1
|
Alabdali YAJ, Azeez DA, Munahi MG, Kuwait ZI. Molecular Analysis of Pseudomonas aeruginosa Isolates with Mutant gyrA Gene and Development of a New Ciprofloxacin Derivative for Antimicrobial Therapy. Mol Biotechnol 2025; 67:649-660. [PMID: 38302682 DOI: 10.1007/s12033-024-01076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
This study focuses on the prevalence of Pseudomonas aeruginosa in various medical specimens. In addition, the investigates of this research shows the genetic analysis of pathogen-resistant isolates and chemical modifications to ciprofloxacin. A total of 225 specimens from men and women aged 30 to 60 were carefully collected and examined, including samples from wound, burn, urine, sputum, and ear samples. The data were obtained from AL Muthanna hospitals. PCR-RFLP and gene expression analysis were used to identify resistant strains and explore the genetic basis of antibiotic resistance. A ciprofloxacin derivative was synthesized and confirmed through FT-IR, 1H-NMR, and mass spectroscopy techniques then it was tested as antibacterial agent. Also, molecular docking study was conducted to predict the mechanism of action for the synthesized derivative. The results demonstrated that wound samples had the highest positive rate (33.7%) of P. aeruginosa isolates. The PCR-RFLP testing correlated ciprofloxacin resistance with gyrA gene mutation. Gene expression analysis revealed significant changes in the gyrA gene expression in comparison to the reference rpsL gene subsequent to exposure to the synthesized derivative. Furthermore, the molecular docking investigation illustrated the strategic positioning of the ciprofloxacin derivative within the DNA-binding site of the gyrA enzyme. The examination of genetic expression patterns manifested diverse effects attributed to the CIP derivative on P. aeruginosa, thus portraying it as a viable candidate in the quest for the development of novel antimicrobial agents. Ciprofloxacin derivative may offer new antimicrobial therapeutic options for treating Pseudomonas aeruginosa infections in wound specimens, addressing resistance and gyrA gene mutations.
Collapse
Affiliation(s)
| | - Dhay Ali Azeez
- Department of Biology, College of Science, Al Muthanna University, Al Muthanna, Iraq
| | - Murad G Munahi
- Department of Biology, College of Science, Al Muthanna University, Al Muthanna, Iraq
| | - Zainab I Kuwait
- The Department of Chemistry, College of Science, Al Muthanna University, Al Muthanna, Iraq
| |
Collapse
|
2
|
Prates JLB, Lopes JR, Chin CM, Ferreira EI, Dos Santos JL, Scarim CB. Discovery of Novel Inhibitors of Cruzain Cysteine Protease of Trypanosoma cruzi. Curr Med Chem 2024; 31:2285-2308. [PMID: 37888814 DOI: 10.2174/0109298673254864230921090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 10/28/2023]
Abstract
Chagas disease (CD) is a parasitic disease endemic in several developing countries. According to the World Health Organization, approximately 6-8 million people worldwide are inflicted by CD. The scarcity of new drugs, mainly for the chronic phase, is the main reason for treatment limitation in CD. Therefore, there is an urgent need to discover new targets for which new therapeutical agents could be developed. Cruzain cysteine protease (CCP) is a promising alternative because this enzyme exhibits pleiotropic effects by acting as a virulence factor, modulating host immune cells, and interacting with host cells. This systematic review was conducted to discover new compounds that act as cruzain inhibitors, and their effects in vitro were studied through enzymatic assays and molecular docking. Additionally, the advances and perspectives of these inhibitors are discussed. These findings are expected to contribute to medicinal chemistry in view of the design of new, safe, and efficacious inhibitors against Trypanosoma cruzi CCP detected in the last decade (2013-2022) to provide scaffolds for further optimization, aiming toward the discovery of new drugs.
Collapse
Affiliation(s)
- João Lucas Bruno Prates
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Chemistry Institute Araraquara, São Paulo State University (UNESP), SP, Brazil
| | - Juliana Romano Lopes
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Chung Man Chin
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Union of the Colleges of the Great Lakes (UNILAGO), School of Medicine, Advanced Research Center in Medicine, São José do Rio Preto, SP, Brazil
| | - Elizabeth Igne Ferreira
- LAPEN-Laboratory of Design and Synthesis of Chemotherapeutic Agents Potentially Active on Neglected Diseases, Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Chemistry Institute Araraquara, São Paulo State University (UNESP), SP, Brazil
| | - Cauê Benito Scarim
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
3
|
Break SY, Hossan A, Farouk A. Synthesis, characterization, and anticancer evaluation of novel 4-hydrazinothiazole analogs. LUMINESCENCE 2023; 38:1864-1871. [PMID: 37555740 DOI: 10.1002/bio.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/19/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
Single-step synthesis of novel 4-hydrazinothiazole derivatives 6a-e was achieved under mild conditions using the sequential four-components method involving isothiocyanate, aminoguanidine, carbonyl adduct, and α-haloketone derivatives. Deprotection of these hydrazinothiazoles was influenced by acylation, providing a novel group of diacylated molecular structures with a broader scope for the design of thiazolyl-containing drugs 7a and 7b. FTIR, 1 H/13 C NMR, LC-MS spectroscopy, and CHN elemental analyses were used to study the compound chemical structures. Using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on human periodontal ligament fibroblast (HPDLF) cells, the 4-hydrazinothiazole derivatives were screened for cytotoxicity in an in vitro cytotoxicity investigation. The 4-hydrazinothiazole compound 6b bearing an isopropylidene-hydrazino group demonstrated strongly potent cytotoxicity against CAKI1 (IC50 = 1.65 ± 0.24 μM) and A498 (IC50 of 0.85 ± 0.24 μM). Furthermore, the chloroacetyl-containing thiazole compound 7a displayed efficient inhibition of growth against the test cell lines CAKI1 and A498 at low micromolar concentrations, IC50 0.78 and 0.74 μM, respectively.
Collapse
Affiliation(s)
- Shorook Yasser Break
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Aisha Hossan
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Asmaa Farouk
- National Research Center, Textile Research and Technology Institute, Cairo, Egypt
| |
Collapse
|
4
|
Mohammed HHH, Ali DME, Badr M, Habib AGK, Mahmoud AM, Farhan SM, Gany SSHAE, Mohamad SA, Hayallah AM, Abbas SH, Abuo-Rahma GEDA. Synthesis and molecular docking of new N4-piperazinyl ciprofloxacin hybrids as antimicrobial DNA gyrase inhibitors. Mol Divers 2023; 27:1751-1765. [PMID: 36152132 PMCID: PMC10415461 DOI: 10.1007/s11030-022-10528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
A series of N-4 piperazinyl ciprofloxacin derivatives as urea-tethered ciprofloxacin-chalcone hybrids 2a-j and thioacetyl-linked ciprofloxacin-pyrimidine hybrids 5a-i were synthesized. The target compounds were investigated for their antibacterial activity against S. aureus, P. aeruginosa, E. coli, and C. albicans strains, respectively. Ciprofloxacin derivatives 2a-j and 5a-i revealed broad antibacterial activity against either Gram positive or Gram negative strains, with MIC range of 0.06-42.23 µg/mL compared to ciprofloxacin with an MIC range of 0.15-3.25 µg/mL. Among the tested compounds, hybrids 2b, 2c, 5a, 5b, 5h, and 5i exhibited remarkable antibacterial activity with MIC range of 0.06-1.53 µg/mL against the tested bacterial strains. On the other hand, compounds 2c, 2e, 5c, and 5e showed comparable antifungal activity to ketoconazole against candida albicans with MIC range of 2.03-3.89 µg/mL and 2.6 µg/mL, respectively. Further investigations showed that some ciprofloxacin hybrids have inhibitory activity against DNA gyrase as potential molecular target compared to ciprofloxacin with IC50 range of 0.231 ± 0.01-7.592 ± 0.40 µM and 0.323 ± 0.02 µM, respectively. Docking studies of compounds 2b, 2c, 5b, 5c, 5e, 5h, and 5i on the active site of DNA gyrase (PDB: 2XCT) confirmed their ability to form stable complex with the target enzyme like that of ciprofloxacin.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt.
| | | | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed G K Habib
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Abobakr Mohamed Mahmoud
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt
| | - Sarah M Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt
| | | | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minia, Minya, 61768, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, El Fateh, 71526, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt.
| |
Collapse
|
5
|
Hajam TA, H S, Mashood Ahamed FM. Structural, vibrational spectroscopy, molecular docking, DFT studies and antibacterial activity of (E)-N1-(3-chlorobenzylidene)benzene-1,4-diamine. J Biomol Struct Dyn 2023; 41:6295-6312. [PMID: 35916271 DOI: 10.1080/07391102.2022.2106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
In this work, (E)-N1-(3-chlorobenzylidene)benzene-1,4-diamine (CBD) compound was synthesized with good yield. The spectral studies were recorded by FT-IR, FT-Raman, NMR and UV-Vis to determine structural parameters. The geometrical parameters were optimized using DFT calculations at 6-311++G(d,p) basis set. The calculated structural parameters of the molecule were in line with the experimental data. The molecular orbitals of the compound were investigated through highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) analysis. The hyper conjugative interaction energy E(2) along with donor, acceptor electron densities (EDs) were determined by natural bond orbital (NBO) analysis. The molecular electrostatic potential (MEP), mulliken atomic charges, non-linear optical (NLO) properties and potential energy surface (PES) scan were also calculated. The 1H and 13C NMR chemical shifts calculated using Gauge invariant atomic orbital (GIAO) method were compared with the experimental NMR chemical shifts. Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) were carried out to characterise the thermal behaviour and stability of CBD molecule. In addition, PreADMET tool was also used to estimate ADME and Toxicity of CBD compound. The compound screened against four pathogens two gram positive and two gram negative had shown good anti-bacterial behaviour. The molecular docking studies executed against anti-bacterial target topoisomerase DNA gyrase enzyme (2XCT) emphasized good binding behaviour over the standard drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Saleem H
- Department of Physics, Annamalai University, Chidambaram, India
| | - F M Mashood Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College, Trichy, India
| |
Collapse
|
6
|
Kavaliauskas P, Grybaitė B, Vaickelionienė R, Sapijanskaitė-Banevič B, Anusevičius K, Kriaučiūnaitė A, Smailienė G, Petraitis V, Petraitienė R, Naing E, Garcia A, Mickevičius V. Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics (Basel) 2023; 12:antibiotics12020220. [PMID: 36830130 PMCID: PMC9952208 DOI: 10.3390/antibiotics12020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The growing antimicrobial resistance to last-line antimicrobials among Gram-positive pathogens remains a major healthcare emergency worldwide. Therefore, the search for new small molecules targeting multidrug-resistant pathogens remains of great importance. In this paper, we report the synthesis and in vitro antimicrobial activity characterisation of novel thiazole derivatives using representative Gram-negative and Gram-positive strains, including tedizolid/linezolid-resistant S. aureus, as well as emerging fungal pathogens. The 4-substituted thiazoles 3h, and 3j with naphthoquinone-fused thiazole derivative 7 with excellent activity against methicillin and tedizolid/linezolid-resistant S. aureus. Moreover, compounds 3h, 3j and 7 showed favourable activity against vancomycin-resistant E. faecium. Compounds 9f and 14f showed broad-spectrum antifungal activity against drug-resistant Candida strains, while ester 8f showed good activity against Candida auris which was greater than fluconazole. Collectively, these data demonstrate that N-2,5-dimethylphenylthioureido acid derivatives could be further explored as novel scaffolds for the development of antimicrobial candidates targeting Gram-positive bacteria and drug-resistant pathogenic fungi.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-646-21841
| | - Agnė Kriaučiūnaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Gabrielė Smailienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Rūta Petraitienė
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Andrew Garcia
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
7
|
Potential Nitrogen-Based Heterocyclic Compounds for Treating Infectious Diseases: A Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11121750. [PMID: 36551407 PMCID: PMC9774632 DOI: 10.3390/antibiotics11121750] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Heterocyclic compounds are considered as one of the major and most diverse family of organic compounds. Nowadays, the demand for these compounds is increasing day-by-day due to their enormous synthetic and biological applications. These heterocyclic compounds have unique antibacterial activity against various Gram-positive and Gram-negative bacterial strains. This review covers the antibacterial activity of different heterocyclic compounds with nitrogen moiety. Some of the derivatives of these compounds show excellent antibacterial activity, while others show reasonable activity against bacterial strains. This review paper aims to bring and discuss the detailed information on the antibacterial activity of various nitrogen-based heterocyclic compounds. It will be helpful for the future evolution of diseases to synthesize new and effective drug molecules.
Collapse
|
8
|
Afza N, Fatma S, Ghous F, Shukla S, Rai S, Srivastava K, Bishnoi A. An Efficient Multicomponent Synthesis, Characterization, SAR, In-silico ADME prediction and Molecular docking Studies of 2-Amino-7-(substituted-phenyl)-3-cyano-4-phenyl-4,5,6,7-tetrahydropyrano[2,3-b] pyrrole-5-carboxylic acid Derivatives and Their in-vitro Antimicrobial Activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Patel KB, Kumari P. A Review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Design, synthesis and docking studies of new hydrazinyl-thiazole derivatives as anticancer and antimicrobial agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Acridine Based N-Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Characterization and ctDNA/HSA Spectroscopic Binding Properties. Molecules 2022; 27:molecules27092883. [PMID: 35566236 PMCID: PMC9100673 DOI: 10.3390/molecules27092883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel acridine N-acylhydrazone derivatives have been synthesized as potential topoisomerase I/II inhibitors, and their binding (calf thymus DNA—ctDNA and human serum albumin—HSA) and biological activities as potential anticancer agents on proliferation of A549 and CCD-18Co have been evaluated. The acridine-DNA complex 3b (-F) displayed the highest Kb value (Kb = 3.18 × 103 M−1). The HSA-derivatives interactions were studied by fluorescence quenching spectra. This method was used for the calculation of characteristic binding parameters. In the presence of warfarin, the binding constant values were found to decrease (KSV = 2.26 M−1, Kb = 2.54 M−1), suggesting that derivative 3a could bind to HSA at Sudlow site I. The effect of tested derivatives on metabolic activity of A549 cells evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assay decreased as follows 3b(-F) > 3a(-H) > 3c(-Cl) > 3d(-Br). The derivatives 3c and 3d in vitro act as potential dual inhibitors of hTopo I and II with a partial effect on the metabolic activity of cancer cells A594. The acridine-benzohydrazides 3a and 3c reduced the clonogenic ability of A549 cells by 72% or 74%, respectively. The general results of the study suggest that the novel compounds show potential for future development as anticancer agents.
Collapse
|
12
|
Sahil, Kaur K, Jaitak V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr Med Chem 2022; 29:4958-5009. [DOI: 10.2174/0929867329666220318100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is the second leading cause of death throughout the world. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity and development of resistance lead to serious side effects. There have been several experiments going on to develop compounds with minor or no side effects.
Objective:
This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action for thiazole, benzothiazole, and imidazothiazole containing compounds as anticancer agents.
Methods:
Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates.
Results:
Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing
apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets such as topoisomerase and HDAC.
Conclusion:
Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 μM, 0.00042 μM, 0.18 μM, and 0.67 μM, respectively not only have anticancer activity but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores.
Collapse
Affiliation(s)
- Sahil
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| |
Collapse
|
13
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
14
|
Upendranath K, Venkatesh T, Vinuth M. Development and visualization of level II, III features of latent fingerprints using some new 4-(4-substitutedphenyl)-6-(4-substitutedphenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile derivatives: Synthesis, characterization, optoelectronic and DFT studies. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
An Efficient Photocatalytic Synthesis of Benzimidazole over Cobalt-loaded TiO2 catalysts under Solar light irradiation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Alzahrani AY, Ammar YA, Salem MA, Abu-Elghait M, Ragab A. Design, synthesis, molecular modeling, and antimicrobial potential of novel 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives as DNA gyrase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100266. [PMID: 34747519 DOI: 10.1002/ardp.202100266] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.
Collapse
Affiliation(s)
- Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
17
|
Abas M, Nazir Y, Ashraf Z, Iqbal Z, Raza H, Hassan M, Jabeen E, Bais A. A Practical Method of
N
‐Methylpyrrole Disulfonamides Synthesis: Computational Studies, Carbonic Anhydrase Inhibition and Electrochemical DNA Binding Investigations. ChemistrySelect 2021. [DOI: 10.1002/slct.202101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mujahid Abas
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Yasir Nazir
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
- Faculty of Sciences Department of Chemistry University of Sialkot 51300 Pakistan
| | - Zaman Ashraf
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Zafar Iqbal
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Hussain Raza
- Department of Biological Sciences College of Natural Sciences Kongju National University Gongju 314-701 Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology The University of Lahore Lahore Pakistan
| | - Erum Jabeen
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Abdul Bais
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| |
Collapse
|
18
|
Silica-supported sodium carbonate: an efficient heterogeneous catalyst for the synthesis of new thiazolopyrimidine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Borrego-Muñoz P, Ospina F, Quiroga D. A Compendium of the Most Promising Synthesized Organic Compounds against Several Fusarium oxysporum Species: Synthesis, Antifungal Activity, and Perspectives. Molecules 2021; 26:3997. [PMID: 34208916 PMCID: PMC8271819 DOI: 10.3390/molecules26133997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.
Collapse
Affiliation(s)
| | | | - Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar, Nueva Granada, Cajicá 250247, Colombia; (P.B.-M.); (F.O.)
| |
Collapse
|
20
|
Beyzaei H, Mirzaei M, Hasan Fakhrabadi N, Ghasemi B. Synergistic effects of dual antimicrobial combinations of synthesized N-heterocycles or MgO nanoparticles with nisin against the growth of Aspergillus fumigatus: In vitro study. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:241-246. [PMID: 34345393 PMCID: PMC8328251 DOI: 10.30466/vrf.2019.103449.2460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022]
Abstract
Introduction of new inhibitory agents such as peptides, heterocyclic derivatives and nanoparticles (NPs) along with preventive proceedings are effective ways to deal with standard and drug-resistant strains of microorganisms. In this regard, inhibitory activities of some recently synthesized 4-thiazolylpyrazoles, imidazolidine- and tetrahydropyrimidine-2-thiones and magnesium oxide (MgO) NPs alone and in combination with nisin have been assessed against Aspergillus fumigatus. Antimicrobial susceptibility tests were done via broth microdilution, disk diffusion and streak plate methods according to the modified Clinical and Laboratory Standards Institute (CLSI) guidelines. Synergistic effects were also determined as fractional inhibitory concentration (FIC) and fractional fungicidal concentration (FFC) values. Inhibitory potentials of all heterocycles and NPs against A. fumigatus were proved based on inhibition zone diameter (IZD) values in the range of 7.72 - 16.85 mm, minimum inhibitory concentration (MIC) values in the range of 64.00 - 512 µg mL-1 and minimum fungicidal concentration (MFC) values in the range of 256 - 2048 µg mL-1. Tetrahydropyrimidine derivative 3f showed the best inhibitory properties. Inhibitory activity was not significant with nisin. While antifungal effects of major derivatives were improved by combination with it. The results indicated that the combined treatment of heterocycles used in the present study with nisin might be efficient for mold prevention and removal in foodstuffs or other products.
Collapse
Affiliation(s)
- Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Mojtaba Mirzaei
- Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Behzad Ghasemi
- Torbat-e Jam Faculty of Medical Sciences, Torbat-e Jam, Iran
| |
Collapse
|
21
|
Senthilkumar S, Seralathan J, Muthukumaran G. Synthesis, structure analysis, biological activity and molecular docking studies of some hydrazones derived from 4-aminobenzohydrazide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kamat V, Yallur BC, Poojary B, Patil VB, Nayak SP, Krishna PM, Joshi SD. Synthesis, molecular docking, antibacterial, and anti‐inflammatory activities of benzimidazole‐containing tricyclic systems. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Vinuta Kamat
- Department of Post‐Graduate Studies & Research in Chemistry Mangalore University Mangalagangothri Mangalore Dakshina Kannada, Karnataka 574199 India
| | - Basappa C. Yallur
- Department of Chemistry Ramaiah Institute of Technology MSR Nagar Bangalore Karnataka India
| | - Boja Poojary
- Department of Post‐Graduate Studies & Research in Chemistry Mangalore University Mangalagangothri Mangalore Dakshina Kannada, Karnataka 574199 India
| | - Veerabhadragouda B. Patil
- Institute of Energetic Materials, Faculty of Chemical Technology University of Pardubice Doubravice 41 Pardubice 532 10 Czech Republic
| | - Suresh P. Nayak
- Department of Post‐Graduate Studies & Research in Chemistry Mangalore University Mangalagangothri Mangalore Dakshina Kannada, Karnataka 574199 India
| | | | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S. E. T.'s College of Pharmacy Sangolli Rayanna Nagar Dharwad Karnataka 580 002 India
| |
Collapse
|
23
|
El-Din A. Abuo-Rahma G, Hassan A, A. Hassan H, Abdelhamid D. Synthetic Approaches toward Certain Structurally Related Antimicrobial Thiazole Derivatives (2010-2020). HETEROCYCLES 2021. [DOI: 10.3987/rev-21-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Sulfated magnesium zirconate catalyzed synthesis, antimicrobial, antioxidant, anti-inflammatory, and anticancer activity of benzo[d]thiazole-hydrazone analogues and its molecular docking. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem 2020; 212:113069. [PMID: 33388593 DOI: 10.1016/j.ejmech.2020.113069] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vishu Mehra
- Department of Chemistry, Hindu College, Amritsar, Punjab, 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
26
|
Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg Chem 2020; 105:104400. [DOI: 10.1016/j.bioorg.2020.104400] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
|
27
|
Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur J Med Chem 2020; 207:112832. [DOI: 10.1016/j.ejmech.2020.112832] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
|
28
|
Huang Y, Hu H, Yan R, Lin L, Song M, Yao X. Synthesis and evaluation of antimicrobial and anticancer activities of 3-phenyl-1-phenylsulfonyl pyrazoles containing an aminoguanidine moiety. Arch Pharm (Weinheim) 2020; 354:e2000165. [PMID: 33047391 DOI: 10.1002/ardp.202000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/10/2022]
Abstract
A series of 3-phenyl-1-phenylsulfonyl pyrazoles containing an aminoguanidine moiety was designed, synthesized, and evaluated for their antimicrobial and anticancer activities. The majority of the target compounds showed broad-spectrum antimicrobial activity against the tested strains, with minimum inhibitory concentration (MIC) values ranging from 2 to 64 μg/ml. Compound 5k, showing the most potent antimicrobial activity against Bacillus subtilis CMCC 63501 and multidrug-resistant Staphylococcus aureus ATCC 43300 with an MIC value of 2 μg/ml, was the most promising one in this series. It was also effective for S. aureus ATCC 33591 and multidrug-resistant Escherichia coli ATCC BAA-196 at higher concentrations. The bactericidal time-kill kinetics test illustrated that compound 5k had rapid bactericidal potential. Docking results exhibited that compound 5k showed various kinds of binding to the FabH receptor, reflecting that 5k could bind with the active site well. All compounds showed excellent activity against the investigated cancer cells, with IC50 values ranging from 1.90 to 54.53 µM. Among them, compound 5f showed prominent cytotoxicity with IC50 = 1.90 µM against A549 cells, while exhibiting lower inhibitory activity against 293T cells (IC50 = 41.72 µM), indicating that it has the potential for a good therapeutic index as an anticancer drug.
Collapse
Affiliation(s)
- Yushan Huang
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Hongmei Hu
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Rui Yan
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Liwen Lin
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Mingxia Song
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China.,Research Center of Chinese Medicinal Resources and Functional Molecules, Jinggangshan University, Ji'an, China
| | - Xiaodong Yao
- Jiangxi Institute of Biological Products Inc., Ji'an, Jiangxi, China
| |
Collapse
|
29
|
Novel anti-tubercular and antibacterial based benzosuberone-thiazole moieties: Synthesis, molecular docking analysis, DNA gyrase supercoiling and ATPase activity. Bioorg Chem 2020; 104:104316. [PMID: 33022549 DOI: 10.1016/j.bioorg.2020.104316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
Herein, molecular hybridization strategy was utilized in the design of new benzosuberone-thiazole derivatives. The structures of the synthesized hybrids were determined on the basis of elemental and spectral analyses. These compounds were evaluated for their antibacterial activities against five bronchitis causing bacteria in addition to their anti-tubercular activities. Most compounds revealed promising activities. Amongst active compounds, benzosuberone-dithiazole derivatives 22a and 28 with MIC value = 1.95 µg/ml against H. influenza, M. pneumonia, and B. pertussis displayed four times the activity of ciprofloxacin (MIC = 7.81 µg/ml) against H. influenza, twice the activity of ciprofloxacin (MIC = 3.9 µg/ml) against M. pneumonia and were equipotent to ciprofloxacin against B. pertussis (MIC = 1.95 µg/ml). Additionally, benzosuberone-dithiazole derivatives 22a and 27 were the most promising anti-tubercular among the tested compounds with MIC values of 0.12 and 0.24 µg/ml, respectively against sensitive M. tuberculosis in addition to high activity against resistant strain of M. tuberculosis (MIC = 0.98 and 1.95 µg/ml, respectively) compared to isoniazid (MIC = 0.12 µg/ml against sensitive M. tuberculosis and no activity against resistant M. tuberculosis). Cytotoxicity study of the active dithiazole derivatives 22a, 27 and 28 against normal human lung cells (WI-38) indicated their high safety profile as showed from their high IC50 values (IC50 = 107, 74.8, and 117 µM, respectively). Furthermore, DNA gyrase supercoiling and ATPase activity assays showed that 22a, 27 and 28 have the potential to inhibit DNA gyrase at low micromolar levels (IC50 = 3.29-15.64 µM). Molecular docking analysis was also carried out to understand the binding profiles of the synthesized compounds into the ATPase binding sites of bacterial and mycobacterial DNA gyraseB.
Collapse
|
30
|
Meng T, Hou Y, Shang C, Zhang J, Zhang B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000266. [PMID: 32986279 DOI: 10.1002/ardp.202000266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/27/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the major and most dangerous pathogens in humans, is a causative agent of severe pandemic of mainly skin and soft tissue and occasionally fatal infections. Therefore, it is imperative to develop potent and novel anti-MRSA agents. Indole derivatives could act against diverse enzymes and receptors in bacteria, occupying a salient place in the development of novel antibacterial agents. Dimerization and hybridization are common strategies to discover new drugs, and a number of indole dimers and hybrids possess potential antibacterial activity against a panel of clinically important pathogens including MRSA. Accordingly, indole dimers and hybrids are privileged scaffolds for the discovery of novel anti-MRSA agents. This review outlines the recent development of indole dimers and hybrids with a potential activity against MRSA, covering articles published between 2010 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Jing Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| | - Bo Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| |
Collapse
|
31
|
Ansari A, Ibrahim F, Pervez S, Aman A. Inhibitory mechanism of BAC-IB17 against β-lactamase mediated resistance in methicillin-resistant Staphylococcus aureus and application as an oncolytic agent. Microb Pathog 2020; 149:104499. [PMID: 32956794 DOI: 10.1016/j.micpath.2020.104499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Cancer remains a foremost cause of deaths worldwide, despite several advances in the medical science. The conventional chemotherapeutic methods are not only harmful for normal body cells but also become inactive due to the development of resistance by cancer cells. Therefore, the demand of safe anticancer agents is increasing and enforced the bottomless research on the bacteriocins. Several studies have reported the selective anticancer property of bacteriocins. Current research is the contribution to explore the exact mechanism of action and in vitro application of bacteriocin (BAC-IB17) as an oncolytic agent. In this study, β-lactamase mediated resistance of methicillin resistant Staphylococcus aureus (MRSA) was studied and inhibitory mechanism of MRSA by BAC-IB17 was investigated. Cytotoxic studies were conducted to analyze the anticancerous potential of BAC-IB17. Results revealed that BAC-IB17 inhibited the β-lactamase and produced profound effect on the membrane integrity of MRSA confirmed by scanning electron microscope (SEM). FTIR spectroscopic analysis revealed the changes in the functional groups of bacterial cells before and after treatment with BAC-IB17. BAC-IB17 also found anticancer in nature as it kills HeLa cell lines with the IC50 value of 12.5 μg mL-1 with no cytotoxic effect on normal cells at this concentration. This specific anticancer property of BAC-IB17 will make it a promising candidate for the treatment of cancer after further clinical trials. Moreover, BAC-IB17 may control MDR bacteria responsible for the secondary complications in cancer patients.
Collapse
Affiliation(s)
- Asma Ansari
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan.
| | - Fariha Ibrahim
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
32
|
Long S, Resende DISP, Palmeira A, Kijjoa A, Silva AMS, Tiritan ME, Pereira-Terra P, Freitas-Silva J, Barreiro S, Silva R, Remião F, Pinto E, Martins da Costa P, Sousa E, Pinto MMM. New marine-derived indolymethyl pyrazinoquinazoline alkaloids with promising antimicrobial profiles. RSC Adv 2020; 10:31187-31204. [PMID: 35520644 PMCID: PMC9056383 DOI: 10.1039/d0ra05319h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 01/03/2023] Open
Abstract
Due to the emergence of multidrug-resistant pathogenic microorganisms, the search for novel antimicrobials is urgent. Inspired by marine alkaloids, a series of indolomethyl pyrazino [1,2-b]quinazoline-3,6-diones was prepared using a one-pot microwave-assisted multicomponent polycondensation of amino acids. The compounds were evaluated for their antimicrobial activity against a panel of nine bacterial strains and five fungal strains. Compounds 26 and 27 were the most effective against Staphylococcus aureus ATCC 29213 reference strain with MIC values of 4 μg mL−1, and a methicillin-resistant Staphylococcus aureus (MRSA) isolate with MIC values of 8 μg mL−1. It was possible to infer that enantiomer (−)-26 was responsible for the antibacterial activity (MIC 4 μg mL−1) while (+)-26 had no activity. Furthermore, compound (−)-26 was able to impair S. aureus biofilm production and no significant cytotoxicity towards differentiated and non-differentiated SH-SY5Y cells was observed. Compounds 26, 28, and 29 showed a weak antifungal activity against Trichophyton rubrum clinical isolate with MIC 128 μg mL−1 and presented a synergistic effect with fluconazole. Indolomethyl pyrazino [1,2-b]quinazoline-3,6-diones were prepared using a one-pot multicomponent polycondensation of amino acids and were evaluated for their antimicrobial activity against a panel of nine bacterial strains and five fungal strains.![]()
Collapse
Affiliation(s)
- Solida Long
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Diana I S P Resende
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Andreia Palmeira
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Anake Kijjoa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Artur M S Silva
- QOPNA - Química Orgânica, Produtos Naturais e Agroalimentares, Departamento de Química, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Maria Elizabeth Tiritan
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS) Rua Central de Gandra, 1317 4585-116 Gandra PRD Portugal
| | - Patrícia Pereira-Terra
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Joana Freitas-Silva
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Sandra Barreiro
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Eugénia Pinto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Paulo Martins da Costa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Emília Sousa
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Madalena M M Pinto
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| |
Collapse
|
33
|
Cascioferro S, Parrino B, Carbone D, Schillaci D, Giovannetti E, Cirrincione G, Diana P. Thiazoles, Their Benzofused Systems, and Thiazolidinone Derivatives: Versatile and Promising Tools to Combat Antibiotic Resistance. J Med Chem 2020; 63:7923-7956. [PMID: 32208685 PMCID: PMC7997583 DOI: 10.1021/acs.jmedchem.9b01245] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
Thiazoles, their benzofused systems, and thiazolidinone derivatives are widely recognized as nuclei of great value for obtaining molecules with various biological activities, including analgesic, anti-inflammatory, anti-HIV, antidiabetic, antitumor, and antimicrobial. In particular, in the past decade, many compounds bearing these heterocycles have been studied for their promising antibacterial properties due to their action on different microbial targets. Here we assess the recent development of this class of compounds to address mechanisms underlying antibiotic resistance at both bacterial-cell and community levels (biofilms). We also explore the SAR and the prospective clinical application of thiazole and its benzofused derivatives, which act as inhibitors of mechanisms underlying antibiotic resistance in the treatment of severe drug-resistant infections. In addition, we examined all bacterial targets involved in their antimicrobial activity reporting, when described, their spontaneous frequencies of resistance.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniela Carbone
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Domenico Schillaci
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Elisa Giovannetti
- Department
of Medical Oncology, VU University Medical
Center, Cancer Center Amsterdam, DeBoelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Cancer
Pharmacology Lab, Fondazione Pisana per
la Scienza, via Giovannini
13, 56017 San Giuliano
Terme, Pisa, Italy
| | - Girolamo Cirrincione
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
34
|
Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020; 353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The emergence and worldwide spread of drug-resistant bacteria have already posed a serious threat to human life, creating the urgent need to develop potent and novel antibacterial drug candidates with high efficacy. Indole and isatin (indole-2,3-dione) present a wide structural and mechanistic diversity, so their derivatives possess various pharmacological properties and occupy a salient place in the development of new drugs. Indole/isatin-containing hybrids, which demonstrate a promising activity against a panel of clinically important Gram-positive and Gram-negative bacteria, are privileged scaffolds for the discovery of novel antibacterial candidates. This review, covering articles published between January 2015 and May 2020, focuses on the development and structure-activity relationship (SAR) of indole/isatin-containing hybrids with potential application for fighting bacterial infections, to facilitate further rational design of novel drug candidates.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.,School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Linlin Shao
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
35
|
Mardaneh J, Beyzaei H, Hashemi SH, Ghasemi B, Rahdar A. Comparative Evaluation of the Inhibitory Potential of Synthetic N-Heterocycles, Cu/Fe 3O 4@SiO 2 Nanocomposites and Some Natural Products against Non-Resistant and Antibiotic-Resistant Acinetobacter baumannii. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background:
Acinetobacter baumannii is a common infectious agent in hospitals. New antimicrobial agents are identified and prepared to combat these bacterial pathogens. In this context, the blocking potentials of a series of synthesized N-heterocyclic compounds, Cu/Fe3O4@SiO2 nanocomposites, glycine, poly-L-lysine, nisin and hydroalcoholic extracts of Trachyspermum ammi, Curcuma longa and green tea catechins were evaluated against non-resistant and multidrug-resistant strains of A. baumannii. Methods: Solutions of heterocyclic derivatives and hydroalcoholic extracts of Trachyspermum ammi, Curcuma longa and green tea catechins were prepared at initial concentration of 10240 μg ml-1 in 10% DMSO. Other compounds were dissolved in water at the same concentrations. Their in vitro inhibitory activity was assessed by determination of IZD, MIC and MBC values. Results: Glycine, poly-L-lysine, nisin, Curcuma longa and green tea catechins extracts, and thiazoles 3a, 3d and 3f were ineffective at their initial concentrations. Heterocyclic derivatives 7a-f, 3c, 3e and 3h, Cu/Fe3O4@SiO2 nanocomposites and Trachyspermum ammi extract could block the growth of bacterial strains with IZDs (7.40-15.51 mm), MICs (32-1024 µg ml-1) and MBCs (128-2048 µg ml-1). Conclusion: Among synthetic chemicals and natural products, the best antimicrobial effects were recorded with (E)-2-(5-acetyl-4-methylthiazol-2-yl)-2-(thiazolidin-2-ylidene)acetonitrile (7b) and the extract of Trachyspermum ammi. It is imperative that their toxic and histopathologic effects were assessed in future researches. It is predicted that the essential oil of Trachyspermum ammi will improve its antibacterial activities.
Collapse
Affiliation(s)
- Jalal Mardaneh
- Department of Microbiology, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Seyed Hadi Hashemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Zabol University, Zabol, Iran
| | - Behzad Ghasemi
- Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
36
|
Obalı AY, Akçaalan S, Arslan E, Obalı İ. Antibacterial activities and DNA-cleavage properties of novel fluorescent imidazo-phenanthroline derivatives. Bioorg Chem 2020; 100:103885. [PMID: 32388431 DOI: 10.1016/j.bioorg.2020.103885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
Design and biological activities of fluorescent imidazo-phenanthroline derivatives; (E)-5-((4-((4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)methyl)benzylidene)amino)- isophthalicacid, 2 and 2-(4-(((5-chloroquinolin-8-yl)oxy)methyl)phenyl)-1H-imidazo[4,5f] [1,10]phenanthroline, 3, have been reported. Their characterizations were performed by spectroscopic techniques. Their promising photophysical behaviours were observed in absorbance and fluorescence studies. The antibacterial activities of the compounds were determined against seven different microorganisms; Bacillus subtilis ATCC 6633(G + ), Pseudomonas aeruginosa ATCC 29853(G-), Escherichia coli ATCC 35,218 (G-), Enterococcus faecalis ATCC 292,112 (G + ), Salmonella typhimurium ST-10 (G-), Streptococcus mutans NCTC 10,449 (G + ), and Staphylococcus aureus ATCC 25923(G + ). MIC values of 3 was determined as 156,25 μM on all tested bacteria. A preliminary study of the structure-activity relationship (SAR) also revealed that the antimicrobial activity depended on the substituents on the phenyl ring. The electron withdrawing Cl-substitued compound 3 most favour for antimicrobial activity even at lowest concentration compared to other compounds. DNA-cleavage activities of the compounds were also investigated. The interactions of the compounds with supercoiled pBR322 plasmid DNA were obtained by agarose gel electrophoresis. All imidazo-phenanthroline derivatives were found to be highly effective on DNA, even at the lowest concentrations because of their planar nature which provides ease of bind to the helix structure of DNA.
Collapse
Affiliation(s)
| | - Sedef Akçaalan
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Turkey
| | - Emine Arslan
- Department of Biology, Faculty of Science, Selcuk University, Turkey
| | - İhsan Obalı
- Department of Biology, Faculty of Science, Selcuk University, Turkey
| |
Collapse
|
37
|
Antibacterial and antibiofilm activities of synthetic analogs of 3-alkylpyridine marine alkaloids. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02549-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 194:112245. [DOI: 10.1016/j.ejmech.2020.112245] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
|
39
|
Mishra I, Mishra R, Mujwar S, Chandra P, Sachan N. A retrospect on antimicrobial potential of thiazole scaffold. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, School of Pharmaceutical SciencesIFTM University Moradabad India
- Department of Pharmacy, Institute of Pharmaceutical ResearchGLA University Mathura India
| | - Raghav Mishra
- Department of Pharmacy, Institute of Pharmaceutical ResearchGLA University Mathura India
| | - Somdutt Mujwar
- Department of Pharmacy, Institute of Pharmaceutical ResearchGLA University Mathura India
| | - Phool Chandra
- Department of Pharmacy, School of Pharmaceutical SciencesIFTM University Moradabad India
| | - Neetu Sachan
- Department of Pharmacy, School of Pharmaceutical SciencesIFTM University Moradabad India
| |
Collapse
|
40
|
Maniak H, Talma M, Matyja K, Trusek A, Giurg M. Synthesis and Structure-Activity Relationship Studies of Hydrazide-Hydrazones as Inhibitors of Laccase from Trametes versicolor. Molecules 2020; 25:E1255. [PMID: 32164357 PMCID: PMC7179439 DOI: 10.3390/molecules25051255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022] Open
Abstract
A series of hydrazide-hydrazones 1-3, the imine derivatives of hydrazides and aldehydes bearing benzene rings, were screened as inhibitors of laccase from Trametes versicolor. Laccase is a copper-containing enzyme which inhibition might prevent or reduce the activity of the plant pathogens that produce it in various biochemical processes. The kinetic and molecular modeling studies were performed and for selected compounds, the docking results were discussed. Seven 4-hydroxybenzhydrazide (4-HBAH) derivatives exhibited micromolar activity Ki = 24-674 µM with the predicted and desirable competitive type of inhibition. The structure-activity relationship (SAR) analysis revealed that a slim salicylic aldehyde framework had a pivotal role in stabilization of the molecules near the substrate docking site. Furthermore, the presence of phenyl and bulky tert-butyl substituents in position 3 in salicylic aldehyde fragment favored strong interaction with the substrate-binding pocket in laccase. Both 3- and 4-HBAH derivatives containing larger 3-tert-butyl-5-methyl- or 3,5-di-tert-butyl-2-hydroxy-benzylidene unit, did not bind to the active site of laccase and, interestingly, acted as non-competitive (Ki = 32.0 µM) or uncompetitive (Ki = 17.9 µM) inhibitors, respectively. From the easily available laccase inhibitors only sodium azide, harmful to environment and non-specific, was over 6 times more active than the above compounds.
Collapse
Affiliation(s)
- Halina Maniak
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (K.M.); (A.T.)
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Konrad Matyja
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (K.M.); (A.T.)
| | - Anna Trusek
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (K.M.); (A.T.)
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
41
|
Sridhara MB, Rakesh KP, Manukumar HM, Shantharam CS, Vivek HK, Kumara HK, Mohammed YHE, Gowda DC. Synthesis of Dihydrazones as Potential Anticancer and DNA Binding Candidates: A Validation by Molecular Docking Studies. Anticancer Agents Med Chem 2020; 20:845-858. [PMID: 32096753 DOI: 10.2174/1871520620666200225104558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Accounting for mortality nearly one in four of human and second highest leading cause of death worldwide. Every year, about 10 million new cancers are diagnosed and causing major health issues in both developing and developed countries. METHODS A series of new dihydrazones were synthesized and screened for in vitro anticancer activity against three different MDA-MB-231, A546 and MCF7 cell lines and validated by DNA binding and molecular docking approaches. RESULT In the present investigations, synthesized compounds 21, 22, 23 and 24 exhibited potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to Doxorubicin and ethidium bromide as a positive control respectively. CONCLUSION The Structure Activity Relationship (SAR) showed that the electron withdrawing groups (-Cl, -NO2, - F, and -Br) favored the DNA binding studies and anticancer activity whereas, electron donating groups (-OH and - OCH3) showed moderate activity. In the molecular docking study, binding interactions of the most active compounds 21, 22, 23 and 24 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed. Further, the tuning of active analogs for targeted therapy was warranted.
Collapse
Affiliation(s)
- Malavalli B Sridhara
- Department of Chemistry, Rani Channamma University, Vidyasangama, Belagavi-591156, Karnataka, India
| | - Kadalipura P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430073, China
| | | | - Chavalmane S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru-570016, Karnataka, India
| | - Hamse K Vivek
- Faculty of Natural Sciences, Adichunchanagiri University, B.G. Nagara, Mandya-571448, Karnataka, India
| | - Humegowdeenahally K Kumara
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| | - Yasser H E Mohammed
- Department of Biochemistry, Faculty of Applied Science College, University of Hajjah, Hajjah, Yemen
| | - Dale C Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| |
Collapse
|
42
|
Sanad SMH, Ahmed AAM, Mekky AEM. Synthesis, in-vitro and in-silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch Pharm (Weinheim) 2020; 353:e1900309. [PMID: 31967349 DOI: 10.1002/ardp.201900309] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 11/07/2022]
Abstract
Efficient procedures are herein reported for the synthesis of novel hybrid thiazoles via a one-pot three-component protocol. The protocol involves the reaction of novel aldehyde, thiosemicarbazide and halogen-containing reagents in solvent- and catalyst-free conditions. The structures of the new thiazoles were elucidated by elemental analyses and spectroscopic data. The in-vitro antibacterial screening and MurB enzyme inhibition assays were performed for the novel thiazoles. The thiazol-4(5H)-one derivative 6d, with p-MeO, exhibits the best antibacterial activities with minimum inhibitory concentration values of 3.9, 3.9, 7.8, and 15.6 μg/ml against Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus mutans, and Escherichia coli, respectively, as compared to the reference antibiotic drugs. It also exhibits the highest inhibition of the MurB enzyme with an IC50 of 8.1 μM. The structure-activity relationship was studied to determine the effect of the structures of the newly prepared molecules on the strength of the antibacterial activities. Molecular docking was also performed to predict the binding modes of the new thiazoles in the active sites of the E. coli MurB enzyme.
Collapse
Affiliation(s)
- Sherif M H Sanad
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A M Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.,Basic Science Department, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Ahmed E M Mekky
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
43
|
Ullas B, Rakesh K, Shivakumar J, Gowda DC, Chandrashekara P. Multi-targeted quinazolinone-Schiff's bases as potent bio-therapeutics. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
Jadhav C, Nipate AS, Chate AV, Songire VD, Patil AP, Gill CH. Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-Temperature Diisopropyl Ethyl Ammonium Acetate. ACS OMEGA 2019; 4:22313-22324. [PMID: 31909314 PMCID: PMC6941212 DOI: 10.1021/acsomega.9b02286] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 05/13/2023]
Abstract
The diisopropyl ethyl ammonium acetate (DIPEAc)-promoted Biginelli protocol has been developed for the first time by a successive one-pot three-component reaction of aldehydes, ethylcyanoacetate/ethyl acetoacetate, and thiourea/urea to afford pharmacologically promising 1,2,3,4-tetrahydropyrimidines in high yields at room temperature. The key benefits of the present scheme are the capability to allow a variability of functional groups, short reaction times, easy workup, high yields, recyclability of the catalyst, and solvent-free conditions, thus providing economic and environmental advantages. In addition, a series of 4-oxo-6-aryl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles analogues were synthesized and selected for their in vitro antifungal and antibacterial activities.
Collapse
Affiliation(s)
- Chetan
K. Jadhav
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Amol S. Nipate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Asha V. Chate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Vishal D. Songire
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Anil P. Patil
- Institute
of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Charansingh. H. Gill
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| |
Collapse
|
45
|
Popiołek Ł, Rysz B, Biernasiuk A, Wujec M. Synthesis of promising antimicrobial agents: hydrazide‐hydrazones of 5‐nitrofuran‐2‐carboxylic acid. Chem Biol Drug Des 2019; 95:260-269. [DOI: 10.1111/cbdd.13639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/08/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| | - Bernadetta Rysz
- Department of Organic Chemistry Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| | - Monika Wujec
- Department of Organic Chemistry Faculty of Pharmacy with Medical Analytics Division Medical University of Lublin Lublin Poland
| |
Collapse
|
46
|
Saleh OR, Shaldum MA, Goda RM, Shehata IA, El‐Ashmawy MB. Synthesis and Antibacterial Evaluation of New2‐Phenylbenzimidazole Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Omayma R. Saleh
- Department of Medicinal ChemistryFaculty of PharmacyMansoura University Mansoura 35516 Egypt
| | - Moataz A. Shaldum
- Department of Pharmaceutical ChemistryFaculty of PharmacyKafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Reham M. Goda
- Department of Microbiology and ImmunologyFaculty of PharmacyDelta University for Science and Technology Gamasa City 11152 Egypt
| | - Ihsan A. Shehata
- Department of Medicinal ChemistryFaculty of PharmacyMansoura University Mansoura 35516 Egypt
| | - Mahmoud B. El‐Ashmawy
- Department of Medicinal ChemistryFaculty of PharmacyMansoura University Mansoura 35516 Egypt
| |
Collapse
|
47
|
Rakesh K, Kumara H, Ullas B, Shivakumara J, Channe Gowda D. Amino acids conjugated quinazolinone-Schiff’s bases as potential antimicrobial agents: Synthesis, SAR and molecular docking studies. Bioorg Chem 2019; 90:103093. [DOI: 10.1016/j.bioorg.2019.103093] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
|
48
|
Singh H, Singh JV, Bhagat K, Gulati HK, Sanduja M, Kumar N, Kinarivala N, Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg Med Chem 2019; 27:3477-3510. [PMID: 31255497 PMCID: PMC7970831 DOI: 10.1016/j.bmc.2019.06.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Hybrid molecules, furnished by combining two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery that has attracted substantial traction in the past few years. Naturally occurring scaffolds such as coumarins display a wide spectrum of pharmacological activities including anticancer, antibiotic, antidiabetic and others, by acting on multiple targets. In this view, various coumarin-based hybrids possessing diverse medicinal attributes were synthesized in the last five years by conjugating coumarin moiety with other therapeutic pharmacophores. The current review summarizes the recent development (2014 and onwards) of these pharmacologically active coumarin hybrids and demonstrates rationale behind their design, structure-activity relationships (SAR) and mechanistic studies performed on these hybrid molecules. This review will be beneficial for medicinal chemist and chemical biologist, and in general to the drug discovery community and will facilitate the synthesis and development of novel, potent coumarin hybrid molecules serving as lead molecules for the treatment of complex disorders.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, Haryana, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
49
|
Radical scavenging and anti-inflammatory activities of (hetero)arylethenesulfonyl fluorides: Synthesis and structure-activity relationship (SAR) and QSAR studies. Bioorg Chem 2019; 89:103015. [DOI: 10.1016/j.bioorg.2019.103015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
|
50
|
Aouad MR, Almehmadi MA, Rezki N, Al-blewi FF, Messali M, Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|