1
|
Imura K, Takeda A, Endo M, Funakoshi K. Innervation and osteoclast distribution in the inferior pharyngeal jaw of the cichlid Nile tilapia (Oreochromis niloticus). Anat Rec (Hoboken) 2024; 307:2139-2148. [PMID: 38183341 DOI: 10.1002/ar.25381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
In addition to an oral jaw, cichlids have a pharyngeal jaw, which is used for crushing and processing captured prey. The teeth and morphology of the pharyngeal jaw bones adapt to changes in prey in response to changes in the growing environment. This study aimed to explore the possible involvement of the peripheral nervous system in remodeling the cichlid pharyngeal jaw by examining the innervation of the inferior pharyngeal jaw in the Nile tilapia, Oreochromis niloticus. Vagal innervation was identified in the Nile tilapia inferior pharyngeal jaw. Double staining with tartrate-resistant acid phosphatase and immunostaining with the neuronal markers, protein gene product 9.5, and acetylated tubulin, revealed that osteoclasts, which play an important role in remodeling, were distributed in the vicinity of the nerves and were in apposition with the nerve terminals. This contact between peripheral nerves and osteoclasts suggests that the peripheral nervous system may play a role in remodeling the inferior pharyngeal jaw in cichlids.
Collapse
Affiliation(s)
- Kosuke Imura
- Department of Neuroanatomy, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Akihito Takeda
- Department of Neuroanatomy, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masato Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
2
|
Morita T, Matsumoto S, Baba O. Expression of secretory calcium-binding phosphoprotein (scpp) genes in medaka during the formation and replacement of pharyngeal teeth. BMC Oral Health 2023; 23:744. [PMID: 37821862 PMCID: PMC10568847 DOI: 10.1186/s12903-023-03498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Analyses of tooth families and tooth-forming units in medaka with regard to tooth replacement cycles and the localization of odontogenic stem cell niches in the pharyngeal dentition clearly indicate that continuous tooth replacement is maintained. The secretory calcium-binding phosphoprotein (scpp) gene cluster is involved in the formation of mineralized tissues, such as dental and bone tissues, and the genes encoding multiple SCPPs are conserved in fish, amphibians, reptiles, and mammals. In the present study, we examined the expression patterns of several scpp genes in the pharyngeal teeth of medaka to elucidate their roles during tooth formation and replacement. METHODS Himedaka (Japanese medaka, Oryzias latipes) of both sexes (body length: 28 to 33 mm) were used in this study. Real-time quantitative reverse transcription-polymerase chain reaction (PCR) (qPCR) data were evaluated using one-way analysis of variance for multi-group comparisons, and the significance of differences was determined by Tukey's comparison test. The expression of scpp genes was examined using in situ hybridization (ISH) with a digoxigenin-labeled, single-stranded antisense probe. RESULTS qPCR results showed that several scpp genes were strongly expressed in pharyngeal tissues. ISH analysis revealed specific expression of scpp1, scpp5, and sparc in tooth germ, and scpp5 was continually expressed in the odontoblasts of teeth attached to pedicles, but not in the osteoblasts of pedicles. In addition, many scpp genes were expressed in inner dental epithelium (ide), but not in odontoblasts, and scpp2 consistently showed epithelial-specific expression in the functional teeth. Taken together, these data indicate that specific expression of scpp2 and scpp5 may play a critical role in pharyngeal tooth formation in medaka. CONCLUSION We characterized changes in the expression patterns of scpp genes in medaka during the formation and replacement of pharyngeal teeth.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan.
| | - Shin Matsumoto
- Oral Surgery Department, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Otto Baba
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan
| |
Collapse
|
3
|
Feng G, Zhang P, Huang J, Yu Y, Yang F, Zhao X, Wang W, Li D, Sun S, Niu X, Chai L, Li J. Sequential Release of Panax Notoginseng Saponins and Osteopractic Total Flavone from Poly ( L-Lactic Acid) Scaffold for Treating Glucocorticoid-Associated Osteonecrosis of Femoral Head. J Funct Biomater 2023; 14:jfb14010031. [PMID: 36662078 PMCID: PMC9863477 DOI: 10.3390/jfb14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids inhibit angiogenesis in the femoral head, which fails to nourish the bone tissue and leads to osteonecrosis. Restoring angiogenesis is not only essential for vessel formation, but also crucial for osteogenesis. Poly (L-lactic acid) (PLLA) is commonly used in the bone tissue engineering field. Panax notoginseng saponins (PNS) and osteopractic total flavone (OTF) promote angiogenesis and osteogenesis, respectively. We designed a sequentially releasing PLLA scaffold including PLLA loaded with OTF (inner layer) and PLLA loaded with PNS (outer layer). We assessed the osteogenic effect of angiogenesis in this scaffold by comparing it with the one-layered scaffold (PLLA embedded with OTF and PNS) in vivo. Results from the micro-CT showed that the data of bone mineral density (BMD), bone volume (BV), and percent bone volume (BV/TV) in the PO-PP group were significantly higher than those in the POP group (p < 0.01). Histological analyses show that the PO-PP scaffold exhibits better angiogenic and osteogenic effects compared with the one-layered scaffold. These might result from the different structures between them, where the sequential release of a bi-layer scaffold achieves the osteogenic effect of vascularization by initially releasing PNS in the outer layer. We further explored the possible mechanism by an immunohistochemistry analysis and an immunofluorescence assay. The results showed that the protein expressions of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1(CD31) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.01); the protein expressions of osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.05). Upregulating the expressions of angiogenic and osteogenic proteins might be the possible mechanism.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jian Huang
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yao Yu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fenghe Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xueqian Zhao
- Yuquan Hospital Affiliated to Tsinghua University, Beijing 100040, China
| | - Wei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| |
Collapse
|
4
|
Suvarnapathaki S, Wu X, Zhang T, Nguyen MA, Goulopoulos AA, Wu B, Camci-Unal G. Oxygen generating scaffolds regenerate critical size bone defects. Bioact Mater 2022; 13:64-81. [PMID: 35224292 PMCID: PMC8843972 DOI: 10.1016/j.bioactmat.2021.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties. These hydrogel scaffolds were reinforced with microparticles comprised of emulsified calcium peroxide (CaO2) within polycaprolactone (PCL). The alterations of the assembled materials produced constructs within 5 ± 0.81 kPa to 34 ± 0.9 kPa in mechanical strength. The mass swelling ratios varied between 11% and 25%. Our in vitro and in vivo results revealed consistent tissue viability, metabolic activity, and osteogenic differentiation over two weeks. The optimized in vitro cell culture system remained stable at pH 8-9. The in vivo rodent models demonstrated that these scaffolds support a 70 mm3 bone volume that was comparable to the native bone and yielded over 90% regeneration in critical size cranial defects. Furthermore, the in vivo bone remodeling and vascularization results were validated by tartrate-resistant acid phosphatase (TRAP) and vascular endothelial growth factor (VEGF) staining. The promising results of this work are translatable to a repertoire of regenerative medicine applications including advancement and expansion of bone substitutes and disease models.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Tengfei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Michelle A. Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Anastasia A. Goulopoulos
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Bin Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| |
Collapse
|
5
|
Di Biagio C, Dellacqua Z, Martini A, Huysseune A, Scardi M, Witten PE, Boglione C. A Baseline for Skeletal Investigations in Medaka ( Oryzias latipes): The Effects of Rearing Density on the Postcranial Phenotype. Front Endocrinol (Lausanne) 2022; 13:893699. [PMID: 35846331 PMCID: PMC9281570 DOI: 10.3389/fendo.2022.893699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oryzias latipes is increasingly used as a model in biomedical skeletal research. The standard approach is to generate genetic variants with particular skeletal phenotypes which resemble skeletal diseases in humans. The proper diagnosis of skeletal variation is key for this type of research. However, even laboratory rearing conditions can alter skeletal phenotypes. The subject of this study is the link between skeletal phenotypes and rearing conditions. Thus, wildtype medaka were reared from hatching to an early juvenile stage at low (LD: 5 individuals/L), medium (MD: 15 individuals/L), and high (HD: 45 individuals/L) densities. The objectives of the study are: (I) provide a comprehensive overview of the postcranial skeletal elements in medaka; (II) evaluate the effects of rearing density on specific meristic counts and on the variability in type and incidence of skeletal anomalies; (III) define the best laboratory settings to obtain a skeletal reference for a sound evaluation of future experimental conditions; (IV) contribute to elucidating the structural and cellular changes related to the onset of skeletal anomalies. The results from this study reveal that rearing densities greater than 5 medaka/L reduce the animals' growth. This reduction is related to decreased mineralization of dermal (fin rays) and perichondral (fin supporting elements) bone. Furthermore, high density increases anomalies affecting the caudal fin endoskeleton and dermal rays, and the preural vertebral centra. A series of static observations on Alizarin red S whole mount-stained preural fusions provide insights into the etiology of centra fusion. The fusion of preural centra involves the ectopic formation of bony bridges over the intact intervertebral ligament. An apparent consequence is the degradation of the intervertebral ligaments and the remodeling and reshaping of the fused vertebral centra into a biconoid-shaped centrum. From this study it can be concluded that it is paramount to take into account the rearing conditions, natural variability, skeletal phenotypic plasticity, and the genetic background along with species-specific peculiarities when screening for skeletal phenotypes of mutant or wildtype medaka.
Collapse
Affiliation(s)
- Claudia Di Biagio
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Zachary Dellacqua
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Aquaculture Research Group (GIA), Universidad de Las Palmas de Gran Canaria, Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Las Palmas, Spain
| | - Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Ann Huysseune
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Michele Scardi
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Paul Eckhard Witten
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| |
Collapse
|
6
|
He SW, Du X, Wang GH, Wang JJ, Xie B, Gu QQ, Zhang M, Gu HJ. Identification and characterization of a cathepsin K homologue that interacts with pathogen bacteria in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:499-507. [PMID: 32001355 DOI: 10.1016/j.fsi.2020.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Cathepsin K belongs to the family of cysteine cathepsins. It is well known that the cysteine cathepsins participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin K is very limited. In the present study, a cathepsin K homologue (SsCTSK) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, are existed in SsCTSK. SsCTSK also possesses a peptidase domain with three catalytically essential residues (Cys25, His162 and Asn183). Phylogenetic profiling indicated that SsCTSK was evolutionally close to the cathepsin K of other teleost fish. Expression of SsCTSK occurred in multiple tissues and was induced by bacterial infection. Purified recombinant SsCTSK (rSsCTSK) exhibited apparent maximal peptidase activity at 45 °C, and its enzymatic activity was remarkably declined in the presence of the cathepsin inhibitor E-64. Moreover, rSsCTSK possesses the ability to bind with PAMPs and bacteria. Finally, knockdown of SsCTSK expression facilitated bacterial invasion in black rockfish. Collectively, these results indicated that SsCTSK functions as a cysteine protease and may serves as a target for pathogen manipulation of host defense system.
Collapse
Affiliation(s)
- Shu-Wen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bing Xie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qin-Qin Gu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Han-Jie Gu
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
7
|
Tian M, Cao M, Zhang L, Fu Q, Yang N, Tan F, Song L, Su B, Li C. Characterization and initial functional analysis of cathepsin K in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 93:153-160. [PMID: 31319206 DOI: 10.1016/j.fsi.2019.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Cathepsins are the best-known group of proteases in lysosomes, playing a significant role in immune responses. Cathepsin K (CTSK) is abundantly and selectively expressed in osteoclasts, dendritic cells and monocyte-derived macrophages, where it is involved in ECM degradation and bone remodeling. A growing body of evidences have indicated the vital roles of cathepsin K in innate immune responses. Here, one CTSK gene was captured in turbot (SmCTSK) with a 993 bp open reading frame (ORF). The genomic structure analysis showed that SmCTSK had 7 exons similar to other vertebrate species. The syntenic analysis revealed that CTSK had the same neighboring genes across all the selected species, which suggested the synteny encompassing CTSK region was conserved during vertebrate evolution. Subsequently, SmCTSK was widely expressed in all the examined tissues, with the highest expression level in spleen and the lowest expression level in liver. In addition, SmCTSK was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum immersion challenge, but up-regulated in three tissues (gill, skin and intestine) following Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCTSK showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmCTSK played vital roles in fish innate immune responses against infection. However, the knowledge of SmCTSK is still limited in teleost species, further studies should be carried out to better characterize its comprehensive roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development 2019; 146:146/18/dev167692. [DOI: 10.1242/dev.167692] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Ines J. Marques
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Eleonora Lupi
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain
| |
Collapse
|
9
|
Davesne D, Meunier FJ, Schmitt AD, Friedman M, Otero O, Benson RBJ. The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism. Biol Rev Camb Philos Soc 2019; 94:1338-1363. [DOI: 10.1111/brv.12505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Donald Davesne
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - François J. Meunier
- BOREA (UMR 7208 CNRS, IRD, MNHN, Sorbonne Université)Muséum national d'Histoire naturelle 75005 Paris France
| | - Armin D. Schmitt
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental SciencesUniversity of Michigan Ann Arbor MI 48109‐1079 U.S.A
| | - Olga Otero
- PalEvoPrim (UMR 7262 CNRS)Université de Poitiers 86000 Poitiers France
| | | |
Collapse
|
10
|
Edamoto M, Kuroda Y, Yoda M, Kawaai K, Matsuo K. Trans-pairing between osteoclasts and osteoblasts shapes the cranial base during development. Sci Rep 2019; 9:1956. [PMID: 30760811 PMCID: PMC6374512 DOI: 10.1038/s41598-018-38471-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Bone growth is linked to expansion of nearby organs, as is the case for the cranial base and the brain. Here, we focused on development of the mouse clivus, a sloping surface of the basioccipital bone, to define mechanisms underlying morphological changes in bone in response to brain enlargement. Histological analysis indicated that both endocranial and ectocranial cortical bone layers in the basioccipital carry the osteoclast surface dorsally and the osteoblast surface ventrally. Finite element analysis of mechanical stress on the clivus revealed that compressive and tensile stresses appeared mainly on respective dorsal and ventral surfaces of the basioccipital bone. Osteoclastic bone resorption occurred primarily in the compression area, whereas areas of bone formation largely coincided with the tension area. These data collectively suggest that compressive and tensile stresses govern respective localization of osteoclasts and osteoblasts. Developmental analysis of the basioccipital bone revealed the clivus to be angled in early postnatal wild-type mice, whereas its slope was less prominent in Tnfsf11−/− mice, which lack osteoclasts. We propose that osteoclast-osteoblast “trans-pairing” across cortical bone is primarily induced by mechanical stress from growing organs and regulates shape and size of bones that encase the brain.
Collapse
Affiliation(s)
- Mio Edamoto
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
11
|
Atukorala ADS, Bhatia V, Ratnayake R. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model. Dev Dyn 2018; 248:153-161. [PMID: 30450697 DOI: 10.1002/dvdy.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Ratnayake
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Yokota H, Taguchi Y, Tanaka Y, Uchiyama M, Kondo M, Tsuruda Y, Suzuki T, Eguchi S. Chronic exposure to diclofenac induces delayed mandibular defects in medaka (Oryzias latipes) in a sex-dependent manner. CHEMOSPHERE 2018; 210:139-146. [PMID: 29986219 DOI: 10.1016/j.chemosphere.2018.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Diclofenac is widely distributed in freshwater environments. To support a robust aquatic risk assessment, medaka (Oryzias latipes) were exposed to diclofenac at sublethal concentrations of 0.608, 2.15, 7.29, 26.5, and 94.8 μg/L (as mean measured concentrations) from fertilized eggs to 90-day posthatch. Except for the induction of mandibular defects, no deleterious effects were observed on hatching success and time to hatching at the embryonic stage, or on posthatch mortality, growth in hatched larvae and juveniles, and no abnormal behavior was observed. After 40-day posthatch, mandibular defects in the fish were observed at a concentration of 7.29 μg/L and above. Cumulatively, a morphological examination showed that 4% of the fish in the 7.29 μg/L treatment, 20% in the 26.5 μg/L treatment, and 38% in the 94.8 μg/L treatment exhibited mandibular defects, and the sex ratio of fish with mandibular defects was skewed toward males. These results suggest that diclofenac affects bone remodeling in the lower jaw of medaka after puberty in a sex-dependent manner. The lowest observed-effect concentration and no observed-effect concentration of diclofenac for mandibular dysmorphism through the partial life cycle exposure of the medaka were 26.5 and 7.29 μg/L, respectively.
Collapse
Affiliation(s)
- Hirofumi Yokota
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan.
| | - Yuri Taguchi
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan
| | - Yuka Tanaka
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan
| | - Mami Uchiyama
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan
| | - Mizuki Kondo
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan
| | - Yukinari Tsuruda
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-0053, Japan
| | - Tomoko Suzuki
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan
| | - Sayaka Eguchi
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan
| |
Collapse
|
13
|
Hanafy AF, Ali HSM, El Achy SN, Habib ELSE. Dual effect biodegradable ciprofloxacin loaded implantable matrices for osteomyelitis: controlled release and osteointegration. Drug Dev Ind Pharm 2018; 44:1023-1033. [DOI: 10.1080/03639045.2018.1430820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ahmed F. Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Research and Development Department, European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Samar N. El Achy
- Department of Surgical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - EL-Sayed E. Habib
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Sahara N, Moriyama K, Iida M, Watanabe S. Fate of Worn-Out Functional Teeth in the Upper Jaw Dentition of Sicyopterus japonicus (Gobioidei: Sicydiinae) During Tooth Replacement. Anat Rec (Hoboken) 2017; 301:111-124. [PMID: 28921912 DOI: 10.1002/ar.23685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/07/2022]
Abstract
Mochizuki and Fukui (Jpn J Ichthyol 30 () 27-36) studied the development and replacement of the upper jaw teeth in a Japanese fish species, Sicyopterus japonicus (Gobioidei: Sicydiinae), and they reported that worn-out functional teeth in the upper jaw were not shed outside the skin but were taken into the soft tissue of the upper jaw and completely resorbed there. To date, however, this phenomenon appears poorly documented. Furthermore, the mechanism for the resorption of these teeth remains to be determined. In this study, we examined this phenomenon by using 3D microcomputed tomography (m-CT), scanning electron microscopy (SEM), and various techniques of light (LM) and electron (EM) microcopy. This study demonstrated that the upper jaw dentition of this fish was more or less simultaneously replaced with the replacement occurring during short time periods and that the lingual movement of the replacement teeth to the functional tooth position advanced simultaneously in a given row. Furthermore, our study also revealed that many worn-out functional teeth were engulfed by the oral epithelium, invaginated into the lingual shallow ditch of the premaxilla, and were resorbed/degraded completely by numerous foreign body giant cells rather than by odontoclasts during periods of at least three intervals of tooth replacement. The complete resorption/degradation of worn-out functional teeth in the soft tissue of the upper jaw suggests the possibility of the reuse of their components (minerals such as Ca and P, including Fe) for rapid and successional production of new replacement teeth in the upper jaw of adult S. japonicus. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:111-124, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noriyuki Sahara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Keita Moriyama
- Department of Pediatric Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Midori Iida
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata 952-2135, Japan
| | - Shun Watanabe
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
15
|
Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity. Sci Rep 2016; 6:39545. [PMID: 28004797 PMCID: PMC5177882 DOI: 10.1038/srep39545] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts.
Collapse
|
16
|
Bensimon-Brito A, Cardeira J, Dionísio G, Huysseune A, Cancela ML, Witten PE. Revisiting in vivo staining with alizarin red S--a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC DEVELOPMENTAL BIOLOGY 2016; 16:2. [PMID: 26787303 PMCID: PMC4719692 DOI: 10.1186/s12861-016-0102-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND The correct evaluation of mineralization is fundamental for the study of skeletal development, maintenance, and regeneration. Current methods to visualize mineralized tissue in zebrafish rely on: 1) fixed specimens; 2) radiographic and μCT techniques, that are ultimately limited in resolution; or 3) vital stains with fluorochromes that are indistinguishable from the signal of green fluorescent protein (GFP)-labelled cells. Alizarin compounds, either in the form of alizarin red S (ARS) or alizarin complexone (ALC), have long been used to stain the mineralized skeleton in fixed specimens from all vertebrate groups. Recent works have used ARS vital staining in zebrafish and medaka, yet not based on consistent protocols. There is a fundamental concern on whether ARS vital staining, achieved by adding ARS to the water, can affect bone formation in juvenile and adult zebrafish, as ARS has been shown to inhibit skeletal growth and mineralization in mammals. RESULTS Here we present a protocol for vital staining of mineralized structures in zebrafish with a low ARS concentration that does not affect bone mineralization, even after repetitive ARS staining events, as confirmed by careful imaging under fluorescent light. Early and late stages of bone development are equally unaffected by this vital staining protocol. From all tested concentrations, 0.01% ARS yielded correct detection of bone calcium deposits without inducing additional stress to fish. CONCLUSIONS The proposed ARS vital staining protocol can be combined with GFP fluorescence associated with skeletal tissues and thus represents a powerful tool for in vivo monitoring of mineralized structures. We provide examples from wild type and transgenic GFP-expressing zebrafish, for endoskeletal development and dermal fin ray regeneration.
Collapse
Affiliation(s)
- A Bensimon-Brito
- Centre of Marine Sciences - CCMar, University of Algarve, Campus de Gambelas, Faro, Portugal.
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium.
- Current address: CEDOC - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - J Cardeira
- Centre of Marine Sciences - CCMar, University of Algarve, Campus de Gambelas, Faro, Portugal.
- ProRegeM PhD Programme, Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - G Dionísio
- Centre of Marine Sciences - CCMar, University of Algarve, Campus de Gambelas, Faro, Portugal.
- Guia Marine Laboratory, Oceanography Centre, Faculty of Sciences of University of Lisbon, Cascais, Portugal.
| | - A Huysseune
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium.
| | - M L Cancela
- Centre of Marine Sciences - CCMar, University of Algarve, Campus de Gambelas, Faro, Portugal.
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - P E Witten
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement. Dev Biol 2015; 409:370-81. [PMID: 26658319 DOI: 10.1016/j.ydbio.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 01/14/2023]
Abstract
Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts.
Collapse
|
18
|
Seemann F, Peterson DR, Witten PE, Guo BS, Shanthanagouda AH, Ye RR, Zhang G, Au DWT. Insight into the transgenerational effect of benzo[a]pyrene on bone formation in a teleost fish (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:60-67. [PMID: 26456900 DOI: 10.1016/j.cbpc.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023]
Abstract
Recent cross-generational studies in teleost fish have raised the awareness that high levels of benzo[a]pyrene (BaP) could affect skeletal integrity in the directly exposed F0 and their F1-F2. However, no further details were provided about the causes for abnormalities on the molecular and cellular level and the persistence of such sub-organismal impairments at the transgenerational scale (beyond F2). Adult Oryzias latipes were exposed to 1μg/L BaP for 21days. The F1-F3 were examined for skeletal deformities, histopathological alterations of vertebral bodies and differential expression of key genes of bone metabolism. Significant increase of dorsal-ventral vertebral compression was evident in ancestrally exposed larvae. Histopathological analysis revealed abnormal loss of notochord sheath, a lack of notochord epithelial integrity, reduced bone tissue and decreased osteoblast abundance. A significant downregulation of ATF4 and/or osterix and a high biological variability of COL10, coupled with a significant deregulation of SOX9a/b in the F1-F3 suggest that ancestral BaP exposure most likely perturbed chordoblasts, chondroblast and osteoblast differentiation, resulting in defective notochord sheath repair and rendering the vertebral column more vulnerable to compression. The present findings provide novel molecular and cellular insights into BaP-induced transgenerational bone impairment in the unexposed F3. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant, which exerts a far-reaching impact on fish survival and fitness. Given that basic mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on the genesis of skeletal diseases in humans.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - P Eckhard Witten
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bao-Sheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Adamane H Shanthanagouda
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Rui R Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
19
|
Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep 2015; 5:14172. [PMID: 26387549 PMCID: PMC4585676 DOI: 10.1038/srep14172] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022] Open
Abstract
The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation.
Collapse
|
20
|
Abduweli D, Baba O, Tabata MJ, Higuchi K, Mitani H, Takano, Y. Tooth replacement and putative odontogenic stem cell niches in pharyngeal dentition of medaka (Oryzias latipes). Microscopy (Oxf) 2014; 63:141-53. [DOI: 10.1093/jmicro/dft085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
21
|
Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. BONEKEY REPORTS 2014; 3:480. [PMID: 24466411 DOI: 10.1038/bonekey.2013.214] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
Vitamin D3 is already found early in the evolution of life but essentially as inactive end products of the photochemical reaction of 7-dehydrocholestol with ultraviolet light B. A full vitamin D (refers to vitamin D2 and D3) endocrine system, characterized by a specific VDR (vitamin D receptor, member of the nuclear receptor family), specific vitamin D metabolizing CYP450 enzymes regulated by calciotropic hormones and a dedicated plasma transport-protein is only found in vertebrates. In the earliest vertebrates (lamprey), vitamin D metabolism and VDR may well have originated from a duplication of a common PRX/VDR ancestor gene as part of a xenobiotic detoxification pathway. The vitamin D endocrine system, however, subsequently became an important regulator of calcium supply for an extensive calcified skeleton. Vitamin D is essential for normal calcium and bone homeostasis as shown by rickets in vitamin D-deficient growing amphibians, reptiles, birds and mammals. From amphibians onward, bone is gradually more dynamic with regulated bone resorption, mainly by combined action of PTH and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the generation and function of multinucleated osteoclasts. Therefore, bone functions as a large internal calcium reservoir, under the control of osteoclasts. Osteocytes also display a remarkable spectrum of activities, including mechanical sensing and regulating mineral homeostasis, but also have an important role in global nutritional and energy homeostasis. Mineralization from reptiles onward is under the control of well-regulated SIBLING proteins and associated enzymes, nearly all under the control of 1,25(OH)2D3. The vitamin D story thus started as inert molecule but gained an essential role for calcium and bone homeostasis in terrestrial animals to cope with the challenge of higher gravity and calcium-poor environment.
Collapse
Affiliation(s)
- Roger Bouillon
- Clinical and Experimental Endocrinology, KU Leuven; Department of Endocrinology, University Hospitals Leuven , Leuven, Belgium
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University , Saitama, Japan
| |
Collapse
|
22
|
Currey JD, Shahar R. Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties. J Struct Biol 2013; 183:107-22. [PMID: 23664869 DOI: 10.1016/j.jsb.2013.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/12/2023]
Abstract
Bone includes cavities in various length scales, from nanoporosities occurring between the collagen fibrils and the mineral crystals all the way to macrocavities like the medullary cavity. In particular, bone is permeated by a vast number of channels (the lacunar-canalicular system), that reduce the stiffness and, more importantly, the strength of the bone that they permeate. These consequences are presumably a price worth paying for the ability of the lacunar-canalicular system to detect changes in the strain environment within the bone material and, when deleterious, to trigger processes like modeling or remodeling which 'rectify' it. Here we review the size and density of the various types of cavities in bone, and discuss their effect on the mechanical properties of cortical bone. In this respect the bones of advanced teleost fish species (probably the majority of all vertebrate species) are an unsolved conundrum because they lack bone cells (and therefore lacunae and canaliculi) in their skeleton. Yet, despite being acellular, some of these fish can undergo considerable remodeling in at least some parts of their skeleton. We address, but do not solve this mystery.
Collapse
Affiliation(s)
- John D Currey
- Department of Biology, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
23
|
Gamma-ray irradiation promotes premature meiosis of spontaneously differentiating testis-ova in the testis of p53-deficient medaka (Oryzias latipes). Cell Death Dis 2012; 3:e395. [PMID: 23034330 PMCID: PMC3481122 DOI: 10.1038/cddis.2012.133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, the roles of p53 in impaired spermatogenic male germ cells of p53-deficient medaka were investigated by analyzing histological changes, and gene expressions of 42Sp50, Oct 4 and vitellogenin (VTG2) by RT-PCR or in situ hybridization in the testes. We found that a small number of oocyte-like cells (testis–ova) differentiated spontaneously in the cysts of type A and early type B spermatogonia in the p53-deficient testes, in contrast to the wild-type (wt) testes in which testis–ova were never found. Furthermore, ionizing radiation (IR) irradiation increased the number of testis–ova in p53-deficient testes, increased testis–ova size and proceeded up to the zygotene or pachytene stages of premature meiosis within 14 days after irradiation. However, 28 days after irradiation, almost all the testis–ova were eliminated presumably by p53-independent apoptosis, and spermatogenesis was restored completely. In the wt testis, IR never induced testis–ova differentiation. This is the first study to demonstrate the pivotal role of the p53 gene in the elimination of spontaneous testis–ova in testes, and that p53 is not indispensable for the restoration of spermatogenesis in the impaired testes in which cell cycle regulation is disturbed by IR irradiation.
Collapse
|
24
|
Cohen L, Dean M, Shipov A, Atkins A, Monsonego-Ornan E, Shahar R. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish. J Exp Biol 2012; 215:1983-93. [DOI: 10.1242/jeb.064790] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The histological diversity of the skeletal tissues of fishes is impressive compared with that of other vertebrate groups, yet our understanding of the functional consequences of this diversity is limited. In particular, although it has been known since the mid-1800s that a large number of fish species possess acellular bones, the mechanical advantages and consequences of this structural characteristic – and therefore the nature of the evolution of this feature – remain unclear. Although several studies have examined the material properties of fish bone, these have used a variety of techniques and there have been no direct contrasts of acellular and cellular bone. We report on a comparison of the structural and mechanical properties of the ribs and opercula between two freshwater fish – the common carp Cyprinus carpio (a fish with cellular bone) and the tilapia Oreochromis aureus (a fish with acellular bone). We used light microscopy to show that the bones in both fish species exhibit poor blood supply and possess discrete tissue zones, with visible layering suggesting differences in the underlying collagen architecture. We performed identical micromechanical testing protocols on samples of the two bone types to determine the mechanical properties of the bone material of opercula and ribs. Our data support the consensus of literature values, indicating that Young’s moduli of cellular and acellular bones are in the same range, and lower than Young’s moduli of the bones of mammals and birds. Despite these similarities in mechanical properties between the bone tissues of the fish species tested here, cellular bone had significantly lower mineral content than acellular bone; furthermore, the percentage ash content and bone mineral density values (derived from micro-CT scans) show that the bone of these fishes is less mineralized than amniote bone. Although we cannot generalize from our data to the numerous remaining teleost species, the results presented here suggest that while cellular and acellular fish bone may perform similarly from a mechanical standpoint, there are previously unappreciated differences in the structure and composition of these bone types.
Collapse
Affiliation(s)
- Liat Cohen
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Mason Dean
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Ayelet Atkins
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Efrat Monsonego-Ornan
- School of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
25
|
To TT, Witten PE, Renn J, Bhattacharya D, Huysseune A, Winkler C. Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 2011; 139:141-50. [PMID: 22096076 DOI: 10.1242/dev.071035] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osteoclasts are macrophage-related bone resorbing cells of hematopoietic origin. Factors that regulate osteoclastogenesis are of great interest for investigating the pathology and treatment of bone diseases such as osteoporosis. In mammals, receptor activator of NF-κB ligand (Rankl) is a regulator of osteoclast formation and activation: its misexpression causes osteoclast stimulation and osteoporotic bone loss. Here, we report an osteoporotic phenotype that is induced by overexpression of Rankl in the medaka model. We generated transgenic medaka lines that express GFP under control of the cathepsin K promoter in osteoclasts starting at 12 days post-fertilization (dpf), or Rankl together with CFP under control of a bi-directional heat-shock promoter. Using long-term confocal time-lapse imaging of double and triple transgenic larvae, we monitored in vivo formation and activation of osteoclasts, as well as their interaction with osteoblasts. Upon Rankl induction, GFP-positive osteoclasts are first observed in the intervertebral regions and then quickly migrate to the surface of mineralized neural and haemal arches, as well as to the centra of the vertebral bodies. These osteoclasts are TRAP (tartrate-resistant acid phosphatase) and cathepsin K positive, mononuclear and highly mobile with dynamically extending protrusions. They are exclusively found in tight contact with mineralized matrix. Rankl-induced osteoclast formation resulted in severe degradation of the mineralized matrix in vertebral bodies and arches. In conclusion, our in vivo imaging approach confirms a conserved role of Rankl in osteoclastogenesis in teleost fish and provides new insight into the cellular interactions during bone resorption in an animal model that is useful for genetic and chemical screening.
Collapse
Affiliation(s)
- Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
26
|
Chatani M, Takano Y, Kudo A. Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol 2011; 360:96-109. [PMID: 21963458 DOI: 10.1016/j.ydbio.2011.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022]
Abstract
Bone modeling is the central system controlling the formation of bone including bone growth and shape in early development, in which bone is continuously resorbed by osteoclasts and formed by osteoblasts. However, this system has not been well documented, because it is difficult to trace osteoclasts and osteoblasts in vivo during development. Here we showed the important role of osteoclasts in organogenesis by establishing osteoclast-specific transgenic medaka lines and by using a zebrafish osteoclast-deficient line. Using in vivo imaging of osteoclasts in the transgenic medaka carrying an enhanced GFP (EGFP) or DsRed reporter gene driven by the medaka TRAP (Tartrate-Resistant Acid Phosphatase) or Cathepsin K promoter, respectively, we examined the maturation and migration of osteoclasts. Our results showed that mononuclear or multinucleated osteoclasts in the vertebral body were specifically localized at the inside of the neural and hemal arches, but not at the vertebral centrum. Furthermore, transmission electron microscopic (TEM) analyses revealed that osteoclasts were flat-shaped multinucleated cells, suggesting that osteoclasts initially differentiate from TRAP-positive mononuclear cells residing around bone. The zebrafish panther mutant lacks a functional c-fms (receptor for macrophage colony-stimulating factor) gene crucial for osteoclast proliferation and differentiation and thus has a low number of osteoclasts. Analysis of this mutant revealed deformities in both its neural and hemal arches, which resulted in abnormal development of the neural tube and blood vessels located inside these arches. Our results provide the first demonstration that bone resorption during bone modeling is essential for proper development of neural and vascular systems associated with fish vertebrae.
Collapse
Affiliation(s)
- Masahiro Chatani
- Department of Biological Information, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | | | | |
Collapse
|
27
|
Edsall SC, Franz-Odendaal TA. A quick whole-mount staining protocol for bone deposition and resorption. Zebrafish 2010; 7:275-80. [PMID: 20807038 DOI: 10.1089/zeb.2009.0641] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoblasts and osteoclasts, two cell types important in bone development, are associated with enzymes capable of hydrolyzing phosphate groups. These enzymes are important for their function of bone deposition and resorption. Alkaline phosphatase (AP) activity is associated with the cell surface of osteoblasts, while osteoclasts secrete tartrate-resistant acid phosphatase (TRAP). Due to their shared enzymatic properties, we were able to develop a simple whole-mount staining protocol to stain for both enzymes (TRAP and AP) within the same teleostean tissue sample. In addition, we were able to perform each reaction individually. Further, AP and TRAP stains were maintained through decalcification, embedding, and sectioning procedures. Staining can also be conducted after sectioning depending on the question under investigation. These rapid staining protocols can thus be used to observe the processes involved in bone remodeling in whole teleost specimens, and/or the location of the stain can be determined through sectioning. The ability to observe bone deposition and resorption in such a capacity will significantly advance our understanding of bone remodeling throughout the life history of organisms and also within particular skeletal elements.
Collapse
Affiliation(s)
- Sara C Edsall
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
28
|
Harikrishnan R, Kim MC, Kim JS, Han YJ, Jang IS, Balasundaram C, Heo MS. Immune response and expression analysis of cathepsin K in goldfish during Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2010; 28:511-516. [PMID: 20025977 DOI: 10.1016/j.fsi.2009.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 11/28/2009] [Accepted: 12/02/2009] [Indexed: 05/28/2023]
Abstract
The innate immunity and expression profiles of cathepsins D were determined in the goldfish (Carassius auratus) tissues after challenge with a fish pathogen Aeromonas hydrophila. The innate immunity of reactive oxygen species (ROS) and reactive nitrogen species (RNS) were determined by peripheral blood leucocytes. Blood and tissue samples of the muscle, gills, liver, kidney, heart, spleen, and intestine were sampled at 1, 3, 6 and 12 h post-infection for cathepsin D expression by semi-quantitative RT-PCR. The ROS and RNS production did not significantly increase at 1 h post-challenged goldfish. However, the ROS and RNS production was significantly increased after 3 h post-challenged fish compared to the control. The cathepsin D expression was found very low in muscle and kidney of the control fish, other tissues was not found the expression. A similar pattern was found in goldfish at 1 h post-challenge with A. hydrophila. However, at 3 h post-challenge goldfish, the cathepsin D expression was high only in the heart. At 6 h post-challenge goldfish, the cathepsin D expression was seen high all the tissues, except in the spleen. However, the expression was decreased at 12 h post-infection samples. This result was suggested that the goldfish infected with A. hydrophila decreased the innate immunity level in peripheral blood and expressed the cathepsin D in tissues.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Biomedical Sciences, College of Ocean Sciences & Marine and Environmental Research Institute, Jeju National University, Jeju 690-756, South Korea.
| | | | | | | | | | | | | |
Collapse
|
29
|
Je JE, Ahn SJ, Kim NY, Seo JS, Kim MS, Park NG, Kim JK, Chung JK, Lee HH. Molecular cloning, expression analysis and enzymatic characterization of cathepsin K from olive flounder (Paralichthys olivaceus). Comp Biochem Physiol A Mol Integr Physiol 2009; 154:474-85. [DOI: 10.1016/j.cbpa.2009.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
30
|
Witten PE, Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 2009; 84:315-46. [PMID: 19382934 DOI: 10.1111/j.1469-185x.2009.00077.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resorption and remodelling of skeletal tissues is required for development and growth, mechanical adaptation, repair, and mineral homeostasis of the vertebrate skeleton. Here we review for the first time the current knowledge about resorption and remodelling of the skeleton in teleost fish, the largest and most diverse group of extant vertebrates. Teleost species are increasingly used in aquaculture and as models in biomedical skeletal research. Thus, detailed knowledge is required to establish the differences and similarities between mammalian and teleost skeletal remodelling, and between distantly related species such as zebrafish (Danio rerio) and medaka (Oryzias latipes). The cellular mechanisms of differentiation and activation of osteoclasts and the functions of teleost skeletal remodelling are described. Several characteristics, related to skeletal remodelling, distinguish teleosts from mammals. These characteristics include (a) the absence of osteocytes in most species; (b) the absence of haematopoietic bone marrow tissue; (c) the abundance of small mononucleated osteoclasts performing non-lacunar (smooth) bone resorption, in addition to or instead of multinucleated osteoclasts; and (d) a phosphorus- rather than calcium-driven mineral homeostasis (mainly affecting the postcranial dermal skeleton). Furthermore, (e) skeletal resorption is often absent from particular sites, due to sparse or lacking endochondral ossification. Based on the mode of skeletal remodelling in early ontogeny of all teleosts and in later stages of development of teleosts with acellular bone we suggest a link between acellular bone and the predominance of mononucleated osteoclasts, on the one hand, and cellular bone and multinucleated osteoclasts on the other. The evolutionary origin of skeletal remodelling is discussed and whether mononucleated osteoclasts represent an ancestral type of resorbing cells. Revealing the differentiation and activation of teleost skeletal resorbing cells, in the absence of several factors that trigger mammalian osteoclast differentiation, is a current challenge. Understanding which characters of teleost bone remodelling are derived and which characters are conserved should enhance our understanding of the process in fish and may provide insights into alternative pathways of bone remodelling in mammals.
Collapse
|
31
|
Renn J, Winkler C. Osterix-mCherry transgenic medaka for in vivo imaging of bone formation. Dev Dyn 2009; 238:241-8. [PMID: 19097055 DOI: 10.1002/dvdy.21836] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramembranous and chondral bone formation by osteoblasts is found in all vertebrates. The genetic network controlling osteoblast differentiation is highly conserved and regulated by a small number of key factors, including the zinc-finger transcription factor Osterix. Expression analysis of osterix in the teleost model medaka revealed a highly restricted expression in skeletal regions. For in vivo imaging, we generated transgenic medaka expressing mCherry under control of the osterix promoter. We show that the transgene becomes expressed in early osteoblasts, which have not yet mineralized bone matrix, and remains high in matured and mineralizing osteoblasts. Life imaging of transgenic larvae provided insight into the appearance and behavior of early osteoblasts during development of the teleost cranium, vertebrae, and caudal fin. In summary, osterix-mCherry transgenic medaka enable us to analyze osteoblasts during different maturation phases in vivo and represent a unique tool to study osteoblast behavior in vertebrate embryos and adults.
Collapse
Affiliation(s)
- Joerg Renn
- Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
32
|
Gorman KF, Breden F. Idiopathic-type scoliosis is not exclusive to bipedalism. Med Hypotheses 2008; 72:348-52. [PMID: 19070438 DOI: 10.1016/j.mehy.2008.09.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 12/11/2022]
Abstract
Human familial/idiopathic-type scoliosis (IS) is a complex genetic disorder for which the cause is unknown. The curve phenotype characteristically demonstrates pronounced morphological and developmental variability that is likely a consequence of biomechanical, environmental, and genetic differences between individuals. In addition, risk factors that affect the propensity for curves to progress to severity are unknown. Progress in understanding the fundamental biology of idiopathic-type scoliosis has been limited by the lack of a genetic/developmental animal model. Prior to consideration of teleosts, developmental idiopathic-type scoliosis has been considered to be exclusive to humans. Consequently, there is the notion that the syndrome is a result of bipedalism, and many studies try to explain the deformity from this anthrocentric viewpoint. This perspective has been reinforced by the choice of animals used for study, in that chickens and bipedal rats and mice demonstrate idiopathic-type curvature when made melatonin-deficient, but quadrupedal animals do not. Overlooked is the fact that teleosts also demonstrate similar curvature when made melatonin-deficient. Our characterization of the guppy curveback has demonstrated that non-induced idiopathic-type curvature is not exclusive to humans, nor bipedalism. We hypothesize that unique morphological, developmental and genetic parallels between the human and guppy syndromes are due to common molecular pathways involved in the etiopathogenesis of both phenotypes. We explore established gene conservation between human and teleost genomes that are in pathways hypothesized to be involved in the IS syndrome. We present non-induced vertebral wedging as a unique shared feature in IS and curveback that suggests a similar interaction between a molecular phenotype on the level of the vertebral anatomy, and biomechanics. We propose that rather than bipedalism per se, expression of idiopathic-type scoliosis is dependent on normal spinal loading applied along the cranio-caudal axis that interacts with an unknown factor causing the primary curve. In this regard, a comparative biological approach using a simplified teleost model will promote discovery of basic processes integral to idiopathic-type scoliosis in teleosts and humans, and highlight human-specific aspects of the deformity.
Collapse
Affiliation(s)
- Kristen F Gorman
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
33
|
Nemoto Y, Chatani M, Inohaya K, Hiraki Y, Kudo A. Expression of marker genes during otolith development in medaka. Gene Expr Patterns 2007; 8:92-5. [PMID: 17981516 DOI: 10.1016/j.modgep.2007.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 11/16/2022]
Abstract
Little is known about the genes and processes involved in the development of otoliths. In this study, we isolated the biomineralization-related genes otolin and chondromodulin-1 (chm1) from medaka, and examined their spatiotemporal expression pattern as well as that of two other genes also related to biomineralization, i.e., sparc/osteonectin and type II collagen (col2a), during otic development in medaka. Our results demonstrated that all the tested genes were expressed in the otic vesicle, and that chm1 was exclusively expressed in the semicircular canal of the otic vesicle.
Collapse
Affiliation(s)
- Yoshiyuki Nemoto
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
34
|
Neues F, Goerlich R, Renn J, Beckmann F, Epple M. Skeletal deformations in medaka (Oryzias latipes) visualized by synchrotron radiation micro-computer tomography (SRmicroCT). J Struct Biol 2007; 160:236-40. [PMID: 17905598 DOI: 10.1016/j.jsb.2007.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/15/2007] [Accepted: 08/18/2007] [Indexed: 11/26/2022]
Abstract
Synchrotron radiation micro-computer tomography (SRmicroCT) offers the possibility to investigate biomineralized structures in high detail. Two animals of adult medaka fish (Oryzias latipes) were analyzed by SRmicroCT with a resolution of 6.55 microm: the wild-type animal was normally developed whereas the second animal showed an idiopathic deformation of the cranial and axial skeleton. These deformations could be followed on the macro- and on the microscale (i.e., on the level of the individual ribs and fin bones). Our study clearly demonstrates that SRmicroCT is an excellent technique to study alterations in the skeletal structure of fish in detail.
Collapse
Affiliation(s)
- Frank Neues
- Inorganic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | | | | | | | | |
Collapse
|