1
|
Jin J, Li Q, Zhang Y, Ji P, Wang X, Zhang Y, Yuan Z, Jiang J, Tian G, Cai M, Feng P, Wu Y, Wang P, Liu W. METTL9 mediated N1-Histidine methylation of SLC39A7 confers ferroptosis resistance and inhibits adipogenic differentiation in mesenchymal stem cells. Mol Med 2025; 31:206. [PMID: 40414869 DOI: 10.1186/s10020-025-01271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Osteoporosis is a prevalent systemic metabolic disease, and an imbalance in the adipogenic and osteogenic differentiation of mesenchymal stem cells (MSCs) plays a crucial role in its pathogenesis. Thus, elucidating the mechanisms that regulate MSC lineage allocation is urgently needed. METTL9 was recently characterized as a novel N1-histidine methyltransferase that performs a wide range of functions. however, the role of METTL9 in the imbalance of MSC differentiation in osteoporosis remains unclear. In this study, we found that METTL9 expression was downregulated in osteoporosis, and further adipogenic functional experiments revealed that METTL9 negatively regulated the adipogenic differentiation of MSCs both in vitro and in vivo. Mechanistically, METTL9 mediated methylation of SLC39A7 at the His45 and His49 residues suppressed ferroptosis through the endoplasmic reticulum (ER) stress regulatory protein kinase R-like endoplasmic reticulum kinase (PERK)/ATF4 signaling pathway and the downstream protein SLC7A11. Moreover, SLC7A11 transported cystine for intracellular glutathione synthesis, eliminating intracellular reactive oxygen species (ROS) and inhibiting MSC adipogenic differentiation. Additionally, METTL9 overexpression significantly alleviated bone loss in ovariectomy (OVX) model mice. In summary, our results suggest that the METTL9/SLC39A7 axis may be a promising diagnostic and therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Jiahao Jin
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Xinlang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Yibin Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Zihao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Jianan Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Guangqi Tian
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Mingxi Cai
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Pei Feng
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
| | - Yanfeng Wu
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
| |
Collapse
|
2
|
Wu J, Wang Y, Wang L, Xie W, Wan Q, Wang J, Chen J, Pei X, Zhu Z. A 3D Co-Culture System Inspired by Fracture Healing Cell Interactions for Bone Tissue Engineering. Adv Healthc Mater 2025:e2500534. [PMID: 40394923 DOI: 10.1002/adhm.202500534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Peri-bone fibroblasts play a crucial role in regulating bone regeneration during early fracture healing. Inspired by the synergy between osteoblasts and fibroblasts at fracture sites, a biomimetic three-dimensional (3D) indirect co-culture system is developed, comprising a 3D scaffold and co-cultured cells. To mimic cellular interactions in the fracture healing zone, the scaffold features an inner-outer ring structure with communication channels that support indirect cell co-culture. This setup provides fibroblasts and osteoblasts with a 3D culture environment resembling the in vivo extracellular matrix, enhancing intercellular signaling while minimizing risks of direct contact. Mechanically tunable bioinks are formulated by incorporating hyaluronic acid methacrylate (HAMA) hydrogel into gelatin methacryloyl (GelMA) hydrogel to construct the scaffold. The optimal co-culture ratio is established in vitro, where fibroblasts are found to regulate the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) via zinc ion transport mechanisms. In vivo validations are conducted, including ectopic bone formation in nude mice and bone regeneration in rat cranial defect and tooth extraction socket models. This 3D indirect co-culture system enhances osteogenesis by promoting functional fibroblast-osteoblast interactions, offering a novel platform for co-culture studies and a promising strategy for clinical bone regeneration applications.
Collapse
Affiliation(s)
- Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuxuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenjia Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Wang X, Zhang M, Ma J, Tie Y, Wang S. Biochemical Markers of Zinc Nutrition. Biol Trace Elem Res 2024; 202:5328-5338. [PMID: 38319550 DOI: 10.1007/s12011-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Zinc is an important trace element involved in the biochemical and physiological functions of the organism and is essential in the human body. It has been reported that 17.3% of people around the world are at risk of many diseases due to zinc deficiency, which has already affected people's healthy lives. Currently, mild zinc deficiency is difficult to diagnose early due to the lack of typical clinical manifestations, so finding zinc biomarkers is crucial for people's health. The present article reviews the main representative zinc biomarkers, such as body fluid zinc levels, zinc-dependent proteins, tissue zinc, and zinc-containing enzymes, to provide a reference for actively promoting the study of zinc nutritional status and early clinical diagnosis.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Menghui Zhang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China
| | - Yanqing Tie
- Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China.
| |
Collapse
|
4
|
Tang Y, Guo S, Yu N, Li H. ZIP4: a promising early diagnostic and therapeutic targets for pancreatic cancer. Am J Cancer Res 2024; 14:4652-4664. [PMID: 39417191 PMCID: PMC11477812 DOI: 10.62347/avym3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer is an aggressive and metastatic tumor that lacks effective early detection and treatment methods. There is an urgent need to further understand its underlying molecular mechanisms and identify new biomarkers for early detection. Zinc, a critical trace element and catalytic cofactor, is tightly regulated within cells. ZIP4, a zinc transporter protein significantly overexpressed in human pancreatic cancer, appears to play a pivotal role in tumor development by modulating intracellular zinc concentration. This review highlights the role of ZIP4 in tumorigenesis, including its impact on pancreatic cancer growth, proliferation, migration, and drug resistance. ZIP4 exerts its effects by regulating zinc dependent transcriptional factors like CREB, STAT3, and ZEB1, resulting in upregulation of Cyclin D1, TP53INP1, ITGA3, CD44, ENT1 proteins, and miR-373. Moreover, ZIP4 mediates the miR373-PHLPP2-AKT signaling axis, which increases TGF-β expression. Coupled with CREB-activated macrophage catabolism-related genes SDC1 and DNM2, ZIP4 promotes cancer cachexia and supports amino acids to tumor cells under metabolic stress. Furthermore, ZIP4 facilitates bone resorption by osteoclasts via the RANKL-activated NF-κB pathway. A deeper understanding of these mechanisms may unveil potential targets for early diagnosis, prognosis assessment, and dietary recommendations for pancreatic cancer. These findings hold clinical significance not only for pancreatic cancer but also for other malignancies exhibiting heightened ZIP4 expression.
Collapse
Affiliation(s)
- Yunpeng Tang
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| | - Sheng Guo
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| | - Nianhui Yu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| | - Hui Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, PR China
| |
Collapse
|
5
|
Abstract
This review provides a concise overview of the cellular and clinical aspects of the role of zinc, an essential micronutrient, in human physiology and discusses zinc-related pathological states. Zinc cannot be stored in significant amounts, so regular dietary intake is essential. ZIP4 and/or ZnT5B transport dietary zinc ions from the duodenum into the enterocyte, ZnT1 transports zinc ions from the enterocyte into the circulation, and ZnT5B (bidirectional zinc transporter) facilitates endogenous zinc secretion into the intestinal lumen. Putative promoters of zinc absorption that increase its bioavailability include amino acids released from protein digestion and citrate, whereas dietary phytates, casein and calcium can reduce zinc bioavailability. In circulation, 70% of zinc is bound to albumin, and the majority in the body is found in skeletal muscle and bone. Zinc excretion is via faeces (predominantly), urine, sweat, menstrual flow and semen. Excessive zinc intake can inhibit the absorption of copper and iron, leading to copper deficiency and anaemia, respectively. Zinc toxicity can adversely affect the lipid profile and immune system, and its treatment depends on the mode of zinc acquisition. Acquired zinc deficiency usually presents later in life alongside risk factors like malabsorption syndromes, but medications like diuretics and angiotensin-receptor blockers can also cause zinc deficiency. Inherited zinc deficiency condition acrodermatitis enteropathica, which occurs due to mutation in the SLC39A4 gene (encoding ZIP4), presents from birth. Treatment involves zinc supplementation via zinc gluconate, zinc sulphate or zinc chloride. Notably, oral zinc supplementation may decrease the absorption of drugs like ciprofloxacin, doxycycline and risedronate.
Collapse
Affiliation(s)
- Lucy I Stiles
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kevin Ferrao
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK.
| |
Collapse
|
6
|
Wu J, Wang C, Zhang S, Zhang L, Hao J, Jia Z, Zheng X, Lv Y, Fu S, Zhang G. Preparation and Properties of GO/ZnO/nHAp Composite Microsphere Bone Regeneration Material. MICROMACHINES 2024; 15:122. [PMID: 38258241 PMCID: PMC10820970 DOI: 10.3390/mi15010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The purpose of this study is to explore the possibility of using graphene-zinc oxide-hydroxyapatite (GO/ZnO/nHAp) composite microspheres as bone regeneration materials by making use of the complementary advantages of nanocomposites, so as to provide reference for the clinical application of preventing and solving bacterial infection after implantation of synthetic materials. Firstly, GO/ZnO composites and hydroxyapatite nanoparticles were synthesized using the hydrothermal method, and then GO/ZnO/nHAp composite microspheres were prepared via high-temperature sintering. The graphene-zinc oxide-calcium phosphate composite microspheres were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), energy dispersion spectroscopy (EDS), water contact angle measurement, degradation and pH determination, and differential thermal analysis (DiamondTG/DTA). The biocompatibility, osteogenic activity, and antibacterial activity of GO/ZnO/nHAp composite microspheres were further studied. The results of the cell experiment and antibacterial experiment showed that 0.5% and 1% GO-ZnO-nHAp composite microspheres not only had good biocompatibility and osteogenic ability but also inhibited Escherichia coli and Staphylococcus aureus by more than 45% and 70%. Therefore, GO/ZnO/nHAp composite microspheres have good physical and chemical properties and show good osteogenic induction and antibacterial activity, and this material has the possibility of being used as a bone regeneration material.
Collapse
Affiliation(s)
- Jiang Wu
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Chunmei Wang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Shuangsheng Zhang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Ling Zhang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Jingshun Hao
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Zijian Jia
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Xiaomei Zheng
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China;
| | - Shuang Fu
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Guoliang Zhang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| |
Collapse
|
7
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Liu Y, Li X, Liu S, Du J, Xu J, Liu Y, Guo L. The changes and potential effects of zinc homeostasis in periodontitis microenvironment. Oral Dis 2023; 29:3063-3077. [PMID: 35996971 DOI: 10.1111/odi.14354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
Zinc is a very important and ubiquitous element, which is present in oral environment, daily diet, oral health products, dental restorative materials, and so on. However, there is a lack of attention to the role of both extracellular or intracellular zinc in the progression of periodontitis and periodontal regeneration. This review summarizes the characteristics of immunological microenvironment and host cells function in several key stages of periodontitis progression, and explores the regulatory effect of zinc during this process. We find multiple evidence indicate that zinc may be involved and play a key role in the stages of immune defense, inflammatory response and bone remodeling. Zinc supplementation in an appropriate dose range or regulation of zinc transport proteins can promote periodontal regeneration by either enhancing immune defense or up-regulating local cells proliferation and differentiation functions. Therefore, zinc homeostasis is essential in periodontal remodeling and regeneration. More attention is suggested to be focused on zinc homeostasis regulation and consider it as a potential strategy in the studies on periodontitis treatment, periodontal-guided tissue regeneration, implant material transformation, and so on.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
10
|
Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:903278. [PMID: 35652090 PMCID: PMC9150698 DOI: 10.3389/fcell.2022.903278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily available and frequently used for bone regeneration in clinics. Osteogenic differentiation of BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and inhibitory effects on osteogenic differentiation of BMSCs. During the physiological condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are downregulated. The opposite effects might occur during bone degenerative disease conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via exosomes participate in the regulatory process of osteogenic differentiation of BMSCs. In this review, we summarize the recent advances in the regulatory role of ncRNAs on osteogenic differentiation of BMSCs during physiological and pathological conditions. We also discuss the prospects of the application of modulation of ncRNAs function in BMSCs to promote bone tissue regeneration in clinics.
Collapse
Affiliation(s)
- Xiaoying Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ming Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhan Shi
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Li H, Li M, Ran X, Cui J, Wei F, Yi G, Chen W, Luo X, Chen Z. The Role of Zinc in Bone Mesenchymal Stem Cell Differentiation. Cell Reprogram 2022; 24:80-94. [PMID: 35172118 DOI: 10.1089/cell.2021.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential trace element for bone growth and bone homeostasis in the human body. Bone mesenchymal stem cells (BMSCs) are multipotent progenitors existing in the bone marrow stroma with the capability of differentiating along multiple lineage pathways. Zinc plays a paramount role in BMSCs, which can be spurred differentiating into osteoblasts, chondrocytes, or adipocytes, and modulates the formation and activity of osteoclasts. The expression of related genes also changed during the differentiation of various cell phenotypes. Based on the important role of zinc in BMSC differentiation, using zinc as a therapeutic approach for bone remodeling will be a promising method. This review explores the role of zinc ion in the differentiation of BMSCs into various cell phenotypes and outlines the existing research on their molecular mechanism.
Collapse
Affiliation(s)
- Huiyun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Muzhe Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xun Ran
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Fu Wei
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xuling Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
12
|
Synthesis and characterization of zinc derivatized 3, 5-dihydroxy 4', 7-dimethoxyflavone and its anti leishmaniasis activity against Leishmania donovani. Biometals 2022; 35:285-301. [PMID: 35141791 DOI: 10.1007/s10534-022-00364-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022]
Abstract
This study reports the synthesis and characterization of zinc derivatized 3,5-dihydroxy 4', 7- dimethoxyflavone (DHDM-Zn) compound for the development of new antileishmanial agents. The interaction studies of DHDM with zinc were carried out by UV spectra and fluorescence spectra analysis. Characterization of the complex was further accomplished by multi-spectroscopic techniques such as FTIR, Raman, HRMS, NMR, FESEM-EDX. The morphological and topographical studies of synthesized DHDM-Zn were carried out using FESEM with EDX. Further, it was demonstrated that DHDM-Zn exhibited an excellent in vitro antagonistic effect against the promastigote form of L. donovani. In addition, the possible mechanisms of promastigote L. donovani cell death, by involvement of derivatized compound in arrest of the cell cycle in the G1 phase and residual cell count reduction were investigated. Promastigote growth kinetics performed in the presence of the derivatized compound revealed a slow growth rate. The combination of growth kinetics and cell cycle analysis, made it possible to interpret and classify the cause of leishmanial cell death accurately. These results support that zinc derivatized complex (DHDM-Zn) might work as a lead compound for designing and developing a new antileishmanial drug.
Collapse
|
13
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
14
|
Meshkini A. A Correlation Between Intracellular Zinc Content and Osteosarcoma. Biol Trace Elem Res 2021; 199:3222-3231. [PMID: 33150482 DOI: 10.1007/s12011-020-02466-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Zinc is a trace element in human body involved in many biological processes. It is critical for cell growth and acts as a cofactor for the structure and function of a wide range of cellular proteins such as enzymes. Mounting evidence has shown the involvement of intracellular zinc in the bone-related biological processes such as bone growth, homeostasis, and regeneration; however, the molecular mechanism(s) whereby zinc impels tumorigenesis in bone remains largely unexplored. In this article, selective outline related to the content of intracellular zinc in osteosarcoma cells was provided, and its correlation with signaling molecules that are activated and consequently guide the cells toward tumorigenesis or osteogenesis was discussed. Based on preclinical and clinical evidence, dysregulation of zinc homeostasis, both at intracellular and tissue level, has the main role in the pathogenesis of osteosarcoma. Based on the intracellular zinc content, this element could have a direct role in the dynamics of bone cell transformation and tumor development and play an indirect role in the modulation of the inflammatory and pro/antitumorigenic responses in immune cells. In this context, zinc transporters and the proteins containing zinc domain are regulated by the availability of zinc, playing a crucial role in bone cell transformation and differentiation. According to recent studies, it seems that intracellular zinc levels could be considered as an early prognosis marker. Besides, identification and targeting of zinc-dependent signaling molecules could tilt the balance of life and death toward the latter in chemoresistant malignant cells and may pave a way for designing of the novel osteosarcoma treatment strategies.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, P. O. Box 9177948974, Iran.
| |
Collapse
|
15
|
Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021; 9:720288. [PMID: 34447755 PMCID: PMC8383321 DOI: 10.3389/fcell.2021.720288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Hsieh PF, Yu CC, Chu PM, Hsieh PL. Long Non-Coding RNA MEG3 in Cellular Stemness. Int J Mol Sci 2021; 22:ijms22105348. [PMID: 34069546 PMCID: PMC8161278 DOI: 10.3390/ijms22105348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate a diverse array of cellular processes at the transcriptional, post-transcriptional, translational, and post-translational levels. Accumulating evidence suggests that lncRNA MEG3 exerts a large repertoire of regulatory functions in cellular stemness. This review focuses on the molecular mechanisms by which lncRNA MEG3 functions as a signal, scaffold, guide, and decoy for multi-lineage differentiation and even cancer progression. The role of MEG3 in various types of stem cells and cancer stem cells is discussed. Here, we provide an overview of the functional versatility of lncRNA MEG3 in modulating pluripotency, differentiation, and cancer stemness.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Department of Urology, E-Da Hospital, Kaohsiung 82445, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Correspondence:
| |
Collapse
|
17
|
Puar P, Niyogi S, Kwong RWM. Regulation of metal homeostasis and zinc transporters in early-life stage zebrafish following sublethal waterborne zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105524. [PMID: 32610223 DOI: 10.1016/j.aquatox.2020.105524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
In the present research, the effects of exposure to a sublethal concentration of zinc (Zn) on metal and ion homeostasis, and the regulation and the localization of various Zn transporters (i.e., the Zrt-Irt Like Protein (ZIP) family of Zn transporters), were investigated in zebrafish (Danio rerio) during early development. Exposure to an elevated level of Zn [4 μM (high) vs. 0.25 μM (control)] from 0 day post-fertilization (dpf) resulted in a significant increase in the whole body content of Zn at 5 dpf. A transient decrease in the whole body calcium (Ca) level was observed in 3 dpf larvae exposed to high Zn. Similarly, whole body nickel (Ni) and copper (Cu) contents were also reduced in 3 dpf larvae exposed to high Zn. Importantly, the magnitude of reduction in whole body Ni and Cu contents following Zn exposure was markedly higher than that in Ca content, suggesting that internal Ni and Cu balance were likely more sensitive to Zn exposure in developing zebrafish. Exposure to high Zn altered the mRNA expression levels of specific zip transporters, with an increase in zip1 (at 3 dpf) and zip8 (at 5 dpf), and a decrease in zip4 (at 5 dpf). The expression levels of most zip transporters tended to decrease from 3 dpf to 5 dpf with the exception of zip4 and zip8. Results from in situ hybridization revealed that several zip transporters exhibited distinct spatial distribution (e.g., zip8 in the intestinal tract, zip14 in the pronephric tubules). Overall, our findings suggested that exposure to sublethal concentrations of Zn disrupts the homeostasis of essential metals during early development and that different ZIP transporters may play unique roles in regulating Zn homeostasis in various organs in developing zebrafish.
Collapse
Affiliation(s)
- Pankaj Puar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
18
|
Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int J Mol Sci 2020; 21:ijms21041236. [PMID: 32059605 PMCID: PMC7072862 DOI: 10.3390/ijms21041236] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient that plays critical roles in numerous physiological processes, including bone homeostasis. The majority of zinc in the human body is stored in bone. Zinc is not only a component of bone but also an essential cofactor of many proteins involved in microstructural stability and bone remodeling. There are two types of membrane zinc transporter proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT) family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular compartments, respectively. Abnormal function of certain zinc transporters is associated with an imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related pathological changes involved in bone diseases. We also present perspectives for further studies on bone homeostasis-regulating zinc transporters.
Collapse
|
19
|
Khader A, Arinzeh TL. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol Bioeng 2019; 117:194-209. [PMID: 31544962 DOI: 10.1002/bit.27173] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1-10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Ateka Khader
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | | |
Collapse
|
20
|
Marofi F, Vahedi G, Solali S, Alivand M, Salarinasab S, Zadi Heydarabad M, Farshdousti Hagh M. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. J Cell Physiol 2018; 234:6230-6243. [PMID: 30246336 DOI: 10.1002/jcp.27352] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Osteoblastic differentiation of mesenchymal stem cells (MSCs) is the principal stage during the restoration and regeneration of bone tissue. Epigenetic modifications such as DNA methylation play a key role in the differentiation process of stem cells. In this study, the methylation status of the promoter region of ZBTB16 and Twist1 genes and their role in controlling osteoblastic differentiation in MSCs was investigated during the osteoblastic differentiation of MSCs. METHODS The MSCs were cultured under standard conditions and differentiated into the osteoblasts. We had three treatment groups including 5-azacytidine (methylation inhibitor), metformin (Twist-inhibitor), and procaine (Wnt/β-catenin inhibitor) and a non-treated group (control). Methylation level of DNA in the promoter regions was monitored by methylation specific-quantitative polymerase chain reaction (PCR). Also, the mRNA levels of key genes in osteoblastic differentiation were measured using real-time PCR. RESULTS ZBTB16 gene expression was upregulated, and promoter methylation was decreased. For Twist1 messenger RNA (mRNA) level decreased and promoter methylation increased during osteoblastic differentiation of MSCs. 5-Azacytidine caused a significant reduction in methylation and increased the mRNA expression of ZBTB16 and Twist1. Metformin repressed the Twist1 expression, and therefore osteoblastic differentiation was increased. On the opposite side, procaine could block the WNT/β-catenin signaling pathway, as a consequence the gene expression of key genes involved in osteoblastic differentiation was declined. CONCLUSION We found that methylation of DNA in the promoter region of ZBTB16 and Twist1 genes might be one of the main mechanisms that controlling the gene expression during osteoblastic differentiation of MSCs. Also, we could find an association between regulation of Twist1 and ZBTB16 genes and osteoblastic differentiation in MSCs by showing the relation between their expression and some key genes involved in osteoblastic differentiation. In addition, we found a connection between the Twist1 expression level and osteoblastic differentiation by using a Twist-inhibitor (metformin).
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Alivand
- Department of Medical genetic, Faculty of Medicine, Tabriz University of medical sciences, Tabriz, Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical science, Tabriz, Iran
| | - Milad Zadi Heydarabad
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
21
|
Baltaci AK, Yuce K, Mogulkoc R. Zinc Metabolism and Metallothioneins. Biol Trace Elem Res 2018; 183:22-31. [PMID: 28812260 DOI: 10.1007/s12011-017-1119-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Among the trace elements, zinc is one of the most used elements in biological systems. Zinc is found in the structure of more than 2700 enzymes, including hydrolases, transferases, oxyreductases, ligases, isomerases, and lyases. Not surprisingly, it is present in almost all body cells. Preserving the stability and integrity of biological membranes and ion channels, zinc is also an intracellular regulator and provides structural support to proteins during molecular interactions. It acts as a structural element in nucleic acids or other gene-regulating proteins. Metallothioneins, the low molecular weight protein family rich in cysteine groups, are involved significantly in numerous physiological and pathological processes including particularly oxidative stress. A critical role of metallothioneins (MT) is to bind zinc with high affinity and to serve as an intracellular zinc reservoir. By releasing free intracellular zinc when needed, MTs mediate the unique physiological roles of zinc. MT expression is induced by zinc elevation, and thus, zinc homeostasis is maintained. That MT mediates the effects of zinc, besides having strong radical scavenging effects, points to the critical part it plays in oxidative stress. The present review aims to give information on metallothioneins, which have critical importance in the metabolism and molecular pathways of zinc.
Collapse
Affiliation(s)
| | - Kemal Yuce
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
22
|
Fu X, Li Y, Huang T, Yu Z, Ma K, Yang M, Liu Q, Pan H, Wang H, Wang J, Guan M. Runx2/Osterix and Zinc Uptake Synergize to Orchestrate Osteogenic Differentiation and Citrate Containing Bone Apatite Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700755. [PMID: 29721422 PMCID: PMC5908346 DOI: 10.1002/advs.201700755] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Indexed: 05/28/2023]
Abstract
Citrate is essential to biomineralization of the bone especially as an integral part of apatite nanocomposite. Citrate precipitate of apatite is hypothesized to be derived from mesenchymal stem/stromal cells (MSCs) upon differentiation into mature osteoblasts. Based on 13C-labeled signals identified by solid-state multinuclear magnetic resonance analysis, boosted mitochondrial activity and carbon-source replenishment of tricarboxylic acid cycle intermediates coordinate to feed forward mitochondrial anabolism and deposition of citrate. Moreover, zinc (Zn2+) is identified playing dual functions: (i) Zn2+ influx is influenced by ZIP1 which is regulated by Runx2 and Osterix to form a zinc-Runx2/Osterix-ZIP1 regulation axis promoting osteogenic differentiation; (ii) Zn2+ enhances citrate accumulation and deposition in bone apatite. Furthermore, age-related bone loss is associated with Zn2+ and citrate homeostasis; whereas, restoration of Zn2+ uptake alleviates age-associated declining osteogenic capacity and amount of citrate deposition. Together, these results indicate that citrate is not only a key metabolic intermediate meeting the emerging energy demand of differentiating MSCs but also participates in extracellular matrix mineralization, providing mechanistic insight into Zn2+ homeostasis and bone formation.
Collapse
Affiliation(s)
- Xuekun Fu
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055GuangdongChina
| | - Yunyan Li
- High Magnetic Field Laboratory Key Laboratory of High Magnetic Field and Ion Beam Physical BiologyChinese Academy of SciencesInstitute of Physical Science and Information TechnologyAnhui UniversityHefei230031AnhuiChina
| | - Tongling Huang
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055GuangdongChina
| | - Zhiwu Yu
- High Magnetic Field Laboratory Key Laboratory of High Magnetic Field and Ion Beam Physical BiologyChinese Academy of SciencesInstitute of Physical Science and Information TechnologyAnhui UniversityHefei230031AnhuiChina
| | - Kun Ma
- High Magnetic Field Laboratory Key Laboratory of High Magnetic Field and Ion Beam Physical BiologyChinese Academy of SciencesInstitute of Physical Science and Information TechnologyAnhui UniversityHefei230031AnhuiChina
| | - Meng Yang
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055GuangdongChina
| | - Qingli Liu
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055GuangdongChina
| | - Haobo Pan
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055GuangdongChina
| | - Huaiyu Wang
- Center for Biomedical Materials and InterfacesInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055GuangdongChina
| | - Junfeng Wang
- High Magnetic Field Laboratory Key Laboratory of High Magnetic Field and Ion Beam Physical BiologyChinese Academy of SciencesInstitute of Physical Science and Information TechnologyAnhui UniversityHefei230031AnhuiChina
| | - Min Guan
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055GuangdongChina
| |
Collapse
|
23
|
Baltaci AK, Yuce K. Zinc Transporter Proteins. Neurochem Res 2018; 43:517-530. [PMID: 29243032 DOI: 10.1007/s11064-017-2454-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023]
Abstract
Zinc, which is involved in the structure of all enzyme classes, is a micro nutrient element and necessary for growth and development. The ability of zinc to function without causing toxic effects is depends on the protection of its homeostasis. Zinc transporter proteins are responsible for keeping zinc at certain concentrations. Based on their predicted membrane topology, Zn transporters are divided into two major families, SLC39s/ZIPs and SLC30s/ZnTs, which transport Zn in opposite directions through cellular and intracellular membranes. ZIPs increases the zinc concentration in the cytosol. For this, the ZIPs carries the zinc from extracellular and intracellular compartments to the cytosol. ZnTs, reduces the concentration of zinc in the cytosol. For this, ZnTs carries the zinc from the cytosol to extracellular and intracellular compartments. After being transported to the cell, 50% of the zinc is found in the cytoplasm, 30-40% in the nucleus, and 10% in the plasma and organelle membranes. The expression of many zinc transporter proteins in the cell is depending on the concentration of zinc and the physiological problems. The aim of this study is to give information about association of zinc transporter proteins with physiological events and health problems.
Collapse
Affiliation(s)
| | - Kemal Yuce
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
24
|
Gao C, Li C, Wang C, Qin Y, Wang Z, Yang F, Liu H, Chang F, Wang J. Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. JOURNAL OF ALLOYS AND COMPOUNDS 2017; 726:1072-1084. [DOI: 10.1016/j.jallcom.2017.08.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
25
|
杨 晓. 细胞内锌稳态调控及其在胰腺癌发生发展过程中的作用. Shijie Huaren Xiaohua Zazhi 2017; 25:1615-1623. [DOI: 10.11569/wcjd.v25.i18.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
锌参与300种以上的细胞生理过程, 包括DNA及蛋白合成、酶的活化以及细胞内信号转导过程. 同时锌也是许多酶类, 如碳酸酐酶、基质金属蛋白酶的关键组分, 而这些酶类与缺氧、血管生成、细胞增殖及肿瘤转移密切相关, 因此, 锌的获取对于恶性肿瘤的生长和进展非常重要. 细胞内锌离子的浓度变化受到ZnT1、ZIP4、金属硫蛋白及金属转录因子1等的调控, 细胞内锌稳态是多种调控机制参与下锌内流、锌外流和保留之间动态平衡的结果. 已有大量研究证实锌稳态调控失衡与胰腺癌的发生和转移有关, 因此, 锌及锌稳态的调控异常在胰腺癌的发生发展中具有重要作用.
Collapse
|
26
|
Magnini D, Montemurro G, Iovene B, Tagliaboschi L, Gerardi RE, Lo Greco E, Bruni T, Fabbrizzi A, Lombardi F, Richeldi L. Idiopathic Pulmonary Fibrosis: Molecular Endotypes of Fibrosis Stratifying Existing and Emerging Therapies. Respiration 2017; 93:379-395. [DOI: 10.1159/000475780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Yu Y, Jin G, Xue Y, Wang D, Liu X, Sun J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater 2017; 49:590-603. [PMID: 27915020 DOI: 10.1016/j.actbio.2016.11.067] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 01/01/2023]
Abstract
In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn2+ and Mg2+ concentrations in rBMSCs by promoting the influx of Zn2+ and Mg2+ and inhibiting the outflow of Zn2+, and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg2+ ions from Zn/Mg-PIII increased Mg2+ influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential application in dental implantation in the future. STATEMENT OF SIGNIFICANCE In order to enhance the rapid osseointegration and long-term survival of dental implants, various works on titanium surface modification have been carried out. However, only improving osteogenic activity of implants is not enough, because angiogenesis and bacteria inhibition are also very important for dental implants. In the present study, a novel dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed, which was found to have superior osteoinductivity, pro-angiogenic effects and inhibitory effects against oral anaerobes. Furthermore, synergistic effects of Zn/Mg ions on osteogenic differentiation of rBMSCs and the possible mechanism were discovered. In addition, rapid osseointegration and sustained biomechanical stability are greatly enhanced by Zn/Mg-PIII implants, which may have the potential application in dental implantation in the future. We believe this paper may be of particular interest to the readers.
Collapse
|
28
|
Ishida S, Kasamatsu A, Endo-Sakamoto Y, Nakashima D, Koide N, Takahara T, Shimizu T, Iyoda M, Shiiba M, Tanzawa H, Uzawa K. Novel mechanism of aberrant ZIP4 expression with zinc supplementation in oral tumorigenesis. Biochem Biophys Res Commun 2016; 483:339-345. [PMID: 28017725 DOI: 10.1016/j.bbrc.2016.12.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
Zrt-Irt-like protein 4 (ZIP4) is critical molecule for proper mammalian development and releasing zinc from vesicular compartments. Recent studies suggested that ZIP4 plays an important role of tumor progression in pancreatic, prostate, and hepatocellular cancers, however, little is known about the detail mechanism of ZIP4 in their cancers. In the present study, we examined the possibility of ZIP4 as a new molecular target for oral squamous cell carcinoma (OSCC). We evaluated ZIP4 expression in OSCC-derived cell lines and primary OSCC samples by quantitative RT-PCR, immunoblotting, and immunohistochemistry (IHC). We also analyzed the clinical correlation between ZIP4 status and clinical behaviors in patients with OSCC. In addition, ZIP4 knockdown cells (shZIP4 cells) and ZnCl2 treatment were used for functional experiments, including cellular proliferation assay, zinc uptake assay, and cell-cycle analysis. ZIP4 mRNA and protein were up-regulated significantly in OSCCs compared with normal counterparts in vitro and in vivo. IHC showed that ZIP4 expression in the primary OSCC was positively correlated with primary tumoral size. The shZIP4 cells showed decrease accumulation of intercellular zinc and decreased cellular growth by cell-cycle arrest at the G1 phase, resulting from up-regulation of cyclin-dependent kinase inhibitors and down-regulation of cyclins and cyclin-dependent kinases. Since cellular growth of OSCC cells after treatment with zinc was significantly greater than control cells, we speculated that intercellular ZnCl2 accumulation is an important factor for cellular growth. Consistent with our hypothesis, not only decreased zinc uptake by ZIP4 knockdown but also chelating agent, N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), showed inhibitory effects of cellular proliferation. Therefore, our data provide evidence for an essential role of ZIP4 and intracellular zinc for tumoral growth in OSCC, suggesting that zinc uptake might be a potential therapeutic targeting event for OSCCs.
Collapse
Affiliation(s)
- Sho Ishida
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nao Koide
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshikazu Takahara
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Manabu Iyoda
- Division of Oral Surgery, Chiba Rosai Hospital, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
29
|
Chen J, Zhang X, Cai H, Chen Z, Wang T, Jia L, Wang J, Wan Q, Pei X. Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: Preparation and in vitro evaluation. Colloids Surf B Biointerfaces 2016; 147:397-407. [DOI: 10.1016/j.colsurfb.2016.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022]
|
30
|
Suzuki T, Katsumata SI, Matsuzaki H, Suzuki K. Dietary zinc supplementation increased TNFα and IL1β-induced RANKL expression, resulting in a decrease in bone mineral density in rats. J Clin Biochem Nutr 2015; 58:48-55. [PMID: 26798197 PMCID: PMC4706095 DOI: 10.3164/jcbn.15-71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of dietary zinc supplementation on bone metabolism in rats. Four-week-old male Wistar rats were fed a 30.0 mg zinc/kg diet (C), a 300.0 mg zinc/kg diet (HZ) or a 3,000.0 mg zinc/kg diet (EZ) for 4 weeks. The zinc content of the femur gradually increased in accordance with the gradual increase in the dietary zinc level. Although the mRNA expression of zinc transporters in bone did not differ between the groups, the mRNA expression of metallothioneins was increased in the HZ and EZ groups compared to the C group. Moreover, the bone mineral density was significantly decreased in the HZ and EZ groups compared to the C group. Furthermore, the mRNA expression of tumor necrosis factor α, Interleukin-1β and osteoclastogenesis-related genes such as receptor for activator of nuclear factor-κB (NF-κB) ligand, tumor necrosis factor receptor-associated factor 6, and nuclear factor of activated T cells cytoplasmic 1 was significantly increased in the HZ and EZ groups compared to the C group. These findings suggested that dietary zinc supplementation reduced bone mineral density through the promotion of bone resorption via an increase in the expression of receptor for activator of NF-κB ligand induced by tumor necrosis factor α and Interleukin-1β.
Collapse
Affiliation(s)
- Takako Suzuki
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shin-Ichi Katsumata
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hiroshi Matsuzaki
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuharu Suzuki
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
31
|
Costello LC, Chellaiah MA, Zou J, Reynolds MA, Franklin RB. In vitro BMP2 stimulation of osteoblast citrate production in concert with mineralized bone nodule formation. ACTA ACUST UNITED AC 2015; 4. [PMID: 26635961 PMCID: PMC4666534 DOI: 10.7243/2050-1218-4-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background That citrate is a major indispensible component of bone in humans and in all osteovertebrates has been known for about seventy-five years. Yet, its role and importance in the structure and function of bone and bone formation have remained unknown. However, recent studies have identified that citrate is a major and essential component of the apatite/collagen structure of bone; and that the biomechanical properties of bone (e.g., stability, strength, resistance to fracture) depend on the appropriate incorporation of citrate in the structure of bone. The osteoblasts have recently been identified as citrate-producing cells that provide the citrate that is incorporated in the apatite/collagen structure during osteogenesis. Little is known regarding the factors and mechanisms involved in the regulation of citrate that is incorporated along with mineralization during the process of bone formation. Because of the importance of BMP2 in the initiation of osteogenesis and the development of the osteoblasts, it is essential to determine its possible implication in the development of the citrate-producing capability of the osteoblasts (i.e., “citration”) during the formation of mineralized bone nodules. Methods The goal of this study was to determine if BMP2 promotes the development of citrate-producing osteoblasts for increased citrate incorporation in the formation of mineralized bone nodules. The study employed MC3T3 mesenchyme stem cell osteogenic differentiation in the presence and absence of BMP2. Results The results showed that BMP2 treatment increased the osteogenic development of mineralized bone nodules. In addition, BMP2 increased osteoblast citrate production and incorporation in the mineralized bone nodule. This was accompanied by increased ZIP1 transporter, which is an essential genetic/metabolic event for citrate-producing cells. Conclusions The results demonstrate, for the first time, that BMP2 facilitates the osteoblast “citration” process in concert with mineralization during bone formation; and provide confirmation of the important role of osteoblasts as specialized citrate-producing cells in the process of bone formation. However, it is essential to determine if these in vitro effects will occur in vivo in BMP2-implant induction of bone formation. “Citration” is essential for osteoinductive bone to represent the chemical, structural, and biomechanical properties of “normal” bone.
Collapse
Affiliation(s)
- Leslie C Costello
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, USA
| | - Jing Zou
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, USA
| | - Mark A Reynolds
- Department of Periodontics, Dental School, University of Maryland, Baltimore, USA
| | - Renty B Franklin
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, USA
| |
Collapse
|
32
|
Zn/Ag micro-galvanic couples formed on titanium and osseointegration effects in the presence of S. aureus. Biomaterials 2015; 65:22-31. [PMID: 26141835 DOI: 10.1016/j.biomaterials.2015.06.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022]
Abstract
Titanium implants possessing simultaneous osseointegration and antibacterial ability are desirable. In this work, three types of Zn/Ag micro-galvanic couples are fabricated on titanium by plasma immersion ion implantation to investigate the osseointegration and antibacterial effects as well as the involved mechanisms. The in vitro findings disclose enhanced proliferation, osteogenic differentiation, and gene expressions of the rat bone mesenchymal stem cells (rBMSCs), as well as good antibacterial ability on all three micro-galvanic couples. Excellent antimicrobial ability is also observed in vivo and the micro-CT and histological results reveal notable osseointegration in vivo despite the presence of bacteria. The Zn/Ag micro-galvanic couple formed on Zn/Ag dual-ion co-implanted titanium shows the best osseointegration as well as good antibacterial properties in vivo obtained from a rabbit tibia model. The difference among the three Zn/Ag micro-galvanic couples can be ascribed to the contact between the Ag NPs and Zn film, which affects the corrosion process. Our results indicate that the biological behavior can be controlled by the corrosion process of the Zn/Ag micro-galvanic couples.
Collapse
|
33
|
Wang H, Zhao S, Xiao W, Cui X, Huang W, Rahaman MN, Zhang C, Wang D. Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration. Colloids Surf B Biointerfaces 2015; 130:149-56. [DOI: 10.1016/j.colsurfb.2015.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/15/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
34
|
Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism. G3-GENES GENOMES GENETICS 2015; 5:1613-24. [PMID: 26038365 PMCID: PMC4528318 DOI: 10.1534/g3.115.018226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male-female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape.
Collapse
|
35
|
Lv H, Sun Y, Zhang Y. MiR-133 is Involved in Estrogen Deficiency-Induced Osteoporosis through Modulating Osteogenic Differentiation of Mesenchymal Stem Cells. Med Sci Monit 2015; 21:1527-34. [PMID: 26013661 PMCID: PMC4459570 DOI: 10.12659/msm.894323] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). MATERIAL AND METHODS qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. RESULTS miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3'UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. CONCLUSIONS Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression.
Collapse
Affiliation(s)
- Hao Lv
- Department of Orthopaedic Traumatology, Central Hospital of Jinan, Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Yujie Sun
- Department of Orthopedics, Yantai Yuhuangding Hospital, Affiliated to Qingdao University Medical College, Yantai, Shandong, China (mainland)
| | - Yuchen Zhang
- Department of Orthopedics Surgery, The First Hospital of Hebei Medial University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
36
|
Franklin RB, Chellaiah M, Zou J, Reynolds MA, Costello LC. Evidence that Osteoblasts are Specialized Citrate-producing Cells that Provide the Citrate for Incorporation into the Structure of Bone. ACTA ACUST UNITED AC 2014; 6:1-7. [PMID: 25745519 PMCID: PMC4346336 DOI: 10.2174/1876525401406010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrate is a major component of bone in all vertebrates, but its implications in bone have remained largely unknown. Recent studies identified that citrate is incorporated into the structure of the hydroxyapatite nanocrystal/collagen complex; and is essential for the important biomechanical properties of bone. This raises the important question, “What is the source of citrate for incorporation into bone?”; A question that heretofore had remained unresolved. Studies in this report were designed to determine the plausibility of our concept that the osteoblasts are specialized citrate-producing cells, which provide the citrate that is incorporated into the structure of bone; and that osteogenic differentiation of mesenchyme cells leads to the development of the citrate-producing osteoblasts. The results demonstrated that primary human osteoblasts exhibit the capability of citrate-production. Undifferentiated mesenchyme cells do not exhibit the capability of citrate production; and osteogenic differentiation results in citrate-producing osteoblasts. The up-regulation of zinc uptake transporter ZIP1 is essential for the manifestation of the citrate-producing capability of the osteoblasts. We determined that osteoblast transport of citrate from plasma is not a likely source of citrate in bone. Thus, this study establishes for the first time that the osteoblasts are specialized citrate-producing cells that provide the citrate for incorporation into the structure of bone; and that mesenchyme cell osteogenesis leads to differentiated citrate-producing osteoblasts. This is a new understanding; which must include the osteogenic development of citrate-producing osteoblasts, and the process of “citration” in concert with mineralization during bone formation. It also provides a new understanding of the role of bone in the homeostatic maintenance of plasma citrate concentration.
Collapse
Affiliation(s)
- Renty B Franklin
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland, Baltimore, Md. 21201
| | - Meena Chellaiah
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland, Baltimore, Md. 21201
| | - Jing Zou
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland, Baltimore, Md. 21201
| | - Mark A Reynolds
- Department of Periodontics; Dental School; University of Maryland, Baltimore, Md. 21201
| | - Leslie C Costello
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland, Baltimore, Md. 21201
| |
Collapse
|
37
|
Abstract
Osteoblasts, the chief bone-making cells in the body, are a focus of osteoporosis research. Although teriparatide, a synthetic fragment of the human parathyroid hormone (PTH), has been an effective bone anabolic drug, there remains a clinical need for additional therapeutics that safely stimulates osteoblast number and function. Work in the past several decades has provided unprecedented clarity about the roles of growth factors and transcription factors in regulating osteoblast differentiation and activity, but whether these factors may regulate cellular metabolism to influence cell fate and function has been largely unexplored. The past few years have witnessed a resurgence of interest in the cellular metabolism of osteoblasts, with the hope that elucidation of their metabolic profile may open new avenues for developing bone anabolic agents. Here we review the current understanding about glucose metabolism in osteoblasts.
Collapse
Affiliation(s)
- Emel Esen
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fanxin Long
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
38
|
Felthaus O, Gosau M, Klein S, Prantl L, Reichert TE, Schmalz G, Morsczeck C. Dexamethasone-related osteogenic differentiation of dental follicle cells depends on ZBTB16 but not Runx2. Cell Tissue Res 2014; 357:695-705. [PMID: 24816988 DOI: 10.1007/s00441-014-1891-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/08/2014] [Indexed: 01/23/2023]
Abstract
Dental follicle cells (DFCs) can be artificially differentiated into mineralizing cells. With a dexamethasone-based differentiation protocol, transcription factors ZBTB16 and NR4A3 are highly upregulated but Runx2 and other osteogenic marker genes are not. Previous studies have suggested the involvement of a Runx2-independent differentiation pathway. The objective of this study is to further elucidate this mechanism. Differentiation of DFCs was examined by alkaline phosphatase (ALP) staining and ALP activity measurement, by Alizarin Red S staining and by real-time reverse transcription plus the polymerase chain reaction. ZBTB16 was overexpressed by using a transient transfection method. Resulting genome-wide gene expression changes were assessed by microarray. ZBTB16 and Runx2 were inhibited by short interfering RNA transfection. Promoter binding of ZBTB16 was evaluated by chromatin immunoprecipitation. Downregulation of Runx2 had no effect on dexamethasone-induced differentiation but was effective on BMP2-induced differentiation. Downregulation of ZBTB16, however, impaired dexamethasone-induced differentiation. Genes that were upregulated by dexamethasone induction were also upregulated by ZBTB16 overexpression. Genes that were not upregulated during dexamethasone-induced differentiation were also not regulated by ZBTB16 overexpression. ZBTB16 bound directly to the promoter regions of osterix and NR4A3 but not that of Runx2. Overexpression of ZBTB16 led to changes in the gene expression profile, whereby upregulated genes were overrepresented in osteogenesis-associated biological processes. Our findings suggest that, in DFCs, a Runx2-independent differentiation mechanism exists that is regulated by ZBTB16.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Cranio- and Maxillofacial Surgery, University Medical Center, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Qiao Y, Zhang W, Tian P, Meng F, Zhu H, Jiang X, Liu X, Chu PK. Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials 2014; 35:6882-97. [DOI: 10.1016/j.biomaterials.2014.04.101] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 01/23/2023]
|
40
|
Alam I, Koller DL, Cañete T, Blázquez G, López-Aumatell R, Martínez-Membrives E, Díaz-Morán S, Tobeña A, Fernández-Teruel A, Stridh P, Diez M, Olsson T, Johannesson M, Baud A, Econs MJ, Foroud T. High-resolution genome screen for bone mineral density in heterogeneous stock rat. J Bone Miner Res 2014; 29:1619-26. [PMID: 24643965 PMCID: PMC4074219 DOI: 10.1002/jbmr.2195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 01/09/2023]
Abstract
We previously demonstrated that skeletal mass, structure, and biomechanical properties vary considerably in heterogeneous stock (HS) rat strains. In addition, we observed strong heritability for several of these skeletal phenotypes in the HS rat model, suggesting that it represents a unique genetic resource for dissecting the complex genetics underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone mineral density in HS rats. We measured bone phenotypes from 1524 adult male and female HS rats between 17 and 20 weeks of age. Phenotypes included dual-energy X-ray absorptiometry (DXA) measurements for bone mineral content and areal bone mineral density (aBMD) for femur and lumbar spine (L3-L5), and volumetric BMD measurements by CT for the midshaft and distal femur, femur neck, and fifth lumbar vertebra (L5). A total of 70,000 polymorphic single-nucleotide polymorphisms (SNPs) distributed throughout the genome were selected from genotypes obtained from the Affymetrix rat custom SNPs array for the HS rat population. These SNPs spanned the HS rat genome with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent for each genotyped locus from each of the eight founder HS strains. The haplotypes were tested for association with each bone density phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for BMD phenotypes on chromosomes 2, 9, 10, and 13 meeting a conservative genomewide empiric significance threshold (false discovery rate [FDR] = 5%; p < 3 × 10(-6)). Importantly, most QTLs were localized to very small genomic regions (1-3 megabases [Mb]), allowing us to identify a narrow set of potential candidate genes including both novel genes and genes previously shown to have roles in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Imranul Alam
- Medicine, Indiana University School of Medicine, IN, USA
| | - Daniel L. Koller
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Toni Cañete
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Gloria Blázquez
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | | | - Esther Martínez-Membrives
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Sira Díaz-Morán
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Pernilla Stridh
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Margarita Diez
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Tomas Olsson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Martina Johannesson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Amelie Baud
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Michael J. Econs
- Medicine, Indiana University School of Medicine, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Tatiana Foroud
- Medicine, Indiana University School of Medicine, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
41
|
Geiser J, De Lisle RC, Finkelstein D, Adlard PA, Bush AI, Andrews GK. Clioquinol synergistically augments rescue by zinc supplementation in a mouse model of acrodermatitis enteropathica. PLoS One 2013; 8:e72543. [PMID: 24015258 PMCID: PMC3755987 DOI: 10.1371/journal.pone.0072543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023] Open
Abstract
Background Zinc deficiency due to poor nutrition or genetic mutations in zinc transporters is a global health problem and approaches to providing effective dietary zinc supplementation while avoiding potential toxic side effects are needed. Methods/Principal Findings Conditional knockout of the intestinal zinc transporter Zip4 (Slc39a4) in mice creates a model of the lethal human genetic disease acrodermatitis enteropathica (AE). This knockout leads to acute zinc deficiency resulting in rapid weight loss, disrupted intestine integrity and eventually lethality, and therefore provides a model system in which to examine novel approaches to zinc supplementation. We examined the efficacy of dietary clioquinol (CQ), a well characterized zinc chelator/ionophore, in rescuing the Zip4intest KO phenotype. By 8 days after initiation of the knockout neither dietary CQ nor zinc supplementation in the drinking water was found to be effective at improving this phenotype. In contrast, dietary CQ in conjunction with zinc supplementation was highly effective. Dietary CQ with zinc supplementation rapidly restored intestine stem cell division and differentiation of secretory and the absorptive cells. These changes were accompanied by rapid growth and dramatically increased longevity in the majority of mice, as well as the apparent restoration of the homeostasis of several essential metals in the liver. Conclusions These studies suggest that oral CQ (or other 8-hydroxyquinolines) coupled with zinc supplementation could provide a facile approach toward treating zinc deficiency in humans by stimulating stem cell proliferation and differentiation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Jim Geiser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Robert C. De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - David Finkelstein
- The Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Glen K. Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Liu Y, Yan F, Yang WL, Lu XF, Wang WB. Effects of zinc transporter on differentiation of bone marrow mesenchymal stem cells to osteoblasts. Biol Trace Elem Res 2013; 154:234-43. [PMID: 23775599 DOI: 10.1007/s12011-013-9683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/23/2013] [Indexed: 01/22/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.
Collapse
Affiliation(s)
- Yang Liu
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | | | | | | | | |
Collapse
|
43
|
Zhang Y, Yang J, Cui X, Chen Y, Zhu VF, Hagan JP, Wang H, Yu X, Hodges SE, Fang J, Chiao PJ, Logsdon CD, Fisher WE, Brunicardi FC, Chen C, Yao Q, Fernandez-Zapico ME, Li M. A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth. EMBO Mol Med 2013; 5:1322-34. [PMID: 23857777 PMCID: PMC3799489 DOI: 10.1002/emmm.201302507] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022] Open
Abstract
Changes in the intracellular levels of the essential micronutrient zinc have been implicated in multiple diseases including pancreatic cancer; however, the molecular mechanism is poorly understood. Here, we report a novel mechanism where increased zinc mediated by the zinc importer ZIP4 transcriptionally induces miR-373 in pancreatic cancer to promote tumour growth. Reporter, expression and chromatin immunoprecipitation assays demonstrate that ZIP4 activates the zinc-dependent transcription factor CREB and requires this transcription factor to increase miR-373 expression through the regulation of its promoter. miR-373 induction is necessary for efficient ZIP4-dependent enhancement of cell proliferation, invasion, and tumour growth. Further analysis of miR-373 in vivo oncogenic function reveals that it is mediated through its negative regulation of TP53INP1, LATS2 and CD44. These results define a novel ZIP4-CREB-miR-373 signalling axis promoting pancreatic cancer growth, providing mechanistic insights explaining in part how a zinc transporter functions in cancer cells and may have broader implications as inappropriate regulation of intracellular zinc levels plays an important role in many other diseases.
Collapse
Affiliation(s)
- Yuqing Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
hZip1 (hSLC39A1) regulates zinc homoeostasis in gut epithelial cells. GENES AND NUTRITION 2013; 8:475-86. [PMID: 23378263 DOI: 10.1007/s12263-013-0332-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Zinc is an essential trace element required for enzyme catalysis, gene regulation and signal transduction. Zinc absorption takes place in the small intestine; however, the mechanisms by which cells accumulate zinc are not entirely clear. Zip1 (SLC39A1) is a predicted transmembrane protein that is postulated, but not conclusively proven to mediate zinc influx in gut cells. The aim of this study was to investigate a role for hZip1 in mediating zinc uptake in human enterocytes. Both hZip1 mRNA and protein were detected in human intestinal tissue. In non-differentiated Caco-2 human gut cells, hZip1 was partially localised to the endoplasmic reticulum. In contrast, in differentiated Caco-2 cells cultured in extracellular matrix, the hZip1 protein was located in proximity to the apical microvilli. Lack of surface antibody binding and internalisation indicated that hZip1 was not present on the plasma membrane. Functional studies to establish a role for hZip1 in cellular zinc accumulation were carried out using (65)Zn. In Caco-2 cells harbouring an hZip1 overexpression construct, cellular zinc accumulation was enhanced relative to the control. Conversely, Caco-2 cells with an hZip1 siRNA construct showed reduced zinc accumulation. In summary, we show that the Caco-2 cell differentiation endorses targeting of hZip1 to a region near the apical domain. Given the absence of hZip1 at the apical plasma membrane, we propose that hZip1 may act as an intracellular sensor to regulate zinc homoeostasis in human gut cells.
Collapse
|
45
|
Costello LC, Franklin RB. A review of the important central role of altered citrate metabolism during the process of stem cell differentiation. ACTA ACUST UNITED AC 2013; 2. [PMID: 24194979 DOI: 10.7243/2050-1218-2-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stem cells are highly proliferating cells that have the potential for differentiation leading to the development of specialized functional cell types. The process of stem cell differentiation requires an increase in the recruitment and population of the undifferentiated stem cells, which are then differentiated to specific functional cell types. Genetic/metabolic transformations in the cellular intermediary energy metabolism are required to provide the bioenergetic, synthetic, and catabolic requirements of the stem cells during this process. However, the identification of the intermediary energy metabolism pathways and their alterations during the proliferation and differentiation of stem cells remain largely unknown; mainly due to the lack of attention and/or required research that focuses on this relationship. In the absence of such information, a full understanding of the factors and conditions required to promote stem cell differentiation leading to development of normal functional metabolic specialized cells cannot be achieved. The purpose of this review is to provide the background and bring attention to the essential relationship of altered cellular intermediary metabolism in the context of the process of stem cell proliferation and differentiation. Citrate metabolism is central to the genetic and metabolic transformation leading to the development of the specialized functional cells. This review identifies the involvement of altered citrate metabolism and the associated genetic alterations of key pathways, enzymes, and transporters; as well as the bioenergetic implications. The importance is emphasized for identification and employment of required conditions to insure that the process of experimental stem cell differentiation results in the development of specialized cells that represent the functional metabolic characteristics and capabilities of their native specialized cells. This is an essential requirement for the successful application of stem cell therapy and regenerative medicine for many pathological conditions.
Collapse
Affiliation(s)
- Leslie C Costello
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School and The University of Maryland Greenebaum Cancer Center, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
46
|
Costello LC, Franklin RB, Reynolds MA, Chellaiah M. The Important Role of Osteoblasts and Citrate Production in Bone Formation: "Osteoblast Citration" as a New Concept for an Old Relationship. ACTA ACUST UNITED AC 2012; 4. [PMID: 24194797 DOI: 10.2174/1876525401204010027] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been known for about seventy years that bone, in all vertebrates, contains uniquely high citrate levels. However, the role of citrate, its source, its regulation, and its implication in normal bone formation and in bone disorders have remained largely unknown. For the past thirty-five years, the relationship of citrate in bone has been a neglected area of attention and research. It has recently been discovered that citrate is critical for the structure of the apatite nanocrystal, and is required to impart the important properties of bone such as its stability, strength, and resistance to fracture. This brings to focus the need for a renewed interest and research into the relationships of citrate in bone formation. A most fundamental question that must be resolved is "What is the source of citrate in bone?". This presentation provides a historical review of the early research to the present status of citrate implications in bone. This leads to a new concept of the role of osteoblasts as specialized citrate producing cells that provide the source of citrate in bone formation; i.e. the "osteoblast citration" process. This also brings into focus a new insight into the role of zinc in bone in relation to osteoblast citrate production. The genetic/hormonal/metabolic relationships of "net citrate production" are described. The intent of this presentation is to provide the background for a new perspective of the important implications of osteoblasts and citrate in bone formation; which, hopefully, will stimulate a renewed interest and essential research.
Collapse
Affiliation(s)
- Leslie C Costello
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland
| | | | | | | |
Collapse
|
47
|
Lubelski D, Abdullah KG, Benzel EC, Mroz TE. The Utility of Allograft Mesenchymal Stem Cells for Spine Fusion: A Literature Review. Global Spine J 2012; 2:109-14. [PMID: 27054055 PMCID: PMC4813091 DOI: 10.1055/s-0032-1307263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
More than 50% of patients complain of postoperative donor site morbidity following iliac crest bone graft harvest, and recent discoveries have identified adverse outcomes following bone morphogenetic protein use in spine fusion. This has led the spine community to turn toward alternative methods to promote fusion following spine surgery. The present article reviews numerous studies that have shown the osteogenic potential of mesenchymal stem cells (MSCs). MSCs have been used with both in vitro and in vivo models and have involved animal studies ranging from rats to macaque monkeys to successfully induce bone regeneration in lesions of the tibia and spine. There is no fear of graft rejection, as there may be with other allograft materials, because neither undifferentiated nor differentiated MSCs elicit lymphocyte response when transplanted; they tend to alter the cytokine profile to an anti-inflammatory state. Early clinical trials are underway with various commercially available MSC formulations. Although there is much enthusiasm, it is integral that the spine surgery community carefully evaluate the use of MSCs in spine fusion through well-designed and executed studies to determine the efficacy and safety profiles in spine surgery patients.
Collapse
Affiliation(s)
- Daniel Lubelski
- Department of Neurological Surgery, Cleveland Clinic Center for Spine Health,
Cleveland, Ohio
| | - Kalil G. Abdullah
- Department of Neurological Surgery, Cleveland Clinic Center for Spine Health,
Cleveland, Ohio
| | - Edward C. Benzel
- Department of Neurological Surgery, Cleveland Clinic Center for Spine Health,
Cleveland, Ohio
| | - Thomas E. Mroz
- Department of Neurological Surgery, Cleveland Clinic Center for Spine Health,
Cleveland, Ohio
| |
Collapse
|
48
|
Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE. Defining the nature of human pluripotent stem cell progeny. Cell Res 2011; 22:178-93. [PMID: 21844894 DOI: 10.1038/cr.2011.133] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types, it is unknown how closely in vitro development mirrors that which occurs in vivo. To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny, and whether either makes cells that are analogous to tissue-derived cells, we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts. Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural, hepatic, and mesenchymal lineages, and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny. However, when compared to a tissue-derived counterpart, the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development, regardless of the type of cell generated. While pluripotent genes (OCT4, SOX2, REX1, and NANOG) appeared to be silenced immediately upon differentiation from hPSCs, genes normally unique to early embryos (LIN28A, LIN28B, DPPA4, and others) were not fully silenced in hPSC derivatives. These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks). These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development, but also raise important issues for disease modeling and the clinical application of hPSC derivatives.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gao Y, Li Y, Xue J, Jia Y, Hu J. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 2010; 635:231-6. [PMID: 20307532 DOI: 10.1016/j.ejphar.2010.02.051] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/06/2010] [Accepted: 02/24/2010] [Indexed: 01/22/2023]
Abstract
Recent studies have reported bone loss in the patients with diabetes and a direct osteogenic effect of metformin on osteoblast-like cells in culture. In this study, we investigated the action of metformin on bone mass in ovariectomized (OVX) rats. Three months after either a sham surgery or bilateral ovariectomy, thirty-two female Sprague-Dawley rats were randomly assigned into four groups: (1) Sham group; (2) OVX group; (3) OVX+metformin (50mg/kg/day) group; and (4) OVX+metformin (100mg/kg/day) group. After 2 months of oral administration with or without metformin, tibiae were harvested for dual energy X-ray absorptiometry, micro-computed tomography (micro-CT) and histology analysis, while the bone marrow cells from tibiae were collected for measurement of the mRNAs expressions for three osteoblast genes and estrogen receptors alpha by the use of real-time RT-PCR. We found that the impaired bone density and quality induced by bilateral ovariectomy were significantly improved by the treatment of metformin (both 50 and 100mg/kg/day), and this action could be partly mediated by regulating bone marrow cells development through induction of mechanisms regulating osteoblast markers core binding factor a1 and LDL receptor-related protein 5. These findings provide new evidence that the anti-diabetic drug metformin has a direct inhibition effect on bone loss in OVX rats, in addition to its well-documented osteogenic potency in vitro.
Collapse
Affiliation(s)
- Ying Gao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
50
|
Kwun IS, Cho YE, Lomeda RAR, Shin HI, Choi JY, Kang YH, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010; 46:732-41. [PMID: 19913120 DOI: 10.1016/j.bone.2009.11.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/18/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
A characteristic sign of zinc deficiency is retarded skeletal growth, but the role of zinc in osteoblasts is not well understood. Two major events for bone formation include osteoblast differentiation by bone marker gene expression, which is mainly regulated by bone-specific transcription factor Runx2 and extracellular matrix (ECM) mineralization by Ca deposits for bone nodule formation. We investigated whether zinc deficiency down-regulates bone marker gene transcription and whether this might occur through modulation of Runx2. We also investigated whether zinc deficiency decreases ECM mineralization in osteoblastic MC3T3-E1 cells. In the presence of 5 mumol/L TPEN as zinc chelator, zinc deficiency (ZnD: 1 micromol Zn/L) decreased bone marker gene (collagen type I, osteopontin, alkaline phosphatase, osteoclacin and parathyroid hormone receptor) expression, as compared to normal osteogenic medium (OSM) or zinc adequate medium (ZnA: 15 micromol/L) (P<0.05) both at 5 days (proliferation) and 15 days (matrix maturation). Decreased bone marker gene transcription by zinc deficiency could be caused by decreased nuclear Runx2 protein (P=0.05) and transcript (P<0.05) levels in ZnD. Furthermore, within the first 24 h of differentiation when Runx2 expression is induced, maximal Runx2 mRNA and nuclear protein levels were delayed in ZnD compared to OSM and ZnA. ECM Ca deposition was also lower in ZnD, which was also indirectly confirmed by detection of decreased cellular (synthesized) and medium (secreted) ALP activity as well as matrix ALP activity. Taken together, zinc deficiency attenuated osteogenic activity by decreasing bone marker gene transcription through reduced and delayed Runx2 expression and by decreasing ECM mineralization through inhibition of ALP activity in osteoblasts. Decreased and delayed bone marker gene, Runx2 expression and ECM mineralization in osteoblasts by zinc deficiency can be a potential explanation for the retarded skeletal growth which is the major zinc deficiency syndrome.
Collapse
Affiliation(s)
- In-Sook Kwun
- Department of Food Science and Nutrition, Andong National University, 388 Songchundong, Andong, Kyungpook 760-749, South Korea.
| | | | | | | | | | | | | |
Collapse
|