1
|
Xiao Z, Li Y, Haider A, Pfister SK, Rong J, Chen J, Zhao C, Zhou X, Song Z, Gao Y, Patel JS, Collier TL, Ran C, Zhai C, Yuan H, Liang SH. Radiosynthesis and evaluation of a novel 18F-labeled tracer for PET imaging of glycogen synthase kinase 3. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:327-336. [PMID: 39583910 PMCID: PMC11578811 DOI: 10.62347/obzs8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine kinase family that regulates diverse biological processes including glucose metabolism, insulin activity and energy homeostasis. Dysregulation of GSK3 is implicated in the development of several diseases such as type 2 diabetes mellitus, Alzheimer's disease (AD), and various cancer types. In this study, we report the synthesis and evaluation of a novel positron emission tomography (PET) ligand compound 28 (codenamed [18F]GSK3-2209). The PET ligand [18F]28 was obtained via copper-mediated radiofluorination in more than 32% radiochemical yields, with high radiochemical purity and high molar activity. In vitro autoradiography studies in rodents demonstrated that this tracer exhibited a high specific binding to GSK3. Furthermore, PET imaging studies of [18F]28 revealed its ability to penetrate the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Stefanie K Pfister
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Zhendong Song
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Yabiao Gao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Department of Radiation Oncology, Winship Cancer Institute of Emory UniversityAtlanta, GA 30322, USA
| | - Thomas L Collier
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA 02114, USA
| | - Chuangyan Zhai
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| |
Collapse
|
2
|
Gundam SR, Bansal A, Kethamreddy M, Ghatamaneni S, Lowe VJ, Murray ME, Pandey MK. Synthesis and preliminary evaluation of novel PET probes for GSK-3 imaging. Sci Rep 2024; 14:15960. [PMID: 38987294 PMCID: PMC11237012 DOI: 10.1038/s41598-024-65943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Non-invasive imaging of GSK-3 expression in the brain will help to understand the role of GSK-3 in disease pathology and progression. Herein, we report the radiosynthesis and evaluation of two novel isonicotinamide based 18F labeled PET probes, [18F]2 and [18F]6 for noninvasive imaging of GSK3. Among the developed PET probes, the in vitro blood-brain permeability coefficient of 2 (38 ± 20 × 10-6 cm/s, n = 3) was found to be better than 6 (8.75 ± 3.90 × 10-6 cm/s, n = 5). The reference compounds 2 and 6 showed nanomolar affinity towards GSK-3α and GSK-3β. PET probe [18F]2 showed higher stability (100%) in mouse and human serums compared to [18F]6 (67.01 ± 4.93%, n = 3) in mouse serum and 66.20 ± 6.38%, n = 3) in human serum at 120 min post incubation. The in vivo imaging and blocking studies were performed in wild-type mice only with [18F]2 due to its observed stability. [18F]2 showed a SUV of 0.92 ± 0.28 (n = 6) in mice brain as early as 5 min post-injection followed by gradual clearance over time.
Collapse
Affiliation(s)
- Surendra Reddy Gundam
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aditya Bansal
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manasa Kethamreddy
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sujala Ghatamaneni
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Val J Lowe
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Mukesh K Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Jia J, Yi L, Xia Z, Yang M, Qiu D, Zhao Z, Peng Z. Development of [18F]Thiazolylacylaminopyridine-Based Glycogen Synthase Kinase-3β Ligands for Positron Emission Tomography Imaging. Bioorg Med Chem Lett 2023; 88:129263. [PMID: 37004924 DOI: 10.1016/j.bmcl.2023.129263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) regulates numerous of CNS-specific signaling pathways, and is particularly implicated in various pathogenetic mechanisms of Alzheimer's disease (AD). A noninvasive method for detecting GSK-3β in AD brains via positron emission tomography (PET) imaging could enhance the understanding of AD pathogenesis and aid in the development of AD therapeutic drugs. In this study, an array of fluorinated thiazolyl acylaminopyridines (FTAAP) targeting GSK-3β were designed and synthesized. These compounds showed moderate to high affinities (IC50 = 6.0 - 426 nM) for GSK-3β in vitro. A potential GSK-3β tracer, [18F]8, was successfully radiolabeled. [18F]8 had unsatisfactory initial brain uptake despite its suitable lipophilicity, molecular size and good stability. Further structural refinement of the lead compound is needed to develop promising [18F]-labeled radiotracers for the detection of GSK-3β in AD brains.
Collapse
Affiliation(s)
- Jianhua Jia
- Department of Radiological Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| | - Lan Yi
- Department of Radiological Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Meixian Yang
- Department of Radiological Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Dachuan Qiu
- Department of Radiological Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhenghuan Zhao
- Department of Radiological Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhiping Peng
- Department of Radiological Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
5
|
Giglio J, Fernandez S, Martinez A, Zeni M, Reyes L, Rey A, Cerecetto H. Glycogen Synthase Kinase-3 Maleimide Inhibitors As Potential PET-Tracers for Imaging Alzheimer's Disease: 11C-Synthesis and In Vivo Proof of Concept. J Med Chem 2021; 65:1342-1351. [PMID: 34464131 DOI: 10.1021/acs.jmedchem.1c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we present the evaluation of 11C-labeled-maleimides as radiotracers for positron emission tomography imaging of GSK-3 associated with Alzheimer's disease (AD). 3-Acetyl-4-(1-[11C]-methyl-1H-indol-3-yl)[1H]pyrrole-2,5-dione ([11C]-2) was obtained by direct methylation using [11C]-CH3I and Cs2CO3 in DMF with a 31 ± 4% radiochemical yield and a radiochemical purity of 97.7 ± 0.8%. [11C]-2 was stable both in its final formulation and in human plasma for 120 min and had a plasma protein binding of 70 ± 1% and a LogD7.4 value of 1.84 ± 0.04. [11C]-2 ex vivo biodistributions in healthy animals demonstrated significant brain uptake and retention, showing its ability to penetrate the intact blood-brain barrier. In vivo PET imaging in mice bearing AD showed, with respect to normal animals, significant differences in uptake in the hypothalamus, the striatum, and the amygdala and a significant increase in amygdala uptake in later stages of the pathology. These results are very promising, and further studies are being performed for a complete validation of this compound as novel tracer for AD.
Collapse
Affiliation(s)
- Javier Giglio
- Centro Uruguayo de Imagenología Molecular (CUDIM), 11600 Montevideo, Uruguay.,Área de Radioquímica, Facultad de Quimíca, Universidad de la República, 11800 Montevideo, Uruguay
| | - Soledad Fernandez
- Centro Uruguayo de Imagenología Molecular (CUDIM), 11600 Montevideo, Uruguay.,Área de Radioquímica, Facultad de Quimíca, Universidad de la República, 11800 Montevideo, Uruguay
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Maia Zeni
- Centro Uruguayo de Imagenología Molecular (CUDIM), 11600 Montevideo, Uruguay.,Graduate Program in Chemistry, Facultad de Quimíca, Universidad de la República, 11800 Montevideo, Uruguay
| | - Laura Reyes
- Centro Uruguayo de Imagenología Molecular (CUDIM), 11600 Montevideo, Uruguay
| | - Ana Rey
- Área de Radioquímica, Facultad de Quimíca, Universidad de la República, 11800 Montevideo, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
6
|
Varlow C, Mossine AV, Bernard-Gauthier V, Scott PJH, Vasdev N. Radiofluorination of oxazole-carboxamides for preclinical PET neuroimaging of GSK-3. J Fluor Chem 2021; 245. [PMID: 33840834 DOI: 10.1016/j.jfluchem.2021.109760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is an enzyme that is dysregulated in oncology neurodegeneration, neuroinflammation and several mental health illnesses. As such, GSK-3 is a long-sought after target for positron emission tomography (PET) imaging and therapeutic intervention. Herein, we report on the development and radiofluorination of two oxazole-4-carboxamides, including one bearing a non-activated aromatic ring. Both compounds demonstrated excellent selectivity in a kinase screen and inhibit GSK-3 with high affinity. [18F]OCM-49 was synthesized from [18F]fluoride using a copper-mediated reaction of an aryl boronic acid precursor, while [18F]OCM-50 used a trimethylammonium triflate precursor, and both radiotracers were translated for preclinical PET imaging in rodents. Due to superior radiochemical yields and brain uptake (peak standardized uptake value of ~2.0), [18F]OCM-50 was further evaluated in non-human primate and also showed good brain uptake and rapid clearance. Further studies to consider clinical translation of both radiotracers are underway.
Collapse
Affiliation(s)
- Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Andrew V Mossine
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Vadim Bernard-Gauthier
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
7
|
Zhong Y, Yang S, Cui J, Wang J, Li L, Chen Y, Chen J, Feng P, Huang S, Li H, Han Y, Tang G, Hu K. Novel 18F-Labeled Isonicotinamide-Based Radioligands for Positron Emission Tomography Imaging of Glycogen Synthase Kinase-3β. Mol Pharm 2021; 18:1277-1284. [PMID: 33492962 DOI: 10.1021/acs.molpharmaceut.0c01133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β), a cytoplasmic serine/threonine protein kinase, is involved in several human pathologies including Alzheimer's disease, bipolar disorder, diabetes, and cancer. Positron emission tomography (PET) imaging of GSK-3β could aid in investigating GSK-3β levels under normal and pathological conditions. In this study, we designed and synthesized fluorinated PET radioligands starting with recently identified isonicotinamide derivatives that showed potent affinity to GSK-3β. After extensive in vitro inhibitory activity assays and analyzing U87 cell uptake, we identified [18F]10a-d as potential tracers with good specificity and high affinity. They were then subjected to further in vivo evaluation in rodent brain comprising PET imaging and metabolism studies. The radioligands [18F]10b-d penetrated the blood-brain barrier and accumulated in GSK-3β-rich regions, including amygdala, cerebellum, and hippocampus. Also, it could be specifically blocked using the corresponding standard compounds. With these results, this work sets the basis for further development of novel 18F-labeled GSK-3β PET probes.
Collapse
Affiliation(s)
- Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Shaoxi Yang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Jianyu Cui
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Jie Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Lin Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Yilin Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Junjie Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shun Huang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Hongsheng Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Yanjian Han
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
8
|
|
9
|
Niwa T, Hosoya T. Molecular Renovation Strategy for Expeditious Synthesis of Molecular Probes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
10
|
Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors. J Mol Model 2019; 25:171. [PMID: 31129879 DOI: 10.1007/s00894-019-4032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/07/2019] [Indexed: 10/26/2022]
Abstract
Considering the emerging importance of glycogen synthase kinase 3 beta (GSK-3β) inhibitors in treatment of Alzheimer's disease, multi-protein structure receptor-based pharmacophore modeling was adopted to generate a 3D pharmacophore model for (GSK-3β) inhibitors. The generated 3D pharmacophore was then validated using a test set of 1235 compounds. The ZINCPharmer web tool was used to virtually screen the public ZINC database using the generated 3D pharmacophore. A set of 12,251 hits was produced and then filtered according to their lead-like properties, predicted central nervous system (CNS) activity, and Pan-assay interference compounds (PAINS) fragments to 630 compounds. Scaffold Hunter was then used to cluster the filtered compounds according to their chemical structure framework. From the different clusters, 123 compounds were selected to cover the whole chemical space of the obtained hits. The SwissADME online tool was then used to filter out the compounds with undesirable pharmacokinetic properties giving a set of 91 compounds with promising predicted pharmacodynamic and pharmacokinetic properties. To confirm their binding capability to the GSK-3β binding site, molecular docking simulations were performed for the final 91 compounds in the GSK-3β binding site. Twenty-five compounds showed acceptable binding poses that bind to the key amino acids in the binding site Asp133 and Val135 with good binding scores. The quinolin-2-one derivative ZINC67773573 was found to be a promising lead for designing new GSK-3β inhibitors for Alzheimer's disease treatment. Graphical abstract A 3D pharmacophore model for the discovery of novel (GSK-3β) inhibitors.
Collapse
|
11
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Prabhakaran J, Zanderigo F, Solingapuram Sai KK, Rubin-Falcone H, Jorgensen MJ, Kaplan JR, Mintz A, Mann JJ, Dileep Kumar JS. Radiosynthesis and in Vivo Evaluation of [ 11C]A1070722, a High Affinity GSK-3 PET Tracer in Primate Brain. ACS Chem Neurosci 2017; 8:1697-1703. [PMID: 28485573 PMCID: PMC5559324 DOI: 10.1021/acschemneuro.6b00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dysfunction of glycogen synthase kinase 3 (GSK-3) is implicated in the etiology of Alzheimer's disease, Parkinson's disease, diabetes, pain, and cancer. A radiotracer for functional positron emission tomography (PET) imaging could be used to study the kinase in brain disorders and to facilitate the development of small molecule inhibitors of GSK-3 for treatment. At present, there is no target-specific or validated PET tracer available for the in vivo monitoring of GSK-3. We radiolabeled the small molecule inhibitor [11C]1-(7-methoxy- quinolin-4-yl)-3-(6-(trifluoromethyl)pyridin-2-yl)urea ([11C]A1070722) with high affinity to GSK-3 (Ki = 0.6 nM) in excellent radiochemical yield. PET imaging experiments in anesthetized vervet/African green monkey exhibited that [11C]A1070722 penetrated the blood-brain barrier (BBB) and accumulated in brain regions, with highest radioactivity binding in frontal cortex followed by parietal cortex and anterior cingulate, and with the lowest bindings found in caudate, putamen, and thalamus, similarly to the known distribution of GSK-3 in human brain. Our studies suggest that [11C]A1070722 can be a potential PET radiotracer for the in vivo quantification of GSK-3 in brain.
Collapse
Affiliation(s)
- Jaya Prabhakaran
- Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Harry Rubin-Falcone
- Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
| | - Matthew J. Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Jay R. Kaplan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Akiva Mintz
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - J. John Mann
- Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
| | - J. S. Dileep Kumar
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
| |
Collapse
|
13
|
Hu K, Patnaik D, Collier TL, Lee KN, Gao H, Swoyer MR, Rotstein BH, Krishnan HS, Liang SH, Wang J, Yan Z, Hooker JM, Vasdev N, Haggarty SJ, Ngai MY. Development of [ 18F]Maleimide-Based Glycogen Synthase Kinase-3β Ligands for Positron Emission Tomography Imaging. ACS Med Chem Lett 2017; 8:287-292. [PMID: 28337318 DOI: 10.1021/acsmedchemlett.6b00405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of glycogen synthase kinase-3β (GSK-3β) is implicated in the pathogenesis of neurodegenerative and psychiatric disorders. Thus, development of GSK-3β radiotracers for positron emission tomography (PET) imaging is of paramount importance, because such a noninvasive imaging technique would allow better understanding of the link between the activity of GSK-3β and central nervous system disorders in living organisms, and it would enable early detection of the enzyme's aberrant activity. Herein, we report the synthesis and biological evaluation of a series of fluorine-substituted maleimide derivatives that are high-affinity GSK-3β inhibitors. Radiosynthesis of a potential GSK-3β tracer [18F]10a is achieved. Preliminary in vivo PET imaging studies in rodents show moderate brain uptake, although no saturable binding was observed in the brain. Further refinement of the lead scaffold to develop potent [18F]-labeled GSK-3 radiotracers for PET imaging of the central nervous system is warranted.
Collapse
Affiliation(s)
- Kongzhen Hu
- Department
of Chemistry, and Institute of
Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston Massachusetts 02114, United States
| | - Thomas Lee Collier
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Katarzyna N. Lee
- Department
of Chemistry, and Institute of
Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Han Gao
- Department
of Chemistry, and Institute of
Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Matthew R. Swoyer
- Department
of Chemistry, and Institute of
Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin H. Rotstein
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hema S. Krishnan
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jin Wang
- Department
of Chemistry, and Institute of
Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Zhiqiang Yan
- State
Key Laboratory of Electroanalytical Chemistry Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Jacob M. Hooker
- Division
of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Neil Vasdev
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston Massachusetts 02114, United States
| | - Ming-Yu Ngai
- Department
of Chemistry, and Institute of
Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
14
|
Liang SH, Chen JM, Normandin MD, Chang JS, Chang GC, Taylor CK, Trapa P, Plummer MS, Para KS, Conn EL, Lopresti‐Morrow L, Lanyon LF, Cook JM, Richter KEG, Nolan CE, Schachter JB, Janat F, Che Y, Shanmugasundaram V, Lefker BA, Enerson BE, Livni E, Wang L, Guehl NJ, Patnaik D, Wagner FF, Perlis R, Holson EB, Haggarty SJ, El Fakhri G, Kurumbail RG, Vasdev N. Discovery of a Highly Selective Glycogen Synthase Kinase‐3 Inhibitor (PF‐04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven H. Liang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Jinshan Michael Chen
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Marc D. Normandin
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Jeanne S. Chang
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - George C. Chang
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Christine K. Taylor
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Patrick Trapa
- Pfizer Worldwide Research and Development 610 Main Street Cambridge MA 02139 USA
| | - Mark S. Plummer
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Kimberly S. Para
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Edward L. Conn
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Lori Lopresti‐Morrow
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Lorraine F. Lanyon
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - James M. Cook
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Karl E. G. Richter
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Charlie E. Nolan
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Joel B. Schachter
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Fouad Janat
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Ye Che
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | | | - Bruce A. Lefker
- Pfizer Worldwide Research and Development 610 Main Street Cambridge MA 02139 USA
| | - Bradley E. Enerson
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Elijahu Livni
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Lu Wang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Nicolas J. Guehl
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Debasis Patnaik
- Departments of Neurology & Psychiatry Massachusetts General Hospital Harvard Medical School 185 Cambridge Street Boston MA 02114 USA
| | - Florence F. Wagner
- Stanley Center for Psychiatric Research Broad Institute 415 Main Street Cambridge MA o2142 USA
| | - Roy Perlis
- Stanley Center for Psychiatric Research Broad Institute 415 Main Street Cambridge MA o2142 USA
- Departments of Neurology & Psychiatry Massachusetts General Hospital Harvard Medical School 185 Cambridge Street Boston MA 02114 USA
| | - Edward B. Holson
- Stanley Center for Psychiatric Research Broad Institute 415 Main Street Cambridge MA o2142 USA
| | - Stephen J. Haggarty
- Departments of Neurology & Psychiatry Massachusetts General Hospital Harvard Medical School 185 Cambridge Street Boston MA 02114 USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Ravi G. Kurumbail
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Neil Vasdev
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| |
Collapse
|
15
|
Liang SH, Chen JM, Normandin MD, Chang JS, Chang GC, Taylor CK, Trapa P, Plummer MS, Para KS, Conn EL, Lopresti-Morrow L, Lanyon LF, Cook JM, Richter KEG, Nolan CE, Schachter JB, Janat F, Che Y, Shanmugasundaram V, Lefker BA, Enerson BE, Livni E, Wang L, Guehl NJ, Patnaik D, Wagner FF, Perlis R, Holson EB, Haggarty SJ, El Fakhri G, Kurumbail RG, Vasdev N. Discovery of a Highly Selective Glycogen Synthase Kinase-3 Inhibitor (PF-04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging. Angew Chem Int Ed Engl 2016; 55:9601-5. [PMID: 27355874 PMCID: PMC4983481 DOI: 10.1002/anie.201603797] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/09/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A (11) C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding.
Collapse
Affiliation(s)
- Steven H Liang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jinshan Michael Chen
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jeanne S Chang
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - George C Chang
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Christine K Taylor
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Patrick Trapa
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Mark S Plummer
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Kimberly S Para
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Edward L Conn
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Lori Lopresti-Morrow
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Lorraine F Lanyon
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - James M Cook
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Karl E G Richter
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Charlie E Nolan
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Joel B Schachter
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Fouad Janat
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Ye Che
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Veerabahu Shanmugasundaram
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Bruce A Lefker
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Bradley E Enerson
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Elijahu Livni
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lu Wang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Debasis Patnaik
- Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute, 415 Main Street, Cambridge, MA, o2142, USA
| | - Roy Perlis
- Stanley Center for Psychiatric Research, Broad Institute, 415 Main Street, Cambridge, MA, o2142, USA
- Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute, 415 Main Street, Cambridge, MA, o2142, USA
| | - Stephen J Haggarty
- Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ravi G Kurumbail
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA.
| | - Neil Vasdev
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
16
|
Ono M, Kitada A, Watanabe H, Miyazaki A, Kimura H, Saji H. Synthesis and preliminary characterization of radioiodinated benzofuran-3-yl-(indol-3-yl)maleimide derivatives as potential SPECT imaging probes for the detection of glycogen synthase kinase-3β (GSK-3β) in the brain. J Labelled Comp Radiopharm 2016; 59:317-21. [PMID: 27126914 DOI: 10.1002/jlcr.3404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/10/2022]
Abstract
We report on the synthesis and preliminary characterization of two radioiodinated benzofuran-3-yl-(indol-3-yl)maleimides, 3-(benzofuran-3-yl)-4-(5-[(125) I]iodo-1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione ([(125) I]5), and 3-(5-[(125) I]iodo-1-methyl-1H-indol-3-yl)-4-(6-methoxybenzofuran-3-yl)-1H-pyrrole-2,5-dione ([(125) I]6), as the first potential SPECT imaging probes targeting glycogen synthase kinase-3β (GSK-3β). In this study, we used (125) I as a surrogate of (123) I because of its ease of use. The radioiodinated ligands were prepared from the corresponding tributyltin precursors through an iododestannylation reaction using hydrogen peroxide as an oxidant with a radiochemical yield of 10-30%. In vitro binding experiments suggested that both compounds show high affinity for GSK-3β at a level similar to a known GSK-3β inhibitor. Biodistribution studies with normal mice revealed that the radioiodinated compounds display sufficient uptake into (1.8%ID/g at 10 min postinjection) and clearance from the brain (1.0%ID/g at 60 min postinjection). These preliminary results suggest that the further optimization of radioiodinated benzofuran-3-yl-(indol-3-yl)maleimide derivatives may facilitate the development of clinically useful SPECT imaging probes for the in vivo detection of GSK-3β.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ayane Kitada
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Anna Miyazaki
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
17
|
Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging. Molecules 2015; 20:22000-27. [PMID: 26690113 PMCID: PMC6332294 DOI: 10.3390/molecules201219816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET) imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI) isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.
Collapse
|