1
|
Rahimi M, Kariminezhad Z, Rondon EP, Fahmi H, Fernandes JC, Benderdour M. Chitosan nanovectors for siRNA delivery: New horizons for nonviral gene therapy. Carbohydr Polym 2025; 360:123581. [PMID: 40399008 DOI: 10.1016/j.carbpol.2025.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 05/23/2025]
Abstract
The growing interest in RNA-based therapeutics has positioned small interfering RNA (siRNA) as a promising tool for gene silencing with high specificity and efficacy. However, the successful clinical application of siRNA therapies requires efficient delivery systems to overcome extracellular and intracellular barriers. Chitosan, a naturally derived polysaccharide, has gained significant attention as a non-viral vector due to its biodegradability, biocompatibility, mucoadhesive properties, and capacity to enhance cellular uptake. These attributes make chitosan an attractive alternative to lipid-based nanoparticles, which currently dominate siRNA delivery platforms. Recent advancements in chitosan-based nanoformulations, including chemical modifications and functionalization strategies, have improved siRNA stability, targeting efficiency, and transfection potential, addressing key limitations such as low bioavailability and immunogenicity. Despite these advances, challenges remain in achieving optimal release kinetics, scalability, and consistent therapeutic efficacy. Future research efforts will focus on engineering chitosan derivatives with enhanced physicochemical properties, integrating multifunctional nanocarriers, and refining formulation strategies to bridge the gap between preclinical research and clinical translation. The continued development of chitosan-based siRNA therapeutics holds significant potential for advancing precision medicine and expanding treatment options for a variety of diseases, including cancer, metabolic disorders, and inflammatory conditions.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada
| | - Zahra Kariminezhad
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada; Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Elsa-Patricia Rondon
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada; Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Julio C Fernandes
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada; Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada.
| |
Collapse
|
2
|
Feng R, Du M, Chen Z. Application of bacteria-mediated gene therapy in tumor treatment. Expert Opin Drug Deliv 2025:1-14. [PMID: 40325972 DOI: 10.1080/17425247.2025.2502638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/25/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Gene therapy refers to the use of vectors to introduce target genes into target cells to exert a therapeutic effect on tumors. As a new type of tumor therapy, gene therapy has the advantage of precision and specificity. Excellent delivery vehicles have a major impact on the efficiency, precision and safety of gene therapy. Unlike traditional vectors, bacteria based on prokaryotes have the advantages of good targeting, large load, and simplicity. In addition, different types of bacteria also have characteristics that can be used in various scenarios. AREAS COVERED In this review, we searched the gene therapy-related literature in PubMed, mainly in the last five years, and compared the characteristics of different gene vectors, focusing on the bacterial gene therapy and aiming to explore excellent bacterial gene therapy programs. EXPERT OPINION Compared with traditional tumor gene therapy vectors, bacteria have many advantages, such as good targeting, large carrying capacity, and simple production. Meanwhile, the combination of artificial intelligence technology, bacterial imaging probe technology and suicide genes will be expected to control the bacterial therapy process, improve the safety of treatment, and promote the translational application of bacterial gene therapy.
Collapse
Affiliation(s)
- Renjie Feng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
3
|
Khurshid S, Venkataramany AS, Montes M, Kipp JF, Roberts RD, Wein N, Rigo F, Wang PY, Cripe TP, Chandler DS. Employing splice-switching oligonucleotides and AAVrh74.U7 snRNA to target insulin receptor splicing and cancer hallmarks in osteosarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200908. [PMID: 39720325 PMCID: PMC11666956 DOI: 10.1016/j.omton.2024.200908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/10/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
Patients with osteosarcoma (OS), a debilitating pediatric bone malignancy, have limited treatment options to combat aggressive disease. OS thrives on insulin growth factor (IGF)-mediated signaling that can facilitate cell proliferation. Previous efforts to target IGF-1R signaling were mostly unsuccessful, likely due to compensatory signaling through alternative splicing of the insulin receptor (IR) to the proliferative IR-A isoform. Here, we leverage splice-switching oligonucleotides (SSOs) to mitigate IR splicing toward the IR-B isoform. We show that SSOs can modulate cancer cell hallmarks and anoikis-resistant growth. Furthermore, we engineered the SSO sequence in an U7 snRNA packaged in an adeno-associated virus (AAV) to test the feasibility of viral vector-mediated gene therapy delivery. We noted modest increases in IR-B isoform levels after virus transduction, which prompted us to investigate the role of combinatorial treatments with dalotuzumab, an anti-IGF-1R monoclonal antibody. After observing additive impacts on phosphoprotein phosphorylation and anoikis-resistant growth with the dalotuzumab and SSO combination, we treated OS cells with dalotuzumab and the AAVrh74.U7 snRNA IR virus, which significantly slowed OS cell proliferation. While these viruses require further optimization, we highlight the potential for SSO therapy and viral vector delivery, as it may offer new treatment avenues for OS patients and be translated to other cancers.
Collapse
Affiliation(s)
- Safiya Khurshid
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Akila S. Venkataramany
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Matias Montes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - John F. Kipp
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Nicolas Wein
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Dawn S. Chandler
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Pączek S, Zajkowska M, Mroczko B. Pigment Epithelial-Derived Factor in Pancreatic and Liver Cancers-From Inflammation to Cancer. Biomedicines 2024; 12:2260. [PMID: 39457573 PMCID: PMC11504982 DOI: 10.3390/biomedicines12102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gastrointestinal (GI) cancers are among the leading causes of mortality worldwide. Despite the emergence of new possibilities that offer hope regarding the successful treatment of these cancers, they still represent a significant global health burden. These cancers can arise from various cell types within the gastrointestinal tract and may exhibit different characteristics, behaviors, and treatment approaches. Both the prognosis and the outcomes of GI treatment remain problematic because these tumors are primarily diagnosed in advanced clinical stages. Current biomarkers exhibit limited sensitivity and specificity. Therefore, when developing strategies for the diagnosis and treatment of GI cancers, it is of fundamental importance to discover new biomarkers capable of addressing the challenges of early-stage diagnosis and the presence of lymph node metastases. Pigment epithelial-derived factor (PEDF) has garnered interest due to its inhibitory effects on the migration and proliferation of cancer cells. This protein has been suggested to be involved in various inflammation-related diseases, including cancer, through various mechanisms. It was also observed that reducing the level of PEDF is sufficient to trigger an inflammatory response. This suggests that PEDF is an endogenous anti-inflammatory factor. Overall, PEDF is a versatile protein with diverse biological functions that span across different tissues and organ systems. Its multifaceted activities make it an intriguing target for therapeutic interventions in various diseases, including cancer, neurodegeneration, and metabolic disorders. This review, for the first time, summarizes the role of PEDF in the pathogenesis of selected GI cancers and its potential utility in early diagnosis, prognosis, and therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
5
|
Niculescu ŞA, Grecu AF, Stepan AE, Muşat MI, Moroşanu AE, Bălşeanu TA, Hadjiargyrou M, Grecu DC. Clinicopathological correlations and prognostic insights in osteosarcoma: a retrospective analysis. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:723-736. [PMID: 39957034 PMCID: PMC11924893 DOI: 10.47162/rjme.65.4.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/21/2024] [Indexed: 02/18/2025]
Abstract
Osteosarcoma (OS) is the most prevalent primary bone malignancy, predominantly affecting adolescents and young adults, and presents significant clinical challenges due to its aggressive nature and high potential for metastasis. This retrospective study analyzed 34 cases of primary OS, aged 10 to 65 years, to identify clinicopathological correlations that could inform future research and treatment strategies. The findings aim to guide larger cohort studies, essential for validating these correlations and developing tailored approaches that enhance patient outcomes. The analysis focused on demographic factors, sex, tumor grade, stage, size, and histological subtype, utilizing criteria established by the American Joint Committee on Cancer (AJCC) and the World Health Organization (WHO). The results revealed a predominance of the disease in males under 25 years of age, with the femur being the most common site of occurrence. Conventional osteoblastic OS emerged as the most frequent subtype, accounting for 50% of the cases, predominantly presenting as high-grade (G3) tumors. Over 70% of the tumors were T1 in extension (≤8 cm) and classified as stage IIA, indicating a locally advanced disease state. Correlations were observed between histological type, grade, and stage, underscoring the importance of detailed histopathological (HP) assessments in determining prognosis and guiding treatment. The findings highlight correlations between histological subtype, grade, and stage, reaffirming the critical role of detailed HP assessments in prognosis and treatment planning. While the limited sample size necessitates cautious interpretation, this study provides valuable regional and age-specific insights that could inform clinical decision-making. Future research should prioritize multi-center studies and delve into the genetic and molecular underpinnings of OS subtypes to enhance understanding and develop targeted therapies.
Collapse
Affiliation(s)
- Ştefan Adrian Niculescu
- Department of Orthopedics and Traumatology, University of Medicine and Pharmacy of Craiova, Romania
| | - Alexandru Florian Grecu
- Department of Orthopedics and Traumatology, University of Medicine and Pharmacy of Craiova, Romania
| | - Alex Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, Romania
| | - Mădălina Iuliana Muşat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Romania
| | - Aritina-Elvira Moroşanu
- Department of Pediatrics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Tudor Adrian Bălşeanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Romania
- Department of Physiology, Physiopathology, and Neuroscience, University of Medicine and Pharmacy of Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Dan Cristian Grecu
- Department of Orthopedics and Traumatology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
6
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
7
|
Luiz MT, Dutra JAP, Tofani LB, de Araújo JTC, Di Filippo LD, Marchetti JM, Chorilli M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14040821. [PMID: 35456655 PMCID: PMC9030342 DOI: 10.3390/pharmaceutics14040821] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms. Thus, gene therapy has been a potential therapeutic approach owing to its ability to introduce, silence, or change the content of the human genetic code for inhibiting tumor progression, angiogenesis, and metastasis. For the proper delivery of genes to tumor cells, it requires the use of gene vectors for protecting the therapeutic gene and transporting it into cells. Among these vectors, liposomes have been the nonviral vector most used because of their low immunogenicity and low toxicity. Furthermore, this nanosystem can have its surface modified with ligands (e.g., antibodies, peptides, aptamers, folic acid, carbohydrates, and others) that can be recognized with high specificity and affinity by receptor overexpressed in tumor cells, increasing the selective delivery of genes to tumors. In this context, the present review address and discuss the main targeting ligands used to functionalize liposomes for improving gene delivery with potential application in cancer treatment.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Larissa Bueno Tofani
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | | | - Leonardo Delello Di Filippo
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
- Correspondence: ; Tel./Fax: +55-16-3301-6998
| |
Collapse
|
8
|
Abstract
» Orthopaedics pioneered the expansion of gene therapy beyond its traditional scope of diseases that are caused by rare single-gene defects. Orthopaedic applications of gene therapy are most developed in the areas of arthritis and regenerative medicine, but several additional possibilities exist. » Invossa, an ex vivo gene therapeutic for osteoarthritis, was approved in South Korea in 2017, but its approval was retracted in 2019 and remains under appeal; a Phase-III clinical trial of Invossa has restarted in the U.S. » There are several additional clinical trials for osteoarthritis and rheumatoid arthritis that could lead to approved gene therapeutics for arthritis. » Bone-healing and cartilage repair are additional areas that are attracting considerable research; intervertebral disc degeneration and the healing of ligaments, tendons, and menisci are other applications of interest. Orthopaedic tumors, genetic diseases, and aseptic loosening are additional potential targets. » If successful, these endeavors will expand the scope of gene therapy from providing expensive medicines for a few patients to providing affordable medicines for many.
Collapse
|
9
|
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. TP53 in Biology and Treatment of Osteosarcoma. Cancers (Basel) 2021; 13:4284. [PMID: 34503094 PMCID: PMC8428337 DOI: 10.3390/cancers13174284] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.
Collapse
Affiliation(s)
- Kamil Jozef Synoradzki
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Wiktoria Firlej
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Brodziak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Stasinska
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| |
Collapse
|
10
|
Desai SA, Manjappa A, Khulbe P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview. J Egypt Natl Canc Inst 2021; 33:4. [PMID: 33555490 DOI: 10.1186/s43046-021-00059-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the key cancers affecting the bone tissues, primarily occurred in children and adolescence. Recently, chemotherapy followed by surgery and then post-operative adjuvant chemotherapy is widely used for the treatment of OS. However, the lack of selectivity and sensitivity to tumor cells, the development of multi-drug resistance (MDR), and dangerous side effects have restricted the use of chemotherapeutics. MAIN BODY There is an unmet need for novel drug delivery strategies for effective treatment and management of OS. Advances in nanotechnology have led to momentous progress in the design of tumor-targeted drug delivery nanocarriers (NCs) as well as functionalized smart NCs to achieve targeting and to treat OS effectively. The present review summarizes the drug delivery challenges in OS, and how organic nanoparticulate approaches are useful in overcoming barriers will be explained. The present review describes the various organic nanoparticulate approaches such as conventional nanocarriers, stimuli-responsive NCs, and ligand-based active targeting strategies tested against OS. The drug conjugates prepared with copolymer and ligand having bone affinity, and advanced promising approaches such as gene therapy, gene-directed enzyme prodrug therapy, and T cell therapy tested against OS along with their reported limitations are also briefed in this review. CONCLUSION The nanoparticulate drugs, drug conjugates, and advanced therapies such as gene therapy, and T cell therapy have promising and potential application in the effective treatment of OS. However, many of the above approaches are still at the preclinical stage, and there is a long transitional period before their clinical application.
Collapse
Affiliation(s)
- Sujit Arun Desai
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Rd, Mahal, Jagatpura, Jaipur, Rajasthan, 302017, India. .,Annasaheb Dange College of D Pharmacy, Ashta, Tal: Walwa, Dist., Sangli, Maharashtra, 416301, India.
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist., Kolhapur, Maharashtra, 416113, India
| | - Preeti Khulbe
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Rd, Mahal, Jagatpura, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
11
|
Chu-Tan JA, Fernando N, Aggio-Bruce R, Cioanca AV, Valter K, Andronikou N, deMollerat du Jeu X, Rutar M, Provis J, Natoli R. A method for gene knockdown in the retina using a lipid-based carrier. Mol Vis 2020; 26:48-63. [PMID: 32165826 PMCID: PMC7043644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/21/2020] [Indexed: 10/26/2022] Open
Abstract
Purpose The use of small non-coding nucleic acids, such as siRNA and miRNA, has allowed for a deeper understanding of gene functions, as well as for development of gene therapies for complex neurodegenerative diseases, including retinal degeneration. For effective delivery into the eye and transfection of the retina, suitable transfection methods are required. We investigated the use of a lipid-based transfection agent, Invivofectamine® 3.0 (Thermo Fisher Scientific), as a potential method for delivery of nucleic acids to the retina. Methods Rodents were injected intravitreally with formulations of Invivofectamine 3.0 containing scrambled, Gapdh, Il-1β, and C3 siRNAs, or sterile PBS (control) using a modified protocol for encapsulation of nucleic acids. TdT-mediated dUTP nick-end labeling (TUNEL) and IBA1 immunohistochemistry was used to determine histological cell death and inflammation. qPCR were used to determine the stress and inflammatory profile of the retina. Electroretinography (ERG) and optical coherence tomography (OCT) were employed as clinical indicators of retinal health. Results We showed that macrophage recruitment, retinal stress, and photoreceptor cell death in animals receiving Invivofectamine 3.0 were comparable to those in negative controls. Following delivery of Invivofectamine 3.0 alone, no statistically significant changes in expression were found in a suite of inflammatory and stress genes, and ERG and OCT analyses revealed no changes in retinal function or morphology. Injections with siRNAs for proinflammatory genes (C3 and Il-1β) and Gapdh, in combination with Invivofectamine 3.0, resulted in statistically significant targeted gene knockdown in the retina for up to 4 days following injection. Using a fluorescent Block-It siRNA, transfection was visualized throughout the neural retina with evidence of transfection observed in cells of the ganglion cell layer, inner nuclear layer, and outer nuclear layer. Conclusions This work supports the use of Invivofectamine 3.0 as a transfection agent for effective delivery of nucleic acids to the retina for gene function studies and as potential therapeutics.
Collapse
Affiliation(s)
- Joshua A. Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Adrian V. Cioanca
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| | - Nektaria Andronikou
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- Thermo Fisher Scientific, Carlsbad, CA
| | - Xavier deMollerat du Jeu
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- Thermo Fisher Scientific, Carlsbad, CA
| | - Matt Rutar
- School of Biomedical Sciences, The University of Melbourne, Kenneth Myer Building, Melbourne, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| |
Collapse
|
12
|
A Review of Immunotherapeutic Strategies in Canine Malignant Melanoma. Vet Sci 2019; 6:vetsci6010015. [PMID: 30759787 PMCID: PMC6466282 DOI: 10.3390/vetsci6010015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
In dogs, melanomas are relatively common tumors and the most common form of oral malignancy. Biological behavior is highly variable, usually aggressive, and frequently metastatic, with reported survival times of three months for oral or mucosal melanomas in advanced disease stages. Classical clinical management remains challenging; thus, novel and more efficacious treatment strategies are needed. Evidence-based medicine supports the role of the immune system to treat neoplastic diseases. Besides, immunotherapy offers the possibility of a precise medicinal approach to treat cancer. In recent years, multiple immunotherapeutic strategies have been developed, and are now recognized as a pillar of treatment. In addition, dogs represent a good model for translational medicine purposes. This review will cover the most relevant immunotherapeutic strategies for the treatment of canine malignant melanoma, divided among five different categories, namely, monoclonal antibodies, nonspecific immunotherapy activated by bacteria, vaccines, gene therapy, and lymphokine-activated killer cell therapy.
Collapse
|
13
|
Gene Therapy Strategies in Bone Tissue Engineering and Current Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:85-101. [DOI: 10.1007/5584_2018_253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Bruce VJ, McNaughton BR. Inside Job: Methods for Delivering Proteins to the Interior of Mammalian Cells. Cell Chem Biol 2017; 24:924-934. [DOI: 10.1016/j.chembiol.2017.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
|
15
|
Delaney AM, Adams CF, Fernandes AR, Al-Shakli AF, Sen J, Carwardine DR, Granger N, Chari DM. A fusion of minicircle DNA and nanoparticle delivery technologies facilitates therapeutic genetic engineering of autologous canine olfactory mucosal cells. NANOSCALE 2017; 9:8560-8566. [PMID: 28613324 DOI: 10.1039/c7nr00811b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies.
Collapse
Affiliation(s)
- Alexander M Delaney
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ding J, Lin ZQ, Jiang JM, Seidman CE, Seidman JG, Pu WT, Wang DZ. Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts. J Vis Exp 2016. [PMID: 28060283 DOI: 10.3791/54787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimal immunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations.
Collapse
Affiliation(s)
- Jian Ding
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School;
| | - Zhi-Qiang Lin
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School
| | - Jian-Ming Jiang
- Department of Genetics, Harvard Medical School; Howard Hughes Medical Institute
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School; Howard Hughes Medical Institute
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School; Howard Hughes Medical Institute
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School;
| |
Collapse
|
17
|
Chen LG, Liu YS, Zheng TH, Chen X, Li P, Xiao CX, Ren JL. Therapeutic targeting of liver cancer with a recombinant DNA vaccine containing the hemagglutinin-neuraminidase gene of Newcastle disease virus via apoptotic-dependent pathways. Oncol Lett 2016; 12:3344-3350. [PMID: 27900002 PMCID: PMC5103948 DOI: 10.3892/ol.2016.5114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
A total of ~38.6 million mortalities occur due to liver cancer annually, worldwide. Although a variety of therapeutic methods are available, the efficacy of treatment at present is extremely limited due to an increased risk of malignancy and inherently poor prognosis of liver cancer. Gene therapy is considered a promising option, and has shown notable potential for the comprehensive therapy of liver cancer, in keeping with advances that have been made in the development of cancer molecular biology. The present study aimed to investigate the synergistic effects of the abilities of the hemagglutinin neuraminidase protein of Newcastle disease virus (NDV), the pro-apoptotic factor apoptin from chicken anaemia virus, and the interferon-γ inducer interleukin-18 (IL-18) in antagonizing liver cancer. Therefore, a recombinant DNA plasmid expressing the three exogenous genes, VP3, IL-18 and hemagglutinin neuraminidase (HN), was constructed. Flow cytometry, acridine orange/ethidium bromide staining and analysis of caspase-3 activity were performed in H22 cell lines transfected with the recombinant DNA plasmid. In addition, 6-week-old C57BL/6 mice were used to establish a H22 hepatoma-bearing mouse model. Mice tumor tissue was analyzed by immunohistochemistry and scanning electron microscopy. The results of the present study revealed that the recombinant DNA vaccine containing the VP3, IL-18 and HN genes inhibited cell proliferation and induced autophagy via the mitochondrial pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Li-Gang Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yuan-Sheng Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Tang-Hui Zheng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Xu Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ping Li
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
18
|
Part I: Minicircle vector technology limits DNA size restrictions on ex vivo gene delivery using nanoparticle vectors: Overcoming a translational barrier in neural stem cell therapy. J Control Release 2016; 238:289-299. [DOI: 10.1016/j.jconrel.2016.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
|
19
|
New Medical/Biologic Paradigms in the Treatment of Bone Tumors. CURRENT SURGERY REPORTS 2014. [DOI: 10.1007/s40137-014-0055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Ahn BC. Requisites for successful theranostics with radionuclide-based reporter gene imaging. J Drug Target 2014; 22:295-303. [PMID: 24417717 DOI: 10.3109/1061186x.2013.878940] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radionuclide-based theranostic strategy has been widely used in diagnosis and treatment of patients with hyperthyroidism or differentiated thyroid cancer for a long time, and sodium iodide symporter gene is the radionuclide-based reporter gene used in theranostics. Theranostics, which is a promising approach, offering the ideal combination of accurate diagnosis and successful therapy in various clinical fields, is expected to become a key area of personalized medicine. Rapid advancements in biotechnologies using theranostic reporter genes and theranostic radiochemistry have led to development of the concept of theranostics using radionuclide-based imaging reporter genes; the theranostic approach is almost ready for application in a limited arena of clinics. In order to fulfill both the diagnostic and therapeutic purposes, theranostics with radionuclide-based imaging reporter requires use of successful combinations of various components, such as radionuclide-based reporter genes, promoters/enhancers that regulate expression of reporter genes, delivery vectors/vehicles, imaging or therapeutic probes and prodrugs, transductional and transcriptional targeting strategies, transgene amplification systems, etc. In this review, overview and recent updates on theranostics using radionuclide-based imaging reporter genes will be discussed.
Collapse
Affiliation(s)
- Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital , Daegu , Republic of Korea
| |
Collapse
|
21
|
Reetz J, Herchenröder O, Schmidt A, Pützer BM. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Abstract
Gene delivery to bone is useful both as an experimental tool and as a potential therapeutic strategy. Among its advantages over protein delivery are the potential for directed, sustained and regulated expression of authentically processed, nascent proteins. Although no clinical trials have been initiated, there is a substantial pre-clinical literature documenting the successful transfer of genes to bone, and their intraosseous expression. Recombinant vectors derived from adenovirus, retrovirus and lentivirus, as well as non-viral vectors, have been used for this purpose. Both ex vivo and in vivo strategies, including gene-activated matrices, have been explored. Ex vivo delivery has often employed mesenchymal stem cells (MSCs), partly because of their ability to differentiate into osteoblasts. MSCs also have the potential to home to bone after systemic administration, which could serve as a useful way to deliver transgenes in a disseminated fashion for the treatment of diseases affecting the whole skeleton, such as osteoporosis or osteogenesis imperfecta. Local delivery of osteogenic transgenes, particularly those encoding bone morphogenetic proteins, has shown great promise in a number of applications where it is necessary to regenerate bone. These include healing large segmental defects in long bones and the cranium, as well as spinal fusion and treating avascular necrosis.
Collapse
Affiliation(s)
- C H Evans
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Wagner DE, Bhaduri SB. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: a review. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:1-14. [PMID: 21707439 DOI: 10.1089/ten.teb.2011.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The anticipated growth in the aging population will drastically increase medical needs of society; of which, one of the largest components will undoubtedly be from orthopedic-related pathologies. There are several proposed solutions being investigated to cost-effectively prepare for the future--pharmaceuticals, implant devices, cell and gene therapies, or some combination thereof. Gene therapy is one of the more promising possibilities because it seeks to correct the root of the problem, thereby minimizing treatment duration and cost. Currently, viral vectors have shown the highest efficacies, but immunological concerns remain. Nonviral methods show reduced immune responses but are regarded as less efficient. The nonviral paradigms consist of mechanical and chemical approaches. While organic-based materials have been used more frequently in particle-based methods, inorganic materials capable of delivery have distinct advantages, especially advantageous in orthopedic applications. The inorganic gene therapy field is highly interdisciplinary in nature, and requires assimilation of knowledge across the broad fields of cell biology, biochemistry, molecular genetics, materials science, and clinical medicine. This review provides an overview of the role each area plays in orthopedic gene therapy as well as possible future directions for the field.
Collapse
Affiliation(s)
- Darcy E Wagner
- Department of Biomedical Engineering, Colleges of Medicine and Engineering, University of Toledo, Toledo, Ohio 43606, USA.
| | | |
Collapse
|
24
|
Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Eur J Pharm Biopharm 2011; 79:495-502. [PMID: 21726641 DOI: 10.1016/j.ejpb.2011.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/11/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
The aim of our study was to evaluate the effect of protamine on the transfection capacity of solid lipid nanoparticles (SLNs) by correlating it to the internalization mechanisms and intracellular trafficking of the vectors. Vectors were prepared with SLN, DNA, and protamine. ARPE-19 and HEK-293 cells were used for the evaluation of the formulations. Protamine induced a 6-fold increase in the transfection of SLNs in retinal cells due to the presence of nuclear localization signals (NLS), its protection capacity, and a shift in the internalization mechanism from caveolae/raft-mediated to clathrin-mediated endocytosis. However, protamine produced an almost complete inhibition of transfection in HEK-293 cells. In spite of the high DNA condensation capacity of protamine and its content in NLS, this does not always lead to an improvement in cell transfection since it may impair some of the limiting steps of the transfection processes.
Collapse
|
25
|
Pützer BM, Schmidt A. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
26
|
Abstract
IMPORTANCE OF THE FIELD Rexin-G, a tumor-targeted retrovector bearing a cytocidal cyclin G1 construct, is the first targeted gene therapy vector to gain fast track designation and orphan drug priorities for multiple cancer indications in the US. AREAS COVERED IN THIS REVIEW This review describes the major milestones in the clinical development of Rexin-G: from the molecular cloning and characterization of the human cyclin G1 proto-oncogene in 1994, to the design of the first knockout constructs and genetic engineering of the targeted delivery system from 1995 to 1997, through the initial proofs-of-concept, molecular pharmacology and toxicology studies of Rexin-G in preclinical cancer models from 1997 to 2001, to the pioneering clinical studies in humans from 2002 to 2004, which--together with the advancements in bioprocess development of high-potency clinical grade vectors circa 2005 - 2006--led to the accelerated approval of Rexin-G for all solid tumors by the Philippine FDA in 2007 and the rapid progression of clinical studies from 2007 to 2009 to the cusp of pivotal Phase III trials in the US. WHAT THE READER WILL GAIN In recording the development of Rexin-G as a novel form of targeted biological therapy, this review also highlights important aspects of vector design engineering which served to overcome the physiological barriers to gene delivery as it addresses the key regulatory issues involved in the development of a targeted gene therapy product. TAKE HOME MESSAGE Progressive clinical development of Rexin-G demonstrates the potential safety and efficacy of targeted genetic medicine, while validating the design engineering of the molecular biotechnology platform.
Collapse
Affiliation(s)
- Erlinda M Gordon
- Epeius Biotechnologies Corporation, 475 Huntington Drive, San Marino, CA 91108, USA.
| | | |
Collapse
|
27
|
Zhang HN, Leng P, Wang YZ, Zhang J. Treating human meniscal fibrochondrocytes with hIGF-1 gene by liposome. Clin Orthop Relat Res 2009; 467:3175-82. [PMID: 19424673 PMCID: PMC2772929 DOI: 10.1007/s11999-009-0870-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 04/16/2009] [Indexed: 01/31/2023]
Abstract
The menisci are intraarticular fibrocartilaginous structures essential to the normal function of the knee that lack the ability to self-repair. Human meniscal fibrochondrocytes may respond to beneficial genes like human insulin growth factor-1 (hIGF-1) and the meniscal cell may be a feasible donor for gene therapy. To explore this possibility, we amplified the hIGF-1 gene sequence in full length and cloned it into a bicistronic plasmid. This gene was then transfected into cultured human meniscal fibrochondrocytes by the liposome FuGene 6. Green fluorescence was expressed in part of the cells 6 hours after transfection and increased gradually, with a peak concentration of the hIGF-1 in the supernatants to 22.68 ng/mL 56 hours after transfection. Phenotypes of some cells changed and the proliferation accelerated after transfection. Flow cytometry analysis demonstrated upregulation of cell numbers in the G2 and S stages after hIGF-1 gene introduction. We conclude the hIGF-1 gene can be transfected into the human meniscal cell efficiently by liposome and it causes accelerated proliferation and differentiation. Within 10 days after transfection, the cytokine appears to be secreted into supernatants with the bioactivity and promotes the proliferation of the NIH 3T3 cell line.
Collapse
Affiliation(s)
- Hai-ning Zhang
- Department of Joint Surgery, the Affiliated Hospital of Tsingtao University, Tsingtao 266003, China.
| | | | | | | |
Collapse
|
28
|
Lin LH, Langasek JE, Talman LS, Taktakishvili OM, Talman WT. Feline immunodeficiency virus as a gene transfer vector in the rat nucleus tractus solitarii. Cell Mol Neurobiol 2009; 30:339-46. [PMID: 19777342 DOI: 10.1007/s10571-009-9456-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 01/25/2023]
Abstract
Gene transfer has been used to examine the role of putative neurotransmitters in the nucleus tractus solitarii (NTS). Most such studies used adenovirus vector-mediated gene transfer although adenovirus vector transfects both neuronal and non-neuronal cells. Successful transfection in the NTS has also been reported with lentivirus as the vector. Feline immunodeficiency virus (FIV), a lentivirus, may preferentially transfect neurons and could be a powerful tool to delineate physiological effects produced by altered synthesis of transmitters in neurons. However, it has not been studied in NTS. Therefore, we sought to determine whether FIV transfects rat NTS cells and to define the type of cell transfected. We found that injection of FIV encoding LacZ gene (FIVLacZ) into the NTS led to transfection of numerous NTS cells. Injection of FIVLacZ did not alter immunoreactivity (IR) for neuronal nitric oxide synthase, which we have shown resides in NTS neurons. A majority (91.7 +/- 3.9%) of transfected cells contained IR for neuronal nuclear antigen, a neuronal marker; 2.1 +/- 3.8% of transfected cells contained IR for glial fibrillary acidic protein, a glial marker. No transfected neurons or fibers were observed in the nodose ganglion, which sends afferents to the NTS. We conclude that FIV almost exclusively transfects neurons in the rat NTS from which it is not retrogradely transported. The cell-type specificity of FIV in the NTS may provide a molecular method to study local physiological functions mediated by potential neurotransmitters in the NTS.
Collapse
Affiliation(s)
- L H Lin
- Department of Neurology, 1191 ML, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
29
|
Ta HT, Dass CR, Larson I, Choong PF, Dunstan DE. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials 2009; 30:4815-23. [DOI: 10.1016/j.biomaterials.2009.05.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/18/2009] [Indexed: 02/04/2023]
|
30
|
Gao YS, Mei J, Tong TL, Hu M, Xue HM, Cai XS. Inhibitory effects of VEGF-siRNA mediated by adenovirus on osteosarcoma-bearing nude mice. Cancer Biother Radiopharm 2009; 24:243-7. [PMID: 19409047 DOI: 10.1089/cbr.2008.0544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As one of the blood-rich malignancies, the growth and metastasis of osteosarcoma both depend on its angiogenesis, a procedure in which vascular endothelial growth factor (VEGF) acts essentially. Although with the advent of neoadjuvant chemotherapy, more aggressive surgical excision and logical therapy strategy, the 5-year survival rate remains relatively stable at 70%, at best. However, antiangiogenic therapeutics, through gene silencing and targeting key sequences, probably brings an outlook to the conventional algorithm. In our current research, human-specific VEGF-siRNA (small interfering RNA) mediated by adenovirus was constructed and a cell line of MG63 was cultured and used to make an osteosarcoma-bearing nude mice model. The recombined adenovirus vector of Ad-VEGF-siRNA could successfully suppress VEGF expression and slow down the multiplication of MG63 cells in vivo; likewise, the down regulation of VEGF could be detected in vitro of the animal model. Inhibitory effects on osteosarcoma growth and blockage of pulmonary metastasis could be observed in the following oncotherapy procedure. The study demonstrates potent growth and pulmonary metastasis inhibitory effects of VEGF-siRNA on osteosarcoma in vivo and in vitro, which could potentially be applicable to the treatment of cancers as an antiangiogenic therapeutic in the near future.
Collapse
Affiliation(s)
- You-shui Gao
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Phase I/II and phase II studies of targeted gene delivery in vivo: intravenous Rexin-G for chemotherapy-resistant sarcoma and osteosarcoma. Mol Ther 2009; 17:1651-7. [PMID: 19532136 PMCID: PMC2835268 DOI: 10.1038/mt.2009.126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rexin-G, a pathotropic nanoparticle bearing a cytocidal cyclin G1 construct was tested in a phase I/II study for chemotherapy-resistant sarcomas and a phase II study for chemotherapy-resistant osteosarcoma. Twenty sarcoma patients and 22 osteosarcoma patients received escalating doses of Rexin-G intravenously from 8 x 10(11) to 24 x 10(11) colony forming units (cfu)/cycle. Treatment was continued if there was <or= grade 1 toxicity. No dose-limiting toxicity (DLT) was observed, and no vector DNA integration, replication-competent retrovirus (RCR) or vector-neutralizing antibodies were noted. In the phase I/II study, 3/6 patients had stable disease (SD) at the lowest dose; median progression-free survival (PFS) was 1.2 months, and overall survival (OS), 3.3 months. At higher doses, 10/14 patients had SD; median PFS was 3.7 months and median OS, 7.8 months. In this phase I/II study, a dose-response relationship with Rexin-G dosage was observed for progression-free and OS times (P = 0.02 and 0.005, respectively). In the phase II study, 10/17 evaluable patients had SD, median PFS was >or=3 months and median OS, 6.9 months. These studies suggest that Rexin-G is safe, may help control tumor growth, and may possibly improve survival in chemotherapy-resistant sarcoma and osteosarcoma.
Collapse
|
32
|
Thomas R, Wang HJ, Tsai PC, Langford CF, Fosmire SP, Jubala CM, Getzy DM, Cutter GR, Modiano JF, Breen M. Influence of genetic background on tumor karyotypes: evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res 2009; 17:365-377. [PMID: 19337847 PMCID: PMC3758998 DOI: 10.1007/s10577-009-9028-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 12/23/2022]
Abstract
Recurrent chromosomal aberrations in solid tumors can reveal the genetic pathways involved in the evolution of a malignancy and in some cases predict biological behavior. However, the role of individual genetic backgrounds in shaping karyotypes of sporadic tumors is unknown. The genetic structure of purebred dog breeds, coupled with their susceptibility to spontaneous cancers, provides a robust model with which to address this question. We tested the hypothesis that there is an association between breed and the distribution of genomic copy number imbalances in naturally occurring canine tumors through assessment of a cohort of Golden Retrievers and Rottweilers diagnosed with spontaneous appendicular osteosarcoma. Our findings reveal significant correlations between breed and tumor karyotypes that are independent of gender, age at diagnosis, and histological classification. These data indicate for the first time that individual genetic backgrounds, as defined by breed in dogs, influence tumor karyotypes in a cancer with extensive genomic instability.
Collapse
Affiliation(s)
- Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
| | - Huixia J. Wang
- Department of Statistics, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Pei-Chien Tsai
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Cordelia F. Langford
- Microarray Facility, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Susan P. Fosmire
- Integrated Department of Immunology, University of Colorado, Denver, CO 80214, USA
| | - Cristan M. Jubala
- Integrated Department of Immunology, University of Colorado, Denver, CO 80214, USA
| | | | - Gary R. Cutter
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL 35294, USA
| | - Jaime F. Modiano
- Integrated Department of Immunology, University of Colorado, Denver, CO 80214, USA
- University of Colorado Cancer Center, Aurora, CO 80045, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
33
|
|
34
|
Evans CH, Ghivizzani SC, Robbins PD. Orthopedic gene therapy in 2008. Mol Ther 2009; 17:231-44. [PMID: 19066598 PMCID: PMC2835052 DOI: 10.1038/mt.2008.265] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/26/2008] [Indexed: 02/07/2023] Open
Abstract
Orthopedic disorders, although rarely fatal, are the leading cause of morbidity and impose a huge socioeconomic burden. Their prevalence will increase dramatically as populations age and gain weight. Many orthopedic conditions are difficult to treat by conventional means; however, they are good candidates for gene therapy. Clinical trials have already been initiated for arthritis and the aseptic loosening of prosthetic joints, and the development of bone-healing applications is at an advanced, preclinical stage. Other potential uses include the treatment of Mendelian diseases and orthopedic tumors, as well as the repair and regeneration of cartilage, ligaments, and tendons. Many of these goals should be achievable with existing technologies. The main barriers to clinical application are funding and regulatory issues, which in turn reflect major safety concerns and the opinion, in some quarters, that gene therapy should not be applied to nonlethal, nongenetic diseases. For some indications, advances in nongenetic treatments have also diminished enthusiasm. Nevertheless, the preclinical and early clinical data are impressive and provide considerable optimism that gene therapy will provide straightforward, effective solutions to the clinical management of several common debilitating disorders that are otherwise difficult and expensive to treat.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Molecular Orthopaedics, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
35
|
Kwon YJ, Peng CA. Differential interaction of retroviral vector with target cell: quantitative effect of cellular receptor, soluble proteoglycan, and cell type on gene delivery efficiency. Tissue Eng Part A 2008; 14:1497-506. [PMID: 18620488 DOI: 10.1089/ten.tea.2007.0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retroviral vectors are powerful tools for gene therapy and stem cell engineering. To improve efficiency of retroviral gene delivery, quantitative understanding of interactions of a retroviral vector and a cell is crucial. Effects of nonspecific adsorption of retrovirus on a cell via proteoglycans and receptor-mediated binding of retrovirus to a cell on overall transduction efficiency were quantified by combining a mathematical model and experimental data. Results represented by transduction rate constant, a lumped parameter of overall transduction efficiency, delineated that chondroitin sulfate C (CSC) plays dual roles as either enhancer or inhibitor of retroviral transduction, depending on its concentrations in the retroviral supernatant. At the concentration of 20 microg/mL, CSC enhanced the transduction efficiency up to threefold but inhibited more than sevenfold at the concentration of 100 microg/mL. Transduction rate constants for amphotropic retroviral infection of NIH 3T3 cells under phosphate-depleted culture condition showed a proportional relationship between cellular receptor density on a cell and transduction efficiency. It was finally shown that amphotropic retrovirus transduced human fibroblast HT1080 cells more efficiently than NIH 3T3 cells. On the contrary, the transduction efficiency of NIH 3T3 cells by vesicular stomatitis virus G protein pseudotyped retroviruses was eightfold higher than that of HT1080 cells. This study implies usefulness of using quantitative analysis of retroviral transduction in understanding and optimizing retroviral gene delivery systems for therapeutic approaches to tissue engineering.
Collapse
Affiliation(s)
- Young Jik Kwon
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 92697, USA.
| | | |
Collapse
|
36
|
Nettelbeck DM. Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med (Berl) 2007; 86:363-77. [PMID: 18214411 DOI: 10.1007/s00109-007-0291-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/30/2007] [Accepted: 11/15/2007] [Indexed: 12/18/2022]
Abstract
Key challenges facing cancer therapy are the development of tumor-specific drugs and the implementation of potent multimodal treatment regimens. Oncolytic adenoviruses, featuring cancer-selective viral cell lysis and spread, constitute a particularly interesting drug platform towards both goals. First, as complex biological agents, adenoviruses allow for rational drug development by genetic incorporation of targeting mechanisms that exert their function at different stages of the viral replication cycle. Secondly, therapeutic genes implementing diverse cancer cell-killing activities can be inserted into the oncolytic adenovirus genome without loss of replication potential, thus deriving a "one-agent combination therapy". This article reviews an intriguing approach to derive oncolytic adenoviruses, which is to insert cellular genetic regulatory elements into adenovirus genomes for control of virus replication and therapeutic gene expression. This approach has been thoroughly investigated and optimized during the last decade for transcriptional targeting of adenovirus replication and gene expression to a wide panel of tumor types. More recently, further cellular regulatory mechanisms, such as mRNA stability and translation regulation, have been reported as tools for virus control. Consequently, oncolytic adenoviruses with a remarkable specificity profile for prostate cancer, gastrointestinal cancers, liver cancer, breast cancer, lung cancer, melanoma, and other cancers were derived. Such specificity profiles allow for the engineering of new generations of oncolytic adenoviruses with improved potency by enhancing viral cell binding and entry or by expressing therapeutic genes. Clearly, genetic engineering of viruses has great potential for the development of innovative antitumor drugs--towards targeted and multimodal cancer therapy.
Collapse
Affiliation(s)
- Dirk M Nettelbeck
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|