progression. Oncotarget 2015; 5:11526-40. [PMID: 25362646 PMCID: PMC4294327 DOI: 10.18632/oncotarget.2578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/06/2014] [Indexed: 01/11/2023] Open
Abstract
Through the years, different studies showed the involvement of Protein Kinase C (PKC) in cell cycle control, in particular during G1/S transition. Little is known about their role at G2/M checkpoint. In this study, using K562 human erythroleukemia cell line, we found a novel and specific mechanism through which the conventional isoform PKC⍺ positively affects Cyclin B1 modulating G2/M progression of cell cycle. Since the kinase activity of this PKC isoform was not necessary in this process, we demonstrated that PKC⍺, physically interacting with Cyclin B1, avoided its degradation and stimulated its nuclear import at mitosis. Moreover, the process resulted to be strictly connected with the increase in nuclear diacylglycerol levels (DAG) at G2/M checkpoint, due to the activity of nuclear Phospholipase C β1 (PLCβ1), the only PLC isoform mainly localized in the nucleus of K562 cells. Taken together, our findings indicated a novel DAG dependent mechanism able to regulate the G2/M progression of the cell cycle.
Collapse
Affiliation(s)
- Alessandro Poli
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Matteucci
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Lucia Manzoli
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Thurner L, Fadle N, Regitz E, Kemele M, Klemm P, Zaks M, Stöger E, Bette B, Carbon G, Zimmer V, Assmann G, Murawski N, Kubuschok B, Held G, Preuss KD, Pfreundschuh M. The molecular basis for development of proinflammatory autoantibodies to progranulin. J Autoimmun 2015; 61:17-28. [PMID: 26005049 DOI: 10.1016/j.jaut.2015.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/27/2015] [Accepted: 05/03/2015] [Indexed: 11/17/2022]
Abstract
Recently we identified in a wide spectrum of autoimmune diseases frequently occurring proinflammatory autoantibodies directed against progranulin, a direct inhibitor of TNFR1 & 2 and of DR3. In the present study we investigated the mechanisms for the breakdown of self-tolerance against progranulin. Isoelectric focusing identified a second, differentially electrically charged progranulin isoform exclusively present in progranulin-antibody-positive patients. Alkaline phosphatase treatment revealed this additional progranulin isoform to be hyperphosphorylated. Subsequently Ser81, which is located within the epitope region of progranulin-antibodies, was identified as hyperphosphorylated serine residue by site directed mutagenesis of candidate phosphorylation sites. Hyperphosphorylated progranulin was detected exclusively in progranulin-antibody-positive patients during the courses of their diseases. The occurrence of hyperphosphorylated progranulin preceded seroconversions of progranulin-antibodies, indicating adaptive immune response. Utilizing panels of kinase and phosphatase inhibitors, PKCβ1 was identified as the relevant kinase and PP1 as the relevant phosphatase for phosphorylation and dephosphorylation of Ser81. In contrast to normal progranulin, hyperphosphorylated progranulin interacted exclusively with inactivated (pThr320) PP1, suggesting inactivated PP1 to cause the detectable occurrence of phosphorylated Ser81 PGRN. Investigation of possible functional alterations of PGRN due to Ser81 phosphorylation revealed, that hyperphosphorylation prevents the interaction and thus direct inhibition of TNFR1, TNFR2 and DR3, representing an additional direct proinflammatory effect. Finally phosphorylation of Ser81 PGRN alters the conversion pattern of PGRN. In conclusion, inactivated PP1 induces hyperphosphorylation of progranulin in a wide spectrum of autoimmune diseases. This hyperphosphorylation prevents direct inhibition of TNFR1, TNFR2 and DR3 by PGRN, alters the conversion of PGRN, and is strongly associated with the occurrence of neutralizing, proinflammatory PGRN-antibodies, indicating immunogenicity of this alternative secondary modification.
Collapse
MESH Headings
- Animals
- Autoantibodies/genetics
- Autoantibodies/immunology
- Autoantibodies/metabolism
- Binding Sites/genetics
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Flow Cytometry
- HEK293 Cells
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Intercellular Signaling Peptides and Proteins/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Progranulins
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Protein Kinase C beta/genetics
- Protein Kinase C beta/immunology
- Protein Kinase C beta/metabolism
- Protein Precursors/genetics
- Protein Precursors/immunology
- Protein Precursors/metabolism
- Receptors, Tumor Necrosis Factor, Member 25/immunology
- Receptors, Tumor Necrosis Factor, Member 25/metabolism
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Serine/genetics
- Serine/immunology
- Serine/metabolism
Collapse
Affiliation(s)
- Lorenz Thurner
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany.
| | - Natalie Fadle
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Evi Regitz
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Maria Kemele
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Philipp Klemm
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Marina Zaks
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Elisabeth Stöger
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Birgit Bette
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Gabi Carbon
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Vincent Zimmer
- Department of Internal Medicine II, Saarland University Medical Center, Homburg, Saar, Germany
| | - Gunter Assmann
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Niels Murawski
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Boris Kubuschok
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Gerhard Held
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Klaus-Dieter Preuss
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany
| | - Michael Pfreundschuh
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy, Internal Medicine I, Homburg, Saar, Germany.
| |
Collapse
|
9
|
Salameh BA, Abu-Safieh KA, Al-Kaabenah SRA, Al-Qawasmeh RA. Synthesis and characterization of new N-phenylmaleimide thioglycosides. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-013-1146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Fioravante D, Chu Y, de Jong AP, Leitges M, Kaeser PS, Regehr WG. Protein kinase C is a calcium sensor for presynaptic short-term plasticity. eLife 2014; 3:e03011. [PMID: 25097249 PMCID: PMC5841930 DOI: 10.7554/elife.03011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/24/2014] [Indexed: 01/02/2023] Open
Abstract
In presynaptic boutons, calcium (Ca(2+)) triggers both neurotransmitter release and short-term synaptic plasticity. Whereas synaptotagmins are known to mediate vesicle fusion through binding of high local Ca(2+) to their C2 domains, the proteins that sense smaller global Ca(2+) increases to produce short-term plasticity have remained elusive. Here, we identify a Ca(2+) sensor for post-tetanic potentiation (PTP), a form of plasticity thought to underlie short-term memory. We find that at the functionally mature calyx of Held synapse the Ca(2+)-dependent protein kinase C isoforms α and β are necessary for PTP, and the expression of PKCβ in PKCαβ double knockout mice rescues PTP. Disruption of Ca(2+) binding to the PKCβ C2 domain specifically prevents PTP without impairing other PKCβ-dependent forms of synaptic enhancement. We conclude that different C2-domain-containing presynaptic proteins are engaged by different Ca(2+) signals, and that Ca(2+) increases evoked by tetanic stimulation are sensed by PKCβ to produce PTP.DOI: http://dx.doi.org/10.7554/eLife.03011.001.
Collapse
Affiliation(s)
- Diasynou Fioravante
- Department of Neurobiology, Harvard Medical School, Boston, United States Center for Neuroscience, University of California, Davis, Davis, United States
| | - YunXiang Chu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Arthur Ph de Jong
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Michael Leitges
- The Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
11
|
Joo HK, Lee YR, Park MS, Choi S, Park K, Lee SK, Kim CS, Park JB, Jeon BH. Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells. Mitochondrion 2014; 17:42-9. [DOI: 10.1016/j.mito.2014.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/23/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
12
|
Pysz MA, Hao F, Hizli AA, Lum MA, Swetzig WM, Black AR, Black JD. Differential regulation of cyclin D1 expression by protein kinase C α and ϵ signaling in intestinal epithelial cells. J Biol Chem 2014; 289:22268-83. [PMID: 24914206 DOI: 10.1074/jbc.m114.571554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cellular accumulation of cyclin D1, a key regulator of cell proliferation and tumorigenesis, is subject to tight control. Our previous studies have identified PKCα as a negative regulator of cyclin D1 in the intestinal epithelium. However, treatment of non-transformed IEC-18 ileal crypt cells with PKC agonists has a biphasic effect on cyclin D1 expression. Initial PKCα-mediated down-regulation is followed by recovery and subsequent accumulation of the cyclin to levels markedly higher than those seen in untreated cells. Using protein overexpression strategies, siRNA, and pharmacological inhibitors, we now demonstrate that the recovery and hyperinduction of cyclin D1 reflect the combined effects of (a) loss of negative signals from PKCα due to agonist-induced PKCα down-regulation and (b) positive effects of PKCϵ. PKCϵ-mediated up-regulation of cyclin D1 requires sustained ERK stimulation and transcriptional activation of the proximal cyclin D1 (CCDN1) promoter, without apparent involvement of changes in protein stability or translation. PKCϵ also up-regulates cyclin D1 expression in colon cancer cells, through mechanisms that parallel those in IEC-18 cells. Although induction of cyclin D1 by PKCϵ is dependent on non-canonical NF-κB activation, the NF-κB site in the proximal promoter is not required. Instead, cyclin D1 promoter activity is regulated by a novel interaction between NF-κB and factors that associate with the cyclic AMP-response element adjacent to the NF-κB site. The differential effects of PKCα and PKCϵ on cyclin D1 accumulation are likely to contribute to the opposing tumor-suppressive and tumor-promoting activities of these PKC family members in the intestinal epithelium.
Collapse
Affiliation(s)
- Marybeth A Pysz
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Fang Hao
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - A Asli Hizli
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michelle A Lum
- From the Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Wendy M Swetzig
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Adrian R Black
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263From the Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Jennifer D Black
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263From the Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
13
|
Calcium-dependent PKC isoforms have specialized roles in short-term synaptic plasticity. Neuron 2014; 82:859-71. [PMID: 24794094 DOI: 10.1016/j.neuron.2014.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 01/04/2023]
Abstract
Posttetanic potentiation (PTP) is a widely observed form of short-term plasticity lasting for tens of seconds after high-frequency stimulation. Here we show that although protein kinase C (PKC) mediates PTP at the calyx of Held synapse in the auditory brainstem before and after hearing onset, PTP is produced primarily by an increased probability of release (p) before hearing onset, and by an increased readily releasable pool of vesicles (RRP) thereafter. We find that these mechanistic differences, which have distinct functional consequences, reflect unexpected differential actions of closely related calcium-dependent PKC isoforms. Prior to hearing onset, when PKCγ and PKCβ are both present, PKCγ mediates PTP by increasing p and partially suppressing PKCβ actions. After hearing onset, PKCγ is absent and PKCβ produces PTP by increasing RRP. In hearing animals, virally expressed PKCγ overrides PKCβ to produce PTP by increasing p. Thus, two similar PKC isoforms mediate PTP in distinctly different ways.
Collapse
|
14
|
McDonnell ME, Bian H, Wrobel J, Smith GR, Liang S, Ma H, Reitz AB. Anilino-monoindolylmaleimides as potent and selective JAK3 inhibitors. Bioorg Med Chem Lett 2014; 24:1116-21. [DOI: 10.1016/j.bmcl.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
|
15
|
Saba NS, Levy LS. Protein kinase C-beta inhibition induces apoptosis and inhibits cell cycle progression in acquired immunodeficiency syndrome-related non-hodgkin lymphoma cells. J Investig Med 2013; 60:29-38. [PMID: 21997316 DOI: 10.2310/jim.0b013e318237eb55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acquired immunodeficiency syndrome (AIDS)-related non-Hodgkin lymphoma (NHL) constitutes an aggressive variety of lymphomas characterized by increased extranodal involvement, relapse rate, and resistance to chemotherapy. Protein kinase C-beta (PKCβ) targeting showed promising results in preclinical and clinical studies involving a wide variety of cancers, but studies describing the role of PKCβ in AIDS-NHL are primitive if not lacking. METHODS In the present study, 3 AIDS-NHL cell lines were examined: 2F7 (AIDS-Burkitt lymphoma), BCBL-1 (AIDS-primary effusion lymphoma), and UMCL01-101 (AIDS-diffuse large B-cell lymphoma). RESULTS Immunoblot analysis demonstrated expression of PKCβ1 and PKCβ2 in 2F7 and UMCL01-101 cells, and PKCβ1 alone in BCBL-1 cells. The viability of 2F7 and BCBL-1 cells decreased significantly in the presence of PKCβ-selective inhibitor at half-maximal inhibitory concentration of 14 and 15 μmol/L, respectively, as measured by tetrazolium dye reduction assay. In contrast, UMCL01-101 cells were relatively resistant. As determined using flow cytometric deoxynucleotidyl transferase dUTP nick-end labeling assay with propidium iodide staining, the responsiveness of sensitive cells was associated with apoptotic induction and cell cycle inhibition. Protein kinase C-beta-selective inhibition was observed not to affect AKT phosphorylation but to induce a rapid and sustained reduction in the phosphorylation of glycogen synthase kinase-3 beta, ribosomal protein S6, and mammalian target of rapamycin in sensitive cell lines. CONCLUSIONS The results indicate that PKCβ plays an important role in AIDS-related NHL survival and suggest that PKCβ targeting should be considered in a broader spectrum of NHL. The observations in BCBL-1 were unexpected in the absence of PKCβ2 expression and implicate PKCβ1 as a regulator in those cells.
Collapse
Affiliation(s)
- Nakhle S Saba
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
16
|
Abstract
PKC (protein kinase C) has been in the limelight since the discovery three decades ago that it acts as a major receptor for the tumour-promoting phorbol esters. Phorbol esters, with their potent ability to activate two of the three classes of PKC isoenzymes, have remained the best pharmacological tool for directly modulating PKC activity. However, with the discovery of other phorbol ester-responsive proteins, the advent of various small-molecule and peptide modulators, and the need to distinguish isoenzyme-specific activity, the pharmacology of PKC has become increasingly complex. Not surprisingly, many of the compounds originally touted as direct modulators of PKC have subsequently been shown to hit many other cellular targets and, in some cases, not even directly modulate PKC. The complexities and reversals in PKC pharmacology have led to widespread confusion about the current status of the pharmacological tools available to control PKC activity. In the present review, we aim to clarify the cacophony in the literature regarding the current state of bona fide and discredited cellular PKC modulators, including activators, small-molecule inhibitors and peptides, and also address the use of genetically encoded reporters and of PKC mutants to measure the effects of these drugs on the spatiotemporal dynamics of signalling by specific isoenzymes.
Collapse
Affiliation(s)
- Alyssa X. Wu-Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| | - Alexandra C. Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| |
Collapse
|
17
|
Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 2012; 63:1227-37. [DOI: 10.1016/j.neuropharm.2012.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 01/02/2023]
|
18
|
Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J Virol 2012; 86:12237-50. [PMID: 22951823 DOI: 10.1128/jvi.01218-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.
Collapse
|
19
|
Sobhia ME, Grewal BK, Bhat J, Rohit S, Punia V. Protein kinase C βII in diabetic complications: survey of structural, biological and computational studies. Expert Opin Ther Targets 2012; 16:325-44. [PMID: 22404224 DOI: 10.1517/14728222.2012.667804] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION PKC-βII is a conventional isoform of PKC. It is overexpressed in hyperglycemic conditions and is known to trigger various diabetic complications, mainly cardiovascular complications and to a certain extent nephropathy, neuropathy, retinopathy etc. Selective inhibition of this enzyme will be one of the favorable approaches to treat diabetes-mellitus-related complications. Due to high sequence similarities among PKC isoforms, selective inhibition of PKC-βII is difficult and yet to be achieved successfully. AREAS COVERED This review discusses the studies carried out in various aspects of PKC-βII. The biological aspects, crystal structure data, structure–activity relationship study (SAR) and in silico studies related to PKC-βII such as homology modeling, molecular docking, molecular dynamics, quantitative structure–activity relationship (QSAR) studies and pharmacophore modeling etc. are summarized. EXPERT OPINION PKC-βII is a potential target for treating diabetes-related complications. Selective inhibitors of this enzyme are under clinical trials but to date, success has not been achieved. Thus, extensive research is essential in this direction; the contribution of in silico tools in designing and optimizing selective inhibitors of PKC-βII is valuable.
Collapse
Affiliation(s)
- M Elizabeth Sobhia
- National Institute of Pharmaceutical Education and Research, Department of Pharmacoinformatics, Punjab, India.
| | | | | | | | | |
Collapse
|
20
|
Grewal BK, Elizabeth Sobhia M. Identification of specific features of inhibition of PKCβII and its potential lead by shape-based virtual screening and molecular docking studies. Bioorg Med Chem Lett 2012; 22:4672-7. [DOI: 10.1016/j.bmcl.2012.05.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/10/2012] [Accepted: 05/23/2012] [Indexed: 11/29/2022]
|
21
|
Guo D, Standley C, Bellve K, Fogarty K, Bao ZZ. Protein kinase Cα and integrin-linked kinase mediate the negative axon guidance effects of Sonic hedgehog. Mol Cell Neurosci 2012; 50:82-92. [PMID: 22521536 PMCID: PMC3383945 DOI: 10.1016/j.mcn.2012.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 01/22/2023] Open
Abstract
In addition to its role as a morphogen, Sonic hedgehog (Shh) has also been shown to function as a guidance factor that directly acts on the growth cones of various types of axons. However, the noncanonical signaling pathways that mediate the guidance effects of Shh protein remain poorly understood. We demonstrate that a novel signaling pathway consisting of protein kinase Cα (PKCα) and integrin-linked kinase (ILK) mediates the negative guidance effects of high concentration of Shh on retinal ganglion cell (RGC) axons. Shh rapidly increased Ca(2+) level and activated PKCα and ILK in the growth cones of RGC axons. By in vitro kinase assay, PKCα was found to directly phosphorylate ILK on threonine-173 and -181. Inhibition of PKCα or expression of a mutant ILK with the PKCα phosphorylation sites mutated (ILK-DM), abolished the Shh-induced macropinocytosis, growth cone collapse and repulsive axon turning. In vivo, expression of a dominant negative PKCα or ILK-DM disrupted RGC axon pathfinding at the optic chiasm but not the projection toward the optic disk, supporting that this signaling pathway plays a specific role in Shh-mediated negative guidance effects.
Collapse
Affiliation(s)
- Daorong Guo
- Department of Medicine and Cell Biology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | |
Collapse
|
22
|
Kleyer J, Nicolussi S, Taylor P, Simonelli D, Furger E, Anderle P, Gertsch J. Cannabinoid receptor trafficking in peripheral cells is dynamically regulated by a binary biochemical switch. Biochem Pharmacol 2012; 83:1393-412. [PMID: 22387618 DOI: 10.1016/j.bcp.2012.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 12/20/2022]
Abstract
The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.
Collapse
Affiliation(s)
- Jonas Kleyer
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-α and βI isozymes. Cell Biol Int 2012; 35:953-9. [PMID: 21323641 DOI: 10.1042/cbi20100668] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteinuria is a common feature for almost all glomerular diseases and reflects the severity of the glomerular lesion. The presence of a large amount of proteins in tubular fluid, however, may also contribute to the development of RIF (renal interstitial fibrosis). Endocytosis of albumin in proximal tubular cells triggers PKC (protein kinase C)-dependent generation of reactive oxygen species and secretion of chemokines. As a family including 12 isozymes, which PKC isozymes participate in RIF is still unclear. EMT (epithelial-mesenchymal transdifferentiation) of RTECs (renal tubular epithelial cells) plays a crucial role in the progress of RIF induced by proteinuria. In the present study, we investigated the role of classical PKC isozymes in the proteinuria-induced EMT of RTECs. Employing immunochemical staining, we found that PKC-α, -βI and -βII were expressed in glomerulus and in RTECs in both normal and diseased renal tissues, while PKC-γ was only expressed in podocytes in the glomerulus. Treatment of HK-2 cells with extracted urinary proteins resulted in EMT, as evidenced by morphological changes, decreased E-cadherin expression, increased α-SMA (α-smooth muscle actin) expression, as well as production of type I collagen and fibronectin. Western blot analysis of PKC isozymes in the cytosolic compared with membrane fraction revealed translocation of PKC-α and -βI, but not PKC-βII, in HK-2 cells undergoing EMT. Pretreatment with selective PKC-α inhibitor G-6976 or PKC-β inhibitor significantly attenuated EMT induced by urinary proteins. In summary, the present study suggested that PKC-α and -βI play critical roles in the EMT of RTECs in response to urinary proteins.
Collapse
|
24
|
Yang J, Pollock JS, Carmines PK. NADPH oxidase and PKC contribute to increased Na transport by the thick ascending limb during type 1 diabetes. Hypertension 2011; 59:431-6. [PMID: 22203737 DOI: 10.1161/hypertensionaha.111.184796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes triggers protein kinase C (PKC)-dependent NADPH oxidase activation in the renal medullary thick ascending limb (mTAL), resulting in accelerated superoxide production. As acute exposure to superoxide stimulates NaCl transport by the mTAL, we hypothesized that diabetes increases mTAL Na(+) transport through PKC-dependent and NADPH oxidase-dependent mechanisms. An O(2)-sensitive fluoroprobe was used to measure O(2) consumption by mTALs from rats with streptozotocin-induced diabetes and sham rats. In sham mTALs, total O(2) consumption was evident as a 0.34±0.03 U change in normalized relative fluorescence (ΔNRF)/min per mg protein. Ouabain (2 mmol/L) reduced O(2) consumption by 69±4% and 500 μmol/L furosemide reduced O(2) consumption by 58±8%. Total O(2) consumption was accelerated in mTAL from diabetic rats (0.74±0.07 ΔNRF/min/mg protein; P<0.05 versus sham), reflecting increases in ouabain- and furosemide-sensitive O(2) consumption. NADPH oxidase inhibition (100 μmol/L apocynin) reduced furosemide-sensitive O(2) consumption by mTAL from diabetic rats to values not different from sham. The PKC inhibitor calphostin C (1 μmol/L) or the PKCα/β inhibitor Gö6976 (1 μmol/L) decreased furosemide-sensitive O(2) consumption in both groups, achieving values that did not differ between sham and diabetic. PKCβ inhibition had no effect in either group. Similar inhibitory patterns were evident with regard to ouabain-sensitive O(2) consumption. We conclude that NADPH oxidase and PKC (primarily PKCα) contribute to an increase in O(2) consumption by the mTAL during type 1 diabetes through effects on the ouabain-sensitive Na(+)-K(+)-ATPase and furosemide-sensitive Na(+)-K(+)-2Cl(-) cotransporter that are primarily responsible for active transport Na(+) reabsorption by this nephron segment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
25
|
Central role of PKCα in isoenzyme-selective regulation of cardiac transient outward current Ito and Kv4.3 channels. J Mol Cell Cardiol 2011; 51:722-9. [PMID: 21803046 DOI: 10.1016/j.yjmcc.2011.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/20/2022]
Abstract
The transient outward current I(to) is an important determinant of the early repolarization phase. I(to) and its molecular basis Kv4.3 are regulated by adrenergic pathways including protein kinase C. However, the exact regulatory mechanisms have not been analyzed yet. We here analyzed isoenzyme specific regulation of Kv4.3 and I(to) by PKC. Kv4.3 channels were expressed in Xenopus oocytes and currents were measured with double electrode voltage clamp technique. Patch clamp experiments were performed in isolated rat cardiomyocytes. Unspecific PKC stimulation with PMA resulted in a reduction of Kv4.3 current. Similar effects could be observed after activation of conventional PKC isoforms by TMX. Both effects were reversible by pharmacological inhibition of the conventional PKC isoenzymes (Gö6976). In contrast, activation of the novel PKC isoforms (ingenol) did not significantly affect Kv4.3 current. Whereas TMX-induced PKC activation was not attenuated inhibition of PKCβ, inhibition of PKCα with HBDDE prevented inhibitory effects of both PMA and TMX. Accordingly, stimulatory effects of PMA and TMX could be mimicked by the α-isoenzyme selective PKC activator iripallidal. Further evidence for the central role of PKCα was provided with the use of siRNAs. We found that PKCα siRNA but not PKCβ siRNA abolished the TMX induced effect. In isolated rat cardiomyocytes, PMA dependent I(to) reduction could be completely abolished by pharmacologic inhibition of PKCα. In summary we show that PKCα plays a central role in protein kinase C dependent regulation of Kv4.3 current and native I(to). These results add to the current understanding of isoenzyme selective ion channel regulation by protein kinases.
Collapse
|
26
|
Thompson MJ, Louth JC, Ferrara S, Sorrell FJ, Irving BJ, Cochrane EJ, Meijer AJHM, Chen B. Structure-activity relationship refinement and further assessment of indole-3-glyoxylamides as a lead series against prion disease. ChemMedChem 2011; 6:115-30. [PMID: 21154498 DOI: 10.1002/cmdc.201000383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structure-activity relationships within the indole-3-glyoxylamide series of antiprion agents have been explored further, resulting in discovery of several new compounds demonstrating excellent activity in a cell line model of prion disease (EC₅₀ <10 nM). After examining a range of substituents at the para-position of the N-phenylglyoxylamide moiety, five-membered heterocycles containing at least two heteroatoms were found to be optimal for the antiprion effect. A number of modifications were made to probe the importance of the glyoxylamide substructure, although none were well tolerated. The most potent compounds did, however, prove largely stable towards microsomal metabolism, and the most active library member cured scrapie-infected cells indefinitely on administration of a single treatment. The present results thereby confirm the indole-3-glyoxylamides as a promising lead series for continuing in vitro and in vivo evaluation against prion disease.
Collapse
Affiliation(s)
- Mark J Thompson
- Department of Chemistry, University of Sheffield, Brook Hill, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Synthesis and cytotoxicity of novel 3-amino-4-indolylmaleimide derivatives. Arch Pharm Res 2011; 34:519-26. [PMID: 21544716 DOI: 10.1007/s12272-011-0401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
In an attempt to develop potent and selective antitumor agents, a series of novel 3-amino-4-indolylmaleimides were designed and synthesized. The reaction showed high regioselectivity. The structure of compound 7a was determined by an X-ray single crystal diffraction method. The cytotoxicities of the title compounds were evaluated against HeLa, SMMC 7721 and HL 60 cancer cell lines by a standard MTT assay in vitro. The pharmacological results showed that some of the title compounds displayed moderate or high cytotoxic activity against the tested cell lines. Compound 7d was the most promising compound against the tested cancer cell lines. Structure-activity relationships are discussed based on the experimental data obtained. A hydroxyethylamino group at the 3-position in the side chain of indolylmaleimide is associated with an increase in cytotoxicity.
Collapse
|
28
|
Lee SK, Chung JI, Park MS, Joo HK, Lee EJ, Cho EJ, Park JB, Ryoo S, Irani K, Jeon BH. Apurinic/apyrimidinic endonuclease 1 inhibits protein kinase C-mediated p66shc phosphorylation and vasoconstriction. Cardiovasc Res 2011; 91:502-9. [PMID: 21467074 DOI: 10.1093/cvr/cvr095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Phosphorylation of the adaptor protein p66shc is essential for p66shc-mediated oxidative stress. We investigated the role of the reducing protein/DNA repair enzyme apurinic/apyrimidinic endonuclease1 (APE1) in modulating protein kinase CβII (PKCβII)-mediated p66shc phosphorylation in cultured endothelial cells and PKC-mediated vasoconstriction of arteries. METHODS AND RESULTS Oxidized low-density lipoprotein (oxLDL)induced p66shc phosphorylation at serine 36 residue and PKCβII phosphorylation in mouse endothelial cells. Adenoviral overexpression of APE1 resulted in reduction of oxLDL-induced p66shc and PKCβII phosphorylation. Phorbol 12-myristate 13-acetate (PMA), which stimulates PKCs, induced p66shc phosphorylation and this was inhibited by a selective PKCβII inhibitor. Adenoviral overexpression of PKCβII also increased p66shc phosphorylation. Overexpression of APE1 suppressed PMA-induced p66shc phosphorylation. Moreover, PMA-induced p66shc phosphorylation was augmented in cells in which APE1 was knocked down. PMA increased cytoplasmic APE1 expression, compared with the basal condition, suggesting the role of cytoplasmic APE1 against p66shc phosphorylation. Finally, vasoconstriction induced by phorbol-12,13, dibutylrate, another PKC agonist, was partially inhibited by transduction of Tat-APE1 into arteries. CONCLUSION APE1 suppresses oxLDL-induced p66shc activation in endothelial cells by inhibiting PKCβII-mediated serine phosphorylation of p66shc, and mitigates vasoconstriction induced by activation of PKC.
Collapse
Affiliation(s)
- Sang Ki Lee
- Infection Signaling Network Research Center, Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-gu, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jain K, Ajay D, Sobhia ME. Targeting PKC-β II and PKB Connection: Design of Dual Inhibitors. Mol Inform 2011; 30:329-44. [PMID: 27466950 DOI: 10.1002/minf.201000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/03/2010] [Indexed: 01/18/2023]
Abstract
Protein kinase C (PKC) has been the center of many cell signaling pathways. PKC isoforms, specifically PKC-β II is linked to both diabetic complications as well as in promotion of angiogenesis and regulation of cancers. PKC-β II activates the PKB/Akt pathway. Enzastaurin, a selective PKC-β II inhibitor has been found to inhibit PKB/Akt by suppressing the regulation of various cancerous pathways. In the present work, we carried out an in depth study on the binding mode of inhibitors of PKC-β II, enzastaurin and ruboxistaurin with the active site residues of PKB and PKC-β II. A ligand based approach has been further used to determine the pharmacophoric features and spatial arrangement of molecules, having common properties necessary for appropriate binding to the active site of both targets. Virtual screening of the respective pharmacophores of both proteins led to identification of hits which may be useful for treatment of diabetic complications and cancer. The study has highlighted important features that may be considered in the future for designing novel inhibitors.
Collapse
Affiliation(s)
- Kapil Jain
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar - 160062, Punjab, India phone: +91-172-221468286-2025; fax: +91-172-2214692
| | - Dara Ajay
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar - 160062, Punjab, India phone: +91-172-221468286-2025; fax: +91-172-2214692
| | - M Elizabeth Sobhia
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar - 160062, Punjab, India phone: +91-172-221468286-2025; fax: +91-172-2214692.
| |
Collapse
|
30
|
Saba NS, Levy LS. Apoptotic induction in B-cell acute lymphoblastic leukemia cell lines treated with a protein kinase Cβ inhibitor. Leuk Lymphoma 2011; 52:877-86. [PMID: 21271861 DOI: 10.3109/10428194.2011.552136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) in adults exhibits a 5-year disease-free survival rate of only 25-40% after currently available treatment. Protein kinase Cβ (PKCβ) is under active consideration as a rational therapeutic target in several B-cell malignancies, but studies of its possible utility in B-ALL are lacking. Expression of PKCβ1 and PKCβ2 isoforms was demonstrated in five B-ALL cell lines characterized by distinctive chromosomal translocations, and sensitivity to PKCβ-selective inhibition was examined. Inhibitor treatment resulted in a dose-dependent reduction in viability in all cell lines, although pro-B ALL with t(4;11)(q21;q23) was most sensitive. Apoptotic induction was evident after 24-48 h of treatment, and an inhibition of cell cycle progression was detected in one cell line. Treatment resulted in a rapid induction of poly(ADP-ribose) polymerase (PARP) cleavage, indicating caspase-3-mediated apoptosis, and a rapid reduction in phosphorylation of AKT and its downstream target glycogen synthase kinase 3β (GSK3β). These results indicate that PKCβ targeting should be considered as a potential treatment option in B-ALL.
Collapse
Affiliation(s)
- Nakhle S Saba
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | |
Collapse
|
31
|
2D and 3D QSAR analyses to predict favorable substitution sites in anilino-monoindolylmaleimides acting as PKCβII selective inhibitors. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9439-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Milletti F, Vulpetti A. Predicting Polypharmacology by Binding Site Similarity: From Kinases to the Protein Universe. J Chem Inf Model 2010; 50:1418-31. [DOI: 10.1021/ci1001263] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Milletti
- CADD, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, CH4002 Basel, Switzerland
| | - Anna Vulpetti
- CADD, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, CH4002 Basel, Switzerland
| |
Collapse
|
33
|
Lin YF, Leu SJ, Huang HM, Tsai YH. Selective activation of specific PKC isoforms dictating the fate of CD14+ monocytes towards differentiation or apoptosis. J Cell Physiol 2010; 226:122-31. [DOI: 10.1002/jcp.22312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Enhanced proliferation and migration of vascular smooth muscle cells in response to vascular injury under hyperglycemic conditions is controlled by beta3 integrin signaling. Int J Biochem Cell Biol 2010; 42:965-74. [PMID: 20184965 DOI: 10.1016/j.biocel.2010.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 02/07/2010] [Accepted: 02/17/2010] [Indexed: 12/29/2022]
Abstract
Atheroma formation and restenosis following percutaneous vascular intervention involve the growth and migration of vascular smooth muscle cells (SMCs) into neointimal lesions, in part due to changes in the extracellular matrix. While some clinical studies have suggested that, in comparison to non-diabetics, beta3 integrin inhibition in diabetic patients confers protection from restenosis, little is known regarding the role of beta3 integrin inhibition on SMC responses in this context. To understand the molecular mechanisms underlying integrin-mediated regulation of SMC function in diabetes, we examined SMC responses in diabetic mice deficient in integrin beta3 and observed that the integrin was required for enhanced proliferation, migration and extracellular regulated kinase (ERK) activation. Hyperglycemia-enhanced membrane recruitment and catalytic activity of PKCbeta in an integrin beta3-dependent manner. Hyperglycemia also promoted SMC filopodia formation and cell migration, both of which required alphaVbeta3, PKCbeta, and ERK activity. Furthermore, the integrin-kinase association was regulated by the alphaVbeta3 integrin ligand thrombospondin and the integrin modulator Rap1 under conditions of hyperglycemia. These results suggest that there are differences in SMC responses to vascular injury depending on the presence or absence of hyperglycemia and that SMC response under hyperglycemic conditions is largely mediated through beta3 integrin signaling.
Collapse
|
35
|
Tirado OM, MacCarthy CM, Fatima N, Villar J, Mateo-Lozano S, Notario V. Caveolin-1 promotes resistance to chemotherapy-induced apoptosis in Ewing's sarcoma cells by modulating PKCalpha phosphorylation. Int J Cancer 2010; 126:426-36. [PMID: 19609943 DOI: 10.1002/ijc.24754] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Caveolin-1 (CAV1) has been implicated in the regulation of several signaling pathways and in oncogenesis. Previously, we identified CAV1 as a key determinant of the oncogenic phenotype and tumorigenic activity of cells from tumors of the Ewing's Sarcoma Family (ESFT). However, the possible CAV1 involvement in the chemotherapy resistance commonly presented by an ESFT subset has not been established to date. This report shows that CAV1 expression determines the sensitivity of ESFT cells to clinically relevant chemotherapeutic agents. Analyses of endogenous CAV1 levels in several ESFT cells and ectopic CAV1 expression into ESFT cells expressing low endogenous CAV1 showed that the higher the CAV1 levels, the greater their resistance to drug treatment. Moreover, results from antisense- and shRNA-mediated gene expression knockdown and protein re-expression experiments demonstrated that CAV1 increases the resistance of ESFT cells to doxorubicin (Dox)- and cisplatin (Cp)-induced apoptosis by a mechanism involving the activating phosphorylation of PKCalpha. CAV1 knockdown in ESFT cells led to decreased phospho(Thr(638))-PKCalpha levels and a concomitant sensitization to apoptosis, which were reversed by CAV1 re-expression. These results were recapitulated by PKCalpha knockdown and re-expression in ESFT cells in which CAV1 was previously knocked down, thus demonstrating that phospho(Thr(638))-PKCalpha acts downstream of CAV1 to determine the sensitivity of ESFT cells to chemotherapeutic drugs. These data, along with the finding that CAV1 and phospho(Thr(638))-PKCalpha are co-expressed in approximately 45% of ESFT specimens tested, imply that targeting CAV1 and/or PKCalpha may allow the development of new molecular therapeutic strategies to improve the treatment outcome for patients with ESFT.
Collapse
Affiliation(s)
- Oscar M Tirado
- Institut d'Investigació Biomédica de Bellvitge, Centre d'Oncología Molecular, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Yang J, Lane PH, Pollock JS, Carmines PK. Protein kinase C-dependent NAD(P)H oxidase activation induced by type 1 diabetes in renal medullary thick ascending limb. Hypertension 2009; 55:468-73. [PMID: 20038746 DOI: 10.1161/hypertensionaha.109.145714] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Type 1 diabetes provokes a protein kinase C (PKC)-dependent accumulation of superoxide anion in the renal medullary thick ascending limb (mTAL). We hypothesized that this phenomenon involves PKC-dependent NAD(P)H oxidase activation. The validity of this hypothesis was explored using mTAL suspensions prepared from rats with streptozotocin-induced diabetes and from sham (vehicle-treated) rats. Superoxide production was 5-fold higher in mTAL suspensions from diabetic rats compared with suspensions from sham rats. The NAD(P)H oxidase inhibitor apocynin caused an 80% decrease in superoxide production by mTAL from diabetic rats (P<0.05 vs untreated) without altering superoxide production by sham mTAL. NAD(P)H oxidase activity was >2-fold higher in mTAL from diabetic rats than in sham mTAL (P<0.05). Pretreatment with calphostin C (broad-spectrum PKC inhibitor) or rottlerin (PKCdelta inhibitor) reduced NAD(P)H oxidase activity by approximately 80% in both groups; however, PKCalpha/beta or PKCbeta inhibition did not alter NAD(P)H oxidase activity in either group. Protein levels of Nox2, Nox4, and p47phox were significantly higher in diabetic mTAL than in mTAL from sham rats. In summary, elevated superoxide production by mTAL from diabetic rats was normalized by NAD(P)H oxidase inhibition. PKC-dependent, PKCdelta-dependent, and total NAD(P)H oxidase activity was greater in mTAL from diabetic rats compared with sham. Protein levels of Nox2, Nox4, and p47phox were increased in mTAL from diabetic rats. We conclude that increased superoxide production by the mTAL during diabetes involves a PKCdelta-dependent increase in NAD(P)H oxidase activity in concert with increased protein levels of catalytic and regulatory subunits of the enzyme.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, Neb 68198-5850, USA
| | | | | | | |
Collapse
|
37
|
Yang J, Lane PH, Pollock JS, Carmines PK. PKC-dependent superoxide production by the renal medullary thick ascending limb from diabetic rats. Am J Physiol Renal Physiol 2009; 297:F1220-8. [PMID: 19741016 DOI: 10.1152/ajprenal.00314.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 1 diabetes (T1D) is a state of oxidative stress accompanied by PKC activation in many tissues. The primary site of O2*- production by the normal rat kidney is the medullary thick ascending limb (mTAL). We hypothesized that T1D increases O2*- production by the mTAL through a PKC-dependent mechanism involving increased expression and translocation of one or more PKC isoforms. mTAL suspensions were prepared from rats with streptozotocin-induced T1D (STZ mTALs) and from normal or sham rats (normal/sham mTALs). O2*- production by STZ mTALs was fivefold higher than normal/sham mTALs (P < 0.05). PMA (30 min) mimicked the effect of T1D on O2*- production. Exposure to calphostin C or chelerythrine (PKC inhibitors), Gö6976 (PKCalpha/beta inhibitor), or rottlerin (PKCdelta inhibitor) decreased O2*- production to <20% of untreated baseline in both normal/sham and STZ mTALs. PKCbeta inhibitors had no effect. PKC activity was increased in STZ mTALs (P < 0.05 vs. normal/sham mTALs) and was unaltered by antioxidant exposure (tempol). PKCalpha protein levels were increased by 70% in STZ mTALs, with a approximately 30% increase in the fraction associated with the membrane (both P < 0.05 vs. sham). PKCbeta protein levels were elevated by 29% in STZ mTALs (P < 0.05 vs. sham) with no change in the membrane-bound fraction. Neither PKCdelta protein levels nor its membrane-bound fraction differed between groups. Thus STZ mTALs display PKC activation, upregulation of PKCalpha and PKCbeta protein levels, increased PKCalpha translocation to the membrane, and accelerated O2*- production that is eradicated by inhibition of PKCalpha or PKCdelta (but not PKCbeta). We conclude that increased PKCalpha expression and activity are primarily responsible for PKC-dependent O2*- production by the mTAL during T1D.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
38
|
Synthesis and evaluation of novel 7-azaindazolyl-indolyl-maleimide derivatives as antitumor agents and protein kinase C inhibitors. Bioorg Med Chem 2009; 17:4763-72. [DOI: 10.1016/j.bmc.2009.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 11/20/2022]
|
39
|
Vasko R, Koziolek M, Ikehata M, Rastaldi MP, Jung K, Schmid H, Kretzler M, Müller GA, Strutz F. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts. Am J Physiol Renal Physiol 2009; 296:F1452-63. [PMID: 19279131 DOI: 10.1152/ajprenal.90352.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basic fibroblast growth factor (FGF-2) plays a role in renal fibrogenesis, although its potential implications for tubulointerstitial involvement in diabetic nephropathy are unknown. We evaluated the expression of FGF-2 in kidney biopsies from patients with diabetic nephropathy and studied the mechanisms of its induction in human renal fibroblasts under hyperglycemia. Tubulointerstitial expression of FGF-2 was significantly upregulated in diabetic nephropathy compared with control kidneys with a good correlation to the degree of the injury. Fibroblasts cultivated in high glucose displayed increased FGF-2 mRNA as well as protein synthesis and secretion compared with normal glucose. Proliferation rates under hyperglycemia were significantly higher and could be almost completely inhibited by addition of a neutralizing FGF-2 antibody. Alterations in proliferation were associated with changes in p27(kip1) expression. Hyperglycemia induced the expression of PKC-beta1 and PKC-beta2; however, only inhibition of PKC-beta1 but not PKC-beta2 led to a significant decrease of FGF-2 levels. Relevance of the culture findings and functional association was corroborated by colocalization of FGF-2 and PKC-beta in human diabetic kidneys in vivo. High glucose stimulated fibronectin synthesis and secretion, which could be substantially prevented by inhibition of PKC-beta1 and to a lesser extent by inhibiting the FGF-2. Expression of active phosphorylated form of p38 mitogen-activated protein kinase was upregulated under hyperglycemia; however, its inhibition had no effects on FGF-2 synthesis. Our results implicate a role of FGF-2 in high glucose-altered molecular signaling in pathogenesis of diabetic renal disease.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, Georg-August-Univ. Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao SY, Mou SW, Chen ZL, Yue Y, Sun Y. Synthesis and Cytotoxicity of Novel 3-amido-4-indolylmaleimide Derivatives. JOURNAL OF CHEMICAL RESEARCH 2009. [DOI: 10.3184/030823409x430202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of novel 3-amido-4-indolylmaleimides have been synthesised from succinimide in five steps sequence consisting of bromination, indole addition, azide substitution, reduction and selective acylation. Cytotoxicity was evaluated for the products against cervical cancer Hela cell lines and human hepatocellular cancer SMMC 7721 cell line by standard MTT assay in vitro. Some of these compounds showed moderate cytotoxic potencies.
Collapse
Affiliation(s)
- Sheng Yin Zhao
- Department of Chemistry, Donghua University, Shanghai 201620, P.R. China
| | - Shi Wei Mou
- Department of Chemistry, Donghua University, Shanghai 201620, P.R. China
| | - Zhi Long Chen
- Department of Biological Sciences, Donghua University, Shanghai 201620, P.R. China
| | - Yun Yue
- Department of Pharmacology, Foshan University, Foshan 528000, P.R. China
| | - Yun Sun
- Department of Biological Sciences, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
41
|
Villar J, Quadri HS, Song I, Tomita Y, Tirado OM, Notario V. PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Calpha-mediated Bcl-2 stabilization. Cancer Res 2009; 69:102-10. [PMID: 19117992 DOI: 10.1158/0008-5472.can-08-2922] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prostate cancer (PCa) frequently develops antiapoptotic mechanisms and acquires resistance to anticancer drugs. Therefore, identifying PCa drug resistance determinants should facilitate designing more effective chemotherapeutic regimens. Recently, we described that the PCPH protein becomes highly expressed in human prostatic intraepithelial neoplasia and in PCa, and that the functional interaction between PCPH and protein kinase Cdelta (PKCdelta) increases the invasiveness of human PCa. Here, we report that the functional interaction between PCPH and a different PKC isoform, PKCalpha, confers resistance against cisplatin-induced apoptosis to PCa cells. This interaction elicits a mechanism ultimately resulting in the posttranslational stabilization and subsequent elevated expression of Bcl-2. Stable knockdown of either PCPH, mt-PCPH, or PKCalpha in PCa cells decreased Ser70-phosphorylated Bcl-2 and total Bcl-2 protein, thereby increasing their cisplatin sensitivity. Conversely, forced expression of the PCPH protein or, in particular, of the mt-PCPH oncoprotein increased the levels of phosphorylated PKCalpha concurrently with those of Ser70-phosphorylated and total Bcl-2 protein, thus promoting cisplatin resistance. Consistently, Bcl-2 knockdown sensitized PCa cells to cisplatin treatment and, more importantly, reversed the cisplatin resistance of PCa cells expressing the mt-PCPH oncoprotein. Moreover, reexpression of Bcl-2 in PCPH/mt-PCPH knockdown PCa cells reversed the cisplatin sensitization caused by PCPH or mt-PCPH down-regulation. These findings identify PCPH and mt-PCPH as important participants in the chemotherapy response of PCa cells, establish a role for PCPH-PKCalpha-Bcl-2 functional interactions in the drug response process, and imply that targeting PCPH expression before, or simultaneously with, chemotherapy may improve the treatment outcome for PCa patients.
Collapse
Affiliation(s)
- Joaquín Villar
- Laboratory of Experimental Carcinogenesis, Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road Northwest, Washington, DC 20057-1482, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chou CC, Hsu CY. Involvement of PKC in TPA-potentiated apoptosis induction during hemin-mediated erythroid differentiation in K562 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2009; 379:1-9. [PMID: 18758751 DOI: 10.1007/s00210-008-0347-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 08/11/2008] [Indexed: 11/28/2022]
Abstract
Triggering differentiation has been employed as a strategy to inhibit cell proliferation and accelerate apoptosis in malignant cells. To better understand the mechanisms underlying differentiation-mediated regulation of apoptosis, we have studied the effects of PKC pathway with an activator of the protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), during hemin-induced erythroid differentiation of K562 erythroleukemia cells. K562 cell line has been used as a model of common progenitor of erythroblasts and magakaryocytes and can be differentiated into erythroid and megakaryocytic lineages by hemin and TPA, respectively. TPA induced almost complete loss of proliferation during megakaryocytic differentiation in K562 cells. However, upon hemin-mediated erythroid differentiation, the growth rate was slightly decreased at the subtoxic concentrations. Cotreatment with TPA at the hemin-treated K562 cells produced a concentration-dependent increase in cell injuries with apoptotic changes and significantly diminished the erythroid phenotype. To better understand the events implicated, we have used the PKC inhibitors such as bisindolylmaleimide II, RO318220, and the PKCbeta inhibitor. Our data showed that TPA-potentiated apoptosis in hemin-treated K562 cells was rescued by the application of the PKC inhibitors. Taken together, our results suggested the involvement of PKC in TPA-potentiated apoptosis induction during hemin-mediated erythroid differentiation in K562 cells.
Collapse
Affiliation(s)
- Chih Chung Chou
- Department and Graduate School of Biotechnology, Fooyin University, 151 Chin-Hsueh, Rd., Ta-Liao Hsiang, Kaohsiung Hsien, 831, Taiwan, Republic of China
| | | |
Collapse
|
43
|
Brennführer A, Neumann H, Pews-Davtyan A, Beller M. Catalytic and Stoichiometric Synthesis of Novel 3-Aminocarbonyl-, 3-Alkoxycarbonyl-, and 3-Amino-4-indolylmaleimides. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Bolon ML, Peng T, Kidder GM, Tyml K. Lipopolysaccharide plus hypoxia and reoxygenation synergistically reduce electrical coupling between microvascular endothelial cells by dephosphorylating connexin40. J Cell Physiol 2008; 217:350-9. [PMID: 18521823 DOI: 10.1002/jcp.21505] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We showed that lipopolysaccharide (LPS) or hypoxia and reoxygenation (H/R) decreases electrical coupling between microvascular endothelial cells by targeting the gap junction protein connexin40 (Cx40), tyrosine kinase-, ERK1/2-, and PKA-dependently. Since LPS can compromise microvascular blood flow, resulting in micro-regional H/R, the concurrent LPS + H/R could reduce coupling to a much greater extent than LPS or H/R alone. We examined this possibility in a model of cultured microvascular endothelial cells (mouse skeletal muscle origin) in terms of electrical coupling and the phosphorylation status of Cx40. To assess coupling, we measured the spread of electrical current injected into the cell monolayer and computed the intercellular resistance as an inversed measure of coupling. In wild type cells, but not in Cx40 null cells, concurrent LPS + H/R synergistically increased resistance by approximately 270%, well above the level observed for LPS or H/R alone. Cx37 and Cx43 protein expression did not differ between Cx40 null and wild type cells. LPS + H/R increased resistance PKA- and PKC-dependently. By immunoprecipitating Cx40, we found that LPS + H/R reduced serine phosphorylation to a much greater degree than that observed for LPS or H/R alone. Further, PKA-specific, but not PKC-specific serine phosphorylation of Cx40 was also significantly reduced following LPS + H/R. This reduction was prevented by tyrosine kinase and MEK1/2 inhibition, by PKA activation, and mimicked in control cells by PKA inhibition. We conclude that LPS + H/R initiates tyrosine kinase- and ERK1/2-sensitive signaling that synergistically reduces inter-endothelial electrical coupling by dephosphorylating PKA-specific serine residues of Cx40.
Collapse
Affiliation(s)
- Michael L Bolon
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Xu GQ, Zhang C, Zhang L, Zhou XL, Yang B, He QJ, Hu YZ. Synthesis, Cytotoxicity and Protein Kinase C Inhibition of Arylpyrrolylmaleimides. Arch Pharm (Weinheim) 2008; 341:273-80. [DOI: 10.1002/ardp.200700190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Pews-Davtyan A, Tillack A, Ortinau S, Rolfs A, Beller M. Efficient palladium-catalyzed synthesis of 3-aryl-4-indolylmaleimides. Org Biomol Chem 2008; 6:992-7. [PMID: 18327323 DOI: 10.1039/b719160j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improved palladium catalysts for the Suzuki coupling of 3-bromo-1-methyl-4-(2-methyl-3-indolyl)maleimide have been developed. The coupling of both aryl- and heteroarylboronic acids proceeds smoothly in good to excellent yields at low catalyst loading.
Collapse
Affiliation(s)
- Anahit Pews-Davtyan
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | | | | | | | | |
Collapse
|
47
|
Dai Z, Dulyaninova NG, Kumar S, Bresnick AR, Lawrence DS. Visual snapshots of intracellular kinase activity at the onset of mitosis. ACTA ACUST UNITED AC 2008; 14:1254-60. [PMID: 18022564 DOI: 10.1016/j.chembiol.2007.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Visual snapshots of intracellular kinase activity can be acquired with exquisite temporal control by using a light-activatable (caged) sensor, thereby providing a means to interrogate enzymatic activity at any point during the cell-division cycle. Robust protein kinase activity transpires just prior to, but not immediately after, nuclear envelope breakdown (NEB). Furthermore, kinase activity is required for the progression from prophase into metaphase. Finally, the application of selective protein kinase C (PKC) inhibitors, in combination with the caged sensor, correlates the action of the PKC beta isoform with subsequent NEB.
Collapse
Affiliation(s)
- Zhaohua Dai
- Department of Biochemistry, The Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
A photoactivatable phosphorylation sensor used in conjunction with isoform specific inhibitors of protein kinase C enables the enzyme's activity to be monitored inside cells at specific time points during mitosis. PKCbeta was found to be active before, but not after, nuclear envelope breakdown.
Collapse
Affiliation(s)
- Timothy M Dore
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA.
| |
Collapse
|
49
|
Davies SL, Ozawa A, McCormick WD, Dvorak MM, Ward DT. Protein Kinase C-mediated Phosphorylation of the Calcium-sensing Receptor Is Stimulated by Receptor Activation and Attenuated by Calyculin-sensitive Phosphatase Activity. J Biol Chem 2007; 282:15048-56. [PMID: 17376781 DOI: 10.1074/jbc.m607469200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The agonist sensitivity of the calcium-sensing receptor (CaR) can be altered by protein kinase C (PKC), with CaR residue Thr(888) contributing significantly to this effect. To determine whether CaR(T888) is a substrate for PKC and whether receptor activation modulates such phosphorylation, a phospho-specific antibody against this residue was raised (CaR(pT888)). In HEK-293 cells stably expressing CaR (CaR-HEK), but not in cells expressing the mutant receptor CaR(T888A), phorbol ester (PMA) treatment increased CaR(pT888) immunoreactivity as observed by immunoblotting and immunofluorescence. Raising extracellular Ca(2+) concentration from 0.5 to 2.5 mM increased CaR(T888) phosphorylation, an effect that was potentiated stereoselectively by the calcimimetic NPS R-467. These responses were mimicked by 5 mM extracellular Ca(2+) and abolished by the calcilytic NPS-89636 and also by PKC inhibition or chronic PMA pretreatment. Whereas CaR(T888A) did exhibit increased apparent agonist sensitivity, by converting intracellular Ca(2+) (Ca(2+)(i)) oscillations to sustained plateau responses in some cells, we still observed Ca(2+)(i) oscillations in a significant number of cells. This suggests that CaR(T888) contributes significantly to CaR regulation but is not the exclusive determinant of CaR-induced Ca(2+)(i) oscillations. Finally, dephosphorylation of CaR(T888) was blocked by the protein phosphatase 1/2A inhibitor calyculin, a treatment that also inhibited Ca(2+)(i) oscillations. In addition, calyculin/PMA cotreatment increased CaR(T888) phosphorylation in bovine parathyroid cells. Therefore, CaR(T888) is a substrate for receptor-induced, PKC-mediated feedback phosphorylation and can be dephosphorylated by a calyculin-sensitive phosphatase.
Collapse
Affiliation(s)
- Sarah L Davies
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Xu GQ, Guo P, Zhang C, He QJ, Yang B, Hu YZ. Synthesis and Cytotoxicity of Indolopyrrolemaleimides. Chem Pharm Bull (Tokyo) 2007; 55:1302-7. [PMID: 17827752 DOI: 10.1248/cpb.55.1302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of indolopyrrolemaleimides have been synthesized and evaluated for their cytotoxicity in vitro against human leukemia cell line and four human solid cancer cell lines. Some of the compounds showed high or mediate activity against the lines. 6dc is the most promising compound among them. The inhibition toward topoisomerase I was also studied.
Collapse
Affiliation(s)
- Gui-Qing Xu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|