1
|
Hoz-Rodríguez L, Montoya-Ayala G, Vivanco-Rojas O, Romo-Arévalo E, Jiménez-Durán K, López-Letayf S, Zeichner-David M, Vázquez MS, Arzate H. Expression and biological activity of a novel protein species from cementum. Tissue Cell 2025; 96:103004. [PMID: 40513424 DOI: 10.1016/j.tice.2025.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/18/2025] [Accepted: 06/01/2025] [Indexed: 06/16/2025]
Abstract
Cementum is a specialized mineralized connective tissue with singular histological and functional characteristics. Proteins isolated from human cementum appear to regulate periodontal ligament stem cells differentiation, help to maintain homeostasis and appear to control some of the molecular events required for periodontium formation, therefore emerging as novel therapeutic candidates for periodontal regeneration. The possibility that there might be cementum components, so far not described, was explored in these studies. This study reports the expression and biological activity of a novel human species from cementum termed cementogenin (CMGN). This molecule encodes a 195 aminoacid protein species with a predicted molecular mass of 20.2 kDa. Polyclonal antibodies against a GMGN's selected peptide sequence were produced to identify the protein. Expression of CMGN in cells of the periodontium was examined by Western blot and immunofluorescence using histological sections of the periodontium. These studies revealed that CMGN is expressed by cementoblasts and cells of the periodontal ligament. Expression of CMGN's mRNA and its protein in different periodontium cell types was determined by RT-qPCR and Western blot, respectively. CMGN mRNA and gene product levels were highly expressed by cementoblasts and osteoblasts cells. The CMGN protein was expressed in E. coli for functional studies using in vitro cell-free system. Assays revealed that hrCMGN promotes the nucleation of hydroxyapatite crystals. The human recombinant CMGN (hrCMGN) promoted cell proliferation, cell attachment, and differentiation by human periodontal ligament cells to a mineralized phenotype. Overall, our findings reveal that CMGN represents a new species isolated from cementum and might provide the basis for future studies that will allow further characterization of the structural features of CMGN and a better understanding of its functional properties. This new protein might be highly relevant in future periodontal therapeutics.
Collapse
Affiliation(s)
- Lia Hoz-Rodríguez
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico.
| | - Gonzalo Montoya-Ayala
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico
| | - Oscar Vivanco-Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Unidad de Investigación Biología Celular y Tisular, Instituto de Oftalmología, Conde de Valenciana, Mexico
| | - Enrique Romo-Arévalo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico
| | | | - Sonia López-Letayf
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico
| | | | - Maricela Santana Vázquez
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
2
|
Rikimaru S, Nakao-Kuroishi K, Kometani-Gunjigake K, Mizuhara M, Nakatomi C, Toyono T, Ono K, Kawamoto T. Fibroblast growth factor 2 stimulates differentiation of mechanically-stressed human periodontal ligament fibroblasts into cementoblasts. Am J Orthod Dentofacial Orthop 2025:S0889-5406(25)00171-4. [PMID: 40434329 DOI: 10.1016/j.ajodo.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025]
Abstract
INTRODUCTION Orthodontic treatment enables tooth movement through bone remodeling. The effects of fibroblast growth factor 2 (FGF2) on human periodontal ligament fibroblasts (HPdLFs) in response to mechanical stimulation that occurs during orthodontic treatment remain unexplained. We investigated the effects of FGF2 and mechanical stress on HPdLF differentiation, focusing on cementoblast differentiation. METHODS The effects of FGF2 and mechanical stress (applied for 24 hours using a centrifuge) on HPdLFs were evaluated. Changes in marker levels were assessed using real-time reverse transcriptase-polymerase chain reaction and western blotting. Furthermore, the effect of FGF2 treatment on HPdLF mineralization was assessed after 3 and 5 weeks using Alizarin red S staining (BMK-R009: Bio Future Technologies, Tokyo, Japan). RESULTS Treatment of HPdLFs with 20 ng/mL FGF2 increased the expression of CEMP1 and RUNX2 but did not significantly alter the expression of FGF2, FGFR1, and FGFR2. In HPdLFs exposed to mechanical stress, expression of FGFR1 and OCN was increased, whereas that of FGF2, CEMP1, CAP, GLUT1, ALP, and OPN was reduced considerably. Treatment of mechanically-stressed HPdLFs with FGF2 did not change FGF2 expression, but expression of FGFR1, CEMP1, CAP, and GLUT1 increased significantly. In addition, FGFR1 was significantly upregulated at the protein level, whereas cementoblast differentiation markers showed an upward trend. Mineralization showed no changes at 3 weeks. However, at 5 weeks, considerable mineralization was observed in mechanically-stressed cells continuously exposed to FGF2. CONCLUSIONS Mechanical stress increases FGFR1 expression in HPdLFs. FGF2 promotes the differentiation of mechanical-stressed HPdLFs into cementoblasts and their mineralization.
Collapse
Affiliation(s)
- Sakiko Rikimaru
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Kayoko Nakao-Kuroishi
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan.
| | - Kaori Kometani-Gunjigake
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Takashi Toyono
- Division of Promoting Learning Design for Innovative Education, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Kentaro Ono
- Division of Physiology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
3
|
Okimura N, Kunimatsu R, Kado I, Nakatani A, Sakata S, Ikeda K, Ito S, Ogasawara T, Ogashira S, Miyauchi M, Takata T, Tanimoto K. Effects of recombinant human sclerostin on proliferation and migration in human cementoblast lineage cells. Arch Oral Biol 2025; 175:106273. [PMID: 40294473 DOI: 10.1016/j.archoralbio.2025.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE To evaluate the effects of sclerostin on the proliferation and migration of human cementoblasts and periodontal ligament cells. DESIGN Sclerostin expression in human cementoblasts and periodontal ligament cells was assessed using immunochemical staining. Human cementoblasts and periodontal ligament cells were cultured and treated with 100 ng/mL of recombinant human sclerostin. Cell proliferation was evaluated using a 5-bromo-2-deoxyuridine enzyme-linked immunosorbent assay and quantified with a live-cell imaging and analysis platform (IncuCyte® S3 system). Furthermore, sclerostin's impact on apoptosis in human cementoblasts and periodontal ligament cells was evaluated using IncuCyte® Caspase-3/7 green dye. Additionally, cell migration was analyzed through quantitative wound healing assessment using the IncuCyte® S3 system. Polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting were then performed to confirm the effect of sclerostin on CEMP-1. The data obtained were statistically analyzed using the Mann-Whitney U test. RESULTS Intracellular sclerostin localization in human cementoblasts and periodontal ligament cells were confirmed form the immunochemical staining. The sclerostin-treated group showed suppressed proliferation and migration of human cementoblasts and periodontal ligament cells compared with the non-treated group. Furthermore, the sclerostin-treated group showed significantly elevated caspase-3/7 activity compared with the non-treated group. However, the addition of sclerostin did not result in any significant changes in CEMP-1. CONCLUSION Sclerostin is crucial in regulating the proliferation and migration of cementoblasts and periodontal ligament cells. This highlights its importance in regenerating the cementum and periodontal ligament.
Collapse
Affiliation(s)
- Naonobu Okimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazutaka Ikeda
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shota Ito
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Tomohiro Ogasawara
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shintaro Ogashira
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Shunan University, Shunan, Yamaguchi, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
4
|
Rodríguez LH, Vázquez MS, Ramírez González LF, Ayala GM, Letayf SL, Narayanan AS, Arzate H. Cementum attachment protein-derived peptide induces cementum formation. FASEB Bioadv 2025; 7:e1483. [PMID: 39917396 PMCID: PMC11795276 DOI: 10.1096/fba.2024-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 02/09/2025] Open
Abstract
A pentapeptide AVIFM (CAP-p5) derived from the carboxy-terminus end of cementum attachment protein was examined for its role on proliferation, differentiation, and mineralization of human periodontal ligament cells (HPLC), and for its potential to induce cementum deposition in vivo. CAP-p5 capability to induce hydroxyapatite crystal formation on demineralized dentin blocks was characterized by scanning electron microscopy, μRAMAN, and high-resolution transmission electron microscopy. The results revealed that CAP-p5 promoted cell proliferation and cell differentiation and increases alkaline phosphatase activity of HPLC and mineralization at an optimal concentration of 10 μg/mL. It induced the expression of cementum molecular markers BSP, CAP, CEMP1, and ALP at the protein level. In a cell-free system, human demineralized dentin blocks coated with CAP-p5 induced the deposition of a homogeneous and continuous mineralized layer, intimately integrated with the underlying dentin indicating new cementum formation. Physicochemical characterization of this mineral layer showed that it is composed of hydroxyapatite crystals. Demineralized dentin blocks coated with CAP-p5 implanted subcutaneously in BALB/cAnNCrl were analyzed histologically; the results disclosed that CAP-p5 could induce the deposition of a cementum layer intimately integrated with the subjacent dentin with cementocytes embedded into the cementum matrix. Immunostaining showed the expression of cementum molecular markers; v.gr. BSP, CAP, CEMP1 and ALP, validating the molecular identity of the newly deposited cementum. We conclude that CAP-p5 is a new biomolecule with the potential of therapeutic application to contribute to the regeneration of cementum and periodontal structures lost in periodontal disease.
Collapse
Affiliation(s)
- Lía Hoz Rodríguez
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Maricela Santana Vázquez
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Gonzalo Montoya Ayala
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Sonia López Letayf
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
5
|
Calabrese TC, Rothermund K, Gabe CM, Beniash E, Davidson LA, Syed-Picard FN. Self-Assembly of Tooth Root Organoid from Postnatal Human Dental Stem Cells. Tissue Eng Part A 2024; 30:404-414. [PMID: 38126312 PMCID: PMC11392675 DOI: 10.1089/ten.tea.2023.0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Challenges remain in simultaneously regenerating the multiple diverse tissues of the tooth root in a spatially organized manner. Previously, our research group has established that scaffold-free tissue engineering approaches enable dental pulp stem/progenitor cells (DPSCs) and periodontal ligament (PDL) stem/progenitor cells (PDLSCs) to self-assemble into dentin-pulp and PDL-cementum organoids, respectively. In this study, we leveraged the innate self-organizing capacity of DPSCs and PDLSCs to now engineer organoids that resemble the full tooth root. Scaffold-free engineered tissues were generated using a heterogeneous mixture of human DPSCs and PDLSCs. Within 2 days of construct formation, PDLSCs and DPSCs became spatially restricted to the periphery and center of the constructs, respectively, emulating their anatomical positions in the tooth root. Histological and microcomputed tomography analyses showed that organoids exhibited a striated mineral pattern with a central unmineralized core, surrounded by a mineralized tissue structure, enclosed within a second peripheral unmineralized tissue, similar to the natural tooth root. Interestingly, DPSCs gave rise to the central unmineralized tissue and the inner portion of the mineralized tissue, and PDLSCs generated the outer portion of the mineralized tissue and the peripheral soft tissue. Quantitative image analysis of immunofluorescent staining revealed increased dentin sialophosphoprotein expression in the region of mineralized tissue associated with DPSCs and increased cementum protein-1 expression in the portion formed by PDLSCs, demonstrating that tooth root organoids comprise two biochemically distinct mineralized tissues characteristic of dentin-like and cementum-like structures, respectively. In addition, PDL-associated protein-1 expression was localized to the peripheral soft tissue, suggesting the formation of a rudimentary PDL-like structure. This study demonstrates that DPSCs and PDLSCs have an inherent ability to orchestrate the formation of a full tooth root-like structure. These organoids present a biomimetic model system to study cellular dynamics driving dental tissue repair or could be utilized therapeutically as biological dental implants.
Collapse
Affiliation(s)
- Tia C. Calabrese
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire M. Gabe
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elia Beniash
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Lance A. Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Fatima N. Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Campos MN, Giraldo EL, Del Rio Portilla F, Fernández-Velasco DA, Arzate H, Romo-Arévalo E. Solution NMR structure of cementum protein 1 derived peptide (CEMP1-p1) and its role in the mineralization process. J Pept Sci 2023; 29:e3494. [PMID: 37051739 DOI: 10.1002/psc.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
We report the characterization of the three-dimensional structure of the CEMP1-p1 peptide [MGTSSTDSQQAQHRRCSTSN: corresponding to residues 1-20 of the N-terminus of cementum protein 1 (CEMP1)]. This peptide imitates the capacity of CEMP1 to stimulate hydroxyapatite (HA) crystal nucleation and growth, and promotes the differentiation of periodontal ligament cells into a cementoblastic phenotype. Additionally, in experimental models of critical-sized calvarial defects in Wistar rats, CEMP1-p1 has shown osteogenic properties that enhanced the physiological deposition and maturation of newly formed bone. In this work, studies of CEMP1-p1 by circular dichroism (CD) and nuclear magnetic resonance (NMR) were performed in trifluoroethanol D2 (TFED2) and aqueous solution to determine the 3D structure of the peptide. Using the 3D model, experimental data from HA crystals formation and calcium fluorescence emission, we explain the biological mechanisms involved in CEMP1-p1 activity to promote calcium recruitment and its affinity to HA crystals. This information is valuable because it proposes, for the first time, a plausible molecular mechanism during the mineralization process, from a specific cementum protein-derived peptide.
Collapse
Affiliation(s)
- Mikado Nidome Campos
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Romo-Arévalo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Mohd N, Razali M, Fauzi MB, Abu Kasim NH. In Vitro and In Vivo Biological Assessments of 3D-Bioprinted Scaffolds for Dental Applications. Int J Mol Sci 2023; 24:12881. [PMID: 37629064 PMCID: PMC10454183 DOI: 10.3390/ijms241612881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a unique combination of technological advances in 3D printing and tissue engineering. It has emerged as a promising approach to address the dilemma in current dental treatments faced by clinicians in order to repair or replace injured and diseased tissues. The exploration of 3D bioprinting technology provides high reproducibility and precise control of the bioink containing the desired cells and biomaterial over the architectural and dimensional features of the scaffolds in fabricating functional tissue constructs that are specific to the patient treatment need. In recent years, the dental applications of different 3D bioprinting techniques, types of novel bioinks, and the types of cells used have been extensively explored. Most of the findings noted significant challenges compared to the non-biological 3D printing approach in constructing the bioscaffolds that mimic native tissues. Hence, this review focuses solely on the implementation of 3D bioprinting techniques and strategies based on cell-laden bioinks. It discusses the in vitro applications of 3D-bioprinted scaffolds on cell viabilities, cell functionalities, differentiation ability, and expression of the markers as well as the in vivo evaluations of the implanted bioscaffolds on the animal models for bone, periodontal, dentin, and pulp tissue regeneration. Finally, it outlines some perspectives for future developments in dental applications.
Collapse
Affiliation(s)
- Nurulhuda Mohd
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Dean Office, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
8
|
Saito MM, Onuma K, Yamakoshi Y. Cementum is key to periodontal tissue regeneration: A review on apatite microstructures for creation of novel cementum-based dental implants. Genesis 2023; 61:e23514. [PMID: 37067171 DOI: 10.1002/dvg.23514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 04/18/2023]
Abstract
The cementum is the outermost layer of hard tissue covering the dentin within the root portion of the teeth. It is the only hard tissue with a specialized structure and function that forms a part of both the teeth and periodontal tissue. As such, cementum is believed to be critical for periodontal tissue regeneration. In this review, we discuss the function and histological structure of the cementum to promote crystal engineering with a biochemical approach in cementum regenerative medicine. We review the microstructure of enamel and bone while discussing the mechanism underlying apatite crystal formation to infer the morphology of cementum apatite crystals and their complex structure with collagen fibers. Finally, the limitations of the current dental implant treatments in clinical practice are explored from the perspective of periodontal tissue regeneration. We anticipate the possibility of advancing periodontal tissue regenerative medicine via cementum regeneration using a combination of material science and biochemical methods.
Collapse
Affiliation(s)
- Mari M Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Kazuo Onuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| |
Collapse
|
9
|
Wang M, He M, Xu X, Wu Z, Tao J, Yin F, Luo K, Jiang J. Cementum protein 1 gene-modified adipose-derived mesenchymal stem cell sheets enhance periodontal regeneration in osteoporosis rat. J Periodontal Res 2023. [PMID: 37154214 DOI: 10.1111/jre.13133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/04/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Osteoporosis (OP) and periodontitis are both diseases with excessive bone resorption, and the number of patients who suffer from these diseases is expected to increase. OP has been identified as a risk factor that accelerates the pathological process of periodontitis. Achieving effective and safe periodontal regeneration in OP patients is a meaningful challenge. This study aimed to assess the efficacy and biosecurity of human cementum protein 1 (hCEMP1) gene-modified cell sheets for periodontal fenestration defect regeneration in an OP rat model. MATERIALS AND METHODS Rat adipose-derived mesenchymal stem cells (rADSCs) were isolated from Sprague-Dawley rats. After primary culture, rADSCs were subjected to cell surface analysis and multi-differentiation assay. And rADSCs were transduced with hCEMP1 by lentiviral vector, and hCEMP1 gene-modified cell sheets were generated. The expression of hCEMP1 was evaluated by reverse transcription polymerase chain reaction and immunocytochemistry staining, and transduced cell proliferation was evaluated by Cell Counting Kit-8. The hCEMP1 gene-modified cell sheet structure was detected by histological analysis and scanning electron microscopy. Osteogenic and cementogenic-associated gene expression was evaluated by real-time quantitative polymerase chain reaction. In addition, an OP rat periodontal fenestration defect model was used to evaluate the regeneration effect of hCEMP1 gene-modified rADSC sheets. The efficacy was assessed with microcomputed tomography and histology, and the biosecurity of gene-modified cell sheets was evaluated by histological analysis of the spleen, liver, kidney and lung. RESULTS The rADSCs showed a phenotype of mesenchymal stem cells and possessed multi-differentiation capacity. The gene and protein expression of hCEMP1 through lentiviral transduction was confirmed, and there was no significant effect on rADSC proliferation. Overexpression of hCEMP1 upregulated osteogenic and cementogenic-related genes such as runt-related transcription factor 2, bone morphogenetic protein 2, secreted phosphoprotein 1 and cementum attachment protein in the gene-modified cell sheets. The fenestration lesions in OP rats treated with hCEMP1 gene-modified cell sheets exhibited complete bone bridging, cementum and periodontal ligament formation. Furthermore, histological sections of the spleen, liver, kidney and lung showed no evident pathological damage. CONCLUSION This pilot study demonstrates that hCEMP1 gene-modified rADSC sheets have a marked ability to enhance periodontal regeneration in OP rats. Thus, this approach may represent an effective and safe strategy for periodontal disease patients with OP.
Collapse
Affiliation(s)
- Meijie Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Mengjiao He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Zekai Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Tao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Fan Yin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Jiang
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Hong HH, Chou TA, Hong A, Huang YF, Yen TH, Liang CH, Hong A, Hsiao HY, Nien CY. Calcitriol and enamel matrix derivative differentially regulated cemento-induction and mineralization in human periodontal ligament-derived cells. J Periodontol 2022; 93:1553-1565. [PMID: 34837709 DOI: 10.1002/jper.21-0435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Alveolar bone and cementum share many biological and developmental similarities. The mineralizing effect of calcitriol has been previously reported. Yet, its cemento-inductivity has not been confirmed. This study evaluated the potential cemento-inductivity effect of calcitriol and enamel matrix derivative (EMD) on human periodontal ligament-derived cells (hPDLCs). METHODS The hPDLCs obtained from extracted third molars or premolars were cultured with calcitriol, or EMD. Cementogenic gene expression was examined using real-time quantitative reverse transcription polymerase chain reaction. Expression analysis also included cementoblast-specific markers, cementum protein 1 (CEMP1), cementum attachment protein (CAP), and recently reported cementoblast-enriched genes, secreted frizzled related protein 1 (SFRP1), and Dickkopf-related protein 1 (DKK1). Mineralization capacities were evaluated by alkaline phosphatase (ALP) activity, Alizarin Red, and Von Kossa staining followed by scanning electron microscope imaging and element mapping. RESULTS Among tested conditions, 10 nM calcitriol enhanced most cementogenic gene expression, transforming growth factor-β1, bone morphogenetic proteins (BMP-2 and BMP-4), core-binding factor subunit alpha-1/Runt-related transcription factor 2, Type I collagen, ALP, bone sialoprotein, osteopontin), osteocalcin, CEMP1, and CAP, and Wnt signaling negative modulators, SFRP1 and DKK1, along with highest ALP activity and mineralization formation in hPDLCs. However, only moderate CEMP1 protein was observed. In contrast, EMD stimulated stronger CEMP1 and CAP protein, but presented weaker mineralization capacity, hinting at the possibility that strong stimulation of mineralization might dominate cemetogenic specific factors and vice versa. CONCLUSIONS Calcitriol demonstrated not only great osteoinductivity, but also the potential to induce cementogenic gene expression by initiating hPDLC differentiation and promoting mineralization. Compared with calcitriol, EMD promoted cemento-inductivity in hPDLCs at a later time point via highly expressed CEMP1 and CAP protein, but with less mineralization. Thus, calcitriol and EMD could provide differential enhancement of cemento-induction and mineralization, likely acting at various differentiation stages.
Collapse
Affiliation(s)
- Hsiang-Hsi Hong
- Department of Periodontics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-An Chou
- Department of Periodontics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Adrienne Hong
- Valley Consortium for Medical Education, Family Medicine Residency, University of California Davis, Modesto, CA, USA
| | - Yi-Fang Huang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Dentistry, College of Oral medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chao-Hua Liang
- Department of Prosthodontics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Alex Hong
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Yamada M, Kimura T, Nakamura N, Watanabe J, Kartikasari N, He X, Tiskratok W, Yoshioka H, Shinno H, Egusa H. Titanium Nanosurface with a Biomimetic Physical Microenvironment to Induce Endogenous Regeneration of the Periodontium. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27703-27719. [PMID: 35695310 PMCID: PMC9231364 DOI: 10.1021/acsami.2c06679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/29/2022] [Indexed: 06/01/2023]
Abstract
The periodontium supports the teeth by dentoalveolar fibrous joints that serve unique oral functions. Endogenous regeneration of the periodontium around artificial teeth (dental implants) provides a cost-effective solution for the extension of healthy life expectancy but remains a challenge in regenerative medicine. Biomimetics can create smart biomaterials that tune endogenous cells at a tissue-material interface. Here, we created a smart titanium nanosurface mimicking the surface nanotopography and micromechanical properties of the tooth root cementum (TRC), which is essential for the induction of dentoalveolar fibrous joints to regenerate the periodontium. After transplantation into the rat renal capsule, only the titanium artificial tooth with the TRC-mimetic nanosurface formed a complex dentoalveolar fibrous joint structure, with bone tissue, periodontal ligament (PDL), and TRC, in the decellularized jawbone matrix. TRC-mimetic titanium implants induce the formation of functional periodontium, even in a jawbone implantation model, which generally causes osseointegration (ankyloses). In human PDL cells, TRC analogousness in the surface mechanical microenvironment regulates matrix mineralization through bone sialoprotein expression and phosphorus metabolism, which are critical for cementogenesis. Therefore, the titanium nanosurfaces with nanotopographical and mechanical microenvironments mimicking the TRC surface induce dentoalveolar fibrous joints for periodontal regeneration by interfacial tuning of endogenous cells.
Collapse
Affiliation(s)
- Masahiro Yamada
- Division
of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Tsuyoshi Kimura
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoko Nakamura
- Department
of Bioscience and Engineering, College of Systems Engineering and
Science, Shibaura Institute of Technology, Saitama, Saitama 337-8570, Japan
| | - Jun Watanabe
- Division
of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Nadia Kartikasari
- Division
of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Xindie He
- Division
of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Watcharaphol Tiskratok
- Division
of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Hayato Yoshioka
- Laboratory
for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 152-8550, Japan
| | - Hidenori Shinno
- Laboratory
for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 152-8550, Japan
| | - Hiroshi Egusa
- Division
of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Center
for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
12
|
Li T, Wang H, Jiang Y, Guan Y, Chen S, Wu Z, Zou S, Bonewald LF, Duan P. Canonical Wnt/β-catenin signaling has positive effects on osteogenesis, but can have negative effects on cementogenesis. J Periodontol 2022; 93:1725-1737. [PMID: 35642884 DOI: 10.1002/jper.21-0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, therapeutic approaches for cementum regeneration are limited and outcomes remain unpredictable. A significant barrier to improve therapies for cementum regeneration is that the cementocyte and its intracellular signal transduction mechanisms remain poorly understood. This study aims to elucidate the regulatory mechanism of Wnt pathway in cementogenesis. METHODS The effects of canonical Wnt signaling were compared in vitro using immortalized murine cementocyte cell line IDG-CM6 and osteocyte cell line IDG-SW3 by qRT-PCR, Western blot, confocal microscopy, alkaline phosphatase (ALP) assay and Alizarin red S staining. In vivo, histological changes of cementum and bone formation were examined in transgenic mice in which constitutive activation of β-catenin is driven by Dmp1 promoter. RESULTS Expression of components of the Wnt/β-catenin pathway were much greater in the IDG-SW3 cells compared to the IDG-CM6 cells resulting in much lower expression of Sost/sclerostin in the IDG-SW3 cells. In the IDG-CM6 cells, low dose Wnt3a (20 ng/ml) had a modest effect while high dose (200 ng/ml) inhibited runt-related transcription factor 2 (Runx2), osterix (Osx), ALP and osteopontin (OPN) in contrast to the IDG-SW3 cells where high dose Wnt3a dramatically increased mRNA expression of these same markers. However, high Wnt3a significantly increased mRNA for components of Wnt/β-catenin signaling pathway in both IDG-CM6 and IDG-SW3 cells. In vivo, constitutive activation of β-catenin in the Dmp1-lineage cells in mice leads to bone hyperplasia and cementum hypoplasia. CONCLUSION(S) These findings indicate that Wnt signaling has distinct and different effects on the regulation of long bone as compared to cementum. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Han Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuzhe Guan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lynda Faye Bonewald
- Departments of Anatomy, Cell Biology & Physiology and Orthopaedic Surgery, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Bousnaki M, Beketova A, Kontonasaki E. A Review of In Vivo and Clinical Studies Applying Scaffolds and Cell Sheet Technology for Periodontal Ligament Regeneration. Biomolecules 2022; 12:435. [PMID: 35327627 PMCID: PMC8945901 DOI: 10.3390/biom12030435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Different approaches to develop engineered scaffolds for periodontal tissues regeneration have been proposed. In this review, innovations in stem cell technology and scaffolds engineering focused primarily on Periodontal Ligament (PDL) regeneration are discussed and analyzed based on results from pre-clinical in vivo studies and clinical trials. Most of those developments include the use of polymeric materials with different patterning and surface nanotopography and printing of complex and sophisticated multiphasic composite scaffolds with different compartments to accomodate for the different periodontal tissues' architecture. Despite the increased effort in producing these scaffolds and their undoubtable efficiency to guide and support tissue regeneration, appropriate source of cells is also needed to provide new tissue formation and various biological and mechanochemical cues from the Extraccellular Matrix (ECM) to provide biophysical stimuli for cell growth and differentiation. Cell sheet engineering is a novel promising technique that allows obtaining cells in a sheet format while preserving ECM components. The right combination of those factors has not been discovered yet and efforts are still needed to ameliorate regenerative outcomes towards the functional organisation of the developed tissues.
Collapse
Affiliation(s)
| | | | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.B.); (A.B.)
| |
Collapse
|
14
|
Embedded Human Periodontal Ligament Stem Cells Spheroids Enhance Cementogenic Differentiation via Plasminogen Activator Inhibitor 1. Int J Mol Sci 2022; 23:ijms23042340. [PMID: 35216454 PMCID: PMC8878532 DOI: 10.3390/ijms23042340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
Spheroids reproduce the tissue structure that is found in vivo more accurately than classic two-dimensional (2D) monolayer cultures. We cultured human periodontal ligament stem cells (HPLSCs) as spheroids that were embedded in collagen gel to examine whether their cementogenic differentiation could be enhanced by treatment with recombinant human plasminogen activator inhibitor-1 (rhPAI-1). The upregulated expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP), established cementoblast markers, was observed in the 2D monolayer HPLSCs that were treated with rhPAI-1 for 3 weeks compared with that in the control and osteogenic-induction medium groups. In the embedded HPLSC spheroids, rhPAI-1 treatment induced interplay between the spheroids and collagenous extracellular matrix (ECM), indicating that disaggregated HPLSCs migrated and spread into the surrounding ECM 72 h after three-dimensional (3D) culture. Western blot and immunocytochemistry analyses showed that the CEMP1 expression levels were significantly upregulated in the rhPAI-1-treated embedded HPLSC spheroids compared with all the 2D monolayer HPLSCs groups and the 3D spheroid groups. Therefore, 3D collagen-embedded spheroid culture in combination with rhPAI-1 treatment may be useful for facilitating cementogenic differentiation of HPLSCs.
Collapse
|
15
|
Lee E, Kim YS, Lee YM, Kim WK, Lee YK, Kim SH. Identification of stemness and differentially expressed genes in human cementum-derived cells. J Periodontal Implant Sci 2021; 51:329-341. [PMID: 34713994 PMCID: PMC8558007 DOI: 10.5051/jpis.2102600130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.
Collapse
Affiliation(s)
- EunHye Lee
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Young-Sung Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Won-Kyung Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Kyoo Lee
- Department of Dentistry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
| | - Su-Hwan Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Hoz L, López S, Zeichner-David M, Arzate H. Regeneration of rat periodontium by cementum protein 1-derived peptide. J Periodontal Res 2021; 56:1223-1232. [PMID: 34510433 DOI: 10.1111/jre.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Cementum protein 1 (CEMP1) has the capacity to promote differentiation of periodontal ligament (PDL) cells toward a cementoblastic phenotype in vitro and bone regeneration in vivo. In this study, we tested the capabilities of a synthetic cementum protein 1-derived peptide, MGTSSTDSQQAGHRRCSTSN (CEMP1-p1), to promote regeneration of periodontal structures in a periodontal fenestration defect in rats. MATERIAL AND METHODS Fenestration defects were created using an extra-oral approach in the buccal aspect of the mandibular first molar roots. Eighteen male Wistar rats were divided into three groups. Two controls (defects non-treated or defects treated with a gelatin matrix scaffold [GMS] only) and the experimental group treated with 5 µg/dose of CEMP1-p1 embedded in GMS. After 28 days, the animals were sacrificed, and the mandibles processed for histopathological examination. Expression of cementum proteins, cementum attachment protein (CAP), CEMP1, integrin binding sialoprotein (IBSP), and osteocalcin (OCN), was assessed using immunofluorescence. The formation of new cementum, bone, and PDL fibers were compared between control and experimental groups. RESULTS The histological analysis revealed that the control group without any treatment new cementum or oriented PDL fibers were not observed. However, the presence of newly bone was detected. In the control group treated with GMS, new cementum formation was not detectable, the PDL fibers were oriented parallel to the longitudinal root axis, and new bone formation was observed. The experimental group showed deposit of acellular extrinsic fiber cementum (AEFC) in a lamellae-like feature with inserted Sharpey's fibers, formation of cellular mixed stratified cementum (CMSC) with the presence of cementocytes, and newly formed bone close to the cementum-enamel junction. Cementoblast cells adjacent to new cementum expressed CAP, CEMP1, IBSP, and OCN. CONCLUSION These studies show that CEMP1-p1 promotes the formation of AEFC, CMSC, new PDL with Sharpey's fibers inserted in cementum and bone, thus providing strong evidence that the synthetic peptide CEMP1-p1 promotes periodontal regeneration in a rat fenestration model.
Collapse
Affiliation(s)
- Lía Hoz
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico, CDMX, 04510, México
| | - Sonia López
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico, CDMX, 04510, México
| | - Margarita Zeichner-David
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico, CDMX, 04510, México
| |
Collapse
|
17
|
In Vivo Evaluation of Decellularized Human Tooth Scaffold for Dental Tissue Regeneration. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11. [PMID: 36003951 PMCID: PMC9397400 DOI: 10.3390/app11188472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventional root canal treatment may result in loss of tooth vitality, which can lead to unfavorable treatment outcomes. Notably, a ceased tooth development of immature permanent teeth with open apices, regeneration of periodontal ligaments (PDL), and pulp is highly expected healing process. For regeneration, the scaffold is one of the critical components that carry biological benefits. Therefore, this study evaluated a decellularized human tooth as a scaffold for the PDL and pulp tissue regeneration. A tooth scaffold was fabricated using an effective decellularization method as reported in previous studies. PDL stem cells (PDLSCs) and dental pulp stem cells (DPSCs) obtained from human permanent teeth were inoculated onto decellularized scaffolds, then cultured to transplant into immunosuppressed mouse. After 9 weeks, PDLSCs and DPSCs that were inoculated onto decellularized tooth scaffolds and cultured in an in vivo demonstrated successful differentiation. In PDLSCs, a regeneration of the cementum/PDL complex could be expected. In DPSCs, the expression of genes related to revascularization and the hard tissue regeneration showed the possibility of pulp regeneration. This study suggested that the potential possible application of decellularized human tooth could be a scaffold in regeneration PDL and pulp tissue along with PDLSCs and DPSCs, respectively, as a novel treatment method.
Collapse
|
18
|
Ayala-Ham A, López-Gutierrez J, Bermúdez M, Aguilar-Medina M, Sarmiento-Sánchez JI, López-Camarillo C, Sanchez-Schmitz G, Ramos-Payan R. Hydrogel-Based Scaffolds in Oral Tissue Engineering. FRONTIERS IN MATERIALS 2021; 8. [DOI: 10.3389/fmats.2021.708945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Regenerative therapy in dentistry has gained interest given the complexity to restore dental and periodontal tissues with inert materials. The best approach for regeneration requires three elements for restoring functions of affected or diseased organ tissues: cells, bioactive molecules, and scaffolds. This triad is capable of modulating the processes to replace lost or damaged tissues and restore function, as it has an impact on diverse cellular processes, influencing cell behavior positively to induce the complete restoration of function and morphology of such complex tissues. Hydrogels (HG) have shown advantages as scaffolds as they are soft and elastic three-dimensional (3D) networks formed from hydrophilic homopolymers, copolymers, or macromers. Besides simple or hybrid, HG show chemical, mechanical and biological activities such as the incorporation of cells in their structures, the retention of high-water content which enhances the transportation of cell nutrients and waste, and elastic and flexible characteristics that emulate the native extracellular matrix (ECM). HG can induce changes in cellular processes such as chemotaxis, proliferation, angiogenesis, biomineralization, and expression of specific tissue biomarkers, enhancing the regeneration process. Besides some of them have anti-inflammatory and anti-bacterial effects. This review aims to show an extensive overview of the most used hydrogels in tissue engineering, emphasizing those that are studied for the regeneration of oral tissues, their biological effects, and their clinical implications. Even though most of the HG are still under investigation, some of them have been studied in vitro and in vivo with outstanding results that may lead to preclinical studies. Besides there are HG that have shown their efficacy in patients such as hyaluronan HG that enhances the healing of gingival tissue.
Collapse
|
19
|
Modulated cementogenic genes upregulation in human buccal fat pad-derived stem cells by strontium-ranelate. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bioprinting on 3D Printed Titanium Scaffolds for Periodontal Ligament Regeneration. Cells 2021; 10:cells10061337. [PMID: 34071316 PMCID: PMC8229613 DOI: 10.3390/cells10061337] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
The three-dimensional (3D) cell-printing technique has been identified as a new biofabrication platform because of its ability to locate living cells in pre-defined spatial locations with scaffolds and various growth factors. Osseointegrated dental implants have been regarded as very reliable and have long-term reliability. However, host defense mechanisms against infections and micro-movements have been known to be impaired around a dental implant because of the lack of a periodontal ligament. In this study, we fabricated a hybrid artificial organ with a periodontal ligament on the surface of titanium using 3D printing technology. CEMP-1, a known cementogenic factor, was enhanced in vitro. In animal experiments, when the hybrid artificial organ was transplanted to the calvarial defect model, it was observed that the amount of connective tissue increased. 3D-printed hybrid artificial organs can be used with dental implants, establishing physiological tooth functions, including the ability to react to mechanical stimuli and the ability to resist infections.
Collapse
|
21
|
Huang GY, Choi SH, Jung HD, Kim HS, Hwang CJ, Lee KJ. Tissue-specific biomarkers in gingival crevicular fluid are correlated with external root resorption caused by constant mechanical load: an in vivo study. Clin Oral Investig 2021; 25:6321-6333. [PMID: 33822289 DOI: 10.1007/s00784-021-03932-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study investigated the association of changes in cementum protein-1 (CEMP-1), dentine phosphoprotein (DPP), and c-terminal cross-linked telopeptide of type I collagen (CTX-I) levels in human gingival crevicular fluid (GCF) under constant load with external root resorption volume and amount of tooth movement. MATERIALS AND METHODS In total, 11 healthy adult patients (mean age, 23.5 years [range, 18.3-37.7]; four men and seven women) were enrolled. GCF samples were obtained from premolars at T0, T1 (1 day), T2 (1 week), T3 (2 weeks), T4 (4 weeks), and T5 (8 weeks) under constant 100-gm buccal tipping force. Opposite premolars were used as controls. Teeth were extracted at T5, followed by quantification of external root resorption volume and histological analysis. RESULTS In the test group, T5/T0 ratios of CEMP-1 and DPP levels, differential CEMP-1 levels between T5 and T0, and differential DPP levels between T2 and T0 correlated positively with root resorption volume (r = 0.734, 0.730, 0.627, and 0.612, respectively, all p < 0.05). CEMP-1 levels at T0 and T3 correlated negatively with root resorption volume (r = -0.603 and -0.706; all p < 0.05). CTX-I levels at T5 correlated positively with the amount of tooth movement (r = 0.848, p < 0.01). CONCLUSIONS Alterations in CEMP-1 and DPP levels in human GCF at specific timepoints during orthodontic treatment may be associated with different degrees of external root resorption. CLINICAL RELEVANCE This study demonstrates that changes in the levels of tissue-specific biomarkers in GCF may facilitate early detection of external root resorption during orthodontic tooth movement.
Collapse
Affiliation(s)
- Gui-Yue Huang
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hwi-Dong Jung
- Department of Oral & Maxillofacial Surgery, College of Dentistry, Yonsei University, 50-1 Yonsei-Ro, Seodeamun-Gu, Seoul, 03722, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kee-Joon Lee
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
22
|
Ono T, Tomokiyo A, Ipposhi K, Yamashita K, Alhasan MA, Miyazaki Y, Kunitomi Y, Tsuchiya A, Ishikawa K, Maeda H. Generation of biohybrid implants using a multipotent human periodontal ligament cell line and bioactive core materials. J Cell Physiol 2021; 236:6742-6753. [PMID: 33604904 DOI: 10.1002/jcp.30336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
We aimed to generate periodontal ligament (PDL) tissue-like structures from a multipotent human PDL cell line using three-dimensional (3D) bioprinting technology and to incorporate these structures with bioactive core materials to develop a new biohybrid implant system. After 3D bioprinting, single-cell spheroids were able to form 3D tubular structures (3DTBs). We established three types of complexes using 3DTBs and different core materials: 3DTB-titanium core (TIC), 3DTB-hydroxyapatite core (HAC), and 3DTB without a core material (WOC). The expressions of PDL-, angiogenesis-, cementum-, and bone-related genes were significantly increased in the three complexes compared with monolayer-cultured cells. Abundant collagen fibers and cells positive for the above markers were confirmed in the three complexes. However, more positive cells were detected in HAC than in WOC or TIC. The present results suggest that 3D-bioprinted structures and hydroxyapatite core materials can function similarly to the PDL and may be useful for the development of a new biohybrid implant system.
Collapse
Affiliation(s)
- Taiga Ono
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Anas Alhasan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
23
|
Li T, Wang H, Liu R, Wang X, Huang L, Wu Z, Yin X, Zou S, Duan P. The role of EphB4/ephrinB2 signaling in root repair after orthodontically-induced root resorption. Am J Orthod Dentofacial Orthop 2021; 159:e217-e232. [PMID: 33487501 DOI: 10.1016/j.ajodo.2020.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION This study aimed to investigate the effect of EphB4/ephrinB2 signaling on orthodontically-induced root resorption repair and the possible molecular mechanism behind it. METHODS Seventy-two 6-week-old male Wistar rats were randomly divided into 3 groups: blank control group, physiological regeneration group (PHY), and EphB4 inhibitor local injection group (INH). A root repair model was built on experimental rats of the PHY and INH groups. The animals in the INH groups received a daily periodontal local injection of EphB4 inhibitor NVP-BHG712, whereas the blank control group and PHY groups received only the vehicle. RESULTS Histologic staining and microcomputed tomography analysis showed that root regeneration was inhibited in the INH group compared with the PHY group with a greater number of osteoclasts. Immunohistochemical staining showed active EphB4/ephrinB2 signaling activities during root regeneration. The cementogenesis-related factors cementum attachment protein, alkaline phosphatase, osteopontin, and runt-related transcription factor 2, and osteoclastic-related factors RANKL and osteoprotegerin were affected by regulated EphB4/ephrinB2 signaling. CONCLUSIONS These findings demonstrated that the EphB4/ephrinB2 signaling might be a promising therapeutic target for novel therapeutic approaches to reduce orthodontically-induced root resorption through enhancement of cementogenesis.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Wang
- Oral Diagnosis and Treatment Center, Aviation General Hospital, China Medical University, Beijing, China
| | - Li Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Tinker RJ, Burghel GJ, Garg S, Steggall M, Cuvertino S, Banka S. Haploinsufficiency of ATP6V0C possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. Am J Med Genet A 2020; 185:196-202. [PMID: 33090716 DOI: 10.1002/ajmg.a.61905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
We recently contributed to the description of eight individuals with a novel condition caused by 16p13.3 microdeletions encompassing TBC1D24, ATP6V0C, and PDPK1 and resulting in epilepsy, microcephaly and neurodevelopmental problems. The phenotypic spectrum, the minimum overlapping region and the underlying disease mechanism for this disorder remain to be clarified. Here we report a 3.5-year-old male, with microcephaly, autism spectrum disorder and a de novo 16p13.3 microdeletion. We performed detailed in silico analysis to show that the minimum overlapping region for the condition is ~80Kb encompassing five protein coding genes. Analysis of loss of function constraint metrics, transcript-aware evaluation of the population variants, GeVIR scores, analysis of reported pathogenic point variants, detailed review of the known functions of gene products and their animal models showed that the haploinsufficiency of ATP6V0C likely underlies the phenotype of this condition. Protein-protein interaction network, gene phenology and analysis of topologically associating domain showed that it was unlikely that the disorder has an epistatic or regulatory basis. 16p13.3 deletions encompassing ATP6V0C cause a neurodevelopmental disorder. Our results broaden the phenotypic spectrum of this disorder and clarify the likely underlying disease mechanism for the condition.
Collapse
Affiliation(s)
- Rory J Tinker
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Trust, Manchester, UK
- Department of Child and Adolescent Psychiatry, Royal Manchester Children's Hospital, Manchester, UK
| | - Maggie Steggall
- Department of Paediatric Medicine, Royal Manchester Children's Hospital, Manchester, UK
| | - Sara Cuvertino
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Iwata T, Mizuno N, Nagahara T, Kaneda-Ikeda E, Kajiya M, Kitagawa M, Takeda K, Yoshioka M, Yagi R, Takata T, Kurihara H. Identification of regulatory mRNA and microRNA for differentiation into cementoblasts and periodontal ligament cells. J Periodontal Res 2020; 56:69-82. [PMID: 32797637 DOI: 10.1111/jre.12794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Periodontitis causes periodontal tissue destruction and results in physiological tooth dysfunction. Therefore, periodontal regeneration is ideal therapy for periodontitis. Mesenchymal stem cells (MSCs) are useful for periodontal regenerative therapy as they can differentiate into periodontal cells; however, the underlying regulatory mechanism is unclear. In this study, we attempted to identify regulatory genes involved in periodontal cell differentiation and clarify the differentiation mechanism for effective periodontal regenerative therapy. BACKGROUND The cementum and periodontal ligament play important roles in physiological tooth function. Therefore, cementum and periodontal ligament regeneration are critical for periodontal regenerative therapy. Mesenchymal stem cell transplantation can be a common periodontal regenerative therapy because these cells have multipotency and self-renewal ability, which induces new cementum or periodontal ligament formation. Moreover, MSCs can differentiate into cementoblasts. Cementoblast- or periodontal ligament cell-specific proteins have been reported; however, it is unclear how these proteins are regulated. MicroRNA (miRNA) can also act as a key regulator of MSC function. Therefore, in this study, we identified regulatory genes involved in cementoblast or periodontal cell differentiation and commitment. METHODS Human MSCs (hMSCs), cementoblasts (HCEM), and periodontal ligament cells (HPL cells) were cultured, and mRNA or miRNA expression was evaluated. Additionally, cementoblast-specific genes were overexpressed or suppressed in hMSCs and their expression levels were investigated. RESULTS HCEM and HPL cells expressed characteristic genes, of which we focused on ets variant 1 (ETV1), miR-628-5p, and miR-383 because ETV1 is a differentiation-related transcription factor, miR-628-5p was the second-highest expressed gene in HCEM and lowest expressed gene in HPL cells, and miR-383 was the highest expressed gene in HCEM. miR-628-5p and miR-383 overexpression in hMSCs regulated ETV1 mRNA expression, and miR-383 overexpression downregulated miR-628-5p expression. Moreover, miR-383 suppression decreased miR-383 expression and enhanced ETV1 mRNA expression, but miR-383 suppression also decreased miR-628-5p. Furthermore, silencing of ETV1 expression in hMSCs regulated miR-628-5p and miR-383 expression. Concerning periodontal cell commitment, miR-628-5p, miR-383, and ETV1 regulated the expression of HCEM- or HPL cell-related genes by adjusting the expression of these miRNAs. CONCLUSION HCEM and HPL cells show characteristic mRNA and miRNA profiles. In particular, these cells have specific miR-383, miR-628-5p, and ETV1 expression patterns, and these genes interact with each other. Therefore, miR-383, miR-628-5p, and ETV1 are key genes involved in cementogenesis or HPL cell differentiation.
Collapse
Affiliation(s)
- Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryoichi Yagi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Tokuyama University, Tokuyama, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
26
|
Garna D, Kaur M, Hughes FJ, Ghuman M. Comparison of the Expression of Periodontal Markers in Dental and Bone Marrow-derived Mesenchymal Stem Cells. Open Dent J 2020. [DOI: 10.2174/1874210602014010196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background:
Periodontal ligament stem cells are a source of mesenchymal stem cells, but it is unclear whether their phenotype is distinct from mesenchymal stem cells derived from different tissues, such as those derived from bone marrow.
Objective:
To investigate the expression of the putative PDL markers asporin, periostin, nestin and cementum protein 1, by periodontal ligament stem cells both constitutively and during osteogenic differentiation when compared to bone marrow-derived mesenchymal stem cells, and dental pulp stem cells.
Methods:
The primary human periodontal ligament, bone marrow, and dental pulp stem cells, and osteoblasts from different donors were cultured in vitro. The expression of periodontal marker associated genes during osteogenic induction was tested by qRT-PCR and immunofluorescence staining.
Results:
Asporin expression was detected in periodontal ligament stem cells and increased markedly during the time in culture (upregulated x53 fold at 21 days post-induction). During osteogenic differentiation, asporin expression significantly decreased in periodontal ligament cells whereas periostin significantly decreased in dental pulp cells. Periostin expression was absent in osteoblasts, but expression gradually increased in all other cells with time in culture. Nestin expression was mainly seen in the periodontal ligament and dental pulp cells and was largely absent in osteoblasts and bone marrow cells. Cementum protein-1 was most highly expressed in bone marrow cells and osteoblasts following osteogenic induction.
Conclusions:
The results provide further evidence that periodontal ligament-derived and bone marrow derived mesenchymal stem cells are phenotypically distinct. Periodontal markers are also expressed in dental pulp stem cells.
Collapse
|
27
|
Arroyo R, López S, Romo E, Montoya G, Hoz L, Pedraza C, Garfias Y, Arzate H. Carboxy-Terminal Cementum Protein 1-Derived Peptide 4 (cemp1-p4) Promotes Mineralization through wnt/ β-catenin Signaling in Human Oral Mucosa Stem Cells. Int J Mol Sci 2020; 21:E1307. [PMID: 32075221 PMCID: PMC7072908 DOI: 10.3390/ijms21041307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human cementum protein 1 (CEMP1) is known to induce cementoblast and osteoblast differentiation and alkaline phosphatase (ALP) activity in human periodontal ligament-derived cells in vitro and promotes bone regeneration in vivo. CEMP1's secondary structure analysis shows that it has a random-coiled structure and is considered an Intrinsic Disordered Protein (IDP). CEMP1's short peptide sequences mimic the biological capabilities of CEMP1. However, the role and mechanisms of CEMP1's C-terminal-derived synthetic peptide (CEMP1-p4) in the canonical Wnt/β-catenin signaling pathway are yet to be described. Here we report that CEMP1-p4 promotes proliferation and differentiation of Human Oral Mucosa Stem Cells (HOMSCs) by activating the Wnt/β-catenin pathway. CEMP1-p4 stimulation upregulated the expression of β-catenin and glycogen synthase kinase 3 beta (GSK-3B) and activated the transcription factors TCF1/7 and Lymphoid Enhancer binding Factor 1 (LEF1) at the mRNA and protein levels. We found translocation of β-catenin to the nucleus in CEMP1-p4-treated cultures. The peptide also penetrates the cell membrane and aggregates around the cell nucleus. Analysis of CEMP1-p4 secondary structure revealed that it has a random-coiled structure. Its biological activities included the induction to nucleate hydroxyapatite crystals. In CEMP1-p4-treated HOMSCs, ALP activity and calcium deposits increased. Expression of Osterix (OSX), Runt-related transcription factor 2 (RUNX2), Integrin binding sialoproptein (IBSP) and osteocalcin (OCN) were upregulated. Altogether, these data show that CEMP1-p4 plays a direct role in the differentiation of HOMSCs to a "mineralizing-like" phenotype by activating the β-catenin signaling cascade.
Collapse
Affiliation(s)
- Rita Arroyo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Sonia López
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Gonzalo Montoya
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Lía Hoz
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Claudia Pedraza
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Yonathan Garfias
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, CDMX 04510, Mexico;
- Instituto de Oftalmología Conde de Valenciana, CDMX 06800, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| |
Collapse
|
28
|
Sallum EA, Ribeiro FV, Ruiz KS, Sallum AW. Experimental and clinical studies on regenerative periodontal therapy. Periodontol 2000 2019; 79:22-55. [PMID: 30892759 DOI: 10.1111/prd.12246] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recognition of a periodontal therapy as a regenerative procedure requires the demonstration of new cementum, periodontal ligament, and bone coronal to the base of the defect. A diversity of regenerative strategies has been evaluated, including root surface conditioning, bone grafts and bone substitute materials, guided tissue regeneration, enamel matrix proteins, growth/differentiation factors, combined therapies and, more recently, tissue-engineering approaches. The aim of this chapter of Periodontology 2000 is to review the research carried out in Latin America in the field of periodontal regeneration, focusing mainly on studies using preclinical models (animal models) and randomized controlled clinical trials. This review may help clinicians and researchers to evaluate the current status of the therapies available and to discuss the challenges that must be faced in order to achieve predictable periodontal regeneration in clinical practice.
Collapse
Affiliation(s)
- Enilson A Sallum
- Division of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Fernanda V Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Karina S Ruiz
- Division of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Antonio W Sallum
- Division of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| |
Collapse
|
29
|
Nuñez J, Vignoletti F, Caffesse RG, Sanz M. Cellular therapy in periodontal regeneration. Periodontol 2000 2019; 79:107-116. [PMID: 30892768 DOI: 10.1111/prd.12250] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periodontitis is a chronic inflammatory condition leading to destruction of the tooth supporting tissues, which if left untreated may cause tooth loss. The treatment of periodontitis mainly aims to arrest the inflammatory process by infection control measures, although in some specific lesions a limited periodontal regeneration can also be attained. Current regenerative approaches are aimed to guide the cells with regenerative capacity to repopulate the lesion and promote new cementum and new connective tissue attachment. The first phase in periodontal tissue regeneration involves the differentiation of mesenchymal cells into cementoblasts to promote new cementum, thus facilitating the attachment of new periodontal ligament fibers to the root and the alveolar bone. Current regenerative approaches limit themselves to the confines of the lesion by promoting the self-regenerative potential of periodontal tissues. With the advent of bioengineered therapies, several studies have investigated the potential use of cell therapies, mainly the use of undifferentiated mesenchymal cells combined with different scaffolds. The understanding of the origin and differentiation patterns of these cells is, therefore, important to elucidate their potential therapeutic use and their comparative efficacy with current technologies. This paper aims to review the in vitro and experimental studies using cell therapies based on application of cementoblasts and mesenchymal stem cells isolated from oral tissues when combined with different scaffolds.
Collapse
Affiliation(s)
- Javier Nuñez
- Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Fabio Vignoletti
- Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Raul G Caffesse
- Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Mariano Sanz
- Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
30
|
Montoya G, Correa R, Arenas J, Hoz L, Romo E, Arroyo R, Zeichner-David M, Arzate H. Cementum protein 1-derived peptide (CEMP 1-p1) modulates hydroxyapatite crystal formation in vitro. J Pept Sci 2019; 25:e3211. [PMID: 31410920 DOI: 10.1002/psc.3211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023]
Abstract
A cementum protein 1-derived peptide (CEMP1-p1) consisting of 20 amino acids from the CEMP1's N-terminus region: MGTSSTDSQQAGHRRCSTSN, and its role on the mineralization process in a cell-free system, was characterized. CEMP1-p1's physicochemical properties, crystal formation, and hydroxyapatite (HA) nucleation assays were performed. Crystals induced by CEMP1-p1 were analyzed by scanning electron microscopy, Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy. The results indicate that CEMP1-p1 lacks secondary structure, forms nanospheres that organize into three-dimensional structures, possesses affinity to HA, and induces its nucleation. CEMP1-p1 promotes the formation of spherical structures composed by densely packed prism-like crystals, which revealed a Ca/P ratio of 1.56, corresponding to HA. FTIR-ATR showed predominant spectrum peaks that correspond and are characteristic of HA and octacalcium phosphate (OCP). Analysis by XRD indicates that the crystals show planes with a preferential crystalline orientation for HA and for OCP. HRTEM showed interplanar distances that correspond to crystalline planes of HA and OCP. Crystals are composed by superimposed lamellae, which exhibit epitaxial growth, and each layer of the crystals is structured by nanocrystals. This study reveals that CEMP1-p1 regulates HA crystal formation, somehow mimicking the in vivo process of mineralized tissues bioformation.
Collapse
Affiliation(s)
- Gonzalo Montoya
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo Correa
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Arenas
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lía Hoz
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rita Arroyo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Iwasaki K, Washio K, Meinzer W, Tsumanuma Y, Yano K, Ishikawa I. Application of cell-sheet engineering for new formation of cementum around dental implants. Heliyon 2019; 5:e01991. [PMID: 31338459 PMCID: PMC6626299 DOI: 10.1016/j.heliyon.2019.e01991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Periodontal disease involves the chronic inflammation of tooth supporting periodontal tissues. As the disease progresses, it manifests destruction of periodontal tissues and eventual tooth loss. The regeneration of lost periodontal tissue has been one of the most important subjects in periodontal research. Since their discovery, periodontal ligament stem cells (PDLSCs), have been transplanted into periodontal bony defects to examine their regenerative potential. Periodontal defects were successfully regenerated using PDLSC sheets, which were fabricated by cell sheet engineering in animal models, and for which clinical human trials are underway. To expand the utility of PDLSC sheet, we attempted to construct periodontal tissues around titanium implants with the goal of facilitating the prevention of peri-implantitis. In so doing, we found newly formed cementum-periodontal ligament (PDL) structures on the implant surface. In this mini review, we summarize the literature regarding cell-based periodontal regeneration using PDLSCs, as well as previous trials aimed at forming periodontal tissues around dental implants. Moreover, the recent findings in cementogenesis are reviewed from the perspective of the formation of further stable periodontal attachment structure on dental implant. This mini review aims to summarize the current status of the creation of novel periodontal tissue-bearing dental implants, and to consider its future direction.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Japan
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Yuka Tsumanuma
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Kosei Yano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Japan
| | - Isao Ishikawa
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Japan
| |
Collapse
|
32
|
Kadokura H, Yamazaki T, Masuda Y, Kato Y, Hasegawa A, Sakagami H, Yokose S. Establishment of a Primary Culture System of Human Periodontal Ligament Cells that Differentiate into Cementum Protein 1-expressing Cementoblast-like Cells. In Vivo 2019; 33:349-352. [PMID: 30804111 DOI: 10.21873/invivo.11480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM A better understanding of cementogenesis and cementoblast differentiation would be useful for periodontal therapy. The aim of this study was to establish a cell culture system that reflects cementum formation in periodontal tissue and determine whether or not isolated and cultured primary human periodontal ligament (PDL) cells could be used for the study of the differentiation of cementoblast. MATERIALS AND METHODS PDL cells were isolated from the outgrowths of tissue fragments of human PDL. PDL cells were incubated for up to 21 days in differentiation medium containing β-glycerophosphate and ascorbic acid. The changes in the cells were detected by alkaline phosphatase (ALP) and von Kossa staining. Real-time polymerase chain reaction was also performed for cementum protein 1 (CEMP1), which is a specific marker of cementoblasts and their progenitors. RESULTS On day 5, a small number of PDL cells, which were fibrous, were positive for ALP. On day 7, almost all cells were positive for ALP. On day 14, mineralization nodules appeared, as seen by positive von Kossa staining; the nodules increased in number and size by day 21. The expression of CEMP1 was detected on day 5, and its expression level increased gradually by day 7, reached a peak on day 14, and decreased by day 21. CONCLUSION Human PDL cells were used to establish a culture system that reflects cementum formation. Our results suggested that this culture method is convenient and useful for the study of cementogenesis and cementoblast differentiation.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Takahide Yamazaki
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Yoshiko Masuda
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Yuka Kato
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Akihiko Hasegawa
- Division of Internal Medicine, Department of Comprehensive Medical Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Saitama, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| |
Collapse
|
33
|
Mucha BE, Banka S, Ajeawung NF, Molidperee S, Chen GG, Koenig MK, Adejumo RB, Till M, Harbord M, Perrier R, Lemyre E, Boucher RM, Skotko BG, Waxler JL, Thomas MA, Hodge JC, Gecz J, Nicholl J, McGregor L, Linden T, Sisodiya SM, Sanlaville D, Cheung SW, Ernst C, Campeau PM. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genet Med 2018; 21:1058-1064. [DOI: 10.1038/s41436-018-0290-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
|
34
|
Correa R, Arenas J, Montoya G, Hoz L, López S, Salgado F, Arroyo R, Salmeron N, Romo E, Zeichner-David M, Arzate H. Synthetic cementum protein 1-derived peptide regulates mineralization in vitro and promotes bone regeneration in vivo. FASEB J 2018; 33:1167-1178. [PMID: 30113883 DOI: 10.1096/fj.201800434rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The use of recombinant proteins has revolutionized the development of biologic pharmaceuticals; however, they are not free of complications. Some have very high molecular weight, some demonstrate in vivo instability, and the high cost of producing them remains a major problem. On the other hand, it has been shown that peptides derived from active domains keep their biologic activity and can trigger events, such as osteogenesis and bone regeneration. Small peptides are advantageous because of their ease of synthesis and handling and their low immunogenic activity. The purpose of this study was to investigate the functions of a synthetic peptide, cementum protein 1-peptide1 (CEMP-1-p1), both in vitro and in vivo. Our results show that CEMP-1-p1 significantly enhanced the proliferation and differentiation of human periodontal ligament cells toward a mineralizing-like phenotype, as evidenced by increasing alkaline phosphatase (ALP)-specific activity and osterix, runt-related transcription factor (RUNX)-2, integrin binding sialoprotein, bone morphogenetic protein-2, osteocalcin, and cementum protein (CEMP)-1 expression at mRNA and protein levels. In vivo assays performed through standardized critical-size calvarial defects in rats treated with CEMP-1-p1 resulted in newly formed bone after 30 and 60 d. These data demonstrate that CEMP-1-p1 is an effective bioactive peptide for bone tissue regeneration. The application of this bioactive peptide may lead to implementing new strategies for the regeneration of bone and other mineralized tissues.-Correa, R., Arenas, J., Montoya, G., Hoz, L., López, S., Salgado, F., Arroyo, R., Salmeron, N., Romo, E., Zeichner-David, M., Arzate, H. Synthetic cementum protein 1-derived peptide regulates mineralization in vitro and promotes bone regeneration in vivo.
Collapse
Affiliation(s)
- Rodrigo Correa
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jesús Arenas
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico; and
| | - Gonzalo Montoya
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lía Hoz
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Sonia López
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fabiola Salgado
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rita Arroyo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Nahúm Salmeron
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
35
|
Xue W, Yu J, Chen W. Plants and Their Bioactive Constituents in Mesenchymal Stem Cell-Based Periodontal Regeneration: A Novel Prospective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7571363. [PMID: 30175141 PMCID: PMC6098897 DOI: 10.1155/2018/7571363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Periodontitis is a common chronic inflammatory disease, which causes the destruction of both the soft and mineralized tissues. However, current treatments such as bone graft materials, barrier membranes, and protein products all have difficulties in regenerating the complete periodontal tissue structure. Stem cell-based tissue engineering has now emerged as one of the most effective treatments for the patients suffering from periodontal diseases. Plants not only can be substrates for life processes, but also contain hormones or functional molecules. Numbers of preclinical studies have revealed that products from plant can be successfully applied in modulating proliferation and differentiation of human mesenchymal stem cells. Plant-derived substances can induce stem cells osteogenic differentiation, and they also possess angiogenic potency. Furthermore, in the field of tissue engineering, plant-derived compounds or plant extracts can be incorporated with biomaterials or utilized as biomaterials for cell transplantation. So it is speculated that botanical products may become a new perspective in stem cell-based periodontal regeneration. However, the lack of achieving predict clinical efficacy and quality control has been the major impediment to its extensive application. This review gives an overview of the prospect of applying different plant-derived substances in various human mesenchymal stem cells-based periodontal regeneration.
Collapse
Affiliation(s)
- Wenqing Xue
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Endodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Wu Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
36
|
Wnt3a promotes differentiation of human bone marrow-derived mesenchymal stem cells into cementoblast-like cells. In Vitro Cell Dev Biol Anim 2018; 54:468-476. [DOI: 10.1007/s11626-018-0265-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022]
|
37
|
Villegas-Mercado CE, Agredano-Moreno LT, Bermúdez M, Segura-Valdez ML, Arzate H, Del Toro-Rangel EF, Jiménez-García LF. Cementum protein 1 transfection does not lead to ultrastructural changes in nucleolar organization of human gingival fibroblasts. J Periodontal Res 2018; 53:636-642. [PMID: 29704248 DOI: 10.1111/jre.12553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Transfection of cementum protein 1 (CEMP1) into human gingival fibroblasts (HGFs) notably increases cell metabolism and results in overexpression of molecules related to biomineralization at transcriptional and protein levels. Therefore, HGF-CEMP1 cells are considered as putative cementoblasts. This represents a significant advance in periodontal research because cementum neoformation is a key event in periodontal regeneration. In addition, it is well known that important changes in cell metabolism and protein expression are related to nucleolar structure and the function of this organelle, which is implicated in ribosome biogenesis. The aim of this study was to determine the effect of transfecting CEMP1 gene in human HGF on the ultrastructure of the nucleolus. MATERIAL AND METHODS Cells were processed using the conventional technique for transmission electron microscopy, fixed with glutaraldehyde, postfixed with osmium tetraoxide, and embedded in epoxy resin. Semi-thin sections were stained with Toluidine blue and observed by light microscopy. Thin sections were stained with uranyl acetate and lead citrate. For ribonucleoprotein detection, the staining method based on the regressive effect of EDTA was used. In addition, the osmium ammine technique was used for specific staining of DNA. RESULTS The results obtained in this study suggest that transfection of CEMP1 into HGFs does not produce changes in the general nucleolar ultrastructure because the different components of the organelle are present as fibrillary centers, and dense fibrillar and granular components compared with the control. CONCLUSION The transfection of CEMP1 into HGFs allows these cells to perform cementoblast-like functions without alteration of the ultrastructure of the nucleolus, evaluated by the presence of the different compartments of this organelle involved in ribosomal biogenesis.
Collapse
Affiliation(s)
- C E Villegas-Mercado
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - L T Agredano-Moreno
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - M Bermúdez
- School of Higher Education of Zaragoza, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - M L Segura-Valdez
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - H Arzate
- Faculty of Dentistry, Periodontal Biology Laboratory, DEPeI, National Autonomous University of Mexico (UNAM), Ciudad de Mexico, Mexico
| | - E F Del Toro-Rangel
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - L F Jiménez-García
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| |
Collapse
|
38
|
Washio K, Tsutsumi Y, Tsumanuma Y, Yano K, Srithanyarat SS, Takagi R, Ichinose S, Meinzer W, Yamato M, Okano T, Hanawa T, Ishikawa I. In Vivo Periodontium Formation Around Titanium Implants Using Periodontal Ligament Cell Sheet. Tissue Eng Part A 2018; 24:1273-1282. [PMID: 29495925 DOI: 10.1089/ten.tea.2017.0405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osseointegrated implants have been recognized as being very reliable and having long-term predictability. However, host defense mechanisms against infection have been known to be impaired around a dental implant because of the lack of a periodontal ligament (PDL). The purpose of our experimental design was to produce cementum and PDL on the implant surface adopting cell sheet technology. To this aim we used PDL-derived cells, which contain multipotential stem cells, as the cell source and we cultured them on an implant material constituted of commercially pure titanium treated with acid etching, blasting, and a calcium phosphate (CaP) coating to improve cell attachment. Implants with adhered human PDL cell sheets were transplanted into bone defects in athymic rat femurs as a xenogeneic model. Implants with adhered canine PDL-derived cell sheets were transplanted into canine mandibular bone as an autologous model. We confirmed that PDL-derived cells cultured with osteoinductive medium had the ability to induce cementum formation. The attachment of PDL cells onto the titanium surface with three surface treatments was accelerated, compared with that onto the smooth titanium surface, at 40 min after starting incubation. Results in the rat model showed that cementum-like and PDL-like tissue was partly observed on the titanium surface with three surface treatments in combination with adherent PDL-derived cell sheets. On the other hand, osseointegration was observed on almost all areas of the smooth titanium surface that had PDL-derived cell sheets, but did not have the three surface treatments. In the canine model, histological observation indicated that formation of cementum-like and PDL-like tissue was induced on the titanium surface with surface treatments and that the PDL-like tissue was perpendicularly oriented between the titanium surface with cementum-like tissue and the bone. Results demonstrate that a periodontal-like structure was formed around a titanium implant, which is similar to the environment existing around a natural tooth. The clinical application of dental implants combined with a cell sheet technique may be feasible as an alternative implant therapy. Furthermore, application of this methodology may play an innovative role in the periodontal, prosthetic, and orthodontic fields in dentistry.
Collapse
Affiliation(s)
- Kaoru Washio
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Yusuke Tsutsumi
- 2 Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Tokyo, Japan
| | - Yuka Tsumanuma
- 3 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kosei Yano
- 3 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | | | - Ryo Takagi
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Shizuko Ichinose
- 5 Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Walter Meinzer
- 3 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Masayuki Yamato
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Teruo Okano
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Takao Hanawa
- 2 Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Tokyo, Japan
| | - Isao Ishikawa
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| |
Collapse
|
39
|
Guo S, Kang J, Ji B, Guo W, Ding Y, Wu Y, Tian W. Periodontal-Derived Mesenchymal Cell Sheets Promote Periodontal Regeneration in Inflammatory Microenvironment. Tissue Eng Part A 2017; 23:585-596. [PMID: 28437177 DOI: 10.1089/ten.tea.2016.0334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shujuan Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Jian Kang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Periodontics, Tianjin Stomatological Hospital, Tianjin, P.R. China
| | - Baohui Ji
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, P.R. China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
40
|
Barrera-Ortega CC, Hoz-Rodríguez L, Arzate H, Fonseca-García A, Pérez-Alvarez J, Rodil SE. Comparison of the osteogenic, adipogenic, chondrogenic and cementogenic differentiation potential of periodontal ligament cells cultured on different biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1075-1084. [PMID: 28482471 DOI: 10.1016/j.msec.2017.03.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
It has been shown that the cellular responses such as adhesion, proliferation and differentiation are influenced by the surface properties, such as the topography or the surface energy. However, less is known about the effect of the chemical composition and type of material on the differentiation potential. The objective of the present paper is to compare the differentiation potential of periodontal ligament cells (HPLC) into adipocytes, osteoblasts, chondroblasts and cementoblasts of three type of materials (metals, ceramics and polymers) without using any biological induction media, but keeping the average roughness values within a limited range of 2.0-3.0μm. The samples were produced as discs of 14×2mm; (n=30 for each type of material). Two samples of each type were chosen; stainless-steel 316L and commercially pure titanium for the metallic samples. The polymers were polymethyl methacrylate and high-density polyethylene, and finally for the ceramics; zirconia and dental porcelain were used. The surfaces properties of the samples (wettability, chemical composition and point of zero charge, PZC) were measured in order to correlate them with the biological response. To evaluate the potential of differentiation, human periodontal ligament cells obtained from extracted teeth were used since they are a promising source for periodontal tissue regeneration. Cell proliferation was initially tested to assure non-toxic effects using a viability colorimetric assay. Finally, the differentiation pattern was evaluated using real time reverse transcription quantitative polymerase chain reaction for 5, 10 and 15days without adding any induction medium. The results indicated that the relative expression of genes related to a particular phenotype were different for each surface. However, not clear correlation between the type of material or their surface properties (morphology, chemical composition, wettability or point of zero charge) and the expression pattern could be identified. For example, bone markers were mainly expressed on cpTi and PMMA; one metallic hydrophobic and one polymeric hydrophilic sample which have similar Ra values but presented different topographical features, although both samples have in common a PZC below 7.
Collapse
Affiliation(s)
- C C Barrera-Ortega
- Laboratorio de Biología Periodontal, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México CDMX, México; Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, UNAM, Unidad de Posgrado, Zona Cultural de Ciudad Universitaria, México CDMX 04510, México
| | - L Hoz-Rodríguez
- Laboratorio de Biología Periodontal, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México CDMX, México
| | - H Arzate
- Laboratorio de Biología Periodontal, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México CDMX, México
| | - A Fonseca-García
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México CDMX, México; Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México CDMX 04510, México
| | - J Pérez-Alvarez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México CDMX, México
| | - S E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México CDMX, México.
| |
Collapse
|
41
|
Čebatariūnienė A, Jarmalavičiūtė A, Tunaitis V, Pūrienė A, Venalis A, Pivoriūnas A. Microcarrier culture enhances osteogenic potential of human periodontal ligament stromal cells. J Craniomaxillofac Surg 2017; 45:845-854. [DOI: 10.1016/j.jcms.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 02/22/2017] [Accepted: 03/20/2017] [Indexed: 11/15/2022] Open
|
42
|
Xiao Z, Han Y, Zhang Y, Zhang X. Hypoxia-regulated human periodontal ligament cells via Wnt/β-catenin signaling pathway. Medicine (Baltimore) 2017; 96:e6562. [PMID: 28422843 PMCID: PMC5406059 DOI: 10.1097/md.0000000000006562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/18/2017] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the effects of hypoxia on the proliferation, morphology, migration ability, hypoxia inducible factor (HIF) 1 (HIF-1) expression, and the relationship with Wnt/β-catenin signaling of human periodontal ligament cells (hPDLCs) in vitro. METHODS hPDLCs (4th passage) cultured by the tissue culture method were randomly assigned to slight (5% O2), severe hypoxia (1% O2) groups, and the control (21% O2) group, respectively. From 1st to 7th day, the optical density values were detected, and the growth curve was described. Wound healing assay was done to observe the migration ability of hPDLCs under various O2 conditions. Then reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of cementum-related genes and Wnt signaling pathway-related genes. Further, RT-qPCR, Western blot, and immunofluorescence staining method were constructed to show HIF expressions under different O2 concentrations in hPDLCs. RESULTS The growth rate of hPDLCs decreased with the reduction of O2 content by degree, and the morphology of hPDLCs changed in different O2 contents. Besides, hPDLCs migrate faster in 21% and 5% O2 than in 1% O2, and both the expressions of cementum-related genes and Wnt signaling pathway-related genes were raised under hypoxic conditions. In addition, with the reduction of O2 concentration, the messenger RNA and protein level expression of HIF were all increased, and HIF was gradually transported from cytoplasm into the nucleus and in 1% O2 concentration, it was mainly expressed in the nucleus. CONCLUSION This finding demonstrated that hypoxia was capable of suppressing the proliferation and migration ability, changing the morphology of hPDLCs, and stabilizing HIF-1α against degradation and promoting its translocation to the nucleus. Meanwhile, hypoxia may regulate hPDLCs proliferation and cementogenic differentiation via Wnt/β-catenin signaling pathway, which may potentially provide a novel insight into the etiology and treatment of periodontal diseases.
Collapse
Affiliation(s)
- Zhili Xiao
- College of Stomatology, Chongqing Medical University
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing
| | - Yineng Han
- Department of General Dentistry, The Affiliated Stomatology Hospital of Tongji University, Shanghai, China
| | - Yan Zhang
- College of Stomatology, Chongqing Medical University
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing
| |
Collapse
|
43
|
Shinagawa-Ohama R, Mochizuki M, Tamaki Y, Suda N, Nakahara T. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions. Stem Cells Dev 2017; 26:632-645. [PMID: 28136695 DOI: 10.1089/scd.2016.0330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.
Collapse
Affiliation(s)
- Rei Shinagawa-Ohama
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan .,2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Mai Mochizuki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Yuichi Tamaki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Naoto Suda
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan
| | - Taka Nakahara
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| |
Collapse
|
44
|
Park KH, Cho EH, Bae WJ, Kim HS, Lim HC, Park YD, Lee MO, Cho ES, Kim EC. Role of PIN1 on in vivo periodontal tissue and in vitro cells. J Periodontal Res 2017; 52:617-627. [PMID: 28198538 DOI: 10.1111/jre.12430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although expression of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) was reported in bone tissue, the precise role of PIN1 in periodontal tissue and cells remain unclear. MATERIAL & METHODS To elucidate the roles of PIN1 in periodontal tissue, its expression in periodontal tissue and cells, and effects on in vitro 4 osteoblast differentiation and the underlying signaling mechanisms were evaluated. RESULTS PIN1 was expressed in mouse periodontal tissues including periodontal ligament cells (PDLCs), cementoblasts and osteoblasts at the developing root formation stage (postnatal, PN14) and functional stage of tooth (PN28). Treatment of PIN1 inhibitor juglone, and gene silencing by RNA interference promoted osteoblast differentiation in PDLCs and cementoblasts, whereas the overexpression of PIN1 inhibited. Moreover, osteogenic medium-induced activation of AMPK, mTOR, Akt, ERK, p38 and NF-jB pathways were enhanced by PIN1 siRNA, but attenuated by PIN1 overexpression. Runx2 expressions were induced by PIN1 siRNA, but downregulated by PIN1 overexpression. CONCLUSION In summary, this study is the first to demonstrate that PIN1 is expressed in developing periodontal tissue, and in vitro PDLCs and cementoblasts. PIN1 inhibition stimulates osteoblast differentiation, and thus may play an important role in periodontal regeneration.
Collapse
Affiliation(s)
- K-H Park
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - E-H Cho
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology, and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - H-S Kim
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - H-C Lim
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Y-D Park
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - M-O Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - E-S Cho
- Department of Oral Anatomy, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology, and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
45
|
Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Res Ther 2016; 7:168. [PMID: 27842561 PMCID: PMC5109898 DOI: 10.1186/s13287-016-0417-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022] Open
Abstract
Background Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. Methods We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Results Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. Conclusions In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0417-x) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Gauthier P, Yu Z, Tran QT, Bhatti FUR, Zhu X, Huang GTJ. Cementogenic genes in human periodontal ligament stem cells are downregulated in response to osteogenic stimulation while upregulated by vitamin C treatment. Cell Tissue Res 2016; 368:79-92. [PMID: 27757536 DOI: 10.1007/s00441-016-2513-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/19/2016] [Indexed: 01/09/2023]
Abstract
Regeneration of periodontal tissues, particularly cementum, is key to regaining periodontal attachment and health. Human periodontal ligament stem cells (hPDLSCs) have been shown to be a good cell source to regenerate periodontal tissues. However, their subpopulations and the differentiation induction in relation to cementogenic lineages is unclear. Thus, we aim to examine the expression of cementum-associated genes in PDLSC subpopulations and determine the effect of broadly used osteogenic stimulus or vitamin C (VC) on the expression of cementogenic and osteogenic genes in PDLSCs. Our real-time quantitative polymerase chain reaction (qPCR) analysis showed that cementogenic marker cementum attachment protein (CAP) expressed only slightly higher in STRO-1+/CD146+, STRO-1-/CD146+ and STRO-1-/CD146- subpopulations than in the original cell pool, while cementum protein 1 (CEMP1) expression in these subpopulations was not different from the original pool. Notably, under the stimulation with osteogenic differentiation medium, CAP and CEMP1 were downregulated while osteogenic markers bone sialoprotein (BSP) and osteocalcin (OCN) were upregulated. Both CAP and CEMP1 were upregulated by VC treatment. Transplantation of VC-treated PDLSCs into immunocompromised mice resulted in forming significantly more ectopic cementum- and bone-like mineral tissues in vivo. Immunohistochemical analysis of the ectopic growth showed that CAP and CEMP1 were mainly expressed in the mineral tissue and in some cells of the fibrous tissues. We conclude that osteogenic stimulation is not inductive but appears to be inhibitory of cementogenic pathways, whereas VC induces cementogenic lineage commitment by PDLSCs and may be a useful stimulus for cementogenesis in periodontal regeneration.
Collapse
Affiliation(s)
- Philippe Gauthier
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA.,Faculté de médecine dentaire, Département d'endodontie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Zongdong Yu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Quynh T Tran
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Fazal-Ur-Rehman Bhatti
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xiaofei Zhu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,VIP Dental Service and Geriatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - George T-J Huang
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA. .,Faculté de médecine dentaire, Département d'endodontie, Université Laval, Québec, QC, G1V 0A6, Canada. .,Lab, Cancer Research Building, University of Tennessee Health Science Center, 19 S. Manassas St. Lab Rm 225, Office 222, Memphis, TN, 38163, USA.
| |
Collapse
|
47
|
Bae WJ, Auh QS, Lim HC, Kim GT, Kim HS, Kim EC. Sonic Hedgehog Promotes Cementoblastic Differentiation via Activating the BMP Pathways. Calcif Tissue Int 2016; 99:396-407. [PMID: 27289556 DOI: 10.1007/s00223-016-0155-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/20/2016] [Indexed: 01/25/2023]
Abstract
Although sonic hedgehog (SHH), an essential molecule in embryogenesis and organogenesis, stimulates proliferation of human periodontal ligament (PDL) stem cells, the effects of recombinant human SHH (rh-SHH) on osteoblastic differentiation are unclear. To reveal the role of SHH in periodontal regeneration, expression of SHH in mouse periodontal tissues and its effects on the osteoblastic/cementoblastic differentiation in human cementoblasts were investigated. SHH is immunolocalized to differentiating cementoblasts, PDL cells, and osteoblasts of the developing mouse periodontium. Addition of rh-SHH increased cell growth, ALP activity, and mineralization nodule formation, and upregulated mRNA expression of osteoblastic and cementoblastic markers. The osteoblastic/cementoblastic differentiation of rh-SHH was abolished by the SHH inhibitor cyclopamine (Cy) and the BMP antagonist noggin. rh-SHH increased the expression of BMP-2 and -4 mRNA, as well as levels of phosphorylated Akt, ERK, p38, and JNK, and of MAPK and NF-κB activation, which were reversed by noggin, Cy, and BMP-2 siRNA. Collectively, this study is the first to demonstrate that SHH can promote cell growth and cell osteoblastic/cementoblastic differentiation via BMP pathway. Thus, SHH plays important roles in the development of periodontal tissue, and might represent a new therapeutic target for periodontitis and periodontal regeneration.
Collapse
Affiliation(s)
- Won-Jung Bae
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Q-Schick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Chang Lim
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Gyu-Tae Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Orthodontics, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.
| |
Collapse
|
48
|
Chen X, Liu Y, Miao L, Wang Y, Ren S, Yang X, Hu Y, Sun W. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. Int J Nanomedicine 2016; 11:3145-58. [PMID: 27471382 PMCID: PMC4948698 DOI: 10.2147/ijn.s104324] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is a major cause for tooth loss, which affects about 15% of the adult population. Cementum regeneration has been the crux of constructing the periodontal complex. Cementum protein 1 (CEMP1) is a cementum-specific protein that can induce cementogenic differentiation. In this study, poly(ethylene glycol) (PEG)-stabilized amorphous calcium phosphate (ACP) nanoparticles were prepared by wet-chemical method and then loaded with recombinant human CEMP1 (rhCEMP1) for controlled release. An electrospun multiphasic scaffold constituted of poly(ε-caprolactone) (PCL), type I collagen (COL), and rhCEMP1/ACP was fabricated. The effects of rhCEMP1/ACP/PCL/COL scaffold on the attachment proliferation, osteogenic, and cementogenic differentiations of human periodontal ligament cells, (PDLCs) were systematically investigated. A critical size defect rat model was introduced to evaluate the effect of tissue regeneration of the scaffolds in vivo. The results showed that PEG-stabilized ACP nanoparticles formed a core-shell structure with sustained release of rhCEMP1 for up to 4 weeks. rhCEMP1/ACP/PCL/COL scaffold could suppress PDLCs proliferation behavior and upregulate the expression of cementoblastic markers including CEMP1 and cementum attachment protein while downregulating osteoblastic markers including osteocalcin and osteopontin when it was cocultured with PDLCs in vitro for 7 days. Histology analysis of cementum after being implanted with the scaffold in rats for 8 weeks showed that there was cementum-like tissue formation but little bone formation. These results indicated the potential of using electrospun multiphasic scaffolds for controlled release of rhCEMP1 for promoting cementum regeneration in reconstruction of the periodontal complex.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yu Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Leiying Miao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yangyang Wang
- Department of Materials Science and Engineering, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People's Republic of China
| | - Shuangshuang Ren
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xuebin Yang
- Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, Leeds, UK
| | - Yong Hu
- Institute of Materials Engineering, National Laboratory of Solid State Micro Structure, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
49
|
Liu F, Zhou ZF, An Y, Yu Y, Wu RX, Yin Y, Xue Y, Chen FM. Effects of cathepsin K on Emdogain-induced hard tissue formation by human periodontal ligament stem cells. J Tissue Eng Regen Med 2016; 11:2922-2934. [DOI: 10.1002/term.2195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Fen Liu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
- Department of Oral Medicine; Northwest Women's and Children's Hospital; Xi'an China
| | - Zhi-Fei Zhou
- State Key Laboratory of Military Stomatology, Department of Paediatric Dentistry; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Ying An
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Xue
- State Key Laboratory of Military Stomatology, Department of Oral Biology; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| |
Collapse
|
50
|
Han P, Lloyd T, Chen Z, Xiao Y. Proinflammatory Cytokines Regulate Cementogenic Differentiation of Periodontal Ligament Cells by Wnt/Ca(2+) Signaling Pathway. J Interferon Cytokine Res 2016; 36:328-37. [PMID: 27074616 DOI: 10.1089/jir.2015.0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontal inflammation can inhibit cell differentiation of periodontal ligament cells (PDLCs), resulting in decreased bone/cementum regeneration ability. The Wnt signaling pathway, including canonical Wnt/β-catenin signaling and noncanonical Wnt/Ca(2+) signaling, plays essential roles in cell proliferation and differentiation during tooth development. However, little is still known whether noncanonical Wnt/Ca(2+) signaling cascade could regulate cementogenic/osteogenic differentiation capability of PDLCs within an inflammatory environment. Therefore, in this study, human PDLCs (hPDLCs) and their cementogenic differentiation potential were investigated in the presence of cytokines. The data demonstrated that both cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) inhibited cell proliferation, relative alkaline phosphatase activity, bone/cementum-related gene/protein expression, and canonical Wnt pathway-related gene/protein expression in hPDLCs. Interestingly, both cytokines upregulated the noncanonical Wnt/Ca(2+) signaling-related gene and protein expression in hPDLCs. When the Wnt/Ca(2+) pathway was blocked by Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN93, even in the presence of IL-6 and TNF-α, cementogenesis could be stimulated in hPDLCs. Our data indicate that the Wnt/Ca(2+) pathway plays an inhibitory role on PDLC cementogenic differentiation in inflammatory microenvironments. Therefore, targeting the Wnt/Ca(2+) pathway may provide a novel therapeutic approach to improve periodontal regeneration for periodontal diseases.
Collapse
Affiliation(s)
- Pingping Han
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia .,2 Tissue Engineering and Microfluidic Laboratory, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane, Australia
| | - Tain Lloyd
- 3 School of Biomedical Sciences, The University of Queensland , Brisbane, Australia
| | - Zetao Chen
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | - Yin Xiao
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| |
Collapse
|