1
|
Remesz R, Khurelbaatar T, Rabey KN, Doschak MR, Romanyk DL. Three-dimensional morphometric analysis of cranial sutures - A novel approach to quantitative analysis. Bone Rep 2023; 19:101714. [PMID: 37767331 PMCID: PMC10520544 DOI: 10.1016/j.bonr.2023.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Objective Differences in complexity of cranial suture forms on the endocranial (i.e., deep) and ectocranial (i.e., superficial) skull surfaces have been noted in the literature, indicating through thickness three-dimensional (3D) suture variability depending on the chosen section and necessity for considering the complete 3D structure in many cases. This study aims to evaluate the variability of suture morphology through the skull thickness using a rat model, and to provide more robust metrics and methodologies to analyze suture morphology. Design X-ray micro-computed tomographic (μCT) imaging methods were utilized in order to provide internal structure information. Methods were developed to isolate and analyze sutures widths and linear interdigitation index (LII) values on each adjacent offset transverse plane of the μCT datasets. LII was defined as the curved path length of the suture divided by the linear length between the ends of the region of interest. Scans were obtained on 15 female rats at ages of 16, 20, and 24 weeks (n = 5/age). Samples were imaged at 18 μm resolutions with 90 kV source voltage, 278 μA source amperage, and 0.7° increments. Suture widths and LII values were compared using a Kruskal-Wallis test. Results 3D variability in local suture widths within individuals, as well as through thickness variabilities in planar widths and LII was observed. Kruskal-Wallis tests for bulk through thickness averaged suture widths and LII were found to be statistically insignificant, despite clear geometric differences through suture thicknesses. Conclusion Although the bulk morphometric variability between age groups was found to be statistically insignificant, the 3D variability within individuals point to the importance of analyzing suture form using 3D metrics when studying suture development, response to functional activity, or morphometry in general.
Collapse
Affiliation(s)
- Ross Remesz
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Karyne N. Rabey
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Anthropology, University of Alberta, Edmonton, AB, Canada
| | - Michael R. Doschak
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dan L. Romanyk
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Guerrero Vargas JA, Carvalho Trojan L, de Las Casas EB, Garzón Alvarado DA. Finite element analysis of the influence of interdigitation pattern and collagen fibers on the mechanical behavior of the midpalatal suture. Med Biol Eng Comput 2023; 61:2367-2377. [PMID: 37076651 DOI: 10.1007/s11517-023-02838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
The midpalatal suture (MPS) corresponds to the tissue that joins the two maxillary bones. Understanding the mechanical behavior of this tissue is of particular interest to those patients who require orthodontic treatments such as Rapid Maxillary Expansion (RME). The objective of this research was to observe the influence of interdigitation and collagen fibers on the mechanical response of MPS. To this end, a finite element analysis in two-dimensional models of the bone-suture-bone interface was performed considering the characteristics of the MPS. The geometry of the suture was modeled with 4 different levels of interdigitation: null, moderate, scalloped and fractal. The influence of collagen fibers, aligned transversely along the suture, was considered by incorporating linked structures of the bone fronts. According to the results, the factor that has the greatest impact on the magnitude and distribution of stresses is the interdigitation degree. A higher level of interdigitation produces an increase in tissue stiffness and a lower influence of collagen fibers on the mechanical response of the tissue. Therefore, this research contributes to the understanding of the MPS biomechanics by providing information that may be useful to health staff when evaluating the feasibility of procedures such as RME.
Collapse
Affiliation(s)
- J A Guerrero Vargas
- Department of Mechanical Engineering, Faculty of Engineering, Universidad ECCI, Vicerrectoría de Investigación, Carrera 19 No 49-20 Sede P, Bogotá, Colombia.
| | - L Carvalho Trojan
- Department of Structural Engineering, School of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - E Barbosa de Las Casas
- Department of Structural Engineering, School of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D A Garzón Alvarado
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
3
|
Gorucu-Coskuner H, Al-Yassary M, Billiaert K, Kiliaridis S, Antonarakis GS. Age-related transversal changes in craniofacial sutures of the anterior viscerocranium in growing rats. Front Physiol 2023; 14:1201990. [PMID: 37398902 PMCID: PMC10311509 DOI: 10.3389/fphys.2023.1201990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Objective: To evaluate the dimensional changes that occur in the internasal and nasopremaxillary sutures, and related transverse craniofacial dimensions, of rats from 4 to 38-weeks of age. Methods: Four groups of twelve male Wistar rats were sacrificed at different ages [4-weeks (immature), 16-weeks (adolescent), 26-weeks (young adult), 38-weeks (adult)]. The rats were scanned with a high-resolution micro-computed tomography imaging device with 90 µm voxel size and 45 mm × 45 mm field of view (FOV) to obtain images of the viscreocranium, and with 10 µm voxel size and 5 mm × 5 mm FOV to obtain images of the internasal and left nasopremaxillary sutures. The nasal bone width, transverse width between the nasopremaxillary sutures and interzygomatic width were measured as craniofacial measurements. The endocranial, ectocranial and mean suture widths (cross-sectional area between endocranial and ectocranial borders/suture height), and suture height were measured at 5 frontal planes with 1.2 mm intervals. Outcomes were compared at different ages, and correlation coefficients were used to assess the relationship between craniofacial and suture changes. Results: All transverse craniofacial dimensions increased significantly from 4-16 weeks of age (p < 0.001). After 16-weeks of age, the only significant increase was observed in interzygomatic width (p = 0.02), between 26 and 38 weeks. In both the internasal and nasopremaxillary sutures, the endocranial suture mean widths decreased from 4-16 weeks (p < 0.001 and p = 0.002, respectively), but did not show any significant change after 16-weeks of age. The ectocranial internasal suture width decreased from 4-16 weeks (p < 0.001), increased until 26-weeks (p = 0.035), and subsequently decreased (p < 0.001). The nasopremaxillary suture widths decreased from 4-38 weeks to varying degrees in different frontal planes. Except for the internasal ectocranial suture width, all suture measurements were found highly and negatively correlated with the transverse craniofacial dimensions. The height of the sutures increased with time, with the most significant changes occurring between 4 and 16 weeks of age (p < 0.001). Conclusion: Although the internasal and nasopremaxillary endocranial suture widths nearly reach their final widths during adolescence, the changes in the ectocranial and mean suture widths continue into early adulthood. These results may serve as a reference for future studies aiming to evaluate the effects of functional demands on suture development and dimensional changes of the viscerocranium.
Collapse
Affiliation(s)
- Hande Gorucu-Coskuner
- Department of Orthodontics, Hacettepe University, Ankara, Türkiye
- Division of Orthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Mustafa Al-Yassary
- Division of Orthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Kelly Billiaert
- Division of Orthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Stavros Kiliaridis
- Division of Orthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
- Department of Orthodontics, University of Bern, Bern, Switzerland
| | - Gregory S. Antonarakis
- Division of Orthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Amuk M, Gül Amuk N, Hacıoğlu Z. Effects of orofacial applications of low-magnitude, high-frequency mechanical vibration on cranial sutures and calvarial bones: A micro-computed tomography study in rats. Am J Orthod Dentofacial Orthop 2022; 162:459-468. [PMID: 35777991 DOI: 10.1016/j.ajodo.2021.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The purpose of this study was to assess the effects of orthodontically aimed low-magnitude, high-frequency mechanical vibration (OLMHFMV) on intact calvarial bone, specifically the parietal and temporal, and cranial sutures, including the sagittal and parietotemporal, of rats in differing stages of growth and development. METHODS Forty Wistar rats were divided into 4 groups: 2 control groups and 2 OLMHFMV groups. Subsequently, 0.3 cN of force with a frequency of 30 Hz was applied as OLMHFMV on the temporomandibular joint region in the rats in the OLMHFMV-1 group, with the protocol of 20 min/d for 5 d/wk for 1 month, whereas the rats in the OLMHFMV-2 group received mechanical stimuli for 2 months with the same protocol. Morphometric and structural analyses, including suture width, cranial width and height, bone mineral density, bone volume/tissue volume, trabecular number, trabecular separation, and trabecular thickness analyses, were carried out using micro-computed tomography. RESULTS The width of the parietotemporal and sagittal sutures and the cranial height and width increased significantly by OLMHFMV (P <0.021). The structural analysis revealed that trabecular number and trabecular separation increased, whereas trabecular thickness decreased in the OLMHFMV groups compared with the control groups (P <0.048). Bone volume/tissue volume remained unchanged despite reducing the bone mineral density of the OLMHFMV groups. CONCLUSIONS OLMHFMV had a potential for modulating sutural and cranial growth in adolescent rats. OLMHFMV increased the structural quality of the temporal and parietal bones. These effects may have clinical implications as a treatment option for patients suffering from craniofacial anomalies such as craniosynostosis or a supportive approach for dentofacial orthodontic treatments.
Collapse
Affiliation(s)
- Mehmet Amuk
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Nisa Gül Amuk
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey.
| | - Zeynep Hacıoğlu
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Mechanical loading of cranial joints minimizes the craniofacial phenotype in Crouzon syndrome. Sci Rep 2022; 12:9693. [PMID: 35690633 PMCID: PMC9188582 DOI: 10.1038/s41598-022-13807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Children with syndromic forms of craniosynostosis undergo a plethora of surgical interventions to resolve the clinical features caused by the premature fusion of cranial sutures. While surgical correction is reliable, the need for repeated rounds of invasive treatment puts a heavy burden on the child and their family. This study explores a non-surgical alternative using mechanical loading of the cranial joints to prevent or delay craniofacial phenotypes associated with Crouzon syndrome. We treated Crouzon syndrome mice before the onset of craniosynostosis by cyclical mechanical loading of cranial joints using a custom designed set-up. Cranial loading applied to the frontal bone partially restores normal skull morphology, significantly reducing the typical brachycephalic appearance. This is underpinned by the delayed closure of the coronal suture and of the intersphenoidal synchondrosis. This study provides a novel treatment alternative for syndromic craniosynostosis which has the potential to be an important step towards replacing, reducing or refining the surgical treatment of all craniosynostosis patients.
Collapse
|
6
|
Success and complication rate of miniscrew assisted non-surgical palatal expansion in adults - a consecutive study using a novel force-controlled polycyclic activation protocol. Head Face Med 2021; 17:50. [PMID: 34895287 PMCID: PMC8665552 DOI: 10.1186/s13005-021-00301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/13/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Bone-borne miniscrew assisted palatal expansion (MAPE) is a common technique to improve maxillary transverse deficiency in young adolescents. Adult patients usually present a challenge, as they often require additional surgical assisted maxillary expansion (SARPE). There is still no clear statement about non-surgical expansion in adult patients using this technique. The aim of this study was to evaluate the success and complication rate of non-surgical palatal expansion in adults utilizing MAPE with a novel force-controlled polycyclic expansion protocol (FCPC). Methods This consecutive study consisted of 33 adult patients with an average age of 29.1 ± 10.2 years (min. 18 years, max. 58 years), including one dropout patient. First, four miniscrews were inserted and after 12-weeks latency, the expander was placed and the FCPC protocol was applied (MAPE group). In case of missing expansion, a SARPE was performed (SARPE group). After maximum expansion, a cone beam CT was made and widening of the midpalatal suture was measured. The outcome variables were successful non-surgical expansion and, with sample size power above 80%, the odds of failed non-surgical expansion and associated complications were evaluated. The primary predictor variable was age. Statistical analysis was performed using R (Version 3.1) to calculate power, to construct various models for measuring the odds of requiring surgical intervention/complications, and others. Results Successful non-surgical expansion was achieved in 27 patients (84.4%), ranging from 18 to 49 years. Mean age differed significantly between both groups (26.8 ± 8.2 years vs. 41.3 ± 9.9 years; p < 0.001). Mean expansion at the anterior and posterior palate for the MAPE group was 5.4 ± 1.5 mm and 2.5 ± 1.1 mm, respectively. Among these subjects’ complications were observed in 18.5%. Age significantly increased the odds of complications (p = 0.019). Conclusions 1. The success rate of MAPE among individuals aged 18 to 49 years was 84.4%. 2. A V-shaped expansion pattern in the antero-posterior dimension was mostly observed. 3. Complications were significantly associated with age. 4. A careful expansion protocol seems to be beneficial to prevent unfavorable results in adult patients. Trial registration Consecutive cohort study, Review Board No. EK-2-2014/0016.
Collapse
|
7
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Guerrero JA, Silva RS, de Abreu Lima IL, Rodrigues BCD, Barrioni BR, Amaral FA, Tabanez AP, Garlet GP, Alvarado DAG, Silva TA, de Las Casas EB, Macari S. Maxillary suture expansion: A mouse model to explore the molecular effects of mechanically-induced bone remodeling. J Biomech 2020; 108:109880. [PMID: 32635995 DOI: 10.1016/j.jbiomech.2020.109880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study was to analyze the effect of rapid maxillary expansion (RME) on hard tissues. Opening loops bonded to the first and second maxillary molars on both sides were used to apply distracting forces of 0.28 N, 0.42 N and 0.56 N at the midpalatal suture for 7 and 14 days. Microcomputed tomography (MicroCT), histomorphometry and quantitative polymerase chain reaction (qPCR) analysis were performed to evaluate RME effectiveness, midpalatal suture remodeling, cell counting of osteoblasts, osteoclasts and chondrocytes and the expression of bone remodeling markers, respectively. All forces at the two different time points resulted in similar RME and enhanced of bone remodeling. Accordingly, increased number of osteoblasts and reduced chondrocytes counting and no difference in osteoclasts were seen after all RME protocols. RME yielded increased expression of bone remodeling markers as osteocalcin (Ocn), dentin matrix acidic phosphoprotein-1 (Dmp1), runt-related transcription factor 2 (Runx2), collagen type I Alpha 1 (Col1a1), alkaline phosphatase (ALP), receptor activator of nuclear factor kappa B (RANK), receptor activator of nuclear factor kappa B ligand (Rankl), osteoprotegerin (Opg), cathepsin K (Ctsk), matrix metalloproteinases 9 and 13 (Mmp9 and 13), transforming growth fator beta 1, 2 and 3 (Tgfb 1, Tgfb 2 and Tgfb3), bone morphogenetic protein 2 (Bmp-2), sclerostin (Sost), beta-catenin-like protein 1 (Ctnnbl) and Wnt signaling pathways 3, 3a and 5a (Wnt 3, Wnt 3a and Wnt 5a). These findings characterize the cellular changes and potential molecular pathways involved in RME, proving the reliability of this protocol as a model for mechanical-induced bone remodeling.
Collapse
Affiliation(s)
- Jose Alejandro Guerrero
- Institute of Biotechnology, Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, National University of Colombia, Bogotá, Colombia
| | - Raquel Souto Silva
- Departament of Social and Preventive Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Izabella Lucas de Abreu Lima
- Departament of Pediatric Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Petenuci Tabanez
- Department of Biological Sciences, Faculty of Dentistry of Bauru, University of São Paulo, Bauru, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Faculty of Dentistry of Bauru, University of São Paulo, Bauru, SP, Brazil
| | - Diego Alexander Garzon Alvarado
- Institute of Biotechnology, Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, National University of Colombia, Bogotá, Colombia
| | - Tarcília Aparecida Silva
- Department of Clinic, Pathology and Dental Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Estevam Barbosa de Las Casas
- Department of Structural Engineering, Faculty of Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Effect of supplemental vibration on orthodontic treatment with aligners: A randomized trial. Am J Orthod Dentofacial Orthop 2018; 153:336-346. [PMID: 29501108 DOI: 10.1016/j.ajodo.2017.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Supplemental vibration has been reported to accelerate orthodontic tooth movement and reduce discomfort. Our purpose was to investigate the effects of AcceleDent on Invisalign treatment. This randomized clinical trial was carried out in 2 orthodontic private practices with a 1:1 allocation ratio. METHODS Adult patients who were beginning their orthodontic treatment were randomly allocated to either an active (A) or a sham (B) AcceleDent Aura device (OrthoAccel Technologies, Inc. Houston, TX). All patients were placed on a 1-week aligner change regimen, and fit was evaluated every 3 weeks. The outcomes were the ability to complete the initial set of aligners and the incisor irregularity measurements for those who completed their regimen of aligners. In addition, aligner compliance, pain levels, and oral health-related quality of life data were gathered from questionnaires. The subjects, investigators, and assessors were all blinded to the treatment arms. RESULTS Twenty-seven subjects were randomized into 2 groups (A and B), 1 subject discontinued treatment, and 13 subjects were analyzed in each group. The Fisher exact test showed no significant difference in completion rates between the 2 groups (group A, 77%; group B, 85%; P = 1). Independent-sample t tests showed no significant difference between the final irregularity index or change in irregularity index between the 2 groups. Compliance was similar in both groups. The Wilcoxon rank sum test showed minimal differences in pain levels. Quality of life responses were similar in both groups. No serious harm was observed. CONCLUSIONS We found no evidence that the AcceleDent Aura device impacts the ability to complete a series of aligners with a 1-week change regimen or the final alignment achieved in adult patients. It also had no significant effect on the reduction of orthodontic pain or oral health-related quality of life parameters when used with Invisalign.
Collapse
|
10
|
Savoldi F, Tsoi JK, Paganelli C, Matinlinna JP. The Biomechanical Properties of Human Craniofacial Sutures and Relevant Variables in Sutural Distraction Osteogenesis: A Critical Review. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:25-36. [DOI: 10.1089/ten.teb.2017.0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fabio Savoldi
- Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong
- Department of Orthodontics, Dental School, University of Brescia, Brescia, Italy
| | - James K.H. Tsoi
- Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Corrado Paganelli
- Department of Orthodontics, Dental School, University of Brescia, Brescia, Italy
| | - Jukka P. Matinlinna
- Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis. Sci Rep 2017; 7:11494. [PMID: 28904366 PMCID: PMC5597583 DOI: 10.1038/s41598-017-11801-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/30/2017] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis is a bone developmental disease where premature ossification of the cranial sutures occurs leading to fused sutures. While biomechanical forces have been implicated in craniosynostosis, evidence of the effect of microenvironmental stiffness changes in the osteogenic commitment of cells from the sutures is lacking. Our aim was to identify the differential genetic expression and osteogenic capability between cells from patent and fused sutures of children with craniosynostosis and whether these differences are driven by changes in the stiffness of the microenvironment. Cells from both sutures demonstrated enhanced mineralisation with increasing substrate stiffness showing that stiffness is a stimulus capable of triggering the accelerated osteogenic commitment of the cells from patent to fused stages. The differences in the mechanoresponse of these cells were further investigated with a PCR array showing stiffness-dependent upregulation of genes mediating growth and bone development (TSHZ2, IGF1), involved in the breakdown of extracellular matrix (MMP9), mediating the activation of inflammation (IL1β) and controlling osteogenic differentiation (WIF1, BMP6, NOX1) in cells from fused sutures. In summary, this study indicates that stiffer substrates lead to greater osteogenic commitment and accelerated bone formation, suggesting that stiffening of the extracellular environment may trigger the premature ossification of the sutures.
Collapse
|
12
|
Aldrees AM. Do customized orthodontic appliances and vibration devices provide more efficient treatment than conventional methods? Korean J Orthod 2016; 46:180-5. [PMID: 27226964 PMCID: PMC4879321 DOI: 10.4041/kjod.2016.46.3.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 01/04/2023] Open
Abstract
The incorporation of technological advances in the field of clinical orthodontics to increase treatment efficiency has led to the development of customized appliances (Insignia®), archwires (Suresmile®), and the production of devices to enhance tooth movement (Acceledent®). This review presents a comprehensive study of the literature concerning these products, and analyzes the available evidence of their efficiency. To date, one pilot study has evaluated the efficiency of the Insignia® system, three retrospective studies have assessed the efficiency of the Suresmile® system, and a few Acceledent® reports have described its effect on treatment time. Critical appraisal of the reviewed papers revealed that the efficiency of the Insignia® system cannot be confirmed based on the available evidence, while the use of Suresmile® can reduce overall treatment time in simple cases. The acceleration of tooth movement by Acceledent® devices has not yet been confirmed.
Collapse
Affiliation(s)
- Abdullah M Aldrees
- Division of Orthodontics, Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Bailleul AM, Scannella JB, Horner JR, Evans DC. Fusion Patterns in the Skulls of Modern Archosaurs Reveal That Sutures Are Ambiguous Maturity Indicators for the Dinosauria. PLoS One 2016; 11:e0147687. [PMID: 26862766 PMCID: PMC4749387 DOI: 10.1371/journal.pone.0147687] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
The sutures of the skulls of vertebrates are generally open early in life and slowly close as maturity is attained. The assumption that all vertebrates follow this pattern of progressive sutural closure has been used to assess maturity in the fossil remains of non-avian dinosaurs. Here, we test this assumption in two members of the Extant Phylogenetic Bracket of the Dinosauria, the emu, Dromaius novaehollandiae and the American alligator, Alligator mississippiensis, by investigating the sequence and timing of sutural fusion in their skulls. As expected, almost all the sutures in the emu skull progressively close (i.e., they get narrower) and then obliterate during ontogeny. However, in the American alligator, only two sutures out of 36 obliterate completely and they do so during embryonic development. Surprisingly, as maturity progresses, many sutures of alligators become wider in large individuals compared to younger, smaller individuals. Histological and histomorphometric analyses on two sutures and one synchondrosis in an ontogenetic series of American alligator confirmed our morphological observations. This pattern of sutural widening might reflect feeding biomechanics and dietary changes through ontogeny. Our findings show that progressive sutural closure is not always observed in extant archosaurs, and therefore suggest that cranial sutural fusion is an ambiguous proxy for assessing maturity in non-avian dinosaurs.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Museum of the Rockies and Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| | - John B. Scannella
- Museum of the Rockies and Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| | - John R. Horner
- Museum of the Rockies and Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| | - David C. Evans
- Royal Ontario Museum and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Gross JB, Stahl BA, Powers AK, Carlson BM. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics. Evol Dev 2016; 18:7-18. [PMID: 26153732 PMCID: PMC5226847 DOI: 10.1111/ede.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals that colonize dark and nutrient-poor subterranean environments evolve numerous extreme phenotypes. These include dramatic changes to the craniofacial complex, many of which are under genetic control. These phenotypes can demonstrate asymmetric genetic signals wherein a QTL is detected on one side of the face but not the other. The causative gene(s) underlying QTL are difficult to identify with limited genomic resources. We approached this task by searching for candidate genes mediating fragmentation of the third suborbital bone (SO3) directly inferior to the orbit of the eye. We integrated positional genomic information using emerging Astyanax resources, and linked these intervals to homologous (syntenic) regions of the Danio rerio genome. We identified a discrete, approximately 6 Mb, conserved region wherein the gene causing SO3 fragmentation likely resides. We interrogated this interval for genes demonstrating significant differential expression using mRNA-seq analysis of cave and surface morphs across life history. We then assessed genes with known roles in craniofacial evolution and development based on GO term annotation. Finally, we screened coding sequence alterations in this region, identifying two key genes: transforming growth factor β3 (tgfb3) and bone morphogenetic protein 4 (bmp4). Of these candidates, tgfb3 is most promising as it demonstrates significant differential expression across multiple stages of development, maps close (<1 Mb) to the fragmentation critical locus, and is implicated in a variety of other animal systems (including humans) in non-syndromic clefting and malformations of the cranial sutures. Both abnormalities are analogous to the failure-to-fuse phenotype that we observe in SO3 fragmentation. This integrative approach will enable discovery of the causative genetic lesions leading to complex craniofacial features analogous to human craniofacial disorders. This work underscores the value of cave-dwelling fish as a powerful evolutionary model of craniofacial disease, and demonstrates the power of integrative system-level studies for informing the genetic basis of craniofacial aberrations in nature.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Brian M. Carlson
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| |
Collapse
|
15
|
Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. Effect of low-frequency mechanical vibration on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2015; 148:440-9. [PMID: 26321342 DOI: 10.1016/j.ajodo.2015.03.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/01/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Our objective was to investigate the effect of low-frequency mechanical vibration (LFMV) on the rate of tooth movement, bone volume fraction, tissue density, and the integrity of the periodontal ligament. Our null hypothesis was that there would be no difference in the amount of tooth movement between different values of LFMV. METHODS Sixty-four male CD1 mice, 12 weeks old, were used for orthodontic tooth movement. The mice were randomly divided into 2 groups: control groups (baseline; no spring + 5 Hz; no spring + 10 Hz; and no spring + 20 Hz) and experimental groups (spring + no vibration; spring + 5 Hz; spring + 10 Hz; and spring + 20 Hz). In the experimental groups, the first molars were moved mesially for 2 weeks using nickel-titanium coil springs delivering 10 g of force. In the control and experimental groups, LFMV was applied at 5, 10, or 20 Hz. Microfocus x-ray computed tomography analysis was used for tooth movement measurements, bone volume fraction, and tissue density. Additionally, immunostaining for sclerostin, tartrate-resistant acid phosphatase (TRAP) staining, and picrosirius red staining were used on the histologic sections. Simple descriptive statistics were used to summarize the data. Kruskal-Wallis tests were used to compare the outcomes across treatment groups. RESULTS LFMV did not increase the rate of orthodontic tooth movement. Microfocus x-ray computed tomography analysis showed increases in bone volume fractions and tissue densities with applications of LFMV. Sclerostin expression was decreased with 10 and 20 Hz vibrations in both the control and experimental groups. Additionally, the picrosirius staining showed that LFMV helped in maintaining the thickness and integrity of collagen fibers in the periodontal ligament. CONCLUSIONS There was no significant increase in tooth movement by applying LFMV when compared with the control groups (spring + no vibration).
Collapse
Affiliation(s)
- Sumit Yadav
- Assistant professor, Division of Orthodontics, Health Center, University of Connecticut, Farmington, Conn.
| | - Thomas Dobie
- Visiting assistant professor, Health Center, University of Connecticut, Farmington, Conn
| | - Amir Assefnia
- Resident, Division of Orthodontics, Health Center, University of Connecticut, Farmington, Conn
| | - Himank Gupta
- Resident, Division of Orthodontics, Health Center, University of Connecticut, Farmington, Conn
| | - Zana Kalajzic
- Research associate, Health Center, University of Connecticut, Farmington, Conn
| | - Ravindra Nanda
- Professor and head, Division of Orthodontics, Health Center, University of Connecticut, Farmington, Conn
| |
Collapse
|
16
|
Yadav S, Assefnia A, Gupta H, Vishwanath M, Kalajzic Z, Allareddy V, Nanda R. The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model. Eur J Orthod 2015; 38:44-50. [DOI: 10.1093/ejo/cjv006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Zollikofer CPE, Weissmann JD. A bidirectional interface growth model for cranial interosseous suture morphogenesis. J Anat 2011; 219:100-14. [PMID: 21539540 DOI: 10.1111/j.1469-7580.2011.01386.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Interosseous sutures exhibit highly variable patterns of interdigitation and corrugation. Recent research has identified fundamental molecular mechanisms of suture formation, and computer models have been used to simulate suture morphogenesis. However, the role of bone strain in the development of complex sutures is largely unknown, and measuring suture morphologies beyond the evaluation of fractal dimensions remains a challenge. Here we propose a morphogenetic model of suture formation, which is based on the paradigm of Laplacian interface growth. Computer simulations of suture morphogenesis under various boundary conditions generate a wide variety of synthetic sutural forms. Their morphologies are quantified with a combination of Fourier analysis and principal components analysis, and compared with natural morphological variation in an ontogenetic sample of human interparietal suture lines. Morphometric analyses indicate that natural sutural shapes exhibit a complex distribution in morphospace. The distribution of synthetic sutures closely matches the natural distribution. In both natural and synthetic systems, sutural complexity increases during morphogenesis. Exploration of the parameter space of the simulation system indicates that variation in strain and/or morphogen sensitivity and viscosity of sutural tissue may be key factors in generating the large variability of natural suture complexity.
Collapse
|
18
|
Abstract
The profession of orthodontics is projected to face a multitude of challenges. Do cyclic forces accelerate the rate of tooth movement and hence the speed of orthodontic treatment? Would bioengineered cementum and dentine be a solution to root resorption? What would orthodontics be like when bioengineered periodontal ligament and alveolar bone become clinical practice, or one day, entire teeth are bioengineered? Would it be possible to selectively differentiate stem cells into osteoblasts or osteoclasts by either static or cyclic forces? What is the new demand on orthodontic expertise with increasingly automated appliances? What will be the impact of the next generation of dental implants or rapid prototyped crowns on orthodontics? A century ago, Edward Angle's practice of fixed appliances, along with other seminal contributions, such as functional appliances, established the profession of orthodontics. Today, the biophysical principles of orthodontics remain largely unchanged from Angle's era, despite incremental refinements of brackets and wires. The paucity of fundamental innovations in orthodontics for decades presents intrinsic risks for the profession. This review will identify challenges for contemporary orthodontics and delineate strategies for the profession to evolve in an era of unprecedented scientific and technological advances, and serve as a call to action for the orthodontic profession.
Collapse
Affiliation(s)
- Jeremy J Mao
- Professor, College of Dental Medicine, Division of Orthodontics, Columbia University
| |
Collapse
|
19
|
Menegaz RA, Sublett SV, Figueroa SD, Hoffman TJ, Ravosa MJ, Aldridge K. Evidence for the Influence of Diet on Cranial Form and Robusticity. Anat Rec (Hoboken) 2010; 293:630-41. [DOI: 10.1002/ar.21134] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Yu W, Serrano M, Miguel SS, Ruest LB, Svoboda KK. Cleft lip and palate genetics and application in early embryological development. Indian J Plast Surg 2009; 42 Suppl:S35-50. [PMID: 19884679 PMCID: PMC2825058 DOI: 10.4103/0970-0358.57185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The development of the head involves the interaction of several cell populations and coordination of cell signalling pathways, which when disrupted can cause defects such as facial clefts. This review concentrates on genetic contributions to facial clefts with and without cleft palate (CP). An overview of early palatal development with emphasis on muscle and bone development is blended with the effects of environmental insults and known genetic mutations that impact human palatal development. An extensive table of known genes in syndromic and non-syndromic CP, with or without cleft lip (CL), is provided. We have also included some genes that have been identified in environmental risk factors for CP/L. We include primary and review references on this topic.
Collapse
Affiliation(s)
- Wenli Yu
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - Maria Serrano
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - Symone San Miguel
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - L. Bruno Ruest
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - Kathy K.H. Svoboda
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| |
Collapse
|
21
|
Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 2008; 3:e3922. [PMID: 19081793 PMCID: PMC2597748 DOI: 10.1371/journal.pone.0003922] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/17/2008] [Indexed: 11/19/2022] Open
Abstract
Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs) and mesenchymal stem/progenitor cells (MSCs) were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP) scaffolds, followed by infusion of gel-suspended CD34(+) hematopoietic cells. Co-transplantation of CD34(+) HSCs and CD34(-) MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+) and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+) cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+) cells. Based on additional in vitro results of endothelial differentiation of CD34(+) cells by vascular endothelial growth factor (VEGF), we adsorbed VEGF with co-transplanted CD34(+) and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+) cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone, adipose, muscle and dermal grafts, and may have implications in the regeneration of internal organs.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - Paul A. Clark
- Department of Neurological Surgery CSC, University of Wisconsin at Madison Hospital, Madison, Wisconsin, United States of America
| | - Mo Chen
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - James E. Dennis
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Helaman P. Erickson
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - Stanton L. Gerson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeremy J. Mao
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| |
Collapse
|
22
|
A model of the cranial vault as a tensegrity structure, and its significance to normal and abnormal cranial development. INT J OSTEOPATH MED 2008. [DOI: 10.1016/j.ijosm.2008.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Moioli EK, Clark PA, Sumner DR, Mao JJ. Autologous stem cell regeneration in craniosynostosis. Bone 2008; 42:332-40. [PMID: 18023269 PMCID: PMC4035041 DOI: 10.1016/j.bone.2007.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 09/24/2007] [Accepted: 10/01/2007] [Indexed: 01/21/2023]
Abstract
Craniosynostosis occurs in one of 2500 live human births and may manifest as craniofacial disfiguration, seizure, and blindness. Craniotomy is performed to reshape skull bones and resect synostosed cranial sutures. We demonstrate for the first time that autologous mesenchymal stem cells (MSCs) and controlled-released TGFbeta3 reduced surgical trauma to localized osteotomy and minimized osteogenesis in a rat craniosynostosis model. Approximately 0.5 mL tibial marrow content was aspirated to isolate mononucleated and adherent cells that were characterized as MSCs. Upon resecting the synostosed suture, autologous MSCs in collagen carriers with microencapsulated TGFbeta3 (1 ng/mL) generated cranial suture analogs characterized as bone-soft tissue-bone interface by quantitative histomorphometric and microCT analyses. Thus, surgical trauma in craniosynostosis can be minimized by a biologically viable implant. We speculate that proportionally larger amounts of human marrow aspirates participate in the healing of craniosynostosis defects in patients. The engineered soft tissue-bone interface may have implications in the repair of tendons, ligaments, periosteum and periodontal ligament.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University, College of Dental Medicine, Tissue Engineering and Regenerative Medicine Laboratory, 630 W. 168 St. – PH7E CDM, New York, NY 10032, USA
| | - Paul A. Clark
- University of Wisconsin at Madison Hospital, Department of Neurological Surgery CSC K4/879, 600 Highland Ave., Madison, WI 53792, USA
| | - D. Rick Sumner
- Rush University, Department of Anatomy and Cell Biology, 600 South Paulina, Suite 507, Chicago, IL 60612, USA
| | - Jeremy J. Mao
- Columbia University, College of Dental Medicine, Tissue Engineering and Regenerative Medicine Laboratory, 630 W. 168 St. – PH7E CDM, New York, NY 10032, USA
| |
Collapse
|
24
|
Peptan AI, Lopez A, Kopher RA, Mao JJ. Responses of intramembranous bone and sutures upon in vivo cyclic tensile and compressive loading. Bone 2008; 42:432-8. [PMID: 18032124 PMCID: PMC4096789 DOI: 10.1016/j.bone.2007.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 11/17/2022]
Abstract
Cranial vault and facial sutures interpose between mineralized bones of the skull, and may function analogously to appendicular and cranial base growth plates. However, unlike growth plates that are composed of chondrocyte lineage, cranial and facial sutures possess heterogeneous cell lineages such as mesenchymal cells, fibroblasts, and osteoblasts, in addition to vascular-derived cells. Despite recently intensified effort, the biological responses of intramembranous bone and sutures to mechanical loading are not well understood. This study was designed to investigate whether brief doses of tensile or compressive forces induce modeling and growth responses of intramembranous bone and sutures. In different groups of growing rabbits in vivo, cyclic tensile or compressive forces at 1 N and 8 Hz were applied to the maxilla for 20 min/day over 12 consecutive days. Computerized histomorphometric analyses revealed that the average sutural widths of both the premaxillomaxillary suture (PMS) and nasofrontal suture (NFS) loaded in either tension or compression were significantly higher than age- and sex-matched sham controls (P<0.01). The average cell densities of tension- or compression-loaded PMS and NFS were significantly higher than sham controls (P<0.01). The average osteoblast occupied sutural bone surface loaded under tension was significantly higher than that of sham control (P<0.05). Interestingly, tensile loading significantly reduced the average osteoclast surface, in comparison to sham control (P<0.05). For the NFS, tensile loading significantly increased the average osteoblast occupied sutural bone surface, in comparison with that of sham control (P<0.05). Also for the NFS suture, compression significantly reduced the average sutural osteoclast surface in comparison with sham control (P<0.05). Taken together, the present data suggest that high-frequency cyclic forces in either tension or compression induce modeling and growth changes in cranial sutures. Due to the structural complexity of cranial vault and facial sutures, either tensile or compressive forces likely are transmitted as shear stresses and upregulate genes and gene products responsible for sutural growth.
Collapse
Affiliation(s)
| | | | | | - Jeremy J. Mao
- Corresponding author: Jeremy J. Mao, DDS, PhD, Columbia University Medical Center, 630 W. 168 St. – PH7E - CDM, New York, NY 10032, USA, Phone: 212-305-4475, Fax: 212-342-0199,
| |
Collapse
|
25
|
Herring SW. Mechanical influences on suture development and patency. FRONTIERS OF ORAL BIOLOGY 2008; 12:41-56. [PMID: 18391494 PMCID: PMC2826139 DOI: 10.1159/0000115031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In addition to their role in skull growth, sutures are sites of flexibility between the more rigid bones. Depending on the suture, predominant loading during life may be either tensile or compressive. Loads are transmitted across sutures via collagenous fibers and a fluid-rich extracellular matrix and can be quasi-static (growth of neighboring tissues) or intermittent (mastication). The mechanical properties of sutures, while always viscoelastic, are therefore quite different for tensile versus compressive loading. The morphology of individual sutures reflects the nature of local loading, evidently by a process of developmental adaptation. In vivo or ex vivo, sutural cells respond to tensile or cyclic loading by expressing markers of proliferation and differentiation, whereas compressive loading appears to favor osteogenesis. Braincase and facial sutures exhibit similar mechanical behavior and reactions despite their different natural environments.
Collapse
|
26
|
Hou B, Fukai N, Olsen BR. Mechanical force-induced midpalatal suture remodeling in mice. Bone 2007; 40:1483-93. [PMID: 17398175 PMCID: PMC1939974 DOI: 10.1016/j.bone.2007.01.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/04/2006] [Accepted: 01/30/2007] [Indexed: 11/22/2022]
Abstract
Mechanical stress is an important epigenetic factor for regulating skeletal remodeling, and application of force can lead to remodeling of both bone and cartilage. Chondrocytes, osteoblasts and osteoclasts all participate and interact with each other in this remodeling process. To study cellular responses to mechanical stimuli in a system that can be genetically manipulated, we used mouse midpalatal suture expansion in vivo. Six-week-old male C57BL/6 mice were subjected to palatal suture expansion by opening loops with an initial force of 0.56 N for the periods of 1, 3, 5, 7, 14 or 28 days. Periosteal cells in expanding sutures showed increased proliferation, with Ki67-positive cells representing 1.8+/-0.1% to 4.5+/-0.4% of total suture cells in control groups and 12.0+/-2.6% to 19.9+/-1.2% in experimental/expansion groups (p<0.05). Starting at day 1, cells expressing alkaline phosphatase and type I collagen were seen. New cartilage and bone formation was observed at the oral edges of the palatal bones at day 7; at the nasal edges only bone formation without cartilage appeared to occur. An increase in osteoclast numbers suggested increased bone remodeling, ranging from 60 to 160% throughout the experimental period. Decreased Saffranin O staining after day 3 suggested decreased proteoglycan content in the secondary cartilage. Micro-CT showed a significant increase in maxillary width at days 14 and 28 (from 2334+/-4 microm to 2485+/-3 microm at day 14 and from 2383+/-5 microm to 2574+/-7 microm at day 28, p<0.001). The suture width was increased at days 14 and 28, except in the oral third region at day 28 (from 48+/-5 microm to 36+/-4 microm, p<0.05). Bone volume/total volume was significantly reduced at days 14 and 28 (50.2+/-0.7% vs. 68.0+/-3.7% and 56.5+/-1.0% vs. 60.9+/-1.3%, respectively, p<0.05), indicative of increased bone marrow space. These findings demonstrate that expansion forces across the midpalatal suture promote bone resorption through activation of osteoclasts and bone and cartilage formation via increased proliferation and differentiation of periosteal cells. Mouse midpalatal suture expansion would be useful in further studies of the ability of mineralized tissues to respond to mechanical stimulation.
Collapse
Affiliation(s)
- Bo Hou
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Naomi Fukai
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|