1
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4817-4838. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Khan F, Kang MG, Jo DM, Chandika P, Jung WK, Kang HW, Kim YM. Phloroglucinol-Gold and -Zinc Oxide Nanoparticles: Antibiofilm and Antivirulence Activities towards Pseudomonasaeruginosa PAO1. Mar Drugs 2021; 19:601. [PMID: 34822472 PMCID: PMC8624799 DOI: 10.3390/md19110601] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
With the advancement of nanotechnology, several nanoparticles have been synthesized as antimicrobial agents by utilizing biologically derived materials. In most cases, the materials used for the synthesis of nanoparticles from natural sources are extracts. Natural extracts contain a wide range of bioactive components, making it difficult to pinpoint the exact component responsible for nanoparticle synthesis. Furthermore, the bioactive component present in the extract changes according to numerous environmental factors. As a result, the current work intended to synthesize gold (AuNPs) and zinc oxide (ZnONPs) nanoparticles using pure phloroglucinol (PG). The synthesized PG-AuNPs and PG-ZnONPs were characterized using a UV-Vis absorption spectrophotometer, FTIR, DLS, FE-TEM, zeta potential, EDS, and energy-dispersive X-ray diffraction. The characterized PG-AuNPs and PG-ZnONPs have been employed to combat the pathogenesis of Pseudomonas aeruginosa. P. aeruginosa is recognized as one of the most prevalent pathogens responsible for the common cause of nosocomial infection in humans. Antimicrobial resistance in P. aeruginosa has been linked to the development of recalcitrant phenotypic characteristics, such as biofilm, which has been identified as one of the major obstacles to antimicrobial therapy. Furthermore, P. aeruginosa generates various virulence factors that are a major cause of chronic infection. These PG-AuNPs and PG-ZnONPs significantly inhibit early stage biofilm and eradicate mature biofilm. Furthermore, these NPs reduce P. aeruginosa virulence factors such as pyoverdine, pyocyanin, protease, rhamnolipid, and hemolytic capabilities. In addition, these NPs significantly reduce P. aeruginosa swarming, swimming, and twitching motility. PG-AuNPs and PG-ZnONPs can be used as control agents for infections caused by the biofilm-forming human pathogenic bacterium P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
| | - Min-Gyun Kang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Pathum Chandika
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| |
Collapse
|
4
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
5
|
Kusumaningsih T, Prasetyo WE, Wibowo FR, Firdaus M. Toward an efficient and eco-friendly route for the synthesis of dimeric 2,4-diacetyl phloroglucinol and its potential as a SARS-CoV-2 main protease antagonist: insight from in silico studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj06114j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dimeric 2,4-diacetyl phloroglucinol derivatives were synthesized under green chemistry protocols and found to be the potential inhibitor of 3CLpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Triana Kusumaningsih
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| | - Wahyu E. Prasetyo
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| | - Fajar R. Wibowo
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| | - Maulidan Firdaus
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| |
Collapse
|
6
|
Bello-Onaghise G, Wang G, Han X, Nsabimana E, Cui W, Yu F, Zhang Y, Wang L, Li Z, Cai X, Li Y. Antiviral Strategies of Chinese Herbal Medicine Against PRRSV Infection. Front Microbiol 2020; 11:1756. [PMID: 32849384 PMCID: PMC7401453 DOI: 10.3389/fmicb.2020.01756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023] Open
Abstract
Bioactive compounds from Traditional Chinese Medicines (TCMs) are gradually becoming an effective alternative in the control of porcine reproductive and respiratory syndrome virus (PRRSV) because most of the commercially available PRRSV vaccines cannot provide full protection against the genetically diverse strains isolated from farms. Besides, the incomplete attenuation procedure involved in the production of modified live vaccines (MLV) may cause them to revert to the more virulence forms. TCMs have shown some promising potentials in bridging this gap. Several investigations have revealed that herbal extracts from TCMs contain molecules with significant antiviral activities against the various stages of the life cycle of PRRSV, and they do this through different mechanisms. They either block PRRSV attachment and entry into cells or inhibits the replication of viral RNA or viral particles assembly and release or act as immunomodulators and pathogenic pathway inhibitors through cytokines regulations. Here, we summarized the various antiviral strategies employed by some TCMs against the different stages of the life cycle of PRRSV under two major classes, including direct-acting antivirals (DAAs) and indirect-acting antivirals (IAAs). We highlighted their mechanisms of action. In conclusion, we recommended that in making plans for the use of TCMs to control PRRSV, the pathway forward must be built on a real understanding of the mechanisms by which bioactive compounds exert their effects. This will provide a template that will guide the focus of collaborative studies among researchers in the areas of bioinformatics, chemistry, and proteomics. Furthermore, available data and procedures to support the efficacy, safety, and quality control levels of TCMs should be well documented without any breach of data integrity and good manufacturing practices.
Collapse
Affiliation(s)
- God'spower Bello-Onaghise
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiao Han
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal and Veterinary Science, Chengdu Agricultural College, Chengdu, China
| | - Eliphaz Nsabimana
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenqiang Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Linguang Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhengze Li
- Department of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Inhibitory effect of phloroglucinol on α-glucosidase: Kinetics and molecular dynamics simulation integration study. Int J Biol Macromol 2019; 124:771-779. [DOI: 10.1016/j.ijbiomac.2018.11.268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
|
8
|
Sanna C, Scognamiglio M, Fiorentino A, Corona A, Graziani V, Caredda A, Cortis P, Montisci M, Ceresola ER, Canducci F, Poli F, Tramontano E, Esposito F. Prenylated phloroglucinols from Hypericum scruglii, an endemic species of Sardinia (Italy), as new dual HIV-1 inhibitors effective on HIV-1 replication. PLoS One 2018; 13:e0195168. [PMID: 29601601 PMCID: PMC5877874 DOI: 10.1371/journal.pone.0195168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
In a search for new potential multitarget anti-HIV compounds from natural products, we have identified in Hypericum scruglii, an endemic and exclusive species of Sardinia (Italy), a potent plant lead. The phytochemical study of the hydroalcoholic extract obtained from its leaves led to the isolation of its most abundant secondary metabolites, belonging to different chemical classes. In particular, three phloroglucinols derivatives were identified, confirming their significance as chemotaxonomic markers of the Hypericum genus. Among them, the 3-(13-hydroxygeranyl)-1-(2'-methylbutanoyl)phloroglucinol was reported here for the first time. All six isolated compounds have been evaluated firstly for the inhibition of both Human Immunodeficiency Virus type 1 (HIV-1) Reverse Transcriptase (RT)-associated DNA Polymerase (RDDP) and Ribonuclease H (RNase H) activities, for the inhibition of HIV-1 integrase (IN) in biochemical assays, and also for their effect on viral replication. Among the isolated metabolites, three phloroglucinol derivatives and quercitrin were effective on both RT-associated RDDP and RNase H activities in biochemical assays. The same active compounds affected also HIV-1 IN strand transfer function, suggesting the involvement of the RNase H active site. Furthermore, phloroglucinols compounds, included the newly identified compound, were able to inhibit the HIV-1 replication in cell based assays.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- * E-mail:
| | | | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania, Caserta, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Vittoria Graziani
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania, Caserta, Italy
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Cortis
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Mariofilippo Montisci
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elisa Rita Ceresola
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Laboratory of Microbiology, San Raffaele Hospital, IRCCS, Milan, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Kumar R, Sharma M, Shaikh N, Garg P. A comparative study of integrase-binding domain of homologous HRP2 and LEDGF/p75 protein: from sequence to structural characterisation. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.935374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Kwon YH, Lee JH, Jung SY, Kim JW, Lee SH, Lee DH, Lee KS, Lee BY, Kwon SM. Phloroglucinol Inhibits the in vitro Differentiation Potential of CD34 Positive Cells into Endothelial Progenitor Cells. Biomol Ther (Seoul) 2013; 20:158-64. [PMID: 24116289 PMCID: PMC3792212 DOI: 10.4062/biomolther.2012.20.2.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/17/2011] [Accepted: 11/23/2011] [Indexed: 11/16/2022] Open
Abstract
Inhibiting the bioactivities of circulating endothelial progenitor cells (EPCs) results in significant inhibition of neovessel formation during tumor angiogenesis. To investigate the potential effect of phloroglucinol as an EPC inhibitor, we performed several in vitro functional assays using CD34+ cells isolated from human umbilical cord blood (HUCB). Although a high treatment dose of phloroglucinol did not show any cell toxicity, it specifically induced the cell death of EPCs under serum free conditions through apoptosis. In the EPC colony-forming assay (EPC-CFA), we observed a significant decreased in the small EPC-CFUs for the phloroglucinol group, implying that phloroglucinol inhibited the early stage of EPC commitment. In addition, in the in vitro expansion assay using CD34+ cells, treatment with phloroglucinol was shown to inhibit endothelial lineage commitment, as demonstrated by the decrease in endothelial surface markers of EPCs including CD34+, CD34+/CD133+, CD34+/CD31+ and CD34+/CXCR4+. This is the first report to demonstrate that phloroglucinol can inhibit the functional bioactivities of EPCs, indicating that phloroglucinol may be used as an EPC inhibitor in the development of biosafe anti-tumor drugs that target tumor angiogenesis.
Collapse
Affiliation(s)
- Yi-Hong Kwon
- Department of Biomedical Science, Laboratory for Functional Foods & Nutrigenomics, Department of Food Science and Biotechnology, CHA University, Seongnam 463-836
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
High-throughput virtual screening of phloroglucinol derivatives against HIV-reverse transcriptase. Mol Divers 2013; 17:97-110. [DOI: 10.1007/s11030-012-9417-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
|
12
|
Yang Q, Gao L, Si J, Sun Y, Liu J, Cao L, Feng WH. Inhibition of porcine reproductive and respiratory syndrome virus replication by flavaspidic acid AB. Antiviral Res 2012. [PMID: 23178515 DOI: 10.1016/j.antiviral.2012.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significant challenge to the swine industry worldwide. Current control strategies against PRRSV are still inadequate and there is an urgent need for new antiviral therapies. Flavaspidic acid AB (FA-AB) is a compound derived from Dryopteris crassirhizoma, a traditional antiviral Chinese medicine. Here, we first identified its anti-PRRSV activity through targeting multiple stages in PRRSV infection in vitro. Our studies demonstrated that FA-AB could inhibit the internalization and cell-to-cell spreading of PRRSV, but not block PRRSV binding to cells. By monitoring the kinetics of PRRSV replication, we showed that FA-AB significantly suppressed PRRSV replication when treatment was initiated 24h after virus infection. Furthermore, we confirmed that FA-AB was able to significantly induce IFN-α, IFN-β, and IL1-β expression in porcine alveolar macrophages, suggesting that induction of antiviral cytokines by FA-AB could contribute to FA-AB induced inhibition of PRRSV replication. In conclusion, we provide a foundation for the possibility to develop a new therapeutic agent to control PRRSV infection.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratories of Agrobiotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Kwon YH, Jung SY, Kim JW, Lee SH, Lee JH, Lee BY, Kwon SM. Phloroglucinol inhibits the bioactivities of endothelial progenitor cells and suppresses tumor angiogenesis in LLC-tumor-bearing mice. PLoS One 2012; 7:e33618. [PMID: 22496756 PMCID: PMC3322124 DOI: 10.1371/journal.pone.0033618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/14/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS This is the first report on phloroglucinol's ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45(-)/CD34(+) progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model. CONCLUSIONS/SIGNIFICANCE These results suggest a novel role for Phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis.
Collapse
MESH Headings
- Administration, Oral
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Apoptosis/drug effects
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/prevention & control
- Cell Movement/drug effects
- Cells, Cultured
- Collagen/metabolism
- Drug Combinations
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Indicators and Reagents/administration & dosage
- Laminin/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/prevention & control
- Phloroglucinol/administration & dosage
- Proteoglycans/metabolism
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Yi-Hong Kwon
- Department of Biomedical Science, Laboratory for Functional Foods and Nutrigenomics, Department of Food Science and Biotechnology, CHA University, Kyunggi, Republic of Korea
| | - Seok-Yun Jung
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Jae-Won Kim
- Department of Biomedical Science, Laboratory for Functional Foods and Nutrigenomics, Department of Food Science and Biotechnology, CHA University, Kyunggi, Republic of Korea
| | - Sang-Hun Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Jun-Hee Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Boo-Yong Lee
- Department of Biomedical Science, Laboratory for Functional Foods and Nutrigenomics, Department of Food Science and Biotechnology, CHA University, Kyunggi, Republic of Korea
- * E-mail: (B-YL); (S-MK)
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University, Gyeongsangnam-do, Republic of Korea
- * E-mail: (B-YL); (S-MK)
| |
Collapse
|
14
|
Gupta P, Garg P, Roy N. Identification of Novel HIV-1 Integrase Inhibitors Using Shape-Based Screening, QSAR, and Docking Approach. Chem Biol Drug Des 2012; 79:835-49. [DOI: 10.1111/j.1747-0285.2012.01326.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Gupta P, Garg P, Roy N. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors. Mol Divers 2011; 15:733-50. [DOI: 10.1007/s11030-011-9304-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/05/2011] [Indexed: 12/01/2022]
|