1
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Zhong Y, Wang B, Chen W, Zhang H, Sun J, Dong J. Exploring the Mechanisms of Modified Bu-Shen-Yi-Qi Decoction for COPD-Related Osteoporosis Therapy via Transcriptomics and Network Pharmacology Approach. Drug Des Devel Ther 2023; 17:2727-2745. [PMID: 37701046 PMCID: PMC10493229 DOI: 10.2147/dddt.s413532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose To investigate the effectiveness of modified Bu-Shen-Yi-Qi decoction (MBSYQ) in the treatment of osteoporosis associated with chronic obstructive pulmonary disease (COPD) and its underlying mechanisms of action. Methods Disease targets, active ingredients and targets were predicted by TTD, CTD, DisGeNET, HERB (BenCaoZuJian as its Chinese name), and multiple-TCM databases; In addition, the screened targets were performed via the online platforms DAVID 6.8 and Metascape for GO and KEGG pathway enrichment analysis; The relationship between the MBSYQ and core targets were verified by molecular docking technique. Then we established a COPD-associated osteoporosis rat model by passive 24-week cigarette exposure. We assessed the efficacy of MBSYQ by lung histopathology assessment and distal femur/the first lumbar vertebra (L1) microstructural assay. In addition, we performed tibial RNA sequencing, which was validated by RT-PCR and Western blot. Results Screening revealed that the 350 active compounds of MBSYQ anchored 228 therapeutic targets for COPD-related osteoporosis; KEGG pathway enrichment analysis showed that the key targets mainly regulated MAPK and PI3K/AKT signaling pathways. In vivo studies showed that MBSYQ treatment alleviated pathological alterations in lung tissue, and reversed the bone loss and microstructure damage in the femur/L1 of model rats. The RNA seq indicated that MBSYQ could upregulate genes associated with anti-oxidative stress and aerobic respiration. The GSEA analysis displayed that MAPK and PI3K/AKT pathways were inhibited by CS exposure and activated by MBSYQ. Conclusion MBSYQ is effective in the prevention and treatment of COPD-related osteoporosis, partially achieved by improving oxygen metabolism and activating MAPK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bin Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Vadana M, Cecoltan S, Ciortan L, Macarie RD, Mihaila AC, Tucureanu MM, Gan AM, Simionescu M, Manduteanu I, Droc I, Butoi E. Parathyroid Hormone Induces Human Valvular Endothelial Cells Dysfunction That Impacts the Osteogenic Phenotype of Valvular Interstitial Cells. Int J Mol Sci 2022; 23:ijms23073776. [PMID: 35409134 PMCID: PMC8998852 DOI: 10.3390/ijms23073776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Parathyroid hormone (PTH) is a key regulator of calcium, phosphate and vitamin D metabolism. Although it has been reported that aortic valve calcification was positively associated with PTH, the pathophysiological mechanisms and the direct effects of PTH on human valvular cells remain unclear. Here we investigated if PTH induces human valvular endothelial cells (VEC) dysfunction that in turn could impact the switch of valvular interstitial cells (VIC) to an osteoblastic phenotype. Human VEC exposed to PTH were analyzed by qPCR, western blot, Seahorse, ELISA and immunofluorescence. Our results showed that exposure of VEC to PTH affects VEC metabolism and functions, modifications that were accompanied by the activation of p38MAPK and ERK1/2 signaling pathways and by an increased expression of osteogenic molecules (BMP-2, BSP, osteocalcin and Runx2). The impact of dysfunctional VEC on VIC was investigated by exposure of VIC to VEC secretome, and the results showed that VIC upregulate molecules associated with osteogenesis (BMP-2/4, osteocalcin and TGF-β1) and downregulate collagen I and III. In summary, our data show that PTH induces VEC dysfunction, which further stimulates VIC to differentiate into a pro-osteogenic pathological phenotype related to the calcification process. These findings shed light on the mechanisms by which PTH participates in valve calcification pathology and suggests that PTH and the treatment of hyperparathyroidism represent a therapeutic strategy to reduce valvular calcification.
Collapse
Affiliation(s)
- Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Razvan D. Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Andreea C. Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Monica M. Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ana-Maria Gan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Maya Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania;
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
- Correspondence:
| |
Collapse
|
4
|
Zhu YS, Zhang JN, Mo TT, Jiang C, Ma RC, Chen L. Discoidin domain receptor 2 activation of p38 mitogen-activated protein kinase as an important pathway for osteonectin-regulating osteoblast mineralization. J Orthop Surg Res 2021; 16:711. [PMID: 34876214 PMCID: PMC8650413 DOI: 10.1186/s13018-021-02860-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Objective The present study aimed to determine the role of the discoidin domain receptor 2 (DDR2) in the osteonectin (ON) regulation of osteoblast mineralization through the activation of p38 mitogen-activated protein kinase (MAPK). Methods Four groups were established: the ON group, the inhibitor group, the Ddr2-small interfering ribonucleic acid (siRNA) group, and the control group. Osteoblasts from the parietal bones of neonatal Sprague–Dawley rats were isolated and cultured. In the ON group, 1 µg/mL ON was added to the osteoblasts. The gene expressions of collagen 1 (Col 1) and Ddr2 were detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In the inhibitor group, the osteoblasts were added to WRG-28 (a specific DDR2 inhibitor), and in the Ddr2-siRNA group, the osteoblasts were transfected with Ddr2-siRNA. The gene and protein expressions of DDR2, bone sialoprotein, osteocalcin, osteopontin, and p38 MAPK were determined using RT-qPCR and western blot analysis. Alizarin red staining and transmission electron microscopy were used to detect mineralization. Results The results showed that ON enhanced the osteoblast Col 1 and Ddr2 gene expressions, while the use of a Ddr2-siRNA/DDR2-blocker decreased the OPN, BSP, OCN, and P38 gene and protein expressions and reduced osteoblast cellular activity and mineralized nodules. Conclusion The present study demonstrated that DDR2 activation of p38 MAPK is an important approach to ON-regulating osteoblast mineralization.
Collapse
Affiliation(s)
- Yun-Sen Zhu
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Jiang-Nan Zhang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Ting-Ting Mo
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Chang Jiang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China.
| | - Ru-Chao Ma
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
5
|
Sungkhaphan P, Thavornyutikarn B, Kaewkong P, Pongkittiphan V, Pornsuwan S, Singhatanadgit W, Janvikul W. Antibacterial and osteogenic activities of clindamycin-releasing mesoporous silica/carboxymethyl chitosan composite hydrogels. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210808. [PMID: 34540258 PMCID: PMC8441126 DOI: 10.1098/rsos.210808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/03/2021] [Indexed: 05/27/2023]
Abstract
Conventional treatment of jaw bone infection is often ineffective at controlling bacterial infection and enhancing bone regeneration. Biodegradable composite hydrogels comprised of carboxymethyl chitosan (CMCS) and clindamycin (CDM)-loaded mesoporous silica nanoparticles (MCM-41), possessing dual antibacterial activity and osteogenic potency, were developed in the present study. CDM was successfully loaded into both untreated and plasma-treated MCM-41 nanoparticles, denoted as (p)-MCM-41, followed by the incorporation of each of CDM-loaded (p)-MCM-41 into CMCS. The resulting CDM-loaded composite hydrogels, (p)-MCM-41-CDM-CMCS, demonstrated slow degradation rates (about 70% remaining weight after 14-day immersion), while the CDM-free composite hydrogel entirely disintegrated after 4-day immersion. The plasma treatment was found to improve drug loading capacity and slow down initial drug burst effect. The prolonged releases of CDM from both (p)-MCM-41-CDM-CMCS retained their antibacterial effect against Streptococcus sanguinis for at least 14 days in vitro. In vitro assessment of osteogenic activity showed that the CDM-incorporated composite hydrogel was cytocompatible to human mesenchymal stem cells (hMSCs) and induced hMSC mineralization via p38-dependent upregulated alkaline phosphatase activity. In conclusion, novel (p)-MCM-41-CDM-CMCS hydrogels with combined controlled release of CDM and osteogenic potency were successfully developed for the first time, suggesting their potential clinical benefit for treatment of intraoral bone infection.
Collapse
Affiliation(s)
- Piyarat Sungkhaphan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Boonlom Thavornyutikarn
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Pakkanun Kaewkong
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Veerachai Pongkittiphan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Weerachai Singhatanadgit
- Faculty of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Wanida Janvikul
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| |
Collapse
|
6
|
A Systemic Review on Microalgal Peptides: Bioprocess and Sustainable Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su13063262] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nowadays, microalgal research is predominantly centered on an industrial scale. In general, multipotent bioactive peptides are the advantages over focal points over utilitarian nourishment as well as nutraceuticals. Microalgal peptides are now profoundly connected with biological properties rather than nutritive. Numerous techniques are employed to purify active peptides from algal protein using enzymatic hydrolysis; it is broadly used for numerous favorable circumstances. There is a chance to utilize microalgal peptides for human well-being as nutritive enhancements. This exhaustive survey details the utilization of microalgal peptides as antioxidant, anti-cancerous, anti-hypersensitive, anti-atherosclerotic, and nutritional functional foods. It is also exploring the novel technologies for the production of active peptides, for instance, the use of algal peptides as food for human health discovered restrictions, where peptides are sensitive to hydrolysis protease degradation. This review emphasizes the issue of active peptides in gastrointestinal transit, which has to be solved in the future, and prompt impacts.
Collapse
|
7
|
Icriverzi M, Dinca V, Moisei M, Evans RW, Trif M, Roseanu A. Lactoferrin in Bone Tissue Regeneration. Curr Med Chem 2020; 27:838-853. [PMID: 31258057 DOI: 10.2174/0929867326666190503121546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/15/2018] [Accepted: 12/13/2018] [Indexed: 11/22/2022]
Abstract
Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.
Collapse
Affiliation(s)
- Madalina Icriverzi
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania.,University of Bucharest, Faculty of Biology, Bucharest, Romania
| | - Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Romania
| | - Magdalena Moisei
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robert W Evans
- Brunel University, School of Engineering and Design, London, United Kingdom
| | - Mihaela Trif
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anca Roseanu
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
8
|
Han NR, Baek S, Kim HY, Lee KY, Yun JI, Choi JH, Lee E, Park CK, Lee ST. Generation of embryonic stem cells derived from the inner cell mass of blastocysts of outbred ICR mice. Anim Cells Syst (Seoul) 2020; 24:91-98. [PMID: 32489688 PMCID: PMC7241472 DOI: 10.1080/19768354.2020.1752306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 10/28/2022] Open
Abstract
Embryonic stem cells (ESCs) derived from outbred mice which share several genetic characteristics similar to humans have been requested for developing stem cell-based bioengineering techniques directly applicable to humans. Here, we report the generation of ESCs derived from the inner cell mass of blastocysts retrieved from 9-week-old female outbred ICR mice mated with 9-week-old male outbred ICR mice (ICRESCs). Similar to those from 129/Ola mouse blastocysts (E14ESCs), the established ICRESCs showed inherent characteristics of ESCs except for partial and weak protein expression and activity of alkaline phosphatase. Moreover, ICRESCs were not originated from embryonic germ cells or pluripotent cells that may co-exist in outbred ICR strain-derived mouse embryonic fibroblasts (ICRMEFs) used for deriving colonies from inner cell mass of outbred ICR mouse blastocysts. Furthermore, instead of outbred ICRMEFs, hybrid B6CBAF1MEFs as feeder cells could sufficiently support in vitro maintenance of ICRESC self-renewal. Additionally, ICRESC-specific characteristics (self-renewal, pluripotency, and chromosomal normality) were observed in ICRESCs cultured for 40th subpassages (164 days) on B6CBAF1MEFs without any alterations. These results confirmed the successful establishment of ESCs derived from outbred ICR mice, and indicated that self-renewal and pluripotency of the established ICRESCs could be maintained on B6CBAF1MEFs in culture.
Collapse
Affiliation(s)
- Na Rae Han
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Song Baek
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Hwa-Young Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Kwon Young Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Institute of Animal Resources, Kangwon National University, Chuncheon, Korea
| | - Jung Hoon Choi
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Choon-Keun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Department of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Department of Applied Animal Science, Kangwon National University, Chuncheon, Korea.,KustoGen Inc., Chuncheon, Korea
| |
Collapse
|
9
|
Brown SJ, Turner SA, Balain BS, Davidson NT, Roberts S. Is Osteogenic Differentiation of Human Nucleus Pulposus Cells a Possibility for Biological Spinal Fusion? Cartilage 2020; 11:181-191. [PMID: 29361851 PMCID: PMC7097985 DOI: 10.1177/1947603518754628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate whether a simple, biologically robust method for inducing calcification of degenerate intervertebral discs (IVD) could be developed to provide an alternative treatment for patients requiring spinal fusion. DESIGN Nucleus pulposus (NP) cells isolated from 14 human IVDs were cultured in monolayer and exposed to osteogenic medium, 1,25-dihydroxyvitamin D3 (VitD3), parathyroid hormone (PTH), and bone morphogenic proteins (BMPs) 2/7 to determine if they could become osteogenic. Similarly explant cultures of IVDs from 11 patients were cultured in osteogenic media with and without prior exposure to VitD3 and BMP-2. Osteogenic differentiation was assessed by alkaline phosphatase activity and areas of calcification identified by alizarin red or von Kossa staining. Expression of osteogenic genes during monolayer culture was determined using polymerase chain reaction and explant tissues assessed for BMP inhibitors. Human bone marrow-derived mesenchymal stromal cells (MSCs) were used for comparison. RESULTS Standard osteogenic media was optimum for promoting mineralization by human NP cells in monolayer. Some osteogenic differentiation was observed with 10 nM VitD3, but none following application of PTH or BMPs. Regions of calcification were detected in 2 of the eleven IVD tissue explants, one cultured in osteogenic media and one with the addition of VitD3 and BMP-2. CONCLUSIONS Human NP cells can become osteogenic in monolayer and calcification of the extracellular matrix can also occur, although not consistently. Inhibitory factors within either the cells or the extracellular matrix may hinder osteogenesis, indicating that a robust biological fusion at this time requires further optimization.
Collapse
Affiliation(s)
- Sharon J. Brown
- Spinal Studies, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
- ISTM, Keele University, Keele, Staffordshire, UK
| | - Sarah A. Turner
- Spinal Studies, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
- ISTM, Keele University, Keele, Staffordshire, UK
| | - Birender S. Balain
- Spinal Studies, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Neil T. Davidson
- Spinal Studies, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Sally Roberts
- Spinal Studies, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
- ISTM, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
10
|
Ewendt F, Föller M. p38MAPK controls fibroblast growth factor 23 (FGF23) synthesis in UMR106-osteoblast-like cells and in IDG-SW3 osteocytes. J Endocrinol Invest 2019; 42:1477-1483. [PMID: 31201665 DOI: 10.1007/s40618-019-01073-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND p38 mitogen-activated protein kinase (p38MAPK) is a serine/threonine kinase activated by cellular stress stimuli including radiation, osmotic shock, and inflammation and influencing apoptosis, cell proliferation, and autophagy. Moreover, p38MAPK induces transcriptional activity of the transcription factor complex NFκB mediating multiple pro-inflammatory cellular responses. Fibroblast growth factor 23 (FGF23) is produced by bone cells, and regulates renal phosphate and vitamin D metabolism as a hormone. FGF23 expression is enhanced by NFκB. Here, we analyzed the relevance of p38MAPK activity for the production of FGF23. METHODS Fgf23 expression was analyzed by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast-like cells and in IDG-SW3 osteocytes. RESULTS Inhibition of p38MAPK with SB203580 or SB202190 significantly down-regulated Fgf23 expression and FGF23 protein expression. Conversely, p38MAPK activator anisomycin increased the abundance of Fgf23 mRNA. NFκB inhibitors wogonin and withaferin A abrogated the stimulatory effect of anisomycin on Fgf23 gene expression. CONCLUSION p38MAPK induces FGF23 formation, an effect at least in part dependent on NFκB activity.
Collapse
Affiliation(s)
- F Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - M Föller
- Institute of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
11
|
Zhu YS, Gu Y, Jiang C, Chen L. Osteonectin regulates the extracellular matrix mineralization of osteoblasts through P38 signaling pathway. J Cell Physiol 2019; 235:2220-2231. [PMID: 31489629 DOI: 10.1002/jcp.29131] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Osteonectin binds strongly to type I collagen and hydroxyapatite and plays a crucial role in extracellular matrix mineralization. Previous studies have also shown that p38 signaling pathway is an important regulator for osteoblast mineralization. This study focused on the role of osteonectin in regulating extracellular matrix mineralization via the p38 signaling pathway. Osteoblasts were isolated and cultured from parietal bones of neonatal Sprague-Dawley rats. The gene and protein expressions of noncollagen proteins (BSP, bone sialoprotein; OCN, osteocalcin; OPN, osteopontin), p38 mitogen-activated protein kinase, and SIBLINGs (Small Integrin-Binding LIgand N-linked Glycoproteins) members (DMP1, dentine matrix protein 1, DSPP, dentin sialophosphoprotein, and MEPE, matrix extracellular phosphoglycoprotein) were detected by reverse-transcription quantitative polymerase chain reaction and western blot analysis. Alizarin red staining, intracellular calcium assay, and transmission electron microscopy were used to detect mineralization. Initially, by adding osteonectin at different concentrations in osteoblasts and detecting the above mineralization indexes, 1 µg/ml was determined to be the optima osteonectin concentration, which significantly increased gene expressions of BSP, OPN, OCN, DMP1, MEPE, DSPP, and p38 in osteoblasts, p38 and p-p38 protein expressions were also significantly increased, mineralized nodules were significantly enhanced; when added with SB203580 (a specific inhibitor for p38) these effects were inhibited. Furthermore, osteoblasts transfected with Ad-p38 also significantly upregulated the protein and gene expressions of noncollagens and SIBLINGs members, whereas transfection of p38-rhRNA showed the opposite effect. Our data suggest that osteonectin regulates the extracellular matrix mineralization of osteoblasts through the P38 signaling pathway.
Collapse
Affiliation(s)
- Yun-Sen Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chang Jiang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Cook B, Rafiq R, Lee H, Banks KM, El-Debs M, Chiaravalli J, Glickman JF, Das BC, Chen S, Evans T. Discovery of a Small Molecule Promoting Mouse and Human Osteoblast Differentiation via Activation of p38 MAPK-β. Cell Chem Biol 2019; 26:926-935.e6. [PMID: 31031140 DOI: 10.1016/j.chembiol.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Disorders of bone healing and remodeling are indications with an unmet need for effective pharmacological modulators. We used a high-throughput screen to identify activators of the bone marker alkaline phosphatase (ALP), and discovered 6,8-dimethyl-3-(4-phenyl-1H-imidazol-5-yl)quinolin-2(1H)-one (DIPQUO). DIPQUO markedly promotes osteoblast differentiation, including expression of Runx2, Osterix, and Osteocalcin. Treatment of human mesenchymal stem cells with DIPQUO results in osteogenic differentiation including a significant increase in calcium matrix deposition. DIPQUO stimulates ossification of emerging vertebral primordia in developing zebrafish larvae, and increases caudal fin osteogenic differentiation during adult zebrafish fin regeneration. The stimulatory effect of DIPQUO on osteoblast differentiation and maturation was shown to be dependent on the p38 MAPK pathway. Inhibition of p38 MAPK signaling or specific knockdown of the p38-β isoform attenuates DIPQUO induction of ALP, suggesting that DIPQUO mediates osteogenesis through activation of p38-β, and is a promising lead candidate for development of bone therapeutics.
Collapse
Affiliation(s)
- Brandoch Cook
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| | - Ruhina Rafiq
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heejin Lee
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Jeanne Chiaravalli
- Rockefeller University High Throughput and Spectroscopy Resource Center, New York, NY 10065, USA
| | - J Fraser Glickman
- Rockefeller University High Throughput and Spectroscopy Resource Center, New York, NY 10065, USA
| | - Bhaskar C Das
- Departments of Medicine and Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuibing Chen
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| | - Todd Evans
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
13
|
Jie Z, Shen S, Zhao X, Xu W, Zhang X, Huang B, Tang P, Qin A, Fan S, Xie Z. Activating β-catenin/Pax6 axis negatively regulates osteoclastogenesis by selectively inhibiting phosphorylation of p38/MAPK. FASEB J 2018; 33:4236-4247. [PMID: 30526042 DOI: 10.1096/fj.201801977r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Balance of osteoclast formation is regulated by the receptor activator of NF-κB ligand and extracellular negative regulators such as IFN-γ and IFN-β. However, very little is known about the intrinsic negative regulatory factors of osteoclast differentiation. Recently, the paired-box homeodomain transcription factor Pax6 was shown to negatively regulate receptor activator of NF-κB ligand-mediated osteoclast differentiation. However, the mechanism underlying this regulation is still unclear. In this study, we show that a p38 inhibitor (VX-745) up-regulates the expression of Pax6 during osteoclast differentiation. Subsequently, we found that β-catenin could bind to the proximal region of Pax6 promoter to induce its expression, and this action could be impaired by p38-induced ubiquitin-mediated degradation of β-catenin. Our results suggest that Pax6 is regulated by a novel p38/β-catenin pathway. Pax6 can further regulate the nuclear translocation of NF of activated T cells, cytoplasmic 1. Our study indicates that this novel p38/β-catenin/Pax6 axis contributes to negative regulation of osteoclastogenesis. In addition, our study proposes a novel approach to treat osteoclast-related diseases through the use of VX-745 complemented with the β-catenin activator SKL2001.-Jie, Z., Shen, S., Zhao, X., Xu, W., Zhang, X., Huang, B., Tang, P., Qin, A., Fan, S., Xie, Z. Activating β-catenin/Pax6 axis negatively regulates osteoclastogenesis by selectively inhibiting phosphorylation of p38/MAPK.
Collapse
Affiliation(s)
- Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Pan Tang
- Department of Orthopaedics, Huzhou Hospital, Zhejiang University, Hangzhou, China; and
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Thouverey C, Ferrari S, Caverzasio J. Selective inhibition of Src family kinases by SU6656 increases bone mass by uncoupling bone formation from resorption in mice. Bone 2018; 113:95-104. [PMID: 29751129 DOI: 10.1016/j.bone.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023]
Abstract
Mice deficient in the non-receptor tyrosine kinase Src exhibit high bone mass due to impaired bone resorption and increased bone formation. Although several Src family kinase inhibitors inhibit bone resorption in vivo, they display variable effects on bone formation. SU6656 is a selective Src family kinase inhibitor with weaker activity towards the non-receptor tyrosine kinase Abl and receptor tyrosine kinases which are required for appropriate osteoblast proliferation, differentiation and function. Therefore, we sought to determine whether SU6656 could increase bone mass by inhibiting bone resorption and by stimulating bone formation, and to explore its mechanisms of action. Four-month-old female C57Bl/6J mice received intraperitoneal injections of either 25 mg/kg SU6656 or its vehicle every other day for 12 weeks. SU6656-treated mice exhibited increased bone mineral density, cortical thickness, cancellous bone volume and trabecular thickness. SU6656 inhibited bone resorption in mice as shown by reduced osteoclast number, and diminished expressions of Oscar, Trap5b and CtsK. SU6656 did not affect Rankl or Opg expressions. However, it blocked c-fms signaling, osteoclastogenesis and matrix resorption, and induced osteoclast apoptosis in vitro. In addition, SU6656 stimulated bone formation rates at trabecular, endosteal and periosteal bone envelopes, and increased osteoblast number in trabecular bone. SU6656 did not affect expressions of clastokines favoring bone formation in mice. However, it stimulated osteoblast differentiation and matrix mineralization by specifically facilitating BMP-SMAD signaling pathway in vitro. Knockdown of Src and Yes mimicked the stimulatory effect of SU6656 on osteoblast differentiation. In conclusion, SU6656 uncouples bone formation from resorption by inhibiting osteoclast development, function and survival, and by enhancing BMP-mediated osteoblast differentiation.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland.
| | - Serge Ferrari
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
15
|
Nishihara S, Ikeda M, Ozawa H, Akiyama M, Yamaguchi S, Nakahama KI. Role of cAMP in phenotypic changes of osteoblasts. Biochem Biophys Res Commun 2017; 495:941-946. [PMID: 29170126 DOI: 10.1016/j.bbrc.2017.11.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022]
Abstract
Bone remodeling is precisely controlled by bone formation and bone resorption, and osteoblasts are responsible for both processes. Osteoblasts exhibit an osteoclastogenic phenotype in response to elevated intracellular cyclic AMP [cAMP]i levels. However, the role of cAMP in osteoblasts acquiring an osteogenic phenotype is controversial. To elucidate the effect of cAMP on both phenotypes, an osteoblast-like cell line, TMS-12, was established in our laboratory and used in this study. Dibutyryl-cAMP (dBcAMP), a cAMP analogue, inhibited mineralization in TMS-12 cells and MC3T3E1 cells (an osteoblast-like cell line) but promoted osteoclast-supporting activity in TMS-12 cells. Moreover, mineralization was inhibited in glucagon receptor-transduced TMS-12 cells (TMS-12GCGR) after glucagon treatment to increase endogenous [cAMP]i levels. However, the osteoclast-supporting activity of TMS-12GCGR cells was stimulated by glucagon treatment. These cAMP-induced phenotypic changes of osteoblasts were also supported by their gene expression profile. These results suggest that [cAMP]i is an important factor mediating phenotypic changes of osteoblasts. Our findings may provide valuable insights into the mechanisms that underlie bone remodeling in both, healthy and diseased states.
Collapse
Affiliation(s)
- Syun Nishihara
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mami Ikeda
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hitoshi Ozawa
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
16
|
John CM, Phillips NJ, Stein DC, Jarvis GA. Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathog Dis 2017; 75:3569603. [PMID: 28423169 DOI: 10.1093/femspd/ftx030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infections due to Neisseria meningitidis afflict more than one million people worldwide annually and cause death or disability in many survivors. The clinical course of invasive infections has been well studied, but our understanding of the cause of differences in patient outcomes has been limited because these are dependent on multiple factors including the response of the host, characteristics of the bacteria and interactions between the host and the bacteria. The meningococcus is a highly inflammatory organism, and the lipooligosaccharide (LOS) on the outer membrane is the most potent inflammatory molecule it expresses due to the interactions of the lipid A moiety of LOS with receptors of the innate immune system. We previously reported that increased phosphorylation of hexaacylated neisserial lipid A is correlated with greater inflammatory potential. Here we postulate that variability in lipid A phosphorylation can tip the balance of innate immune responses towards homeostatic tolerance or proinflammatory signaling that affects adaptive immune responses, causing disease with meningitis only, or septicemia with or without meningitis, respectively. Furthermore, we propose that studies of the relationship between bacterial virulence and gene expression should consider whether genetic variation could affect properties of biosynthetic enzymes resulting in LOS structural differences that alter disease pathobiology.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Daniel C Stein
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742 USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Houston DA, Myers K, MacRae VE, Staines KA, Farquharson C. The Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by Continuous PTH Exposure in Mineralising Osteoblast Cultures. Calcif Tissue Int 2016; 99:510-524. [PMID: 27444010 PMCID: PMC5055575 DOI: 10.1007/s00223-016-0176-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
Abstract
Sustained exposure to high levels of parathyroid hormone (PTH), as observed in hyperparathyroidism, is catabolic to bone. The increase in the RANKL/OPG ratio in response to continuous PTH, resulting in increased osteoclastogenesis, is well established. However, the effects of prolonged PTH exposure on key regulators of skeletal mineralisation have yet to be investigated. This study sought to examine the temporal expression of PHOSPHO1, TNAP and nSMase2 in mineralising osteoblast-like cell cultures and to investigate the effects of continuous PTH exposure on the expression of these enzymes in vitro. PHOSPHO1, nSMase2 and TNAP expression in cultured MC3T3-C14 cells significantly increased from day 0 to day 10. PTH induced a rapid downregulation of Phospho1 and Smpd3 gene expression in MC3T3-C14 cells and cultured hemi-calvariae. Alpl was differentially regulated by PTH, displaying upregulation in cultured MC3T3-C14 cells and downregulation in hemi-calvariae. PTH was also able to abolish the stimulatory effects of bone morphogenic protein 2 (BMP-2) on Smpd3 and Phospho1 expression. The effects of PTH on Phospho1 expression were mimicked with the cAMP agonist forskolin and blocked by the PKA inhibitor PKI (5-24), highlighting a role for the cAMP/PKA pathway in this regulation. The potent down-regulation of Phospho1 and Smpd3 in osteoblasts in response to continuous PTH may provide a novel explanation for the catabolic effects on the skeleton of such an exposure. Furthermore, our findings support the hypothesis that PHOSPHO1, nSMase2 and TNAP function cooperatively in the initiation of skeletal mineralisation.
Collapse
Affiliation(s)
- D A Houston
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - K Myers
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - V E MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - K A Staines
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - C Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
18
|
Huang MH, Shen YF, Hsu TT, Huang TH, Shie MY. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:1-8. [DOI: 10.1016/j.msec.2016.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
|
19
|
Nikitovic D, Kavasi RM, Berdiaki A, Papachristou DJ, Tsiaoussis J, Spandidos DA, Tsatsakis AM, Tzanakakis GN. Parathyroid hormone/parathyroid hormone-related peptide regulate osteosarcoma cell functions: Focus on the extracellular matrix (Review). Oncol Rep 2016; 36:1787-92. [PMID: 27499459 PMCID: PMC5022866 DOI: 10.3892/or.2016.4986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone tumor of mesenchymal origin mostly affecting children and adolescents. The OS extracellular matrix (ECM) is extensively altered as compared to physiological bone tissue. Indeed, the main characteristic of the most common osteoblastic subtype of OS is non-mineralized osteoid production. Parathyroid hormone (PTH) is a polypeptide hormone secreted by the chief cells of the parathyroid glands. The PTH-related peptide (PTHrP) may be comprised of 139, 141 or 173 amino acids and exhibits considerate N-terminal amino acid sequence homology with PTH. The function of PTH/PTHrP is executed through the activation of the PTH receptor 1 (PTHR1) and respective downstream intracellular pathways which regulate skeletal development, bone turnover and mineral ion homeostasis. Both PTHR1 and its PTH/PTHrP ligands have been shown to be expressed in OS and to affect the functions of these tumor cells. This review aims to highlight the less well known aspects of PTH/PTHrP functions in the progression of OS by focusing on ECM-dependent signaling.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Rafaela-Maria Kavasi
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aikaterini Berdiaki
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Dionysios J Papachristou
- Department of Anatomy‑Histology‑Embryology, Unit of Bone and Soft Tissue Studies, School of Medicine, University of Patras, Patras 26504, Greece
| | - John Tsiaoussis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George N Tzanakakis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
20
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
21
|
Thouverey C, Caverzasio J. Suppression of p38α MAPK Signaling in Osteoblast Lineage Cells Impairs Bone Anabolic Action of Parathyroid Hormone. J Bone Miner Res 2016; 31:985-93. [PMID: 26643857 DOI: 10.1002/jbmr.2762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/27/2015] [Accepted: 12/04/2015] [Indexed: 11/06/2022]
Abstract
Intermittent parathyroid hormone administration (iPTH) increases bone mass and strength by stimulating osteoblast number and activity. PTH exerts its anabolic effects through cAMP/protein kinase A (PKA) signaling pathway in mature osteoblasts and osteocytes. Here, we show that inactivation of the p38α MAPK-encoding gene with the use of an osteocalcin-cre transgene prevents iPTH bone anabolic action. Indeed, iPTH fails to increase insulin-like growth factor 1 expression, osteoblast number and activity, and bone formation in mice lacking p38α in osteoblasts and osteocytes. Moreover, iPTH-induced expression of receptor activator of NF-κB ligand (RANKL) and subsequent increased bone resorption are suppressed in those mice. Finally, we found that PTH activates p38α MAPK downstream of cAMP/PKA signaling pathway in mature osteoblasts. Our findings identify p38α MAPK as a key component of PTH signaling in osteoblast lineage cells and highlight its requirement in iPTH osteoanabolic activity. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Chen B, Lin T, Yang X, Li Y, Xie D, Cui H. Intermittent parathyroid hormone (1-34) application regulates cAMP-response element binding protein activity to promote the proliferation and osteogenic differentiation of bone mesenchymal stromal cells, via the cAMP/PKA signaling pathway. Exp Ther Med 2016; 11:2399-2406. [PMID: 27284327 DOI: 10.3892/etm.2016.3177] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
The potential effects of intermittent parathyroid hormone (1-34) [PTH (1-34)] administration on bone formation have previously been investigated. A number of studies have suggested that the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway is associated with PTH-induced osteogenic differentiation. However, the precise signaling pathways and molecular mechanism by which PTH (1-34) induces the osteogenic differentiation of bone mesenchymal stromal cells (BMSCs) remain elusive. The purpose of the present study was to investigate the mechanism underlying the effect of intermittent PTH (1-34) application on the proliferation and osteogenic differentiation of BMSCs. BMSCs were randomly divided into four groups, as follows: Osteogenic medium (control group); osteogenic medium and intermittent PTH (1-34); osteogenic medium and intermittent PTH (1-34) plus the adenylyl cyclase activator forskolin; and osteogenic medium and intermittent PTH (1-34) plus the PKA inhibitor H-89. A cell proliferation assay revealed that PTH (1-34) stimulates BMSC proliferation via the cAMP/PKA pathway. Furthermore, reverse transcription-quantitative polymerase chain reaction, alkaline phosphatase activity testing and cell examination using Alizarin Red S staining demonstrated that PTH (1-34) administration promotes osteogenic differentiation and mineralization, mediated by the cAMP/PKA pathway. Crucially, the results of western blot analyses suggested that PTH (1-34) treatment and, to a greater degree, PTH (1-34) plus forskolin treatment caused an increase in phosphorylated cAMP response element binding protein (p-CREB) expression, but the effect of PTH on p-CREB expression was blocked by H-89. In conclusion, the current study demonstrated that intermittent PTH (1-34) administration regulates downstream proteins, particularly p-CREB, in the cAMP/PKA signaling pathway, to enhance the proliferation, osteogenic differentiation and mineralization of BMSCs.
Collapse
Affiliation(s)
- Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxi Yang
- Department of Spine Surgery, Chinese PLA General Hospital (301 Hospital), Beijing 100853, P.R. China
| | - Yiqiang Li
- Department of Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Denghui Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
23
|
Focus on the p38 MAPK signaling pathway in bone development and maintenance. BONEKEY REPORTS 2015; 4:711. [PMID: 26131361 DOI: 10.1038/bonekey.2015.80] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/24/2015] [Indexed: 01/18/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway can be activated in response to a wide range of extracellular signals. As a consequence, it can generate many different biological effects that depend on the stimulus and on the activated cell type. Therefore, this pathway has been found to regulate many aspects of tissue development and homeostasis. Recent work with the aid of genetically modified mice has highlighted the physiological functions of this pathway in skeletogenesis and postnatal bone maintenance. In this review, emphasis is given to the roles of the p38 MAPK pathway in chondrocyte, osteoblast and osteoclast biology. In particular, we describe the molecular mechanisms of p38 MAPK activation and downstream targets. The requirement of this pathway in physiological bone development and homeostasis is demonstrated by the ability of p38 MAPK to regulate master transcription factors controlling geneses and functions of chondrocytes, osteoblasts and osteoclasts.
Collapse
|
24
|
Zhang X, Li F, Guo L, Hei H, Tian L, Peng W, Cai H. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts. PLoS One 2015; 10:e0124274. [PMID: 25902045 PMCID: PMC4406748 DOI: 10.1371/journal.pone.0124274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/11/2015] [Indexed: 12/23/2022] Open
Abstract
Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- * E-mail: (XZ); (WP)
| | - Fangping Li
- Department of Pharmacy, Jing’an District Center Hospital of Shanghai (Huashan Hospital, Fudan University, Jing’an Branch), 259 Xikang Road, Shanghai, 200040, China
| | - Lin Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Hongya Hei
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Lulu Tian
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Wen Peng
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine,164 Lanxi Road, Shanghai, 200062, PR China
- * E-mail: (XZ); (WP)
| | - Hui Cai
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, United States of America
- Renal Section, Atlanta Veteran Administration Medical Center, Decatur, GA, 30033, United States of America
| |
Collapse
|
25
|
Lee SY, Lee JH, Shin KK, Kim DS, Kim YS, Bae YC, Jung JS. Role of transforming growth factor-activated kinase-1 on tumor necrosis factor-α actions in human adipose tissue-derived stromal cells. Stem Cells Dev 2015; 24:836-45. [PMID: 25350220 DOI: 10.1089/scd.2014.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) has multiple effects on proliferation and differentiation of human mesenchymal stem cells. Transforming growth factor-activated kinase-1 (TAK1) mediates the activation of nuclear factor-kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and p38 pathways in response to TNF-α. However, the role of TAK1 in TNF-α-induced effects in human adipose-derived stem cells (hADSCs) and its signaling pathway has not been clearly defined. Therefore, this study was designated to clarify the role of TAK1 in TNF-α-induced actions on proliferation and differentiation of hADSCs and its downstream signaling pathway. Inhibiting TAK1 expression inhibited the TNF-α-induced increase in osteogenic differentiation and basal osteogenic differentiation without affecting the TNF-α-induced effect on proliferation and adipogenic differentiation of hADSCs. A western blot analysis showed that TNF-α treatment induced degradation of IκB, but that TAK1 small interfering RNA (siRNA) transfection did not protect against TNF-α-induced IκB degradation. The transfection of TAK1 siRNA also did not affect TNF-α-induced IκB phosphorylation or ERK1/2 phosphorylation. However, downregulating TAK1 inhibited this TNF-α-induced S536 phosphorylation of the p65 subunit. TNF-α treatment induced p38 phosphorylation, which was inhibited by the transfection of TAK1 siRNA. Adding p38 inhibitor inhibited TNF-α-induced p65 phosphorylation, NF-κB promoter activity, and TNF-α-induced increase in hADSC osteogenic differentiation. These data indicate that TAK1 is involved in the TNF-α-induced activation of p38 kinase, which subsequently phosphorylates the NF-κB p65 subunit, and increases the transactivation potential of p65 and osteogenic differentiation in hADSCs.
Collapse
Affiliation(s)
- Sun Young Lee
- 1 Department of Physiology, School of Medicine, Pusan National University , Yangsan, Gyeongnam, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.
Collapse
|
27
|
Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides for human nutrition and health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9211-22. [PMID: 25179496 DOI: 10.1021/jf502420h] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production.
Collapse
Affiliation(s)
- Xiaodan Fan
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, China
| | | | | | | | | |
Collapse
|
28
|
Shu Q, Li W, Li J, Wang W, Liu C, Sun K. Cross-talk between cAMP and MAPK pathways in HSD11B2 induction by hCG in placental trophoblasts. PLoS One 2014; 9:e107938. [PMID: 25229504 PMCID: PMC4168233 DOI: 10.1371/journal.pone.0107938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/17/2014] [Indexed: 01/17/2023] Open
Abstract
Overexposure of the fetus to glucocorticoids in gestation is detrimental to fetal development. The passage of maternal glucocorticoids into the fetal circulation is governed by 11beta-Hydroxysteroid Dehydrogenase Type 2 (HSD11B2) in the placental syncytiotrophoblasts. Human chorionic gonadotropin (hCG) plays an important role in maintaining placental HSD11B2 expression via activation of the cAMP pathway. In this study, we investigated the relationship between the activation of the cAMP pathway by hCG and subsequent phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) or p38 mitogen-activated protein kinase (MAPK) pathways in the regulation of placental HSD11B2 expression in human placental syncytiotrophoblasts. We found that treatment of the placental syncytiotrophoblasts with either hCG or dibutyl cAMP (dbcAMP) could promote the phosphorylation of p38 and ERK1/2. Inhibition of p38 MAPK with SB203580 not only reduced the basal HSD11B2 mRNA and protein levels but also attenuated HSD11B2 levels induced by either hCG or dbcAMP. By contrast, inhibition of ERK1/2 with PD98059 increased the basal mRNA and protein levels of HSD11B2 and had no effect on HSD11B2 mRNA and protein levels induced by either hCG or dbcAMP. These data suggest that p38 MAPK is involved in both basal and hCG/cAMP-induced expression of HSD11B2, and ERK1/2 may play a role opposite to p38 MAPK at least in the basal expression of HSD11B2 in human placental syncytiotrophoblasts and that there is complicated cross-talk between hCG/cAMP and MAPK cascades in the regulation of placental HSD11B2 expression.
Collapse
Affiliation(s)
- Qun Shu
- Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Wenjiao Li
- Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Jianneng Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wangsheng Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Kang Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
29
|
Nguyen MHT, Qian ZJ, Jung WK. Beneficial Effect of Abalone Intestine Gastro-Intestinal Digests on Osteoblastic MG-63 Cell Differentiation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2014. [DOI: 10.1080/10498850.2012.721874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Zhang W, Guo H, Jing H, Li Y, Wang X, Zhang H, Jiang L, Ren F. Lactoferrin stimulates osteoblast differentiation through PKA and p38 pathways independent of lactoferrin's receptor LRP1. J Bone Miner Res 2014; 29:1232-43. [PMID: 24877241 DOI: 10.1002/jbmr.2116] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactoferrin (LF) has been established as a potent anabolic factor for bone health both in vivo and in vitro. However, the molecular mechanisms underlying LF's action are still largely unknown. Here, we explore the signaling pathways that mediate LF's beneficial effect on osteoblast differentiation. In primary osteoblast and preosteoblast MC3T3‐E1, LF promoted alkaline phosphatase (ALP)activity, osteocalcin (OCN) secretion, and mineralization. Along with this enhanced osteogenic differentiation, activation of p38 mitogen‐activated protein kinase (MAPK) was detected in LF‐treated MC3T3‐E1 cells. Downregulating p38 with selective inhibitor SB203580 or p38a small interfering RNA (siRNA) attenuated the effect of LF on osteogenesis. Furthermore, knockdown of p38α significantly decreased LF‐induced Runt‐related transcription factor 2 (Runx2) phosphorylation. According to previous studies and our results, we speculated that LF‐induced osteoblast proliferation and differentiation were two relatively separate processes controlled by extracellular signal‐regulated kinase 1/2 (ERK1/2) and p38 pathways, respectively. Besides p38 MAPK activation, protein kinase A(PKA) was also activated in MC3T3‐E1 cells. PKA inhibitor H89 significantly inhibited LF‐induced p38 activation, ALP activity, and OCN secretion, indicating that PKA possibly acted as an upstream kinase of p38. In order to further identify the role of LF's receptor low-density lipoprotein receptor‐related protein 1 (LRP1), we constructed LRP1 stable‐knockdown MC3T3‐E1 cells. Neither LRP1 antagonist receptor associated protein (RAP), nor LRP1 knockdown approach could attenuate the LF‐induced osteogenesis, implying that LF stimulated osteoblast differentiation via an LRP1‐independent pathway. Taken together, the present work indicated that LF stimulated MC3T3‐E1 preosteoblast differentiation mainly through LRP1‐independent PKA and p38 signaling pathways. These results provided the first evidence of the signaling mechanisms of LF's effect on osteoblast differentiation.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Laboratory for Food Quality and Safety; Beijing China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Laboratory for Food Quality and Safety; Beijing China
| | - Hao Jing
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
| | - Yixuan Li
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Higher Institution Engineering Research Center of Animal Product; Beijing China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Higher Institution Engineering Research Center of Animal Product; Beijing China
| | - Hao Zhang
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
| | - Lu Jiang
- Beijing Laboratory for Food Quality and Safety; Beijing China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Laboratory for Food Quality and Safety; Beijing China
| |
Collapse
|
31
|
Maldonado S, Romo E, Serrano J, Pérez A, Guerra C, Zeichner-David M, Mercado G, Arzate H. Cementum protein 1 (CEMP1) activates p38 and JNK during the mineralisation process by cementoblast-like cells in vitro. CELL BIOLOGY INTERNATIONAL REPORTS 2013. [DOI: 10.1002/cbi3.10011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Silvia Maldonado
- Laboratorio de Biología Periodontal, Facultad de Odontología; Universidad Nacional Autónoma de México; Mexico D.F. Mexico
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología; Universidad Nacional Autónoma de México; Mexico D.F. Mexico
| | - Janeth Serrano
- Laboratorio de Biología Periodontal, Facultad de Odontología; Universidad Nacional Autónoma de México; Mexico D.F. Mexico
| | - Adriana Pérez
- Laboratorio de Biología Periodontal, Facultad de Odontología; Universidad Nacional Autónoma de México; Mexico D.F. Mexico
| | - Christian Guerra
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades; Centro Médico Nacional Siglo XXI; Mexico D.F. Mexico
| | | | - Gabriela Mercado
- Laboratorio de Biología Periodontal, Facultad de Odontología; Universidad Nacional Autónoma de México; Mexico D.F. Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología; Universidad Nacional Autónoma de México; Mexico D.F. Mexico
| |
Collapse
|
32
|
Kobophenol A enhances proliferation of human osteoblast-like cells with activation of the p38 pathway. Int Immunopharmacol 2013; 17:704-13. [DOI: 10.1016/j.intimp.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/14/2023]
|
33
|
Tetrameric peptide purified from hydrolysates of biodiesel byproducts of Nannochloropsis oculata induces osteoblastic differentiation through MAPK and Smad pathway on MG-63 and D1 cells. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.06.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Shie MY, Ding SJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials 2013; 34:6589-606. [PMID: 23768900 DOI: 10.1016/j.biomaterials.2013.05.075] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/27/2013] [Indexed: 01/04/2023]
Abstract
Cell attachment, proliferation and differentiation on different materials depend largely on the surface properties of the materials. This study sheds light on the mechanism by which the modulation of the chemical composition of calcium silicate cements with different Si/Ca molar ratios could produce different cell responses. Two primary cell types (human mesenchymal stem cells (hMSCs) and human dental pulp cells (hDPCs)) were used to elicit the changes in total DNA content, integrin subunit levels, phosphor-focal adhesion kinase (pFAK) levels, and mitogen-activated protein kinase (MAPK) signaling pathway activity at the cell attachment stage. The effect of small interfering RNA (siRNA) transfection targeting collagen type I (COL I) and fibronectin (FN) was also evaluated. The results indicated that increased total DNA content, pFAK and total integrin levels were observed upon an increase in cement Si content. Cements with different Si/Ca ratios did not cause the variations of interleukin 1β (IL-1β), epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) ligands. The Si-rich cement facilitated COL I and α2β1 subintegrin expression, while Ca-rich cement promoted FN and αvβ3 subintegrin expression. Si component of the calcium silicates stimulated cell adhesion via activation of MAPK/extracellular signal-regulated kinase (ERK) and p38 signaling pathways more effectively than did by Ca component, but it did not affect c-Jun NH2-terminal kinase (JNK) activity. Inhibition of MAPK/ERK and MAPK/p38 signaling pathways in hMSCs and hDPCs significantly attenuated adhesion, proliferation and differentiation as assessed according to total DNA content and alkaline phosphatase activity. hMSCs and hDPCs from the three different donors exhibited a similar preference for cell behaviors. The results of the current study suggest that calcium silicate cements with a higher Si content have the potential to serve as excellent supports for primary cells. Unraveling the mechanism by which primary cells responded to calcium silicate materials will be beneficial for materials design in their eventual clinical use.
Collapse
Affiliation(s)
- Ming-You Shie
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan, ROC
| | | |
Collapse
|
35
|
Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH. Proc Natl Acad Sci U S A 2013; 110:5864-9. [PMID: 23533279 DOI: 10.1073/pnas.1301674110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Agonist-induced phosphorylation of the parathyroid hormone (PTH) receptor 1 (PTHR1) regulates receptor signaling in vitro, but the role of this phosphorylation in vivo is uncertain. We investigated this role by injecting "knock-in" mice expressing a phosphorylation-deficient (PD) PTHR1 with PTH ligands and assessing acute biologic responses. Following injection with PTH (1-34), or with a unique, long-acting PTH analog, PD mice, compared with WT mice, exhibited enhanced increases in cAMP levels in the blood, as well as enhanced cAMP production and gene expression responses in bone and kidney tissue. Surprisingly, however, the hallmark hypercalcemic and hypophosphatemic responses were markedly absent in the PD mice, such that paradoxical hypocalcemic and hyperphosphatemic responses were observed, quite strikingly with the long-acting PTH analog. Spot urine analyses revealed a marked defect in the capacity of the PD mice to excrete phosphate, as well as cAMP, into the urine in response to PTH injection. This defect in renal excretion was associated with a severe, PTH-induced impairment in glomerular filtration, as assessed by the rate of FITC-inulin clearance from the blood, which, in turn, was explainable by an overly exuberant systemic hypotensive response. The overall findings demonstrate the importance in vivo of PTH-induced phosphorylation of the PTHR1 in regulating acute ligand responses, and they serve to focus attention on mechanisms that underlie the acute calcemic response to PTH and factors, such as blood phosphate levels, that influence it.
Collapse
|
36
|
Mahalingam CD, Sampathi BR, Sharma S, Datta T, Das V, Abou-Samra AB, Datta NS. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs. J Endocrinol 2013; 216. [PMID: 23197743 PMCID: PMC3796767 DOI: 10.1530/joe-12-0372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhang P, Wu Y, Dai Q, Fang B, Jiang L. p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain. Mol Cell Biochem 2013; 378:19-28. [PMID: 23435958 DOI: 10.1007/s11010-013-1589-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/08/2013] [Indexed: 12/31/2022]
Abstract
Mechanical stimuli play a significant role in the regulation of bone remodeling during orthodontic tooth movement. However, the correlation between mechanical strain and bone remodeling is still poorly understood. In this study, we used a model of continuous mechanical strain (CMS) on bone mesenchymal stem cells (BMSCs) to investigate the proliferation and osteogenic differentiation of BMSCs and the mechanism of mechano-transduction. A CMS of 10 % at 1 Hz suppressed the proliferation of BMSCs and induced early osteogenic differentiation within 48 h by activating Runx2 and increasing alkaline phosphatase (ALP) activity and mRNA expression of osteogenesis-related genes (ALP, collagen type I, and osteopontin). Regarding mitogen-activated protein kinase (MAPK) activation, CMS induced phased phosphorylation of p38 consisting of a rapid induction of p38 MAPK at 10 min and a rapid decay after 1 h. Furthermore, the potent p38 inhibitor SB203580 blocked the induction of p38 MAPK signaling, but had little effect on subsequent osteogenic events. These results demonstrate that mechanical strain may act as a stimulator to induce the differentiation of BMSCs into osteoblasts, which is a vital function for bone formation in orthodontic tooth movement. However, activation of the p38 signaling pathway may not be involved in this process.
Collapse
Affiliation(s)
- Peng Zhang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Abstract
Osterix (Osx, Sp7) is a zinc-finger transcription factor belonging to the specificity protein (Sp) family expressed in cells of the osteoblast lineage in the developing skeleton where it regulates expression of a number of osteoblastic genes. We previously reported inhibition of osterix mRNA and protein by parathyroid hormone (PTH) stimulation of cAMP in osteoblasts. We here show that Osx expression in osteoblasts is regulated by Sp proteins as demonstrated by mithramycin A inhibition of Osx mRNA and OSX protein levels. Mutation of putative transcription factor binding sites within the Osx promoter demonstrated a tandem repeat sequence that selectively binds OSX but not other Sp factors expressed in osteoblasts (Sp1, Sp3, or Tieg (Klf10)). Mutation of either or both the repeat sequences inhibited 90% of the promoter activity and also abrogated some of the PTH-mediated inhibition of the promoter. Previous studies have shown growth factor regulation of Osx expression by MAPK proteins, particularly p38 phosphorylation of OSX that increases its transcriptional activity. PTH stimulation of osteoblasts inhibits MAPK components (ERK, JNK, and p38) but inhibition of Osx mRNA and protein expression by PTH was selectively mimicked by p38 inhibition and expression of constitutively active MKK6, which stimulates p38, blocked PTH inhibition of OSX. Together, our studies suggest that OSX autoregulation is a major mechanism in osteoblasts and that PTH stimulation inhibits osterix by inhibition of p38 MAPK regulation of OSX.
Collapse
|
39
|
Thouverey C, Caverzasio J. The p38α MAPK positively regulates osteoblast function and postnatal bone acquisition. Cell Mol Life Sci 2012; 69:3115-25. [PMID: 22527716 PMCID: PMC11114644 DOI: 10.1007/s00018-012-0983-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/14/2012] [Accepted: 03/26/2012] [Indexed: 01/13/2023]
Abstract
Bone continuously remodels throughout life by coordinated actions of osteoclasts and osteoblasts. Abnormalities in either osteoclast or osteoblast functions lead to bone disorders. The p38 MAPK pathway has been shown to be essential in controlling osteoblast differentiation and skeletogenesis. Although p38α is the most abundant p38 member in osteoblasts, its specific individual contribution in regulating postnatal osteoblast activity and bone metabolism is unknown. To elucidate the specific role of p38α in regulating osteoblast function and bone homeostasis, we generated mice lacking p38α in differentiated osteoblasts. Osteoblast-specific p38a knockout mice were of normal weight and size. Despite non-significant bone alterations until 5 weeks of age, mutant mice demonstrated significant and progressive decrease in bone mineral density from that age. Adult mice deficient in p38a in osteoblasts displayed a striking reduction in cancellous bone volume at both axial and appendicular skeletal sites. At 6 months of age, trabecular bone volume was reduced by 62% in those mice. Mutant mice also exhibited progressive decrease in cortical thickness of long bones. These abnormalities correlated with decreased endocortical and trabecular bone formation rate and reduced expressions of type 1 collagen, alkaline phosphatase, osteopontin and osteocalcin whereas bone resorption and osteoclasts remained unaffected. Finally, osteoblasts lacking p38α showed impaired marker gene expressions and defective mineralization in vitro. These findings indicate that p38α is an essential positive regulator of osteoblast function and postnatal bone formation in vivo.
Collapse
Affiliation(s)
- Cyril Thouverey
- Department of Internal Medicine, Service of Bone Diseases, University Hospital of Geneva, 64 Avenue de la Roseraie, 1205, Geneva, Switzerland.
| | | |
Collapse
|
40
|
Uchida Y, Endoh T, Tazaki M, Sueishi K. Chronic bradykinin treatment alters 1α,25-dihydroxyvitamin D3-induced calcium current modulation in pre-osteoblasts. Cell Calcium 2012; 51:383-92. [DOI: 10.1016/j.ceca.2011.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 11/29/2022]
|
41
|
Kim BG, Park YJ, Libermann TA, Cho JY. PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway. J Cell Biochem 2011; 112:2051-61. [DOI: 10.1002/jcb.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Kraus D, Jäger A, Abuduwali N, Deschner J, Lossdörfer S. Intermittent PTH(1-34) signals through protein kinase A to regulate osteoprotegerin production in human periodontal ligament cells in vitro. Clin Oral Investig 2011; 16:611-8. [PMID: 22186940 DOI: 10.1007/s00784-011-0541-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/04/2011] [Indexed: 01/17/2023]
Abstract
Periodontal ligament (PDL) cells have been associated with the regulation of periodontal repair processes by the differential expression of osteoprotegerin and RANKL in response to intermittent parathyroid hormone (PTH) resulting in a modified activity of bone-resorbing osteoclasts. Here, we examined the intracellular signaling pathways that PDL cells use to mediate the PTH(1-34) effect on osteoprotegerin production and hypothesized that those would be dependent on the cellular maturation stage. Two stages of confluence served as a model for cellular maturation of 5th passage human PDL cells from six donors. Intermittent PTH(1-34) (10(-12) M) and PTH(1-31), the latter lacking the protein kinase C (PKC) activating domain, induced a significant decrease of osteoprotegerin production in confluent cultures, whereas the signal-specific fragments PTH(3-34) and PTH(7-34), which both are unable to activate protein kinase A (PKA), had no effect. The addition of the PKA inhibitor H8 antagonized the PTH(1-34) effect, whereas the PKC inhibitor RO-32-0432 did not. In pre-confluent, less mature cultures, intermittent PTH(1-34) resulted in a significant increase of osteoprotegerin. Similar results were obtained when PTH(1-31) substituted for PTH(1-34) as opposed to a lack of an effect of PTH(3-34) and PTH(7-34). Likewise, in confluent cultures, H8 inhibited the PTH(1-34) effect in pre-confluent cultures contrasted by RO-32-0432 which had no effect. These findings indicate that PTH(1-34) signaling targeting osteoprotegerin production in PDL cells involves a PKA-dependent pathway. The PTH(1-34) effect is dependent on cell status, whereas intracellular signal transduction is not. Clinical trials will have to prove whether those in vitro data are of physiological relevance for interference strategies.
Collapse
Affiliation(s)
- Dominik Kraus
- Dept. of Prosthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
43
|
Lossdörfer S, Kraus D, Abuduwali N, Jäger A. Intermittent administration of PTH(1-34) regulates the osteoblastic differentiation of human periodontal ligament cells via protein kinase C- and protein kinase A-dependent pathways in vitro. J Periodontal Res 2011; 46:318-26. [DOI: 10.1111/j.1600-0765.2011.01345.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Ma GK, Chiu R, Huang Z, Pearl J, Ma T, Smith RL, Goodman SB. Polymethylmethacrylate particle exposure causes changes in p38 MAPK and TGF-beta signaling in differentiating MC3T3-E1 cells. J Biomed Mater Res A 2010; 94:234-40. [PMID: 20166219 DOI: 10.1002/jbm.a.32686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Periprosthetic osteolysis of joint replacements caused by wear debris is a significant complication of joint replacements. Polymethylmethacrylate (PMMA) particles have been shown to inhibit osteogenic differentiation, but the molecular mechanism has not been previously determined. In this study, we exposed differentiating MC3T3-E1 preostoblast cells to PMMA particles and determined the changes that occurred with respect to p38 mitogen-activated protein kinase (MAPK) activity and the transforming growth factor (TGF)-beta1 and bone morphogenetic protein (BMP) signaling pathways. In the absence of particles, MC3T3-E1 cells demonstrate activation of p38 MAPK on day 8 of differentiation; however, when treated with PMMA particles, differentiating MC3T3-E1 cells demonstrate the suppression of p38 activity on day 8 and show activation of p38 on days 1 and 4. On day 4 of particle exposure, the differentiating MC3T3-E1 cells show significant downregulation of TGF-beta1 expression, which is involved in osteoblast differentiation, and a significant upregulation of the expression of BMP3 and Sclerostin (SOST), which are negative regulators of osteoblast differentiation. By day 8 of particle exposure, the changes in TGF-beta1, BMP3, and SOST expression are opposite of those seen on day 4. This study has demonstrated the distinct changes in the molecular profile of MC3T3-E1 cells during particle-induced inhibition of osteoblast differentiation. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
Collapse
Affiliation(s)
- Gene K Ma
- Department of Orthopaedic Surgery, Stanford University Medical Center, Stanford, California, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Berdiaki A, Datsis GA, Nikitovic D, Tsatsakis A, Katonis P, Karamanos NK, Tzanakakis GN. Parathyroid hormone (PTH) peptides through the regulation of hyaluronan metabolism affect osteosarcoma cell migration. IUBMB Life 2010; 62:377-86. [PMID: 20222016 DOI: 10.1002/iub.320] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid hormone (PTH) strongly stimulates hyaluronan (HA) synthesis and secretion of both normal and carcinogenic cells of the osteoblastic lineage and improves skeletal microarchitecture. HA, a glycosaminoglycan component of the extracellular matrix (ECM), is capable of transmitting ECM-derived signals to regulate cellular function. In this study, we investigated whether the changes of HA metabolism induced by PTH (1-34) and PTH (7-84) peptides in moderately MG-63 and well-differentiated Saos 2 osteosarcoma cell lines, are correlated to their migration capabilities. Our results demonstrate that intermittent PTH (1-34) treatment significantly (P < or = 0.01) supported the migration of MG-63 cells, increased their HA-synthase-2 (HAS2) expression (P < or = 0.001), and enhanced their high-molecular size HA deposition in the pericellular matrix. Both increased endogenous HA production (P < or = 0.01) and treatment with exogenous high-molecular weight HA (P < or = 0.05) correlated to a significant increase of MG-63 cell migration capacity. Transfection with siHAS2 showed that PTH (1-34), mainly through HAS2, enhanced HA and regulated MG-63 cell motility. Interestingly, continuous PTH (1-34) treatment stimulated both Saos 2 cell HAS2 (P < or = 0.001) and HAS1 (P < or = 0.001) isoform expression inhibited their HYAL2 expression (P < or = 0.001) and modestly (P < or = 0.05) enhanced their migration. Therefore, the PTH (1-34) administration mode appears to distinctly modulate the migratory responses of the MG-63 moderately and Saos 2 well-differentiated osteosarcoma cell lines. Conclusively, the obtained data suggest that there is a regulatory effect of PTH (1-34), in an administration mode-dependent manner, on HA metabolism that is essential for osteosarcoma cell migration.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology, Division of Morphology, School of Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
46
|
Ferrari SL, Bouxsein ML. Beta-arrestin-biased parathyroid hormone ligands: a new approach to the development of agents that stimulate bone formation. Sci Transl Med 2010; 1:1ps1. [PMID: 20368152 DOI: 10.1126/scitranslmed.3000268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Because daily treatment with parathyroid hormone (PTH) increases bone mass and decreases fracture risk, physicians use this agent to treat osteoporosis. However, PTH stimulates both bone-forming and bone-resorbing cells, complicating its clinical use. New results show that, in mice, a so-called biased agonist (PTH-betaarr) that selectively activates beta-arrestin -dependent signaling leads to PTH-induced trabecular bone formation without a simultaneous increase in bone resorption. This targeted approach may pave the way for future pharmacological developments in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Serge L Ferrari
- Service of Bone Diseases, World Health Organization Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, Geneva University Hospital, Geneva, Switzerland
| | | |
Collapse
|
47
|
Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 2010; 120:2457-73. [PMID: 20551513 PMCID: PMC2898605 DOI: 10.1172/jci42285] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/28/2010] [Indexed: 01/19/2023] Open
Abstract
Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member-encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-beta-activated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1-MKK3/6-p38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38beta and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38beta agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jae-Hyuck Shim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Weiguo Zou
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Despina Sitara
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michelle Schweitzer
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dorothy Hu
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sutada Lotinun
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yasuyo Sano
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Roland Baron
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jin Mo Park
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Simon Arthur
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Min Xie
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael D. Schneider
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Zhai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Steven Gygi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Roger Davis
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
48
|
Datta NS, Kolailat R, Fite A, Pettway G, Abou-Samra AB. Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation. Cell Signal 2010; 22:457-66. [PMID: 19892016 DOI: 10.1016/j.cellsig.2009.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 12/22/2022]
Abstract
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.
Collapse
Affiliation(s)
- Nabanita S Datta
- Wayne State University School of Medicine, Department Internal Medicine, Division Endocrinology, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
49
|
Bianchi EN, Ferrari SL. Beta-arrestin2 regulates parathyroid hormone effects on a p38 MAPK and NFkappaB gene expression network in osteoblasts. Bone 2009; 45:716-25. [PMID: 19560570 PMCID: PMC2741591 DOI: 10.1016/j.bone.2009.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 01/13/2023]
Abstract
Interaction of the cytoplasmic adaptor molecule beta-arrestin2 with the activated parathyroid hormone (PTH)/PTHrP receptor inhibits G protein mediated signaling and triggers MAPKs signaling. In turn, the effects of both intermittent (i.) and continuous (c.) PTH on bone are altered in beta-arrestin2-deficient (Arrb2(-/-)) mice. To elucidate the expression profile of bone genes responsive to PTH and targeted for regulation by beta-arrestin2, we performed microarray analysis using total RNA from primary osteoblastic cells isolated from wild-type (WT) and Arrb2(-/-) mice. By comparing gene expression profiles in cells exposed to i.PTH, c.PTH or vehicle (Veh) for 2 weeks, we found that i.PTH specifically up-regulated 215 sequences (including beta-arrestin2) and down-regulated 200 sequences in WT cells, about two-thirds of them being under the control of beta-arrestin2. In addition, beta-arrestin2 appeared necessary to the down-regulation of a genomic cluster coding for small leucin-rich proteins (SLRPs) including osteoglycin, osteomodulin and asporin. Pathway analyses identified a main gene network centered on p38 MAPK and NFkappaB that requires beta-arrestin2 for up- or down-regulation by i.PTH, and a smaller network of PTH-regulated genes centered on TGFB1, that is normally repressed by beta-arrestin2. In contrast the expression of some known PTH gene targets regulated by the cAMP/PKA pathway was not affected by the presence or absence of beta-arrestin2 in osteoblasts. These results indicate that beta-arrestin2 targets prominently p38 MAPK- and NFkappaB-dependent expression in osteoblasts exposed to i.PTH, and delineates new molecular mechanisms to explain the anabolic and catabolic effects of PTH on bone.
Collapse
Affiliation(s)
- Estelle N Bianchi
- Department of Rehabilitation and Geriatrics, WHO Center for Osteoporosis Prevention, Geneva University Hospitals and University of Geneva, Faculty of Medicine, Switzerland.
| | | |
Collapse
|
50
|
Abstract
The striking clinical benefit of PTH in osteoporosis began a new era of skeletal anabolic agents. Several studies have been performed, new studies are emerging out and yet controversies remain on PTH anabolic action in bone. This review focuses on the molecular aspects of PTH and PTHrP signaling in light of old players and recent advances in understanding the control of osteoblast proliferation, differentiation and function.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division Endocrinology, Department Internal Medicine, Wayne State University School of Medicine, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | |
Collapse
|