1
|
Nishida S, Azetsu Y, Chatani M, Karakawa A, Otake K, Sugiki H, Sakai N, Maruoka Y, Myers M, Takami M. Tacrolimus, FK506, promotes bone formation in bone defect mouse model. J Oral Biosci 2024; 66:391-402. [PMID: 38360372 DOI: 10.1016/j.job.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES Some studies have reported that tacrolimus (FK506), an immunosuppressant, may have positive effects on bone formation. However, the precise effects of FK506 on bone repair or osteoblasts remain inadequately elucidated, and limited research has explored the outcomes of its use in an in vivo mouse model. This study aims to examine the effects of FK506 on bone repair and osteoblast functions using bone defect and BMP-2-induced ectopic ossification mouse models, as well as cultured primary mouse osteoblasts treated with FK506. METHODS We established mouse models of femur bone defect and BMP-2-induced ectopic ossification to evaluate the effect of FK506 on new bone formation, respectively. Additionally, primary mouse osteoblasts were cultured with FK506 and examined for gene expressions related to osteoblast differentiation. RESULTS While FK506 promoted the repair of bone defect areas in the femur of the bone defect mouse model, it also led to widespread abnormal bone formation outside the intended area. Additionally, following the implantation of a collagen sponge containing BMP-2 into mouse muscle tissue, FK506 was found to promote ectopic ossification and enhance BMP-2-induced osteoblast differentiation in vitro. Our findings also revealed that FK506 increased the number of immature osteoblasts in the absence of BMP-2 without affecting osteoblast differentiation. Furthermore, direct effects were observed, reducing the ability of osteoblasts to support osteoclastogenesis. CONCLUSIONS These results indicate that FK506 increases new bone formation during bone repair and influences the proliferation of immature osteoblasts, as well as osteoblast-supported osteoclastogenesis.
Collapse
Affiliation(s)
- Satoko Nishida
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Medical and Dental Cooperative Dentistry, Graduate School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145-8515, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kai Otake
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Endodontology, Graduate School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145-8515, Japan
| | - Hidemitsu Sugiki
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Dental Education, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yasubumi Maruoka
- Totsuka Kyoritsu Daini Hospital, 579-1 Totsuka, Yokohama, Kanagawa, 244-0817, Japan
| | - Mie Myers
- Department of Medical and Dental Cooperative Dentistry, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145-8515, Japan
| | - Masamichi Takami
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| |
Collapse
|
2
|
Hasparyk UG, Vigil FMB, Bartolomei VS, Nunes VM, Simões e Silva AC. Chronic Kidney Disease-Mineral Bone Disease biomarkers in kidney transplant patients. Curr Med Chem 2022; 29:5230-5253. [DOI: 10.2174/0929867329666220318105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
Background:
Chronic Kidney Disease associated with Mineral Bone Disease (CKD-MBD) is frequent in kidney transplant patients. Post-transplantation bone disease is complex, especially in patients with pre-existing metabolic bone disorders that are further affected by immunosuppressive medications and changes in renal allograft function. Main biochemical abnormalities of mineral metabolism in kidney transplantation (KTx) include hypophosphatemia, hyperparathyroidism (HPTH), insufficiency or deficiency of vitamin D, and hypercalcemia.
Objective:
This review aimed to summarize the pathophysiology and main biomarkers of CKD-MBD in KTx.
Methods:
A comprehensive and non-systematic search in PubMed was independently made with an emphasis on biomarkers in mineral bone disease in KTx.
Results:
CKD-MBD can be associated with numerous factors including secondary HPTH, metabolic dysregulations before KTx, and glucocorticoids therapy in post-transplant subjects. Fibroblast growth factor 23 (FGF23) reaches normal levels after KTx with good allograft function, while calcium, vitamin D and phosphorus, ultimately, result in hypercalcemia, persistent vitamin D insufficiency, and hypophosphatemia respectively. As for PTH levels, there is an initial tendency of a significant decrease, followed by a raise due to secondary or tertiary HPTH. In regard to sclerostin levels, there is no consensus in the literature.
Conclusion:
KTx patients should be continuously evaluated for mineral homeostasis and bone status, both cases with successful kidney transplantation and those with reduced functionality. Additional research on CKD-MBD pathophysiology, diagnosis, and management is essential to guarantee long-term graft function, better prognosis, good quality of life, and reduced mortality for KTx patients.
Collapse
Affiliation(s)
- Ursula Gramiscelli Hasparyk
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávia Maria Borges Vigil
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Victória Soares Bartolomei
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Vitor Moreira Nunes
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Nabavi MH, Salehi M, Ehterami A, Bastami F, Semyari H, Tehranchi M, Nabavi MA, Semyari H. A collagen-based hydrogel containing tacrolimus for bone tissue engineering. Drug Deliv Transl Res 2020; 10:108-121. [PMID: 31428941 DOI: 10.1007/s13346-019-00666-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone tissue engineering aims to develop bone graft structure that can heal bone defects without using autografts or allografts. The current study was conducted to promote bone regeneration using a collagen type I hydrogel containing tacrolimus. For this purpose, different amounts of tacrolimus (10 μg/ml, 100 μg/ml, and 1000 μg/ml) were loaded into the hydrogel. The resulting drug-loaded hydrogels were characterized for their porosity, swelling capacity, weight loss, drug release, blood compatibility, and cell proliferation (MTT). For functional analysis, the developed hydrogel surrounded by a film made of gelatin and polycaprolactone (PCL) was administrated in the calvarias defect of Wistar rats. The results indicated that the hydrogel has a porosity of 89.2 ± 12.5% and an appropriate swelling, drug release, and blood compatibility behavior. The in vitro results indicated that the collagen hydrogel containing 1000 μg tacrolimus was adequate in terms of cell proliferation. Finally, in vivo studies provided some evidence of the potential of the developed hydrogel for bone healing.
Collapse
Affiliation(s)
- Mir Hamed Nabavi
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Semyari
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Maryam Tehranchi
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Mir Ahmad Nabavi
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Hossein Semyari
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ni LH, Tang RN, Yuan C, Song KY, Wang LT, Wang XC, Zhang YX, Zhang XL, Zhu DD, Liu BC. FK506 prevented bone loss in streptozotocin-induced diabetic rats via enhancing osteogenesis and inhibiting adipogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:265. [PMID: 31355232 DOI: 10.21037/atm.2019.05.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Type 1 diabetes mellitus (DM) is associated with severe osteoporosis, which is still a great challenge in the clinic. This work aimed to investigate the skeletal effects of FK506 in a rat model of streptozocin induced type 1 DM. Methods Rats were divided into three groups: control (CTL), DM rats and DM rats treated with FK506. Dual energy X-ray absorption, micro-computed tomography, bone mechanics and bone histology were used for skeletal analysis. Bone marrow adipocytes infiltrations were detected by oil red O stain and H&E stain. In addition, the protein expression of adipocyte-specific makers (PPAR-γ, C/EBP-αβ), osteoblast-specific markers (Runx2, Osterix) and nuclear translocation of β-catenin in femurs were determined by western blot. Results In the study, bone mineral density of femurs and lumbar vertebras in diabetic rats were increased after FK506 administration. FK506 treatment resulted in higher cancellous bone volume but had no significant effect on cortical bones in diabetic rats. The ultimate force and work to failure were increased in DM+FK506 group, while they were reduced in the DM group. Compared with the CTL, the infiltration of bone marrow adipocytes was significantly increased in the DM group, which was reduced after the treatment of FK506. Besides, the expression levels of Runx2 and Osterix were up-regulated, and that of PPAR-γ and C/EBP-α were down-regulated in diabetic rats after FK506 treatment. In addition, the nuclear translocation of β-catenin protein levels were increased in diabetic rats after the treatment of FK506. Conclusions Our study indicated that FK506 could alleviate bone loss in diabetic rats. This effects could be due to the results of enhancing osteogenesis and inhibiting adipogenesis, which might be regulated by activation the nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Li-Hua Ni
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China.,Department of Nephrology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing 10009, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Kai-Yun Song
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Li-Ting Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Xiao-Chen Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Yu-Xia Zhang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Xiao-Liang Zhang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Dong-Dong Zhu
- Department of Nephrology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| |
Collapse
|
5
|
Zhang J, Yu X, Yu Y, Gong Y. MicroRNA expression analysis during FK506-induced osteogenic differentiation in rat bone marrow stromal cells. Mol Med Rep 2017; 16:581-590. [PMID: 28560399 PMCID: PMC5482066 DOI: 10.3892/mmr.2017.6655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
FK506 (also known as tacrolimus) is a potent immunosuppressive agent that is widely used in the treatment of graft-rejection and autoimmune diseases. FK506 has attracted additional attention owing to its potential role in osteogenic differentiation and bone formation. MicroRNAs (miRNAs) have been demonstrated to serve important roles in the regulation of osteogenic differentiation; however, identification of specific miRNAs and their roles in regulating FK506-induced osteogenic differentiation have been poorly examined. In the present study, osteodifferentiation of rat bone marrow stromal cells (BMSCs) was induced with varying concentrations of FK506 (5–5,000 nM) for 3, 7 and 14 days. Differentially expressed miRNAs were profiled using miRNA array, verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and subjected to gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results from the present study identified a subset of miRNAs that were differentially expressed, of which five upregulated miRNAs (miR-106b-5p, miR-101b-3p, miR-193a-3p, miR-485-3p and miR-142-3p) and four downregulated miRNAs (miR-27a-3p, miR-207, miR-218a-2-3p and let-7a-5p) were confirmed by RT-qPCR. GO and KEGG analysis revealed that the predicted target genes of these miRNAs are involved in multiple biological processes and signaling pathways, including cell differentiation and the mitogen-activated protein kinase (MAPK) signaling pathway. Verification of the miRNA-target genes revealed that Smad5, Jagged 1 and MAPK9 were significantly upregulated, whereas Smad7, BMP and activin membrane-bound inhibitor, and dual-specificity phosphatase 2 were significantly downregulated during FK506-induced osteodifferentiation. The present study may provide an experimental basis for further research on miRNA functions during FK506-induced osteogenic differentiation in rat BMSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoping Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yiming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
6
|
Suda D, Ohazama A, Maeda T, Kobayashi T. The effect of bone mass and architecture on mandibular condyle after mandibular distraction. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:339-347. [PMID: 28864292 DOI: 10.1016/j.oooo.2017.05.472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Mandibular distraction surgery is a critical treatment for jaw deformity. However, abnormal mandibular condylar bone resorption is often seen as complication after surgery. Our previous study using a rat mandibular distraction model suggested that overloading leads to mandibular condylar resorption. Host factors are also believed to influence the resorption. To understand the relationship between host factors and resorption, we investigated the effect of changing bone mass and architecture on the mandibular condyle using FK506. STUDY DESIGN FK506, an immunosuppressant, was used to compromise bone mass and architecture in this study. Animals were divided into 4 groups: distraction surgery (Dist), FK506 administration (FK), distraction surgery with FK506 administration (FK + Dist), and no surgery or FK506 administration (Cont). RESULTS The FK group showed reduced bone mass and impaired bone architecture. The Dist group exhibited abnormal bone resorption on the surface of the condyles, which was slightly exacerbated in the FK + Dist group. Bone defect length decreased over time as a result of bone apposition in the Dist group. However, in the FK + Dist group, the bone defect length remained the same. CONCLUSIONS These results suggest that bone mass and architecture strongly affect the tolerance to the overloading and adaptation with bone apposition in condylar resorption site.
Collapse
Affiliation(s)
- Daisuke Suda
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
7
|
Zheng X, Mo A, Wang Y, Guo Y, Wu Y, Yuan Q. Effect of FK-506 (tacrolimus) therapy on bone healing of titanium implants: a histometric and biomechanical study in mice. Eur J Oral Sci 2016; 125:28-33. [PMID: 27935130 DOI: 10.1111/eos.12320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaofei Zheng
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Dental Implant Center; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Dental Implant Center; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Dental Implant Center; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Dental Implant Center; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Dental Implant Center; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Dental Implant Center; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
8
|
The consequences of pediatric renal transplantation on bone metabolism and growth. Curr Opin Organ Transplant 2015; 18:555-62. [PMID: 23995376 DOI: 10.1097/mot.0b013e3283651b21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW During childhood, growth retardation, decreased final height and renal osteodystrophy are common complications of chronic kidney disease (CKD). These problems remain present in patients undergoing renal transplantation, even though steroid-sparing strategies are more widely used. In this context, achieving normal height and growth in children after transplantation is a crucial issue for both quality of life and self-esteem. The aim of this review is to provide an overview of pathophysiology of CKD-mineral bone disorder (MBD) in children undergoing renal transplantation and to propose keypoints for its daily management. RECENT FINDINGS In adults, calcimimetics are effective for posttransplant hyperparathyroidism, but data are missing in the pediatric population. Fibroblast growth factor 23 levels are associated with increased risk of rejection, but the underlying mechanisms remain unclear. A recent meta-analysis also demonstrated the effectiveness of rhGH therapy in short transplanted children. SUMMARY In 2013, the daily clinical management of CKD-MBD in transplanted children should still focus on simple objectives: to optimize renal function, to develop and promote steroid-sparing strategies, to provide optimal nutritional support to maximize final height and avoid bone deformations, to equilibrate calcium/phosphate metabolism so as to provide acceptable bone quality and cardiovascular status, to correct all metabolic and clinical abnormalities that can worsen both bone and growth (mainly metabolic acidosis, anemia and malnutrition), promote good lifestyle habits (adequate calcium intake, regular physical activity, no sodas consumption, no tobacco exposure) and eventually to correct native vitamin D deficiency (target of 25-vitamin D >75 nmol/l).
Collapse
|
9
|
Sirolimus and tacrolimus rather than cyclosporine A cause bone loss in healthy adult male rats. Bone Rep 2015; 2:74-81. [PMID: 28377957 PMCID: PMC5365163 DOI: 10.1016/j.bonr.2015.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 02/02/2023] Open
Abstract
The aim of this work was to study the effects of cyclosporine (CsA), tacrolimus (FK-506), and rapamycin (RAPA) on bone mass, femoral microstructure, femoral biomechanical properties, and bone remodeling in healthy adult male rats. Forty-eight 5-month-old male Wistar rats were used. CsA (2 mg/kg/day), FK-506 (3 mg/kg/day), RAPA (1.25 mg/kg/day), or water (0.5 ml/rat/day, control group) were administered orally for 3 months. After sacrifice, mean values of immunosuppressants in blood were: CsA (670.4 ng/ml), FK-506 (19.2 ng/ml), and RAPA (4.8 ng/ml). Levels of biochemical parameters were normal in all groups. Femoral BMD was decreased in FK-506 and RAPA groups and lumbar BMD in FK-506 group. Trabecular volume fraction (BV/TV) decreased only in FK-506 group. RAPA and CsA affected femoral cortical structure, but FK-506 did not. FK-506 produced an increase in bone remodeling, and CsA a decrease. FK-506 group showed a decrease in biomechanical parameters relative to all groups. RAPA group showed a decrease in ultimate stress vs control group, and CsA group presented an increase in biomechanical parameters versus control group. We found that administration of both RAPA and FK-506 as monotherapy for healthy rats produced osteopenia. CsA treatment only produces slight damages in the cortical zone of the femur.
Collapse
|
10
|
Liu X, Liu Y, Cheng M, Zhang X, Xiao H. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation. MOLECULAR BIOSYSTEMS 2014; 11:635-46. [PMID: 25474166 DOI: 10.1039/c4mb00528g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estradiol is a major drug used clinically to alleviate osteoporosis, partly through inhibition of the activity of osteoclasts, which play a crucial role in bone resorption. So far, little is known about the effects of estradiol on osteoclast metabolism. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS)-based metabolomics strategy was used to investigate the metabolite response to 17β-estradiol in mouse osteoclast RAW264.7, a commonly used cell model for studying osteoporosis. Our results showed that the application of estradiol altered the levels of 27 intracellular metabolites, including lysophosphatidylcholines (LysoPCs), other lipids and amino acid derivants. The changes of all the 27 metabolites were observed in the study of estradiol induced osteoclast proliferation inhibition (1 μM estradiol applied), while the changes of only 18 metabolites were observed in the study of differentiation inhibition (0.1 μM estradiol applied). Further pathway impact analysis determined glycerophospholipid metabolism as the main potential target pathway of estradiol, which was further confirmed by LCAT (phosphatidylcholine-sterol acyltransferase) activity changes and lipid peroxidative product (MDA, methane dicarboxylic aldehyde) changes caused by estradiol. Additionally, we found that estradiol significantly decreased intracellular oxidative stress during cell proliferation but not during cell differentiation. Our study suggested that estradiol generated a highly condition-dependent influence on osteoclast metabolism.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | | | | | | | | |
Collapse
|
11
|
Persistence of bone and mineral disorders 2 years after successful kidney transplantation. Transplantation 2014; 96:290-6. [PMID: 23823648 DOI: 10.1097/tp.0b013e3182985468] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Studies that have conducted bone biopsies after kidney transplantation are scarce, and the results are conflicting. METHODS We evaluate the bone histomorphometry, in vitro proliferation, and alkaline phosphatase expression in osteoblasts isolated from bone biopsies from 27 kidney transplant patients. The patients had preserved renal function and were treated with the same immunosuppressive therapy, receiving a minimum dose of corticosteroids. RESULTS The biochemical analysis revealed that 41% of the patients presented with hypercalcemia, 26% presented with hypophosphatemia, and hypovitaminosis D was detected in 63%. The histomorphometric analysis showed a reduced trabecular number and increased trabecular separation, mineral apposition rate, and mineralization lag time, as well as higher osteoid surface, osteoblastic surface, resorption surface, and osteoclastic surface and a lower mineralizing surface, compared with the controls. Based on the TMV classification, bone turnover was normal in 48%, high in 26%, and low in 26% of patients. Bone mineralization was delayed in 48% of the patients, and 58% of the patients with hypovitaminosis D presented with delayed bone mineralization. Bone volume was low in 37% of the patients. The osteoblasts from patients exhibited a higher degree of proliferation compared with those from controls. CONCLUSION Eight-two percent of our patients presented with alterations in at least one of the TMV parameters. Persistence of hyperparathyroidism, hypovitaminosis D, and immunosuppressive drugs may have influenced osteoblast function, which would explain many of the bone alterations found in these patients.
Collapse
|
12
|
[Mineral and bone disorders in renal transplantation]. Nephrol Ther 2013; 9:461-70. [PMID: 24176653 DOI: 10.1016/j.nephro.2013.07.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022]
Abstract
The deregulation of bone and mineral metabolism during chronic kidney disease (CKD) is a daily challenge for physicians, its management aiming at decreasing the risk of both fractures and vascular calcifications. Renal transplantation in the context of CKD, with pre-existing renal osteodystrophy as well as nutritional impairment, chronic inflammation, hypogonadism and corticosteroids exposure, represents a major risk factor for bone impairment in the post-transplant period. The aim of this review is therefore to provide an update on the pathophysiology of mineral and bone disorders after renal transplantation.
Collapse
|
13
|
Kosugi K, Yonezu H, Kawashima S, Honda K, Arai Y, Shibahara T. A longitudinal study of the effect of experimental osteoporosis on bone trabecular structure in the rat mandibular condyle. Cranio 2013; 31:140-50. [PMID: 23795404 DOI: 10.1179/crn.2013.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The authors performed a longitudinal study of the microstructural changes occurring in the mandibular condyle during osteoporosis using the findings obtained from micro-CT. The subjects used in this study were eight Sprague-Dawley rats. Among them, five were administered the immunosuppressant drug FK506 by injection for five weeks, while the other three were administered saline solution in the same manner. Micro-CT images were taken of the bilateral mandibular condyle, hip, and knee joints in all animals on days 1, 8, 15, 22, 29, and 36 following injection. Six indices of morphometric analysis were compared between the two groups. Significant differences were observed in BV/TV, Tb.Th, Tb.N, and Tb.Sp in the mandibular condyle, while trabecular bone density appeared to decrease in the immunosuppressant group on three-dimensional (3D) imaging. And, in comparison with the mandibular condyle and femur, they were similar. These results suggested that osteoporosis affects not only the femur, but also the mandibular condyle.
Collapse
Affiliation(s)
- Kensuke Kosugi
- Department of Stomatology and Maxillofacial Surgery, Gunma University Graduate School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Byun YK, Kim KH, Kim SH, Kim YS, Koo KT, Kim TI, Seol YJ, Ku Y, Rhyu IC, Lee YM. Effects of immunosuppressants, FK506 and cyclosporin A, on the osteogenic differentiation of rat mesenchymal stem cells. J Periodontal Implant Sci 2012; 42:73-80. [PMID: 22803008 PMCID: PMC3394998 DOI: 10.5051/jpis.2012.42.3.73] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/24/2012] [Indexed: 11/08/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effects of the immunosuppressants FK506 and cyclosporin A (CsA) on the osteogenic differentiation of rat mesenchymal stem cells (MSCs). Methods The effect of FK506 and CsA on rat MSCs was assessed in vitro. The MTT assay was used to determine the deleterious effect of immunosuppressants on stem cell proliferation at 1, 3, and 7 days. Alkaline phosphatase (ALP) activity was analyzed on days 3, 7, and 14. Alizarin red S staining was done on day 21 to check mineralization nodule formation. Real-time polymerase chain reaction (RT-PCR) was also performed to detect the expressions of bone tissue-specific genes on days 1 and 7. Results Cell proliferation was promoted more in the FK506 groups than the control or CsA groups on days 3 and 7. The FK506 groups showed increased ALP activity compared to the other groups during the experimental period. The ALP activity of the CsA groups did not differ from the control group in any of the assessments. Mineralization nodule formation was most prominent in the FK506 groups at 21 days. RT-PCR results of the FK506 groups showed that several bone-related genes-osteopontin, osteonectin, and type I collagen (Col-I)-were expressed more than the control in the beginning, but the intensity of expression decreased over time. Runx2 and Dlx5 gene expression were up-regulated on day 7. The effects of 50 nM CsA on osteonectin and Col-I were similar to those of the FK506 groups, but in the 500 nM CsA group, most of the genes were less expressed compared to the control. Conclusions These results suggest that FK506 enhances the osteoblastic differentiation of rat MSCs. Therefore, FK506 might have a beneficial effect on bone regeneration when immunosuppressants are needed in xenogenic or allogenic stem cell transplantation to treat bone defects.
Collapse
Affiliation(s)
- Yu-Kyung Byun
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo L, Shi Y, Bai Y, Zou Y, Cai B, Tao Y, Lin T, Wang L. Impact of tacrolimus on bone metabolism after kidney transplantation. Int Immunopharmacol 2012; 13:69-72. [DOI: 10.1016/j.intimp.2012.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 01/08/2023]
|
17
|
Nanke Y, Yago T, Kotake S. The effects of disease modifying anti-rheumatic drugs on osteoclastogenesis and bone destruction in rheumatoid arthritis. ACTA ACUST UNITED AC 2012; 34:493-500. [PMID: 22214810 DOI: 10.2177/jsci.34.493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Finding the means to ameliorate and prevent bone destruction as well as control inflammation is an urgent issue in the treatment of rheumatoid arthritis (RA). Recently, it has been demonstrated that osteoclastogenesis plays an important role in the bone destruction and pathogenesis of RA. Here, we review the effects of disease modifying anti-rheumatic drugs (DMRAD) on the amelioration of bone destruction and osteoclastogenesis.
Collapse
Affiliation(s)
- Yuki Nanke
- Institute of Rheumatology, Tokyo Women's Medical University, Japan
| | | | | |
Collapse
|
18
|
Matsubara M, Yamachika E, Tsujigiwa H, Mizukawa N, Ueno T, Murakami J, Ishida N, Kaneda Y, Shirasu N, Takagi S. Suppressive effects of 1,4-dihydroxy-2-naphthoic acid administration on bone resorption. Osteoporos Int 2010; 21:1437-47. [PMID: 19813044 DOI: 10.1007/s00198-009-1075-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 08/26/2009] [Indexed: 12/16/2022]
Abstract
SUMMARY The main component of the metabolic by-products of fermentation by Propionibacterium freudenreichii ET-3 is 1,4-dihydroxy-2-naphthoic acid (DHNA), which has a naphthoquinone skeleton, as in vitamin K2. This study showed that DHNA improved bone mass reduction with osteoporosis model mice caused by FK506. INTRODUCTION Growth of the intestinal bacterium Lactobacillus bifidus is specifically facilitated by DHNA. The present study used osteoporosis model mice to investigate the effects of DHNA on bone remodeling. METHODS FK506, an immunosuppressant, was used to prepare osteoporosis model mice. Thirty mice were divided into three groups: FK group, FK+DHNA group, and control group. In the FK group, FK506 was administered to induce bone mass reduction. In the FK-DHNA group, FK506 and DHNA were administered concurrently to observe improvements in bone mass reduction. To ascertain systemic and local effects of DHNA, we investigated systemic pathological changes in colon, kidney function and cytokine dynamics, and morphological and organic changes in bone and osteoclast dynamics as assessed by culture experiments. RESULTS Compared to the FK group without DHNA, colon damage and kidney dysfunction were milder for FK+DHNA group, and production of inflammatory cytokines (interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha) was more suppressed. Furthermore, compared to the group without DHNA, histological analyses and radiography showed that bone resorption was suppressed for the DHNA group. Culture experiments using osteoclasts from murine bone marrow showed osteoclast suppression for the DHNA group compared to the group without DHNA. CONCLUSION These results show that DHNA has some effects for improving bone mass reduction caused by FK506.
Collapse
Affiliation(s)
- M Matsubara
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Sikata-cho, Okayama City, 7008525, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matsunaga T, Shigetomi M, Hashimoto T, Suzuki H, Gondo T, Tanaka H, Sugiyama T, Taguchi T. Effects of bisphosphonate treatment on bone repair under immunosuppression using cyclosporine A in adult rats. Osteoporos Int 2007; 18:1531-40. [PMID: 17492246 DOI: 10.1007/s00198-007-0387-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 04/17/2007] [Indexed: 11/29/2022]
Abstract
UNLABELLED The effect of cyclosporine A on bone turnover remains unclear. Using adult rats with vascularized bone transplantation, we show that long-term cyclosporine A administration increases bone turnover and zoledronic acid treatment enhances the reconstruction of cyclosporine A-administered skeleton. Bisphosphonates might be efficacious in human bone repair under immunosuppression using cyclosporine A. INTRODUCTION Bisphosphonate treatment effectively prevents bone loss after transplantation. However, recent evidence from gain- and loss-of-function experiments has indicated that calcineurin inhibitors, such as cyclosporine A (CsA), reduce bone turnover, and severely suppressed bone turnover might delay the union of human fractured bone. The purpose of this study was to investigate the effects of bisphosphonate treatment on the repair of CsA-administered skeleton. METHODS After skeletal reconstruction by vascularized tibial grafting, adult recipient rats were treated with intramuscular CsA (10 mg/kg/day) and low-dose (0.2 microg/kg/week) or high-dose (2 microg/kg/week) subcutaneous zoledronic acid alone or in combination for 8 weeks. Biochemical parameters were measured in blood and urine. The reconstructed skeleton was analyzed using soft X-ray, histology, dual energy X-ray absorptiometry, and three-point bending test. RESULTS CsA induced mild renal dysfunction, hyperparathyroidism and high bone turnover. High-dose zoledronic acid delayed cortical bone union at the distal host-graft junction, but its combination with CsA did not cause such a delay. High-dose zoledronic acid prevented CsA-induced bone loss and bone fragility in the reconstructed skeleton. CONCLUSION In this rat model, long-term CsA administration increases bone turnover, at least partly, through hyperparathyroidism and high-dose zoledronic acid treatment does not impair the union of CsA-administered bone.
Collapse
Affiliation(s)
- T Matsunaga
- Department of Orthopaedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nassar CA, Nassar PO, Andia DC, Guimarães MR, Spolidorio LC. The effects of up to 240 days of tacrolimus therapy on the gingival tissues of rats - a morphological evaluation. Oral Dis 2007; 14:67-72. [DOI: 10.1111/j.1601-0825.2006.01354.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Guimarães MR, Nassar PO, Andia DC, Nassar CA, Spolidorio DMP, Rossa C, Spolidorio LC. Protective effects of Tacrolimus, a calcineurin inhibitor, in experimental periodontitis in rats. Arch Oral Biol 2007; 52:882-8. [PMID: 17367747 DOI: 10.1016/j.archoralbio.2007.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/23/2007] [Accepted: 02/04/2007] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Periodontitis is a well-appreciated example of leukocyte-mediated bone loss and inflammation with pathogenic features similar to those observed in other inflammatory diseases, such as arthritis. Since Tacrolimus, is an immunomodulatory drug used for the treatment of some cases of arthritis, we hypothesized that it may modulate periodontal disease. DESIGN Using a murine model of ligature-induced periodontal disease, we assessed the effects of daily administrations of Tacrolimus (1mg/kg body weight) on bone loss, enzymatic (myeloperoxidase) analysis, differential white blood cells counts, airpouch exudate and cytokine expression for 5-30 days. RESULTS Radiographic, enzymatic (myeloperoxidase) and histological analysis revealed that Tacrolimus reduced the severity of periodontitis. More specifically, Tacrolimus suppressed the expression of serum interleukin (IL-1beta), tumour necrosis factor (TNF-alpha), IL-6, airpouch exudate PGE(2) and leukocytosis usually observed after the induction of periodontitis. Tacrolimus treatment in periodontitis-induced rats conferred protection against the inflammation-induced tissue and bone loss associated with periodontitis, through a mechanism involving IL-1beta, TNF-alpha and IL-6. CONCLUSIONS The effects of Tacrolimus on periodontal disease pathogenesis may provide clues to a novel approach to host modulation therapy in destructive periodontal disease.
Collapse
Affiliation(s)
- M R Guimarães
- Department of Physiology and Pathology, Dental School of Araraquara (UNESP), State University of São Paulo, Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Gallego R, Oliva E, Vega N, Ojeda S, Hortal L, Hernández FF, Fernández A, Eisman A, Silva D, Palop L. Steroids and bone density in patients with functioning kidney allografts. Transplant Proc 2007; 38:2434-7. [PMID: 17097959 DOI: 10.1016/j.transproceed.2006.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Osteopenia and osteoporosis after renal transplantation have been associated with factors related to the cause of end-stage renal disease, as well as to clinical events and therapeutic factors in the posttransplant period. We studied the prevalence of low bone density (LBD) according to WHO criteria. METHODS A cross-sectional study was performed in a cohort of 106 patients (54 men and 52 women) with functioning renal allografts, who underwent bone densitometry (DEXA) of the lumbar spine and femoral neck. Patients were grouped according to DEXA into those with normal bone density (NBD) or LBD. We studied clinical, analytical, and therapeutic variables. RESULTS Thirtysix patients (34%) had NBD and 70 patients (66%) LBD. Weight was the only parameter showing a significant difference (P = .034), namely, among NBD it was 80.44+/-15.13 versus LBD 73.94 +/- 14.54 kg, respectively. Creatinine clearance (CCr) tended to be lower among patients with LBD 59.62 +/- 22.73 versus 69.59 +/- 28.15 mL/min in patients with NBD (P = .052). PTHi levels were higher in patients with LBD (149.39 +/- 110.75) than those with NBD (110.94 +/- 82.61) (P = .069). In the multivariate analysis the important determinants were weight Exp(ss) = 0.967 [CI = 0.939 to 0.996] (P = .036); CCr Exp(ss) = 0.982 [CI = 0.965 to 1.000] (P = .055); and PTHi levels Exp(ss) = 1.003 [CI = 0.932 to 0.994] (P = .059). CONCLUSIONS Osteopenia and osteoporosis are frequent among kidney transplant patients (66%), with a similar distribution between the lumbar spine and femoral neck. Excess weight and possibly better renal function may be protective factors. The cumulative steroid dose showed a significant effect on bone density. As expected, secondary hyperparathyroidism in patients with renal impairment seemed to be a risk factor for LBD.
Collapse
Affiliation(s)
- R Gallego
- Hospital Universitario de Gran Canaria Dr Negrín, Las Palmas de Gran Canaria, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cunningham J. Pathogenesis and Prevention of Bone Loss in Patients Who Have Kidney Disease and Receive Long-Term Immunosuppression. J Am Soc Nephrol 2006; 18:223-34. [PMID: 17108315 DOI: 10.1681/asn.2006050427] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The coexistence of kidney disease with a need for immunosuppressive therapy leads to the convergence of several threats to bone. These comprise general effects of the primary disease, e.g., inflammatory state, more specific effects of acute renal failure or chronic kidney disease, and effects of therapies. Multisystem inflammatory disease that requires immunosuppression is associated frequently with kidney damage, and any reduction of kidney function that takes the patient into or beyond chronic kidney disease stage 2 for more than a short time is likely to have a negative impact on bone health. Bone mineral density frequently is low and fracture rates are high, although correlations often are poor. Chronic inflammation leads to local and systemic imbalance between bone formation and resorption. Upregulation of NF-kappabeta ligand (RANKL) and variable downregulation of osteoprotegerin are implicated, and bone health may improve in response to treatment of the inflammatory state. Certain immunosuppressive agents, especially glucocorticoids and calcineurin inhibitors, contribute further to bone loss. Antiresorptive agents such as bisphosphonates are used widely and, although able to prevent loss of bone mineral density, have uncertain effects on fracture rates. Augmentation of anabolic activity is desirable but elusive. Synthetic parathyroid hormone is untested but has potential. Manipulation of the RANKL/osteoprotegerin system now is feasible using antibodies to RANKL or synthetic osteoprotegerin. In the future, manipulation of the calcium-sensing receptor using calcimimetic or calcilytic agents may allow the anabolic effects of parathyroid hormone to be harnessed to good effect. With all of these therapies, it will be important to assess response in relation to important clinical end points such as fracture.
Collapse
Affiliation(s)
- John Cunningham
- The Centre for Nephrology, The Royal Free Hospital, Pond Street, London NW3 2PF, UK.
| |
Collapse
|
24
|
Kim MH, Kim BT, Min YK, Kim SH. Profiling signalling pathways of the receptor activator of NF-kappaB ligand-induced osteoclast formation in mouse monocyte cells, RAW264.7. Amino Acids 2006; 34:497-506. [PMID: 17086477 DOI: 10.1007/s00726-006-0461-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
Cell-based signal chemical genomics can profile the signalling pathway for certain cellular events by using a target-known chemical library. To ascertain its usefulness, the receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis in mouse monocyte/macrophage cells RAW264.7 was used as an in vitro experimental model. Of 180 target-known inhibitors/activators formatted in a 384-well plate, 8 chemicals were shown to inhibit the osteoclast formation, but 4 chemicals enhanced this process. A variety of references support, or possibly lead one to expect the effects of these 12 chemicals on the cellular process of osteoclastogenesis in RAW264.7 cells, but several signalling pathways were newly found in this study; for example, CA-074 Me inhibiting cathepsin B and nitrendipine blocking the calcium channel could have the potential to inhibit the osteoclast formation as well as bone resorption. This is a simple but very fast and powerful method of profiling the signalling pathway of certain cellular events. Signal chemical genomics could provide invaluable information for the exploration of new target signalling processes and further target-based drug discovery strategies.
Collapse
Affiliation(s)
- M H Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | | | | | | |
Collapse
|
25
|
Kugimiya F, Yano F, Ohba S, Igawa K, Nakamura K, Kawaguchi H, Chung UI. Mechanism of osteogenic induction by FK506 via BMP/Smad pathways. Biochem Biophys Res Commun 2005; 338:872-9. [PMID: 16246307 DOI: 10.1016/j.bbrc.2005.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Accepted: 10/05/2005] [Indexed: 11/29/2022]
Abstract
FK506 is an immunosuppressant that exerts effects by binding to FK506-binding protein 12 (FKBP12). Recently, FK506 has also been reported to promote osteogenic differentiation when administered locally or in vitro in combination with bone morphogenetic proteins (BMPs), although the underlying mechanism remains unclarified. The present study initially showed that FK506 alone at a higher concentration (1muM) induced osteogenic differentiation of mesenchymal cell lines, which was suppressed by adenoviral introduction of Smad6. FK506 rapidly activates the BMP-dependent Smads in the absence of BMPs, and the activation was blocked by Smad6. Overexpression of FKBP12, which was reported to block the ligand-independent activation of BMP type I receptor A (BMPRIA), suppressed Smad signaling induced by FK506, but not that induced by BMP2. BMPRIA and FKBP12 bound to each other, and this binding was suppressed by FK506. These data suggest that FK506 promotes osteogenic differentiation by activating BMP receptors through interacting with FKBP12.
Collapse
Affiliation(s)
- Fumitaka Kugimiya
- Division of Tissue Engineering, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Voggenreiter G, Siozos P, Hunkemöller E, Heute S, Schwarz M, Obertacke U. Immunosuppression with FK506 has no influence on fracture healing in the rat. Bone 2005; 37:227-33. [PMID: 15963777 DOI: 10.1016/j.bone.2005.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 04/18/2005] [Accepted: 04/22/2005] [Indexed: 11/27/2022]
Abstract
Immunosuppressant drugs like cyclosporine A and FK506 are widely used for solid organ transplantation. They are accelerating bone remodeling but cause net bone loss. The aim of this study was to investigate the effect of FK506 on fracture healing in the rat. Eighty Lewis rats were divided into four groups, which received FK506 (1 mg/kg BW) or no treatment for 2 or 4 weeks, beginning after production of a closed, nondisplaced unilateral tibial fracture. Radiographic, histological, and biomechanical studies were used to evaluate fracture healing and histomorphometric analysis of the tibial metaphysis of the intact contralateral side was performed. Radiographs revealed no difference of the healing of the control fractures compared with the fractures in the FK506-treated group at 2 and 4 weeks. The mechanical parameters of the tested contralateral intact tibiae and of the fracture callus demonstrated no difference between control and immunosuppressed animals. Tibial bone histomorphometry revealed increased measures of bone formation and bone resorption, accompanied by a significant reduction of percent trabecular area. At 4 weeks, the fractures showed osseous healing with woven bone at the fracture site and only minimal amounts of cartilage. Histological grading was not different between the control and the FK506 group at both time points. We conclude that systemic application of FK506 has no biomechanical and histological effects of experimental fracture healing in the rat. However, resorption far in excess of formation leads to a net bone loss in the trabecular bone of the tibia that has no effect on the stability of the intact bone.
Collapse
Affiliation(s)
- Gregor Voggenreiter
- Department of Trauma Surgery and Laboratory for Experimental Orthopaedics, University Hospital Mannheim, Ruprecht-Karls-University of Heidelberg, D-68165 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H. NFAT and Osterix cooperatively regulate bone formation. Nat Med 2005; 11:880-5. [PMID: 16041384 DOI: 10.1038/nm1270] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 06/07/2005] [Indexed: 11/09/2022]
Abstract
Immunosuppressants are crucial in the prevention of detrimental immune reactions associated with allogenic organ transplantation, but they often cause adverse effects in a number of biological systems, including the skeletal system. Calcineurin inhibitors FK506 and cyclosporin A inhibit nuclear factor of activated T cells (NFAT) activity and induce strong immunosuppression. Among NFAT proteins, NFATc1 is crucial for the differentiation of bone-resorbing osteoclasts. Here we show FK506 administration induces the reduction of bone mass despite a blockade of osteoclast differentiation. This reduction is caused by severe impairment of bone formation, suggesting that NFAT transcription factors also have an important role in the transcriptional program of osteoblasts. In fact, bone formation is inhibited in Nfatc1- and Nfatc2-deficient cells as well as in FK506-treated osteoblasts. Overexpression of NFATc1 stimulates Osterix-dependent activation of the Col1a1 (encoding type I collagen) promoter, but not Runx2-dependent activation of the Bglap1 (encoding osteocalcin) promoter. NFAT and Osterix form a complex that binds to DNA, and this interaction is important for the transcriptional activity of Osterix. Thus, NFAT and Osterix cooperatively control osteoblastic bone formation. These results may provide important insight into the management of post-transplantation osteoporosis as well as a new strategy for promoting bone regeneration in osteopenic disease.
Collapse
Affiliation(s)
- Takako Koga
- Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Varanasi SS, Datta HK. Characterisation of cytosolic FK506 binding protein 12 and its role in modulating expression of Cbfa1 and osterix in ROS 17/2.8 cells. Bone 2005; 36:243-53. [PMID: 15780950 DOI: 10.1016/j.bone.2004.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 09/14/2004] [Accepted: 09/30/2004] [Indexed: 11/30/2022]
Abstract
FK506 is a commonly used immunosuppressant that mediates its action by exclusively interacting with the cytosolic immunophilin, FK506 binding protein 12 (FKBP12). Although FK506-induced acute osteoporosis is now well recognised, its precise mode of action in osteoblasts remains unclear. Therefore, in the present study we characterised FKBP12 in osteoblasts and investigated the role of FK506 in modulating osteoblast-specific transcription factors, core-binding factor alpha1 (Cbfa1) and osterix gene expression in ROS 17/2.8 cells. RT-PCR, immunolocalisation and Western blotting studies were employed to identify and characterise FKBP12 in rat primary osteoblasts and osteoblast-like osteosarcoma ROS 17/2.8 cells. Western blotting extracts of these cells revealed the 12 kDa and hitherto unreported 10 kDa FKBP isoform that were immunolocalised predominantly to the cytosol. The transient exposure of ROS 17/2.8 cells to H2O2 (100 microM) was found to elevate FKBP12 mRNA after 10 min and protein expression after 24 h. Both PTH (10(-9) M) and 1,25 (OH)2D3 (Vitamin D3) (10(-7) M) suppressed FKBP12 protein expression. FK506 in the therapeutic range (25 nmol/L) suppressed expression of Cbfa1 and osterix mRNA. The inhibition of Cbfa1 isoforms II/III expression was evident at 30 min and the extent of inhibition was sustained at 6 h. Osterix inhibition was also seen after 30 min, however, it became maximal after 6 h. The dose-dependant inhibition of osterix in these cells, carried out using 1.25, 12.5 and 125 nmol/L of FK506 was maximal at 1.25 nmol/L. Cbfa1 isoforms II/III were also maximally inhibited at 1.25 nmol/L; interestingly, the inhibition became less marked at higher concentrations of FK506. Similar dose of FK506 was found to inhibit ROS 17/2.8 cell proliferation; the inhibitory effect however was greater in insulin-stimulated cells. The results of this study suggest that immunosuppressant-induced osteoporosis, which is known to involve accelerated bone resorption by increase in osteoclastogenesis, may in fact also be accentuated by the inhibition of osteoblast differentiation and function.
Collapse
Affiliation(s)
- S S Varanasi
- School of Clinical and Laboratory Sciences, The Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | |
Collapse
|