1
|
van Agtmaal JL, van Hoogstraten SWG, Arts JJC. Prosthetic Joint Infection Research Models in NZW Rabbits: Opportunities for Standardization-A Systematic Review. J Funct Biomater 2024; 15:307. [PMID: 39452605 PMCID: PMC11508679 DOI: 10.3390/jfb15100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Prosthetic joint infection (PJI) is a major complication following total arthroplasty. Rising antimicrobial resistance (AMR) to antibiotics will further increase therapeutic insufficiency. New antibacterial technologies are being developed to prevent PJI. In vivo models are still needed to bridge the translational gap to clinical implementation. Though rabbit models have been used most frequently, there is no consensus about methodology and measured outcomes. The PubMed, Scopus, and EMBASE databases were searched for literature on PJI in rabbit models. Data extraction included bias control, experimental design, and outcome measures of the NZW rabbit models in the articles. A total of 60 articles were included in this systematic literature review. The articles were divided into six groups based on the PJI intervention: no intervention used (21%), revision surgery (14%), prevention with only antibiotics (21%), prevention with surface modifications (7%), prevention with coatings (23%), and others (14%). Despite the current availability of guidelines and recommendations regarding experimental design, bias control, and outcome measures, many articles neglect to report on these matters. Ultimately, this analysis aims to assist researchers in determining suitable clinically relevant methodologies and outcome measures for in vivo PJI models using NZW rabbits to test new antimicrobial technologies.
Collapse
Affiliation(s)
- Julia L. van Agtmaal
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
| | - Sanne W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
| | - Jacobus J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands
| |
Collapse
|
2
|
Florczyk A, Krajcer A, Wójcik K, Lewandowska-Łańcucka J. Innovative Vancomycin-Loaded Hydrogel-Based Systems - New Opportunities for the Antibiotic Therapy. Int J Nanomedicine 2024; 19:3991-4005. [PMID: 38720939 PMCID: PMC11078026 DOI: 10.2147/ijn.s443051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.
Collapse
Affiliation(s)
- Aleksandra Florczyk
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Aleksandra Krajcer
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Kinga Wójcik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
3
|
Nkanga CI, Fisch A, Rad-Malekshahi M, Romic MD, Kittel B, Ullrich T, Wang J, Krause RWM, Adler S, Lammers T, Hennink WE, Ramazani F. Clinically established biodegradable long acting injectables: An industry perspective. Adv Drug Deliv Rev 2020; 167:19-46. [PMID: 33202261 DOI: 10.1016/j.addr.2020.11.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Long acting injectable formulations have been developed to sustain the action of drugs in the body over desired periods of time. These delivery platforms have been utilized for both systemic and local drug delivery applications. This review gives an overview of long acting injectable systems that are currently in clinical use. These products are categorized in three different groups: biodegradable polymeric systems, including microparticles and implants; micro and nanocrystal suspensions and oil-based formulations. Furthermore, the applications of these drug delivery platforms for the management of various chronic diseases are summarized. Finally, this review addresses industrial challenges regarding the development of long acting injectable formulations.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa; Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa, XI, Democratic Republic of the Congo; Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Andreas Fisch
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Birgit Kittel
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Thomas Ullrich
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Jing Wang
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Rui Werner Maçedo Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Sabine Adler
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Twan Lammers
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland.
| |
Collapse
|
4
|
Palmer I, Clarke SA, Buchanan FJ. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019; 8:266-274. [PMID: 31346455 PMCID: PMC6609887 DOI: 10.1302/2046-3758.86.bjr-2018-0224.r2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objectives Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2.
Collapse
Affiliation(s)
- I Palmer
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - S A Clarke
- School of Nursing and Midwifery, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - F J Buchanan
- School of Mechanical and Aerospace Engineering, Ashby Building, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Martin VT, Wang L, Zeng R, You D, Zhang X, Elodie WH, Yu B. Carboxymethyl chitosan-zinc coating for prevention of pin tract infection: An animal model. J Orthop Surg (Hong Kong) 2018; 26:2309499017749981. [PMID: 29343155 DOI: 10.1177/2309499017749981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pin tract infection is a common problem in orthopedic and traumatology surgery. The aim of this study was to investigate the efficacy of an implant coated with carboxymethyl chitosan-zinc (CMC-Zn2+) in prevention of pin tract infection. MATERIALS AND METHODS Twenty-four male New Zealand White rabbits were randomized into two equal groups ( n = 12, uncoated and CMC-Zn2+). The implants were colonized with 1 × 106 colony forming units of Staphylococcus aureus and inserted into the lateral right proximal tibia in each rabbit. In each group, at 2 and 4 weeks post-surgery, five and seven rabbits were killed, respectively, to harvest the soft tissues around the implant as well as the hard tissue for histological analysis. The bone cross-sectional view, X-ray, and micro-computed tomography (μCT) were performed. RESULTS The surgical sites in each animal were evaluated individually at both time points. No evident signs of infections were found in the CMC-Zn2+ group, while a high rate of infection was observed in the uncoated group where minor infections were 85.71% ( n = 12) and major infections 14.29% ( n = 12). The radiography, μCT, and histological analysis showed no evident signs of infection in both groups at 2 weeks post-surgery. However, at 4 weeks, signs of infection were found in all the animals in the uncoated group, whereas in the CMC-Zn2+ group, no infections were observed. The difference between the two groups was highly significant ( p = 0.00). CONCLUSIONS Our study showed that CMC-Zn2+-coated implants were effective in preventing pin tract infection.
Collapse
Affiliation(s)
- Vidmi Taolam Martin
- 1 Department of Orthopedic and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- 2 Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Lei Wang
- 1 Department of Orthopedic and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- 2 Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Rong Zeng
- 3 Department of Materials Science and Engineering, Jinan University, Guangzhou, People's Republic of China
| | - DeQiang You
- 3 Department of Materials Science and Engineering, Jinan University, Guangzhou, People's Republic of China
| | - XianRong Zhang
- 1 Department of Orthopedic and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- 2 Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Welera Haissou Elodie
- 1 Department of Orthopedic and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bin Yu
- 1 Department of Orthopedic and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- 2 Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Choy YB. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. PROGRESS IN MATERIALS SCIENCE 2017; 89:392-410. [PMID: 29129946 PMCID: PMC5679315 DOI: 10.1016/j.pmatsci.2017.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plentiful assortment of natural and synthetic materials can be leveraged to accommodate diverse wound types, as well as different stages of the healing process. An ideal material is envisioned to promote tissue repair with minimal inconvenience for patients. Traditional materials employed in the clinical setting often invoke secondary complications, such as infection, pain, foreign body reaction, and chronic inflammation. This review surveys the repertoire of surgical sutures, wound dressings, surgical glues, orthopedic fixation devices and bone fillers with drug eluting capabilities. It highlights the various techniques developed to effectively incorporate drugs into the selected material or blend of materials for both soft and hard tissue repair. The mechanical and chemical attributes of the resultant materials are also discussed, along with their biological outcomes in vitro and/or in vivo. Perspectives and challenges regarding future research endeavors are also delineated for next-generation wound repair materials.
Collapse
Affiliation(s)
- Esther J. Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Se Na Kim
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jae Yeon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Shi C, Pu X, Zheng G, Feng X, Yang X, Zhang B, Zhang Y, Yin Q, Xia H. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility. Sci Rep 2016; 6:37418. [PMID: 27869175 PMCID: PMC5116670 DOI: 10.1038/srep37418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022] Open
Abstract
Implant-associated infections and non-absorbing materials are two important reasons for a second surgical procedure to remove internal fixation devices after an orthopedic internal fixation surgery. The objective of this study was to produce an antibacterial and absorbable fixation screw by adding gentamicin to silk-based materials. The antibacterial activity was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro by plate cultivation and scanning electron microscopy (SEM). We also investigated the properties, such as the mechanical features, swelling properties, biocompatibility and degradation, of gentamicin-loaded silk-based screws (GSS) in vitro. The GSS showed significant bactericidal effects against S. aureus and E. coli. The antibacterial activity remained high even after 4 weeks of immersion in protease solution. In addition, the GSS maintained the remarkable mechanical properties and excellent biocompatibility of pure silk-based screws (PSS). Interestingly, after gentamicin incorporation, the degradation rate and water-absorbing capacity increased and decreased, respectively. These GSS provide both impressive material properties and antibacterial activity and have great potential for use in orthopedic implants to reduce the incidence of second surgeries.
Collapse
Affiliation(s)
- Chenglong Shi
- Southern Medical University, Guangzhou, China.,Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Xiaobing Pu
- Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.,No. 188 hospital of People's Liberation Army, Chaozhou, China
| | - Guan Zheng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinglong Feng
- Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Xuan Yang
- Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Baoliang Zhang
- Southern Medical University, Guangzhou, China.,The Central Hospital of Yong Zhou, Yongzhou, China
| | - Yu Zhang
- Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Qingshui Yin
- Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Hong Xia
- Southern Medical University, Guangzhou, China.,Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| |
Collapse
|
8
|
Li C, Hotz B, Ling S, Guo J, Haas DS, Marelli B, Omenetto F, Lin SJ, Kaplan DL. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials 2016; 110:24-33. [PMID: 27697669 DOI: 10.1016/j.biomaterials.2016.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 11/27/2022]
Abstract
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Blake Hotz
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Dylan S Haas
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Benedetto Marelli
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Fiorenzo Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA.
| |
Collapse
|
9
|
Ahtinen H, Kulkova J, Lindholm L, Eerola E, Hakanen AJ, Moritz N, Söderström M, Saanijoki T, Jalkanen S, Roivainen A, Aro HT. (68)Ga-DOTA-Siglec-9 PET/CT imaging of peri-implant tissue responses and staphylococcal infections. EJNMMI Res 2014; 4:45. [PMID: 25520903 PMCID: PMC4265888 DOI: 10.1186/s13550-014-0045-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/26/2014] [Indexed: 11/16/2022] Open
Abstract
Background Staphylococcus epidermidis (S. epidermidis) has emerged as one of the leading pathogens of biomaterial-related infections. Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial molecule controlling extravasation of leukocytes. Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a leukocyte ligand of VAP-1. We hypothesized that 68Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated Siglec-9 motif containing peptide (68Ga-DOTA-Siglec-9) could detect inflammatory response due to S. epidermidis peri-implant infection by positron emission tomography (PET). Methods Thirty Sprague-Dawley rats were randomized into three groups. A sterile catheter was implanted into the medullary canal of the left tibia. In groups 1 and 2, the implantation was followed by peri-implant injection of S. epidermidis or Staphylococcus aureus (S. aureus) with adjunct injections of aqueous sodium morrhuate. In group 3, sterile saline was injected instead of bacteria and no aqueous sodium morrhuate was used. At 2 weeks after operation, 68Ga-DOTA-Siglec-9 PET coupled with computed tomography (CT) was performed with the measurement of the standardized uptake value (SUV). The presence of the implant-related infection was verified by microbiological analysis, imaging with fluorescence microscope, and histology. The in vivo PET results were verified by ex vivo measurements by gamma counter. Results In group 3, the tibias with implanted sterile catheters showed an increased local uptake of 68Ga-DOTA-Siglec-9 compared with the intact contralateral bones (SUVratio +29.5%). 68Ga-DOTA-Siglec-9 PET detected inflammation induced by S. epidermidis and S. aureus catheter-related bone infections (SUVratio +58.1% and +41.7%, respectively). The tracer uptake was significantly higher in the S. epidermidis group than in group 3 without bacterial inoculation, but the difference between S. epidermidis and S. aureus groups was not statistically significant. The difference between the S. aureus group and group 3 was neither statistically significant. Conclusion PET/CT imaging with novel 68Ga-DOTA-Siglec-9 tracer was able to detect inflammatory tissue response induced by catheter implantation and staphylococcal infections.
Collapse
Affiliation(s)
- Helena Ahtinen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Julia Kulkova
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Laura Lindholm
- Department of Medical Microbiology and Immunology, University of Turku, Turku FI-20521, Finland
| | - Erkki Eerola
- Department of Medical Microbiology and Immunology, University of Turku, Turku FI-20521, Finland
| | - Antti J Hakanen
- Antimicrobial Resistance Unit, National Institute for Health and Welfare, Turku FI-20521, Finland
| | - Niko Moritz
- Turku Clinical Biomaterials Centre, Institute of Dentistry, University of Turku, Turku FI-20521, Finland
| | - Mirva Söderström
- Department of Pathology, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Tiina Saanijoki
- Turku PET Centre, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Sirpa Jalkanen
- Department of Medical Microbiology and Immunology, University of Turku, Turku FI-20521, Finland ; MediCity Research Laboratory, University of Turku, Turku FI-20521, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku FI-20521, Finland ; Turku Center for Disease Modeling, University of Turku, Turku FI-20521, Finland
| | - Hannu T Aro
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| |
Collapse
|
10
|
Wu G, Wu W, Zheng Q, Li J, Zhou J, Hu Z. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro. Biomed Eng Online 2014; 13:97. [PMID: 25038793 PMCID: PMC4112644 DOI: 10.1186/1475-925x-13-97] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic.
Collapse
Affiliation(s)
| | | | - Qixin Zheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science And Technology, Wuhan 430022, People's Republic of China.
| | | | | | | |
Collapse
|
11
|
Odekerken JCE, Brans BT, Welting TJM, Walenkamp GHIM. (18)F-FDG microPET imaging differentiates between septic and aseptic wound healing after orthopedic implant placement: a longitudinal study of an implant osteomyelitis in the rabbit tibia. Acta Orthop 2014; 85:305-13. [PMID: 24673540 PMCID: PMC4062800 DOI: 10.3109/17453674.2014.900894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE (18)F-FDG PET is a widely used tool for molecular imaging of oncological, cardiovascular, and neurological disorders. We evaluated (18)F-FDG microPET as an implant osteomyelitis imaging tool using a Staphylococcus aureus-induced peroperative implant infection in rabbits. METHODS Intramedullary titanium nails were implanted in contaminated and uncontaminated (control) proximal right tibiae of rabbits. Tibiae were quantitatively assessed with microPET for (18)F-FDG uptake before and sequentially at 1, 3, and 6 weeks after surgery. Tracer uptake was assessed in soft tissue and bone in both treatment groups with an additional comparison between the operated and unoperated limb. MicroPET analysis was combined with radiographic assessment and complementary histology of the tibiae. RESULTS At the first postoperative week, the (18)F-FDG uptake in the contaminated implant group was significantly higher than the preoperative measurement, without a significant difference between the contaminated and uncontaminated tibiae. From the third postoperative week onward, (18)F-FDG uptake allowed discrimination between osteomyelitis and postoperative aseptic bone healing, as well as quantification of the infection at distinct locations around the implant. INTERPRETATION (18)F-FDG-based microPET imaging allows differentiation between deep infection and undisturbed wound healing after implantation of a titanium intramedullary nail in this rabbit model. Furthermore, our results indicate that (18)F-FDG PET may provide a tool in human clinical diagnostics and for the evaluation of antimicrobial strategies in animal models of orthopedic implant infection.
Collapse
Affiliation(s)
- Jim C E Odekerken
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care
| | - Boudewijn T Brans
- Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Tim J M Welting
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care
| | - Geert H I M Walenkamp
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care
| |
Collapse
|
12
|
Ahola N, Veiranto M, Männistö N, Karp M, Rich J, Efimov A, Seppälä J, Kellomäki M. Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis. BIOMATTER 2014; 2:213-25. [PMID: 23507887 PMCID: PMC3568107 DOI: 10.4161/biom.22793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The objective in this study was to develop an osteoconductive, biodegradable and rifampicin releasing bone filling composite material for the treatment of osteomyelitis, a bacterial infection of bone that is very difficult and expensive to treat. The composite material will be used together with a ciprofloxacin releasing composite, because of the rapid development of resistant bacteria when rifampicin is used alone. Three composites were manufactured by twin-screw extrusion. The polymer matrix for the composites was poly(L-lactide-co-ε-caprolactone) 70/30 and all the composites contained 8 wt% (weight percent) of rifampicin antibiotic. The β-TCP contents of the composites were 0 wt%, 50 wt% and 60 wt%. The composites were sterilized by gamma irradiation before in vitro degradation and drug release tests. The hydrolytical degradation of the studied composites proceeded quickly and the molecular weight of the polymer component of the composites decreased rapidly. Rifampicin release occurred in four phases in which the high β-TCP content of the samples, polymer degradation and mass loss all played a role in determining the phases. The ceramic component was seen to have a positive effect on the drug release. The composite with 50 wt% of β-TCP showed the most promising rifampicin release profile and it also showed activity against a common osteomyelitis causing bacteria Pseudomonas aeruginosa. A clear inhibition zone was formed in 16 h incubation. Overall, the tested materials showed great potential to be developed into a bone filler material for the treatment of osteomyelitis or other bone related infections in combination with the ciprofloxacin releasing materials.
Collapse
Affiliation(s)
- Niina Ahola
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Perrone GS, Leisk GG, Lo TJ, Moreau JE, Haas DS, Papenburg BJ, Golden EB, Partlow BP, Fox SE, Ibrahim AMS, Lin SJ, Kaplan DL. The use of silk-based devices for fracture fixation. Nat Commun 2014; 5:3385. [PMID: 24594992 DOI: 10.1038/ncomms4385] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/05/2014] [Indexed: 12/21/2022] Open
Abstract
Metallic fixation systems are currently the gold standard for fracture fixation but have problems including stress shielding, palpability and temperature sensitivity. Recently, resorbable systems have gained interest because they avoid removal and may improve bone remodelling due to the lack of stress shielding. However, their use is limited to paediatric craniofacial procedures mainly due to the laborious implantation requirements. Here we prepare and characterize a new family of resorbable screws prepared from silk fibroin for craniofacial fracture repair. In vivo assessment in rat femurs shows the screws to be self-tapping, remain fixed in the bone for 4 and 8 weeks, exhibit biocompatibility and promote bone remodelling. The silk-based devices compare favourably with current poly-lactic-co-glycolic acid fixation systems, however, silk-based devices offer numerous advantages including ease of implantation, conformal fit to the repair site, sterilization by autoclaving and minimal inflammatory response.
Collapse
Affiliation(s)
- Gabriel S Perrone
- 1] Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA [2] Department of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Gary G Leisk
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Tim J Lo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Jodie E Moreau
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Dylan S Haas
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Bernke J Papenburg
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Ethan B Golden
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Sharon E Fox
- Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Ahmed M S Ibrahim
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
14
|
Predictors of poor outcomes following deep infection after internal fixation of ankle fractures. Injury 2013; 44:1002-6. [PMID: 23561581 DOI: 10.1016/j.injury.2013.02.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/22/2012] [Accepted: 02/25/2013] [Indexed: 02/02/2023]
Abstract
The development of deep infection following operative treatment of ankle fractures can have catastrophic consequences. The aim of this study was to identify factors predisposing to treatment failure of an infected ankle fracture. Out of 1923 consecutive ankle fracture operations we identified 97 patients with deep infection necessitating at least one surgical debridement. The outcome measure was a clinical failure or success of the treatment. Various parameters considered to predict clinical outcome were evaluated. Treatment failure occurred in 27% of patients with deep infection necessitating surgical debridement. The mean age of these patients was 54 years and the mean follow-up time was 22 months. The variables that were independently associated with an increased risk of treatment failure included smoking, postoperative malreduction, hardware removal from an ununited fracture and the need for two or more additional debridements. Other significant risk factors included diabetes, alcohol abuse, high-energy injury, Danis-Weber type C fracture, multibacterial infection and ununited fracture at debridement. Our study showed that smoking, postoperative malreduction and hardware removal prior to fracture union were the most important factors predisposing to a permanent complication following an ankle fracture infection. We recommend that hardware be removed only after fracture union has been confirmed.
Collapse
|
15
|
Makarov C, Berdicevsky I, Raz-Pasteur A, Gotman I. In vitro antimicrobial activity of vancomycin-eluting bioresorbable β-TCP-polylactic acid nanocomposite material for load-bearing bone repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:679-687. [PMID: 23224936 DOI: 10.1007/s10856-012-4832-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Release of antimicrobial agents from bone healing devices can dramatically reduce the risk of implant-associated infection. Here we report the fabrication and antimicrobial activity of a multifunctional load-bearing bioresorbable material that can provide mechanical support to the healing bone all while slowly releasing an antibiotic drug. Dense beta-tricalcium phosphate (β-TCP)-40 vol% polylactic acid (PLA) nanocomposite containing 1 wt% vancomycin (VH) was high pressure consolidated at 2.5 GPa, at room temperature, or at 120 °C. Over the course of 5 weeks in TRIS solution, the β-TCP-PLA-VH nanocomposite released approximately 90 % of its drug load. Specimens consolidated at 120 °C had the highest initial mechanical properties and maintained 85 % of their compressive strength and 30 % of their bending strength after 5 weeks release. In vitro growth inhibition study showed significant antimicrobial efficacy of VH-impregnated β-TCP-PLA against methicillin-resistant Staphylococcus aureus when exposed to both high (2 × 10(5) CFU/mL) and very high (1 × 10(8) CFU/mL) bacterial concentrations. After 1 week, total eradication of the microorganisms was achieved. The results suggest that the developed high-strength antibiotic-eluting β-TCP-PLA nanocomposite can be a promising material for orthopedic surgical devices.
Collapse
Affiliation(s)
- C Makarov
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
16
|
Ahola N, Männistö N, Veiranto M, Karp M, Rich J, Efimov A, Seppälä J, Kellomäki M. An in vitro study of composites of poly(L-lactide-co-ε-caprolactone), β-tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitis. BIOMATTER 2013; 3:23162. [PMID: 23507926 PMCID: PMC3749801 DOI: 10.4161/biom.23162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteomyelitis is a bacterial disease that can become chronic, and treatment often includes a surgical operation to remove infected bone. The aim of this study was to develop and investigate in vitro bone filling composite materials that release ciprofloxacin to kill any remaining bacteria and contain bioceramic to help the bone to heal. Three composites of poly(L-lactide-co-ε-caprolactone), β-tricalcium phosphate and ciprofloxacin were compounded using twin-screw extrusion and sterilized by gamma irradiation. Drug release and degradation of the composites were investigated in vitro for 52 weeks. The composite with 50 wt% of β-TCP had the most promising ciprofloxacin release profile. The ceramic component accelerated the drug release that occurred in three phases obeying first-order kinetics. Inhibition zone testing using bioluminescence showed that the released ciprofloxacin had effect in eradicating a common osteomyelitis causing bacteria Pseudomonas aeruginosa. During the in vitro degradation test series, molar weight of the polymer matrix of the composites decreased rapidly. Additionally, 1H-NMR analysis showed that the polymer had blocky structure and the comonomer ratio changed during hydrolysis. The tested composites showed great potential to be developed into bone filler materials for the treatment of osteomyelitis or other bone related infections.
Collapse
Affiliation(s)
- Niina Ahola
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland; BioMediTech; Tampere, Finland
| | - Noora Männistö
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland
| | - Minna Veiranto
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland; Bioretec Ltd.; Tampere, Finland
| | - Matti Karp
- Department of Chemistry and Bioengineering Tampere; University of Technology; Tampere, Finland
| | - Jaana Rich
- Department of Biotechnology and Chemical Technology; School of Chemical Technology; Aalto University; Espoo, Finland
| | - Alexander Efimov
- Department of Chemistry and Bioengineering Tampere; University of Technology; Tampere, Finland
| | - Jukka Seppälä
- Department of Biotechnology and Chemical Technology; School of Chemical Technology; Aalto University; Espoo, Finland
| | - Minna Kellomäki
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland; BioMediTech; Tampere, Finland
| |
Collapse
|
17
|
Abstract
Bacteria have been found to grow predominantly in biofilms. The initial stage includes the attachment of bacteria to the substratum. Bacterial growth and division then leads to the colonization of the surrounding area and the formation of the biofilm. The environment in a biofilm is not homogeneous; the bacteria in a multispecies biofilm are not randomly distributed, but rather are organized to best meet their needs. Although there is an initial understanding on the mechanisms of biofilm-associated antimicrobial resistance, this topic is still under investigation. A variety of approaches are being explored to overcome biofilm-associated antimicrobial resistance. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
Collapse
Affiliation(s)
- Aristides B Zoubos
- 1st Orthopaedic Department, University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | | | | |
Collapse
|
18
|
Puga AM, Rey-Rico A, Magariños B, Alvarez-Lorenzo C, Concheiro A. Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomater 2012; 8:1507-18. [PMID: 22251935 DOI: 10.1016/j.actbio.2011.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 11/29/2022]
Abstract
It has been suggested that prevention and treatment of osteomyelitis could be achieved through local drug delivery using implantable devices, which provide therapeutic levels at the infection site with minimum side-effects. Physical blends of polycaprolactone (PCL) and poloxamine (Tetronic®) were prepared by applying a solvent-free hot melting approach to obtain cytocompatible implants with a tunable bioerosion rate, ciprofloxacin release profile and osteoconductive features. Differential scanning calorimetry and X-ray analysis indicate that the hydrophilic poloxamine varieties T908, T1107, and T1307 are miscible with PCL, while the hydrophobic block copolymer T1301 is immiscible. Incorporation of the block copolymer at weight ratios ranging from 25 to 75 wt.% led to matrices with viscoelastic parameters in the range of those of fresh cortical bone. Once immersed in buffer the matrices underwent a similar weight loss in the first week to the content of poloxamine, followed by a slower erosion rate due to PCL. The initial rapid erosion and the increase in porosity partially explain the observed burst of ciprofloxacin release, which is more intense in the PCL:T1301 formulation due to drug/T1301 repulsion due to polarity. The matrices sustained ciprofloxacin release for several months (<50% released after 3 months) and showed in vitro efficacy against Staphylococcus aureus, eradicating the bacteria in less than 48 h. PCL:poloxamine was cytocompatible with osteoblasts and the matrices prepared with low proportions of T908 were also compatible with mesenchymal stem cell differentiation to osteoblasts. The influence of the nature and proportion of temperature-responsive poloxamine on the performance of PCL implantable systems was determined.
Collapse
Affiliation(s)
- Ana M Puga
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
19
|
Assessing the character of the rhBMP-2- and vancomycin-loaded calcium sulphate composites in vitro and in vivo. Arch Orthop Trauma Surg 2011; 131:991-1001. [PMID: 21318424 DOI: 10.1007/s00402-011-1269-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Indexed: 02/09/2023]
Abstract
BACKGROUND The treatment of contaminated and infected bone defects remains an intractable problem and the ideal approach is to control infection and repair the bone defect at the same time. Thus, developing an osteoconductive bone graft composite with antibiotic and growth factor release capabilities as well as osteogenesis-matched degradation properties is necessary. A new calcium sulphate composite consisting of vancomycin and rhBMP-2 was developed, and the present study assessed its efficiency in vitro and in a rabbit tibial defect model. METHODS Firstly, we detected the bioactivity of rhBMP-2 released from the composites by ALP assay in vitro. Then, the released vancomycin in bone tissue within 1 cm from implanted site was detected by HLPC at 1, 3, 5, 7, 14, 21 and 28 days after implantation. The rhBMP-2 concentration of tissues around the defects was also detected by ELISA. Histomorphometry and histomorphometrical analysis at 5, 14 and 28 days post-implantation was done for assessing its osteoinductivity for bone defects. RESULTS The results showed rhBMP-2 was still active in vitro at 29 days. In vivo, the composite released an initial bolus of vancomycin and rhBMP-2 to the bone followed by gradual release for more than 14 and 21 days, respectively. The histomorphometry indicated that the composite significantly augmented new bone formation in the defect compared to the control. CONCLUSIONS This composite may be a potential therapeutic agent for contaminated or infected bone defects due to its concomitant osteoinductive and antibiotic properties.
Collapse
|
20
|
|
21
|
Newby PJ, El-Gendy R, Kirkham J, Yang XB, Thompson ID, Boccaccini AR. Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:557-569. [PMID: 21293911 DOI: 10.1007/s10856-011-4240-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
There is increasing interest in developing scaffolds with therapeutic and antibacterial potential for bone tissue engineering. Silver is a proven antibacterial agent which bacteria such as MRSA have little or no defense against. Using an ion exchange method, silver ions have been introduced into 45S5 Bioglass(®) based scaffolds that were fabricated using the foam replication technique. This technique allows the introduction of Ag(+) ions onto the surface of the scaffold without compromising the scaffold bioactivity and other physical properties such as porosity. Controlling the amount of Ag(+) ions introduced onto the surface of the scaffold was achieved by tailoring the ion exchange parameters to fabricate samples with repeatable and predictable Ag(+) ion release behavior. In vitro studies in simulated body fluid were carried out to ensure that the scaffolds maintained their bioactivity after the introduction of Ag(+) ions. It was also shown that the addition of low concentrations (2000:1 w/w) of silver ions supported the attachment and viability of human periodontal ligament stromal cells on the 3D scaffolds. This work has thus confirmed ion exchange as an effective technique to introduce Ag(+) ions into 45S5 Bioglass(®) scaffolds without compromising the basic properties of 45S5 Bioglass(®) which are required for applications in bone tissue engineering.
Collapse
Affiliation(s)
- P J Newby
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Lafferty PM, Anavian J, Will RE, Cole PA. Operative treatment of chest wall injuries: indications, technique, and outcomes. J Bone Joint Surg Am 2011; 93:97-110. [PMID: 21209274 DOI: 10.2106/jbjs.i.00696] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most injuries to the chest wall with residual deformity do not result in long-term respiratory dysfunction unless they are associated with pulmonary contusion. Indications for operative fixation include flail chest, reduction of pain and disability, a chest wall deformity or defect, symptomatic nonunion, thoracotomy for other indications, and open fractures. Operative indications for chest wall injuries are rare.
Collapse
Affiliation(s)
- Paul M Lafferty
- University of Minnesota-Regions Hospital, St. Paul, Minnesota 55101, USA
| | | | | | | |
Collapse
|
23
|
Luo SH, Xiao W, Wei XJ, Jia WT, Zhang CQ, Huang WH, Jin DX, Rahaman MN, Day DE. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass. J Biomed Mater Res B Appl Biomater 2010; 95:441-8. [DOI: 10.1002/jbm.b.31735] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
van Alst M, Eenink M, Kruft MA, van Tuil R. ABC’s of bioabsorption: application of lactide based polymers in fully resorbable cardiovascular stents. EUROINTERVENTION 2009; 5 Suppl F:F23-7. [DOI: 10.4244/eijv5ifa4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
|
26
|
Abstract
Rib fracture repair has been performed at selected centers around the world for more than 50 years; however, the operative indications have not been established and are considered controversial. The outcome of a strictly nonoperative approach may not be optimal. Potential indications for rib fracture repair include flail chest, painful, movable rib fractures refractory to conventional pain management, chest wall deformity/defect, rib fracture nonunion, and during thoracotomy for other traumatic indication. Rib fracture repair is technically challenging secondary to the human rib's relatively thin cortex and its tendency to fracture obliquely. Nonetheless, several effective repair systems have been developed. Future directions for progress on this important surgical problem include the development of minimally invasive techniques and the conduct of multicenter, randomized trials.
Collapse
|
27
|
Chen WH, Jiang LS, Dai LY. A novel canine model of acute pyogenic spondylodiscitis. Neurosurg Rev 2009; 32:485-90. [PMID: 19603207 DOI: 10.1007/s10143-009-0209-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 01/18/2009] [Accepted: 04/14/2009] [Indexed: 11/29/2022]
Abstract
New, appropriate in vivo animal models are needed for the study of the pathogenesis of spinal infections and the development of novel anti-infection strategies. The purpose of this study was to develop a canine model of acute pyogenic spondylodiscitis which can best mimic the human spinal infection process, characterized by separately inoculating bacterial suspension into the lumbar intervertebral spaces of a single animal. A total of 14 dogs were used in this study. An inoculation containing Staphylococcus aureus and sodium morrhuate was injected into the intervertebral spaces. Two pilot studies were carried out to determine the most appropriate concentration of the bacterium inoculum. Before the inoculation, the intervertebral disks were partially removed and the end plates of the adjacent two vertebrae were deliberately curetted out to make space for the inoculum and to more thoroughly expose the neighboring vertebrae to the bacterial inoculum. The dogs were euthanized at 14 days postimplantation. The bacterial loads of the infected tissues were assayed. Spondylodiscitis of the lumbar spinal column was consistently produced in 90% (nine out of ten) of the sites challenged with 10(2) colony-forming units (CFU) of S. aureus. Liver biopsy and blood culture did not show signs of systematic infections at 14 days postsurgery. Two out of four animals implanted with the suspension at a concentration higher than 10(3) CFUs were dead within 3 days postimplantation. The results indicate that this new canine model of acute pyogenic spondylodiscitis could be used to test the efficacy of different anti-infection strategies.
Collapse
Affiliation(s)
- Wei-Hua Chen
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | | | | |
Collapse
|
28
|
Pull-Out Strength of Multifunctional Bioabsorbable Ciprofloxacin-Releasing Polylactide-Polyglycolide 80/20 Tacks. J Craniofac Surg 2009; 20:58-61. [DOI: 10.1097/scs.0b013e318190df48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Controlling systematic perioperative anaerobic contamination during sinus-lift procedures by using metronidazole: an innovative approach. IMPLANT DENT 2008; 17:257-70. [PMID: 18784526 DOI: 10.1097/id.0b013e318181349a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Analysis of tomodensitometric controls following sinus grafts clearly demonstrates a quite systematic lack of homogeneity. Sinus contamination by anaerobic bacteria seems almost unavoidable during bone graft surgery, and this problem may jeopardize the healing process. The aim of this study was to characterize in a systematic way the nonhomogeneities observed at 1, 2, or 3 months postsurgery within allogenous sinus grafts, and to assess the possible influence of a 0.5% sterile solution of metronidazole incorporated in the sinus bone graft. MATERIALS This clinical study was conducted on 72 patients treated with single or bilateral sinus-lifts: 94 sinus elevations performed with freeze-dried bone allograft (Phoenix, TBF, Mions, France), with (test group) or without (control group) metronidazole. In the test group, each bone graft was hydrated with 2 mL of a 0.5% metronidazole solution, i.e., only 10 mg of metronidazole. All the patients went through a first presurgical computerized tomography (CT)-scan followed by a second scan performed at 1, 2, or 3 months postsurgery (which was used as the preimplant reference scan). For 11 patients, 2 postsurgical CT-scans were performed respectively at 10 days and 2 months. Using an arbitrary gray scale (Arbitrary Densitometric Unit) which functions according to the Hounsfield unit principle, the degree of radiographic homogeneity of the grafts was established. Density scattering provides some information on the homogeneity or nonhomogeneity of the bone graft. RESULTS The 12 grafts performed without metronidazole show significant nonhomogeneities at 1, 2, or 3 months. Moreover, when a CT-scan is performed during the first postoperative days (at 10 days), the presence of air bubbles in the graft is confirmed. The tomodensitometric aspects of all grafts treated with metronidazole in this series are absolutely identical: they show a high degree of homogeneity. Sixty-three cases (76.8%) are homogeneous, and 19 cases (23.2%) are significantly homogeneous. The time at which the control scan is performed (10 days, 1, 2, or 3 months) does not seem to influence significantly the degree of homogeneity assessed. In the control group, some inflammatory events associated with facial oedema were observed in 25% of the cases. In the test group, no such event was recorded for the 82 sinus-lifts treated with metronidazole. CONCLUSION A possible correlation may exist between the occurrence of non homogeneities within the bone grafts and the anaerobic bacterial contamination. The local use of a very small quantity of metronidazole (equivalent to only 1/20 of a common 200 mg oral tablet) could provide more security when performing sinus-lift procedures and an improved quality of the graft. This protocol should not be considered as an antibiotherapy, but only as way to limit the initial contamination of bone graft.
Collapse
|
30
|
Al-Ahmad A, Wiedmann-Al-Ahmad M, Carvalho C, Lang M, Follo M, Braun G, Wittmer A, Mülhaupt R, Hellwig E. Bacterial andCandida albicansadhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials. J Biomed Mater Res A 2008; 87:933-43. [DOI: 10.1002/jbm.a.31832] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Eskandari MM, Ozturk OG, Eskandari HG, Balli E, Yilmaz C. Cyanoacrylate adhesive provides efficient local drug delivery. Clin Orthop Relat Res 2006; 451:242-50. [PMID: 16760809 DOI: 10.1097/01.blo.0000224055.24743.c8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biodegradable drug delivery systems have advanced treatment of a wide spectrum of musculoskeletal problems. However, their lack of availability and cost can restrict use. To find an easily available and inexpensive biodegradable implant, we tested a widely used tissue adhesive, n-butyl-2-cyanoacrylate, as a drug-trapping material. We tested vancomycin with commercially available absorbable gelatin-sponge pieces as the scaffold. We evaluated the in vitro and in vivo drug release profiles and in vivo inflammatory response. A mouse muscle pouch model was used for in vivo evaluations. The released vancomycin level was measured by fluorescence polarization immunoassay technique, and a leukocyte count-based grading system was used to evaluate inflammatory response. Our findings suggest the proposed implant provides effective drug release for as much as 42 days in vitro and 14 days in vivo. The presence of n-butyl-2-cyanoacrylate led to a local inflammatory response which decreased after 3 weeks in the group with less adhesive. These results showed that n-butyl-2-cyanoacrylate could efficiently trap and slowly release a drug when used in the structure of a biodegradable local drug delivery device.
Collapse
|
32
|
Orhan Z, Cevher E, Mülazimoglu L, Gürcan D, Alper M, Araman A, Ozsoy Y. The preparation of ciprofloxacin hydrochloride-loaded chitosan and pectin microspheres: their evaluation in an animal osteomyelitis model. ACTA ACUST UNITED AC 2006; 88:270-5. [PMID: 16434537 DOI: 10.1302/0301-620x.88b2.16328] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate carriers were selected by in vitro testing. A rat methicillin-resistant Staphylococcus aureus osteomyelitis model was used to evaluate the effects of the loaded microspheres. The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation.Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.
Collapse
Affiliation(s)
- Z Orhan
- Department of Orthopaedics, Abant Izzet Baysal University, Düzce, Turkey.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Surfaces of internal fracture fixation implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue or osseo integration. Unfortunately, this feature may also encourage bacterial adhesion. About half of the two million cases of nosocomial infections per year in the US are associated with indwelling devices. In the UK, implant-associated infections are estimated to cost pound 7-11 million per year, and with the rise in antibiotic-resistant bacteria, are an important issue. Soft-tissue infections and osteomyelitis are serious complications associated with implants, particularly open fractures, external fixation devices, and intramedullary nailing. Consequences of implant-associated infections include prolonged hospitalization with systemic antibiotic therapy, several revision procedures, possible amputation, and even death. This review discusses the issue of implant-associated infections and some of the methods used to prevent bacterial adhesion to osteosynthesis implants.
Collapse
|
34
|
Hochhold J, Yang H, Zhuang H, Alavi A. Application of 18F-Fluorodeoxyglucose and PET in Evaluation of the Diabetic Foot. PET Clin 2006; 1:123-30. [DOI: 10.1016/j.cpet.2006.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Mäkinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Törmälä P, Aro HT. In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother 2005; 56:1063-8. [PMID: 16234335 DOI: 10.1093/jac/dki366] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Impregnation of antimicrobial agents within biodegradable carriers with osteoconductive properties could provide the means for one-stage surgical treatment of osteomyelitis. In this study, the in vitro and in vivo antibiotic release from this type of bone defect filler was characterized. METHODS Cylindrical pellets (2.5 x 1.5 mm) were manufactured from bioabsorbable poly(L-lactide-co-glycolide) (PLGA) matrix, ciprofloxacin [8.3 +/- 0.1% (w/w)] and osteoconductive bioactive glass microspheres (90-125 microm) [27 +/- 2% (w/w)]. In vitro studies were carried out to delineate the release profile of the antibiotic. The antimicrobial activity of the release antibiotic was verified with MIC testing. In a time-sequence study in the rabbit, pellets were surgically implanted in the proximal tibia and the antibiotic concentrations achieved in bone were measured at 1, 2, 3, 4, 5 and 6 months. RESULTS In vitro elution studies showed sustained release of ciprofloxacin at a therapeutic level (>2 microg/mL) over a time period of 4 months. The released ciprofloxacin had maintained its antimicrobial capacity against five standard ATCC strains. In vivo, the delivery system produced high local bone concentrations (247.9 +/- 91.0 mug/g of bone) for a time period of 3 months with no significant systemic exposure. Histomorphometry and micro-CT imaging confirmed new bone formation around the pellets within 3 months as a sign of an independent osteoconductive property of the composite. CONCLUSIONS The tested composite seems to be a promising option for local therapy of surgically treated bone infections. The main advantages are the antibiotic release for a definite time period with therapeutic concentrations, which may minimize slow residual release at suboptimal concentrations.
Collapse
Affiliation(s)
- Tatu J Mäkinen
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, University of Turku, Medisiina B4, Kiinamyllynkatu 10, 20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|