1
|
Jacques LS, Pereira JPC, Santos BM, Barrioni BR, Del Bianco Borges B. Flaxseed and mulberry extract improve trabecular bone quality in estrogen-deficient rats. Climacteric 2025; 28:175-183. [PMID: 39937165 DOI: 10.1080/13697137.2025.2457988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Many hormones, including estrogens, modulate bone metabolism, which plays a crucial role in maintaining bone health. Estrogen depletion, as occurs in menopause, leads to increased bone resorption and decreased formation, resulting in osteopenia/osteoporosis. This study investigates the effects of flaxseed (Linum usitatissimum) and mulberry (Morus nigra L.) extracts, known for their phenolic compounds and antioxidant properties, against estrogen deficiency-induced bone loss in female Wistar rats. These extracts were administered to ovariectomized rats for 60 days. High-performance liquid chromatography analysis revealed the presence of some phenolic compounds in the extracts, including trigonelline, gallic acid, theobromine, chlorogenic acid, syringic acid and p-coumaric acid. The extracts improved bone microstructure with higher trabecular bone, bone mineral density, calcium, phosphorus and magnesium levels, and lower porosity and intertrabecular space in bone tissue. Furthermore, plasma alkaline phosphatase activity was elevated in extract-treated animals, indicating enhanced bone tissue formation. Although serum carboxy-terminal fragment levels showed no significant change, the data suggest that flaxseed and mulberry extracts may protect against trabecular bone loss and support bone formation in estrogen-deficient conditions. These results suggest that supplementing these natural extracts holds promise in preventing or alleviating the signs and symptoms associated with estrogenic deficiency.
Collapse
Affiliation(s)
- Larissa Sampaio Jacques
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA, Lavras, Brazil
| | | | - Beatriz Menegate Santos
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA, Lavras, Brazil
| | - Breno Rocha Barrioni
- Postgraduate Program in Metallurgical Engineering, Mines and Materials, Minas Gerais Federal University- UFMG, Belo Horizonte, Brazil
| | - Bruno Del Bianco Borges
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA, Lavras, Brazil
| |
Collapse
|
2
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Bukhari MMM, Khabooshani M, Naqvi SM, McNamara LM. Estrogen deficiency alters vascularization and mineralization dynamics: insight from a novel 3-D humanized and vascularized bone organoid model. Am J Physiol Cell Physiol 2025; 328:C743-C756. [PMID: 39819034 DOI: 10.1152/ajpcell.00738.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Osteoporosis is not merely a disease of bone loss but also involves changes in the mineral composition of the bone that remains. In vitro studies have investigated these changes and revealed that estrogen deficiency alters osteoblast mineral deposition, osteocyte mechanosensitivity, and osteocyte regulation of osteoclastogenesis. During healthy bone development, vascular cells stimulate bone mineralization via endochondral ossification, but estrogen deficiency impairs vascularization. Yet, existing in vitro bone models overlook the role of vascular cells in osteoporosis pathology. Thus, here we 1) develop an advanced three-dimensional (3-D) vascularized, mineralized, and humanized bone model following the endochondral ossification process, and 2) apply this model to mimic postmenopausal estrogen withdrawal and provide a mechanistic understanding of changes in vascularization and bone mineralization in estrogen deficiency. We confirmed the successful development of a vascularized and mineralized human bone model via endochondral ossification, which induced the self-organization of vasculature, associated with hypertrophy (collagen X), and promoted mineralization. When the model was applied to study estrogen deficiency, we reported the development of distinct vessel-like structures (CD31+) in the postmenopausal 3-D constructs. Moreover, during estrogen withdrawal vascularized bone demonstrated a significant increase in mineral deposition and apoptosis, which did not occur in nonvascularized bone. These findings reveal a potential mechanism for bone mineral heterogeneity in osteoporotic bone, whereby vascularized bone becomes highly mineralized whereas in nonvascularized regions this effect is not observed.NEW & NOTEWORTHY Here we develop an in vitro three-dimensional (3-D) vascularized and humanized bone model following an endochondral ossification approach. We applied the model to recapitulate estrogen deficiency as representative of the osteoporotic phenotype. The results of this study reveal that estrogen deficiency exacerbates formation of 3-D vessel-like structures in vascularized models and thereby drives mineral deposition.
Collapse
Affiliation(s)
- Muhammad M M Bukhari
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Mostafa Khabooshani
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Syeda M Naqvi
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Messeha SS, Fidudusola FF, Gendy S, Latinwo LM, Odewumi CO, Soliman KFA. Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis. Nutrients 2025; 17:267. [PMID: 39861398 PMCID: PMC11767473 DOI: 10.3390/nu17020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP. Aging is significantly associated with an abnormal ratio of oxidant/antioxidant and modified nuclear factor erythroid-derived two related factor2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway. OS adversely affects bone health by promoting osteoclastic (bone resorbing) activity and impairing osteoblastic (bone-forming cells). Nrf2 is critical in controlling OS and various cellular processes. The expression of Nrf2 is linked to multiple age-related diseases, including OP, and Nrf2 deficiency leads to unbalanced bone formation/resorption and a consequent decline in bone mass. Various drugs are available for treating OP; however, long-term uses of these medicines are implicated in diverse illnesses such as cancer, cardiovascular, and stroke. At the same time, multiple categories of natural products, in particular flavonoids, were proposed as safe alternatives with antioxidant activity and substantial anti-osteoporotic effects.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Fidara F. Fidudusola
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Lekan M. Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Caroline O. Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
5
|
Guo Z, Hu Y, Zhou J, Zhang Y, Zhang J, Yang L, Wang S, Wu J, Yang J. Inhibition of osteocyte apoptosis does not prevent iron overload-induced bone resorption and bone loss. Biochem Biophys Res Commun 2025; 743:151152. [PMID: 39673971 DOI: 10.1016/j.bbrc.2024.151152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Iron overload leads to apoptosis and increased expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in osteocytes, which in turn accelerates osteoclastogenesis. Since osteocytes are the main RANKL producers, we hypothesized that apoptotic osteocytes increase RANKL expression in osteocytes, which in turn stimulates osteoclastogenesis and bone resorption. In this study, alendronate or IG9402, a bisphosphonate (BP) analog which does not inhibit bone resorption, inhibited iron overload-induced osteocyte apoptosis and increased RANKL expression. Both BPs also prevented osteoblast apoptosis but did not inhibit the increase in osteoblastic RANKL. Alendronate, but not IG9402, prevented the increase in osteoclastogenesis and serum levels of the bone resorption marker C-telopeptide of type I collagen (CTX) in iron-overloaded mice. Alendronate also prevented the iron overload-induced reduction in femoral bone mineral density, disruption of bone microstructure, and weakness of bone strength. Although IG9402 did not prevent bone loss due to iron overload, it partially prevented reduction of strength, suggesting that osteocyte viability contributes to the maintenance of bone strength. In conclusion, although osteocyte apoptosis in the presence of iron overload leads to an increase in osteocytic RANKL production. However, blocking these events was not sufficient to inhibit iron overload-induced osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Zengfeng Guo
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Yandong Zhang
- Department of Spine and Joint Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, Guangdong, China
| | - Junde Zhang
- Department of Spine and Joint Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, Guangdong, China
| | - Linbo Yang
- Department of Orthopedic Trauma, Dongguan Eighth People's Hospital, Dongguan, 523325, Guangdong, China
| | - Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Jiawen Wu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China.
| | - Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China; Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
6
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
7
|
Ruivo AK, Calsa B, Cancellara MG, Lima JPN, da Silva KR, Esquisatto MAM, Santamaria-Jr M. Effect of estrogen depression on alveolar bone microarchitecture and periodontal ligament cells during orthodontic movement. Eur J Oral Sci 2024; 132:e13014. [PMID: 39160699 DOI: 10.1111/eos.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
This study aimed to evaluate the effects of the estrogen depression during orthodontic tooth movement on alveolar bone microarchitecture and periodontal ligament. Female Wistar rats were divided into two groups, one consisting of non-ovariectomized animals subjected to orthodontic tooth movement, and one comprising ovariectomized animals subjected to orthodontic tooth movement. Micro-CT assessment of bone volume to total volume (BV/TV), total porosity, trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) in the alveolar bone of the orthodontically moved tooth was performed. Histomorphometric analyses were made in the periodontal ligament, and immunoexpression of RANK, RANKL, OPG, and TUNEL were quantified. Orthodontic tooth movement in the group of ovariectomized rats was faster than in non-ovariectomized animals. The alveolar bone area showed lower values of BV/TV and trabecular thickness, and higher bone porosity and trabeculae numbers in the ovariectomized rats. Histological analyses in the ovariectomized group revealed an increase in collagen fibers in the periodontal ligament. The apoptotic cell counts in the periodontal ligament were higher in the group of ovariectomized rats than in the sham-operated rats. Ovariectomy resulted in an increase in tooth movement and alteration of the alveolar bone microstructure in the first 7 day of orthodontic tooth movement, and in the presence of apoptotic cells in the periodontal ligament.
Collapse
Affiliation(s)
- Andréa Karina Ruivo
- Graduate Program in Odontology, University Center of the Hermínio Ometto Foundation - FHO, Araras, SP, Brazil
| | - Bruno Calsa
- Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Matheus Gomez Cancellara
- Department of Social and Pediatric Dentistry, Institute of Science and Technology - College of Dentistry, São Paulo State University - Unesp, São José dos Campos, SP, Brazil
| | - João Paulo Nascimento Lima
- Graduate Program in Odontology, University Center of the Hermínio Ometto Foundation - FHO, Araras, SP, Brazil
| | - Karla Rovaris da Silva
- Department of Pathology and Dental Clinic, Federal University of Piaui, Teresina, PI, Brazil
| | | | - Milton Santamaria-Jr
- Graduate Program in Odontology, University Center of the Hermínio Ometto Foundation - FHO, Araras, SP, Brazil
- Department of Social and Pediatric Dentistry, Institute of Science and Technology - College of Dentistry, São Paulo State University - Unesp, São José dos Campos, SP, Brazil
| |
Collapse
|
8
|
Naqvi SM, O’Sullivan LM, Allison H, Casey VJ, Schiavi-Tritz J, McNamara LM. Altered extracellular matrix and mechanotransduction gene expression in rat bone tissue following long-term estrogen deficiency. JBMR Plus 2024; 8:ziae098. [PMID: 39193115 PMCID: PMC11347883 DOI: 10.1093/jbmrpl/ziae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoporosis is primarily associated with bone loss, but changes in bone tissue matrix composition and osteocyte mechanotransduction have also been identified. However, the molecular mechanisms underlying these changes and their relation to bone loss are not fully understood. The objectives of this study were to (1) conduct comprehensive temporal gene expression analyses on cortical bone tissue from ovariectomized rats, with a specific focus on genes known to govern matrix degradation, matrix production, and mechanotransduction, and (2) correlate these findings with bone mass, trabecular and cortical microarchitecture, and mineral and matrix composition. Microarray data revealed 35 differentially expressed genes in the cortical bone tissue of the ovariectomized cohort. We report that catabolic gene expression abates after the initial accelerated bone loss period, which occurs within the first 4 wk of estrogen deficiency. However, in long-term estrogen deficiency, we report increased expression of genes associated with extracellular matrix deposition (Spp1, COL1A1, COL1A2, OCN) and mechanotransduction (Cx43) compared with age-matched controls and short-term estrogen deficiency. These changes coincided with increased heterogeneity of mineral-to-matrix ratio and collagen maturity, to which extracellular matrix markers COL1A1 and COL1A2 were positively correlated. Interestingly, mineral heterogeneity and collagen maturity, exhibited a negative correlation with PHEX and IFT88, associated with mechanosensory cilia formation and Hedgehog (Hh) signaling. This study provides the first insight into the underlying mechanisms governing secondary mineralization and heterogeneity of matrix composition of bone tissue in long-term estrogen deficiency. We propose that altered mechanobiological responses in long-term estrogen deficiency may play a role in these changes.
Collapse
Affiliation(s)
- Syeda Masooma Naqvi
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Laura M O’Sullivan
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Hollie Allison
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Vincent J Casey
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Jessica Schiavi-Tritz
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
- University of Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Laoise M McNamara
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| |
Collapse
|
9
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Lee S, Kim YG, Jung HI, Lim JS, Nam KC, Choi HS, Kwak BS. Bone-on-a-chip simulating bone metastasis in osteoporosis. Biofabrication 2024; 16:045025. [PMID: 39116896 DOI: 10.1088/1758-5090/ad6cf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Osteoporosis is the most common bone disorder, which is a highly dangerous condition that can promote bone metastases. As the current treatment for osteoporosis involves long-term medication therapy and a cure for bone metastasis is not known, ongoing efforts are required for drug development for osteoporosis. Animal experiments, traditionally used for drug development, raise ethical concerns and are expensive and time-consuming. Organ-on-a-chip technology is being developed as a tool to supplement such animal models. In this study, we developed a bone-on-a-chip by co-culturing osteoblasts, osteocytes, and osteoclasts in an extracellular matrix environment that can represent normal bone, osteopenia, and osteoporotic conditions. We then simulated bone metastases using breast cancer cells in three different bone conditions and observed that bone metastases were most active in osteoporotic conditions. Furthermore, it was revealed that the promotion of bone metastasis in osteoporotic conditions is due to increased vascular permeability. The bone-on-a-chip developed in this study can serve as a platform to complement animal models for drug development for osteoporosis and bone metastasis.
Collapse
Affiliation(s)
- Sunghan Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Young Gyun Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Seok Lim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsanbuk-do 38541, Republic of Korea
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Ki Chang Nam
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Han Seok Choi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Bong Seop Kwak
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| |
Collapse
|
11
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
12
|
Cui H, Li J, Li X, Su T, Wen P, Wang C, Deng X, Fu Y, Zhao W, Li C, Hua P, Zhu Y, Wan W. TNF-α promotes osteocyte necroptosis by upregulating TLR4 in postmenopausal osteoporosis. Bone 2024; 182:117050. [PMID: 38367924 DOI: 10.1016/j.bone.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Postmenopausal osteoporosis (PMOP) is a common kind of osteoporosis that is associated with excessive osteocyte death and bone loss. Previous studies have shown that TNF-α-induced osteocyte necroptosis might exert a stronger effect on PMOP than apoptosis, and TLR4 can also induce cell necroptosis, as confirmed by recent studies. However, little is known about the relationship between TNF-α-induced osteocyte necroptosis and TLR4. In the present study, we showed that TNF-α increased the expression of TLR4, which promoted osteocyte necroptosis in PMOP. In patients with PMOP, TLR4 was highly expressed at skeletal sites where exists osteocyte necroptosis, and high TLR4 expression is correlated with enhanced TNF-α expression. Osteocytes exhibited robust TLR4 expression upon exposure to necroptotic osteocytes in vivo and in vitro. Western blotting and immunofluorescence analyses demonstrated that TNF-α upregulated TLR4 expression in vitro, which might further promote osteocyte necroptosis. Furthermore, inhibition of TLR4 by TAK-242 in vitro effectively blocked osteocyte necroptosis induced by TNF-α. Collectively, these results suggest a novel TLR4-mediated process of osteocyte necroptosis, which might increase osteocyte death and bone loss in the process of PMOP.
Collapse
Affiliation(s)
- Hongwang Cui
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China.
| | - Ji Li
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Xiangtao Li
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Tian Su
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Peng Wen
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Chuanling Wang
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Xiaozhong Deng
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Yonghua Fu
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Weijie Zhao
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Changjia Li
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Pengbing Hua
- Department of Emergency Surgery Trauma Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Yongjun Zhu
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China.
| | - Wei Wan
- Department of Orthorpedic Oncology, The Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
13
|
Cook CV, Lighty AM, Smith BJ, Ford Versypt AN. A review of mathematical modeling of bone remodeling from a systems biology perspective. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1368555. [PMID: 40012834 PMCID: PMC11864782 DOI: 10.3389/fsysb.2024.1368555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bone remodeling is an essential, delicately balanced physiological process of coordinated activity of bone cells that remove and deposit new bone tissue in the adult skeleton. Due to the complex nature of this process, many mathematical models of bone remodeling have been developed. Each of these models has unique features, but they have underlying patterns. In this review, the authors highlight the important aspects frequently found in mathematical models for bone remodeling and discuss how and why these aspects are included when considering the physiology of the bone basic multicellular unit, which is the term used for the collection of cells responsible for bone remodeling. The review also emphasizes the view of bone remodeling from a systems biology perspective. Understanding the systemic mechanisms involved in remodeling will help provide information on bone pathology associated with aging, endocrine disorders, cancers, and inflammatory conditions and enhance systems pharmacology. Furthermore, some features of the bone remodeling cycle and interactions with other organ systems that have not yet been modeled mathematically are discussed as promising future directions in the field.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ariel M. Lighty
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Brenda J. Smith
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
14
|
Smit A, Meijer O, Winter E. The multi-faceted nature of age-associated osteoporosis. Bone Rep 2024; 20:101750. [PMID: 38566930 PMCID: PMC10985042 DOI: 10.1016/j.bonr.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Age-associated osteoporosis (AAOP) poses a significant health burden, characterized by increased fracture risk due to declining bone mass and strength. Effective prevention and early treatment strategies are crucial to mitigate the disease burden and the associated healthcare costs. Current therapeutic approaches effectively target the individual contributing factors to AAOP. Nonetheless, the management of AAOP is complicated by the multitude of variables that affect its development. Main intrinsic and extrinsic factors contributing to AAOP risk are reviewed here, including mechanical unloading, nutrient deficiency, hormonal disbalance, disrupted metabolism, cognitive decline, inflammation and circadian disruption. Furthermore, it is discussed how these can be targeted for prevention and treatment. Although valuable as individual targets for intervention, the interconnectedness of these risk factors result in a unique etiology for every patient. Acknowledgement of the multifaceted nature of AAOP will enable the development of more effective and sustainable management strategies, based on a holistic, patient-centered approach.
Collapse
Affiliation(s)
- A.E. Smit
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - O.C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - E.M. Winter
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Sidles SJ, Kelly RR, Kelly KD, Hathaway-Schrader JD, Khoo SK, Jones JA, Cray JJ, LaRue AC. Inescapable foot shock induces a PTSD-like phenotype and negatively impacts adult murine bone. Dis Model Mech 2024; 17:dmm050044. [PMID: 38131122 PMCID: PMC10820809 DOI: 10.1242/dmm.050044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with osteopenia, osteoporosis and increased fracture risk in the clinical population. Yet, the development of preclinical models to study PTSD-induced bone loss remains limited. In this study, we present a previously unreported model of PTSD in adult female C57BL/6 mice, by employing inescapable foot shock and social isolation, that demonstrates high face and construct validity. A subset of mice exposed to this paradigm (i.e. PTSD mice) display long-term alterations in behavioral and inflammatory indices. Using three-dimensional morphometric calculations, cyclic reference point indentation (cRPI) testing and histological analyses, we find that PTSD mice exhibit loss of trabecular bone, altered bone material quality, and aberrant changes in bone tissue architecture and cellular activity. This adult murine model of PTSD exhibits clinically relevant changes in bone physiology and provides a valuable tool for investigating the cellular and molecular mechanisms underlying PTSD-induced bone loss.
Collapse
Affiliation(s)
- Sara J. Sidles
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC 29401, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ryan R. Kelly
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC 29401, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kirsten D. Kelly
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC 29401, USA
| | - Jessica D. Hathaway-Schrader
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC 29401, USA
- College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie K. Khoo
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC 29401, USA
| | - Jeffrey A. Jones
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC 29401, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James J. Cray
- Division of Anatomy, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda C. LaRue
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC 29401, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Huang HL, Wu CK, Wu DJ, Liu WH, Lee YS, Wu CL. Apoptosis pathways and osteoporosis: An approach to genomic analysis. J Gene Med 2023; 25:e3555. [PMID: 37461161 DOI: 10.1002/jgm.3555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Osteoporosis is a disease of the bone system that causes a decrease in skeletal density and degrades skeletal tissue. Decreased bone quality, so that bones are easily broken, damaged and fractured, is an important public health problem. Previous studies have shown that the maintenance of adult bone mass is not only due to changes in bone marrow and bone cells. By regulating apoptosis, they change the lifespan of each individual. This study influences understanding of the function of apoptosis in the pathogenesis of osteoporosis and the importance of controlling the mechanisms of osteoporosis. METHODS On the National Institute of Biotechnology Information website, Gene Expression Omnibus (GEO) microarray data and GSE551495 GEO profiles were collected. The gene set enrichment analysis tool was used to confirm the enrichment of genetic sets in relation to the gene set. The collection of C2 gene sets is compiled from the KEGG (https://www.gsea-msigdb.org/gsea/msigdb/human/search.jsp and https://www.kegg.jp/kegg/) online database and REACTOME (https://www.gsea-msigdb.org/gsea/msigdb/human/search.jsp and https://reactome.org/) pathway analysis. The Search Tool for the Retrieval of Interaction Genes (STRING) website was used to construct and select proteins and genes. The comparative toxicological genomic database (CTD) tools can be used to predict the relationship between apoptosis, osteoporosis-related genes and interactions between central genes and osteoporosis. RESULTS These results generally expand our understanding of the path of apoptosis in osteoporosis. We have discovered genes CASP9, CASP8, CASP3, BAX and TP53 associated with osteoporosis. In activation of KEGG apoptosis and REACTOME, caspase activation through the extrinsic apoptotic signaling pathway is characterized by the identification of a subcollection of C2. Other STRINGs show the formation of protein networks and central gene selection, and CTD can accurately predict the relationship between these apoptosis pathways and central genes. CONCLUSIONS Our research has highlighted the importance of the osteoporosis pathway associated with osteoporosis apoptosis with several analytical approaches. These results have broadened our understanding of the pathways of osteoporosis apoptosis. It is particularly possible to predict the sensitivity and vulnerability to osteoporosis.
Collapse
Affiliation(s)
- Hsiao-Ling Huang
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chung-Ken Wu
- The PhD Program for Aging, China Medical University, Taichung City, Taiwan
| | - Dai-Jia Wu
- Department of Nursing, Lin Shin Hospital, Taichung City, Taiwan
| | - Wen-Hsiu Liu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Shiung Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Office of the Dean, General Institute, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Chi-Ling Wu
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing, and Management, Miaoli County, Taiwan
| |
Collapse
|
17
|
Li H, Hu S, Wu R, Zhou H, Zhang K, Li K, Lin W, Shi Q, Chen H, Lv S. 11β-Hydroxysteroid Dehydrogenase Type 1 Facilitates Osteoporosis by Turning on Osteoclastogenesis through Hippo Signaling. Int J Biol Sci 2023; 19:3628-3639. [PMID: 37496992 PMCID: PMC10367550 DOI: 10.7150/ijbs.82933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/08/2023] [Indexed: 07/28/2023] Open
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key enzyme that transform cortisone to cortisol, which activates the endogenous glucocorticoid function. 11β-HSD1 has been observed to regulate skeletal metabolism, specifically within osteoblasts. However, the function of 11β-HSD1 in osteoclasts has not been elucidated. In this study, we observed increased 11β-HSD1 expression in osteoclasts within an osteoporotic mice model (ovariectomized mice). Then, 11β-HSD1 global knock-out or knock-in mice were employed to demonstrate its function in manipulating bone metabolism, showing significant bone volume decrease in 11β-HSD1 knock-in mice. Furthermore, specifically knock out 11β-HSD1 in osteoclasts, by crossing cathepsin-cre mice with 11β-HSD1flox/flox mice, presented significant protecting effect of skeleton when they underwent ovariectomy surgery. In vitro experiments showed the endogenous high expression of 11β-HSD1 lead to osteoclast formation and maturation. Meanwhile, we found 11β-HSD1 facilitated mature osteoclasts formation inhibited bone formation coupled H type vessel (CD31hiEmcnhi) growth through reduction of PDFG-BB secretion. Finally, transcriptome sequencing of 11β-HSD1 knock in osteoclast progenitor cells indicated the Hippo pathway1 was mostly enriched. Then, by suppression of YAP expression in Hippo signaling, we observed the redundant of osteoclasts formation even in 11β-HSD1 high expression conditions. In conclusion, our study demonstrated the role of 11β-HSD1 in facilitating osteoclasts formation and maturation through the Hippo signaling, which is a new therapeutic target to manage osteoporosis.
Collapse
Affiliation(s)
- Hanwen Li
- Department of Geriatric Endocrinology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sihan Hu
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Runze Wu
- Department of Endocrinology, Changshu No.2 People's Hospital, Changshu 215500, Jiangsu province, China
| | - Hongyou Zhou
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Zhang
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Li
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenzheng Lin
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qin Shi
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopedic Institute of Soochow University, Suzhou, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Shan Lv
- Department of Geriatric Endocrinology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| |
Collapse
|
18
|
Craven BC, Cirnigliaro CM, Carbone LD, Tsang P, Morse LR. The Pathophysiology, Identification and Management of Fracture Risk, Sublesional Osteoporosis and Fracture among Adults with Spinal Cord Injury. J Pers Med 2023; 13:966. [PMID: 37373955 DOI: 10.3390/jpm13060966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The prevention of lower extremity fractures and fracture-related morbidity and mortality is a critical component of health services for adults living with chronic spinal cord injury (SCI). METHODS Established best practices and guideline recommendations are articulated in recent international consensus documents from the International Society of Clinical Densitometry, the Paralyzed Veterans of America Consortium for Spinal Cord Medicine and the Orthopedic Trauma Association. RESULTS This review is a synthesis of the aforementioned consensus documents, which highlight the pathophysiology of lower extremity bone mineral density (BMD) decline after acute SCI. The role and actions treating clinicians should take to screen, diagnose and initiate the appropriate treatment of established low bone mass/osteoporosis of the hip, distal femur or proximal tibia regions associated with moderate or high fracture risk or diagnose and manage a lower extremity fracture among adults with chronic SCI are articulated. Guidance regarding the prescription of dietary calcium, vitamin D supplements, rehabilitation interventions (passive standing, functional electrical stimulation (FES) or neuromuscular electrical stimulation (NMES)) to modify bone mass and/or anti-resorptive drug therapy (Alendronate, Denosumab, or Zoledronic Acid) is provided. In the event of lower extremity fracture, the need for timely orthopedic consultation for fracture diagnosis and interprofessional care following definitive fracture management to prevent health complications (venous thromboembolism, pressure injury, and autonomic dysreflexia) and rehabilitation interventions to return the individual to his/her pre-fracture functional abilities is emphasized. CONCLUSIONS Interprofessional care teams should use recent consensus publications to drive sustained practice change to mitigate fracture incidence and fracture-related morbidity and mortality among adults with chronic SCI.
Collapse
Affiliation(s)
- Beverley Catharine Craven
- KITE Research Institute, 520 Sutherland Dr, Toronto, ON M4G 3V9, Canada
- Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation, Research, and Development Service, Spinal Cord Damage Research Center, Bronx, NY 10468, USA
| | - Laura D Carbone
- Department of Medicine: Rheumatology, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Philemon Tsang
- KITE Research Institute, 520 Sutherland Dr, Toronto, ON M4G 3V9, Canada
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, 500 Harvard St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Marahleh A, Kitaura H, Ohori F, Noguchi T, Mizoguchi I. The osteocyte and its osteoclastogenic potential. Front Endocrinol (Lausanne) 2023; 14:1121727. [PMID: 37293482 PMCID: PMC10244721 DOI: 10.3389/fendo.2023.1121727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes through strategically consistent bouts of bone resorption to ensure its integrity and organismal survival in a temporally and spatially coordinated process, known as bone remodeling. Bone remodeling is directly enacted by three skeletal cell types, osteoclasts, osteoblasts, and osteocytes; these cells represent the acting force in a basic multicellular unit and ensure bone health maintenance. The osteocyte is an excellent mechanosensory cell and has been positioned as the choreographer of bone remodeling. It is, therefore, not surprising that a holistic grasp of the osteocyte entity in the bone is warranted. This review discusses osteocytogenesis and associated molecular and morphological changes and describes the osteocytic lacunocanalicular network (LCN) and its organization. We highlight new knowledge obtained from transcriptomic analyses of osteocytes and discuss the regulatory role of osteocytes in promoting osteoclastogenesis with an emphasis on the case of osteoclastogenesis in anosteocytic bones. We arrive at the conclusion that osteocytes exhibit several redundant means through which osteoclast formation can be initiated. However, whether osteocytes are true "orchestrators of bone remodeling" cannot be verified from the animal models used to study osteocyte biology in vivo. Results from studying osteocyte biology using current animal models should come with the caveat that these models are not osteocyte-specific, and conclusions from these studies should be interpreted cautiously.
Collapse
Affiliation(s)
- Aseel Marahleh
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Tanideh N, Daneshmand F, Karimimanesh M, Mottaghipisheh J, Koohpeyma F, Koohi-Hosseinabadi O, Tanideh R, Irajie C, Iraji A. Hydroalcoholic extract of Glycyrrhiza glabra root combined with Linum usitatissimum oil as an alternative for hormone replacement therapy in ovariectomized rats. Heliyon 2023; 9:e15557. [PMID: 37144184 PMCID: PMC10151376 DOI: 10.1016/j.heliyon.2023.e15557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
Objective Plant-derived estrogens (phytoestrogens) with structural similarity to primary female sex hormones could be suitable replacements for sex hormones. Therefore, the effects of the licorice root extract and Linum usitatissimum oil on biochemical and hormonal indices in the serum and uterine stereological changes in ovariectomized rats were evaluated. Design In this study, 70 adult female rats were randomly divided into seven groups including 1) control group, 2) sham-operated group, 3) ovariectomized (OVX) group, 4) OVX rats that received 1 mg/kg estradiol for 8 weeks at the day of post-operation, 5) OVX rats which received 2.0 mg/kg body wt Linum usitatissimum oil for 8 weeks at the day of post-operation, 6) OVX rats which received 2.0 mg/kg body wt licorice extract for 8 weeks at the day of post-operation, and 7) OVX rats which received 2.0 mg/kg body wt Linum usitatissimum oil + 2.0 mg/kg body wt licorice extract for 8 weeks at the day of post-operation. After eight weeks, alkaline phosphatase activity, as well as calcium, estradiol, and progesterone concentrations were assessed and tissue samples of the uterus were serologically examined. Results The results indicated that after 8 weeks of OVX the alkaline phosphatase activity (Mean = 637.7 IU/L) increased and the calcium (Mean = 7.09 mg/dl), estradiol (5.30 pmol/L), and progesterone (Mean = 3.53 nmol/L) reduced compared to other groups. Moreover, stereological changes in the uterus in ovariectomy groups were seen compared to the other groups. The treatment with Linum usitatissimum oil and licorice extract had a significant therapeutic effect on biochemical factors and stereological changes compared to the ovariectomized group. Conclusion The results of this study showed that the combination of Linum usitatissimum oil with licorice extract showed the high potential of hormone replacement therapy in the reduction of OVX complications.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Javad Mottaghipisheh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Romina Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author. Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Liang H, Qi W, Yu F, Jiajue R, Chi Y, Liu W, Wang O, Li M, Xing X, Yu W, Jiang Y, Xia W. Relationships between sclerostin and morphometric vertebral fractures, bone mineral density, and bone microarchitecture in postmenopausal women. Arch Osteoporos 2023; 18:57. [PMID: 37120433 DOI: 10.1007/s11657-023-01235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/15/2023] [Indexed: 05/01/2023]
Abstract
Higher sclerostin levels in postmenopausal women are associated with improved bone microarchitecture, areal and volumetric bone mineral density, and bone strength. However, the serum sclerostin level had no independent associations with the prevalence of morphometric vertebral fractures in this population after multivariable adjustment. PURPOSE We aim to investigate the associations between serum sclerostin levels and morphometric vertebral fractures (VFs) prevalence, bone mineral density (BMD), and bone microarchitecture in postmenopausal women. METHODS A total of 274 community-dwelling postmenopausal women were randomized enrolled. We collected general information and measured the serum sclerostin level. Morphometric VFs were assessed on the lateral thoracic and lumbar spine X-rays. Areal BMD and calculated trabecular bone score (TBS) were detected by dual-energy X-ray absorptiometry, and volumetric BMD and bone microarchitecture data were acquired from high-resolution peripheral quantitative computed tomography. RESULTS The prevalence of morphometric VFs was 18.6% in the cohort, and it was significantly higher in the lowest quartile of the sclerostin group than that in the highest quartile of the sclerostin group (27.9% vs. 11.8%, p<0.05). But the serum sclerostin had no independent association with the prevalence of morphometric VFs after adjusting by age, body mass index, BMD at the lumbar vertebrae 1-4, and fragility fracture history after 50 years old (odds ratio: 0.995, 95% confidence interval: 0.987-1.003, p=0.239). The serum sclerostin level positively correlated with the areal, volumetric BMDs, and TBS. It also had significant positive associations with Tb.BV/TV, Tb.N, Tb.Th, and Ct.Th, and negative associations with Tb.Sp and Tb.1/N.SD. CONCLUSION Chinese postmenopausal women with higher serum sclerostin levels had a lower prevalence of morphometric VFs, higher BMDs, and better bone microarchitecture. Nevertheless, the serum sclerostin level had no independent association with the prevalence of morphometric VFs.
Collapse
Affiliation(s)
- Hanting Liang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Wenting Qi
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Fan Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Yue Chi
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Wei Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
22
|
Peurière L, Mastrandrea C, Vanden-Bossche A, Linossier MT, Thomas M, Normand M, Lafage-Proust MH, Vico L. Hindlimb unloading in C57BL/6J mice induces bone loss at thermoneutrality without change in osteocyte and lacuno-canalicular network. Bone 2023; 169:116640. [PMID: 36526262 DOI: 10.1016/j.bone.2022.116640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Impaired mechanical stimuli during hindlimb unloading (HLU) are believed to exacerbate osteocyte paracrine regulation of osteoclasts. We hypothesized that bone loss and deterioration of the osteocyte lacuno-canalicular network are attenuated in HLU mice housed at thermoneutrality (28 °C) compared with those housed at ambient temperature (22 °C). Following acclimatization, 20-week-old male C57BL/6J mice were submitted to HLU or kept in pair-fed control cages (CONT), for 5 days (5d) or 14d, at 22 °C or 28 °C. In the femur distal metaphysis, thermoneutral CONT mice had higher bone volume (p = 0.0007, BV/TV, in vivo μCT, vs. 14dCONT22) whilst osteoclastic surfaces of CONT and HLU were greater at 22 °C (5dCONT22 + 53 %, 5dHLU22 + 50 %, 14dCONT22 + 186 %, 14dHLU22 + 104 %, vs matching 28 °C group). In the femur diaphysis and at both temperatures, 14dHLU exhibited thinner cortices distally or proximally compared to controls; the mid-diaphysis being thicker at 28 °C than at 22 °C in all groups. Expression of cortical genes for proteolytic enzyme (Mmp13), markers for osteoclastogenic differentiation (MCSF, RANKL), and activity (TRAP, Ctsk) were increased following 22 °C HLU, whereas only Ctsk expression was increased following 28 °C HLU. Expression of cortical genes for apoptosis, senescence, and autophagy were not elevated following HLU at any temperature. Osteocyte density at the posterior mid-diaphysis was similar between groups, as was the proportion of empty lacunae (<0.5 %). However, analysis of the lacuno-canalicular network (LCN, fluorescein staining) revealed unstained areas in the 14dHLU22 group only, suggesting disrupted LCN flow in this group alone. In conclusion, 28 °C housing influences the HLU bone response but does not prevent bone loss. Furthermore, our results do not show osteocyte senescence or death, and at thermoneutrality, HLU-induced bone resorption is not triggered by osteoclastic activators RANKL and MCSF.
Collapse
Affiliation(s)
- Laura Peurière
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France.
| | - Carmelo Mastrandrea
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Arnaud Vanden-Bossche
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Thérèse Linossier
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Mireille Thomas
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Myriam Normand
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Hélène Lafage-Proust
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Laurence Vico
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| |
Collapse
|
23
|
Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Mark-Lee WF, Chong YY, Qian J, Zhang Y, Qu H, Syed Hashim SA, Ekeuku SO. Effects of E'Jiao on Skeletal Mineralisation, Osteocyte and WNT Signalling Inhibitors in Ovariectomised Rats. Life (Basel) 2023; 13:life13020570. [PMID: 36836927 PMCID: PMC9961805 DOI: 10.3390/life13020570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
E'Jiao is a traditional Chinese medicine derived from donkey skin. E'Jiao is reported to suppress elevated bone remodelling in ovariectomised rats but its mechanism of action is not known. To bridge this research gap, the current study aims to investigate the effects of E'Jiao on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. Female Sprague-Dawley rats (3 months old) were ovariectomised and supplemented with E'Jiao at 0.26 g/kg, 0.53 g/kg and 1.06 g/kg, or 1% calcium carbonate (w/v) in drinking water. The rats were euthanised after two months of supplementation and their bones were collected for Fourier-transform infrared spectroscopy, histomorphometry and protein analysis. Neither ovariectomy nor treatment affected the skeletal mineral/matrix ratio, osteocyte number, empty lacunar number, and Dickkopf-1 and sclerostin protein levels (p > 0.05). Rats treated with calcium carbonate had a higher Dickkopf-1 level than baseline (p = 0.002) and E'Jiao at 0.53 g/kg (p = 0.002). In conclusion, E'Jiao has no significant effect on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. The skeletal effect of E'Jiao might not be mediated through osteocytes.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-9573
| | - Ben Nett Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Muhd Khairik Imran Rostam
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Nur Farah Dhaniyah Muhammad Fadzil
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Vaishnavi Raman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Farzana Mohamed Yunus
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Wun Fui Mark-Lee
- Department of Chemistry, Faculty of Science, University Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
- Research Center for Quantum Engineering Design, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Yan Yi Chong
- School of Pre-University Studies, Taylor’s College, Subang Jaya 47500, Malaysia
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Yan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| |
Collapse
|
24
|
Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci 2023; 24:ijms24043772. [PMID: 36835184 PMCID: PMC9963528 DOI: 10.3390/ijms24043772] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
Collapse
|
25
|
Miglietta F, Iamartino L, Palmini G, Giusti F, Marini F, Iantomasi T, Brandi ML. Endocrine sequelae of hematopoietic stem cell transplantation: Effects on mineral homeostasis and bone metabolism. Front Endocrinol (Lausanne) 2023; 13:1085315. [PMID: 36714597 PMCID: PMC9877332 DOI: 10.3389/fendo.2022.1085315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an established therapeutic strategy for the treatment of malignant (leukemia and lymphoma) and non-malignant (thalassemia, anemia, and immunodeficiency) hematopoietic diseases. Thanks to the improvement in patient care and the development of more tolerable conditioning treatments, which has extended the applicability of therapy to the elderly, a growing number of patients have successfully benefited from HSCT therapy and, more importantly, HSCT transplant-related mortality has consistently reduced in recent years. However, concomitantly to long term patient survival, a growing incidence of late HSCT-related sequelae has been reported, being variably associated with negative effects on quality of life of patients and having a non-negligible impact on healthcare systems. The most predominantly observed HSCT-caused complications are chronic alterations of the endocrine system and metabolism, which endanger post-operative quality of life and increase morbidity and mortality of transplanted patients. Here, we specifically review the current knowledge on HSCT-derived side-effects on the perturbation of mineral metabolism; in particular, the homeostasis of calcium, focusing on current reports regarding osteoporosis and recurrent renal dysfunctions that have been observed in a percentage of HSC-transplanted patients. Possible secondary implications of conditioning treatments for HSCT on the physiology of the parathyroid glands and calcium homeostasis, alone or in association with HSCT-caused renal and bone defects, are critically discussed as well.
Collapse
Affiliation(s)
- Francesca Miglietta
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Giusti
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Marini
- Fondazione FIRMO Onlus (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione FIRMO Onlus (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
26
|
Oguchi S, Sakamoto T, Hoshi K, Hikita A. Quantitative analyses of matrices, osteoblasts, and osteoclasts during bone remodeling using an in vitro system. J Bone Miner Metab 2023; 41:3-16. [PMID: 36344637 DOI: 10.1007/s00774-022-01381-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Bone remodeling plays a central role in the maintenance of bone homeostasis. Our group has established an in vitro system by which the cellular events during bone remodeling can be observed longitudinally. This study used this system to quantitatively analyze osteoblasts, osteoclasts, and matrices to elucidate their temporal changes and correlations. MATERIALS AND METHODS Osteoblasts from EGFP mice were cultured to form calcified nodules, followed by co-culture with bone marrow macrophages from Tnfrsf11aCre/+ x Ai14 mice for 3 weeks (resorption phase). Then cells were cultured with osteoblast differentiation medium for 3 weeks (formation phase). The same sites were observed weekly using 2-photon microscopy. Matrices were detected using second harmonic generation. Parameters related to matrices, osteoblasts, and osteoclasts were quantified and statistically analyzed. RESULTS Resorption and replenishment of the matrix were observed at the same sites by 2 photon microscopy. Gross quantification revealed that matrix and osteoblast parameters decreased in the resorption phase and increased in the formation phase, while osteoclast parameters showed the opposite pattern. When one field of view was divided into 16 regions of interest (ROIs) and correlations between parameters were analyzed in each ROI, decreased and increased matrix volumes were moderately correlated. Parameters of matrices and osteoblasts, and those of matrices and osteoclasts exhibited moderate correlations, while those of osteoblasts and osteoclasts were only weakly correlated. CONCLUSION Several correlations between cells and matrix during remodeling were demonstrated quantitatively. This system may be a powerful tool for the research of bone remodeling.
Collapse
Affiliation(s)
- Shuya Oguchi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
- Department of Oral‑Maxillofacial Surgery, and Orthodontics, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan.
| |
Collapse
|
27
|
Sorohan MC, Poiana C. Vertebral Fractures in Acromegaly: A Systematic Review. J Clin Med 2022; 12:jcm12010164. [PMID: 36614962 PMCID: PMC9821150 DOI: 10.3390/jcm12010164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Acromegaly is characterized by a very particular alteration of bone microarchitecture, leading to increased vertebral fragility. However, due to inconsistent and insufficient evidence, no guidelines are available for the evaluation of this osteopathy. METHODS We performed a literature review of studies published between 1968 and January 2022 on the PubMed and SCOPUS databases using the terms "acromegaly" and "vertebral fractures". Twenty-four studies were found eligible for inclusion, published between June 2005 and November 2021. Included studies evaluated acromegaly patients, who were assessed for the presence of vertebral fractures. We excluded case reports, reviews, meta-analyses, letters to the editor, articles not written in English, and research performed on the same set of patients without significant differences in study design. Risk of bias was avoided by following the ROBIS risk of bias recommendations. We executed rigorous data collection, and the results are depicted as a narrative overview, but also, as statistical synthesis. Limitations of the evidence presented in the study include study heterogeneity, small sample sizes, and a small number of prospective studies with short follow-up. FINDINGS Data regarding vertebral fractures (VFs) in acromegaly and their influencing factors are variable. Twenty-four studies were included, nine out of which had a prospective design. The smallest group of acromegaly patients had 18 subjects and the largest included 248 patients. Prevalence ranges between 6.5% and 87.1%, although most studies agree that it is significantly higher than in controls. VFs also have a higher incidence (between 5.6% and 42%) and are more frequently multiple (between 46.15% and 71%). Evidence shows that disease activity and active disease duration are influencing factors for the prevalence and incidence of VFs. Nonetheless, hypogonadism does not seem to influence the frequency of VFs. While reports are conflicting regarding the use of bone mineral density in acromegaly, evidence seems to be slightly in favor of it not being associated with VFs. However, trabecular bone score is significantly lower in fractured patients, although no prospective studies are available. INTERPRETATION Vertebral fractures evaluation should be performed with regularity in all acromegalic patients, especially in the presence of active disease. Disease activity is an important determinant of vertebral fracture incidence and prevalence, although hypogonadism is less so. To clarify the predictive value of both BMD and TBS for vertebral fractures, additional, larger, prospective studies are necessary.
Collapse
Affiliation(s)
- Madalina Cristina Sorohan
- CI Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence:
| | - Catalina Poiana
- CI Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
28
|
Cook CV, Islam MA, Smith BJ, Versypt ANF. Mathematical modeling of the effects of Wnt-10b on bone metabolism. AIChE J 2022; 68:e17809. [PMID: 36567819 PMCID: PMC9788157 DOI: 10.1002/aic.17809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/14/2022] [Indexed: 12/30/2022]
Abstract
Bone health is determined by factors including bone metabolism or remodeling. Wnt-10b alters osteoblastogenesis through pre-osteoblast proliferation and differentiation and osteoblast apoptosis rate, which collectively lead to the increase of bone density. To model this, we adapted a previously published model of bone remodeling. The resulting model for the bone compartment includes differential equations for active osteoclasts, pre-osteoblasts, osteoblasts, osteocytes, and the amount of bone present at the remodeling site. Our alterations to the original model consist of extending it past a single remodeling cycle and implementing a direct relationship to Wnt-10b. Four new parameters were estimated and validated using normalized data from mice. The model connects Wnt-10b to bone metabolism and predicts the change in trabecular bone volume caused by a change in Wnt-10b input. We find that this model predicts the expected increase in pre-osteoblasts and osteoblasts while also pointing to a decrease in osteoclasts when Wnt-10b is increased.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brenda J. Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- Institute for Computational and Data Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
29
|
Ma J, Wang A, Zhang H, Liu B, Geng Y, Xu Y, Zuo G, Jia P. Iron overload induced osteocytes apoptosis and led to bone loss in Hepcidin -/- mice through increasing sclerostin and RANKL/OPG. Bone 2022; 164:116511. [PMID: 35933095 DOI: 10.1016/j.bone.2022.116511] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Numerous studies have demonstrated that iron overload is a risk factor of osteoporosis. However, there has been no systematic and in-depth studies on the effect of iron overload on osteocytes and its role in iron overload-induced bone loss. Therefore, to address this problem, we carried out in vitro and in vivo studies using MLO-Y4 osteocyte-like cells and Hepcidin-/- mice as iron overload models. METHODS (1) MLO-Y4 cells were treated with ferric ammonium citrate (FAC). Intracellular reactive oxygen species (ROS) levels and apoptosis of MLO-Y4 cells were determined by flow cytometry. Western blotting was performed to evaluate the effect of FAC on the expression of sclerostin and RANKL/OPG. (2) The conditioned medium of MLO-Y4 cells after treatment with FAC was collected and used to treat pre-osteoblasts and monocytes. Alkaline phosphatase (ALP) staining and alizarin red (AR) staining were used to evaluate osteogenic differentiation capacity, and tartrate-resistant acid phosphatase (TRAP) staining was performed to demonstrate osteoclast differentiation capacity. (3) In vivo studies included a wild type mouse, Hepcidin-/- mice, Hepcidin-/- mice + deferoxamine (DFO), and Hepcidin-/- mice + N-actyl-l-cysteine (NAC) group. Micro-CT was performed to evaluate the bone mineral density (BMD), bone volume, and bone micro-architecture of the mice, and three bending tests were used to assess bone strength. Histological analysis was used to detect alterations in bone turnover. TUNEL staining and scanning electron microscopy (SEM) were performed to evaluate the apoptosis and morphology of osteocytes. Immunohistochemical staining and Western blotting were used to determine alterations in sclerostin and RANKL/OPG expression levels in mice. RESULTS (1) FAC increased intracellular ROS and apoptosis in MLO-Y4 cells, while FAC enhanced the expression of sclerostin and RANKL/OPG in MLO-Y4 cells. (2) Conditioned medium of MLO-Y4 cells inhibited the osteogenic capacity of osteoblasts while stimulating osteoclast differentiation. (3) By increasing oxidative stress, iron overload promotes the apoptosis of osteocytes and undermines the morphology of osteocytes in Hepcidin-/- mice, further increasing the expression levels of sclerostin and RANKL/OPG in osteocytes, which is considered to be the causative factor for reduced bone formation and enhanced bone resorption. DFO administration reduced iron levels, and NAC treatment decreased oxidative stress in Hepcidin-/- mice. Therefore, DFO or NAC treatment rescued the decrease in BMD, bone volume, and bone strength and attenuated the deterioration of bone architecture in Hepcidin-/- mice by attenuating the effect of iron overload on osteocytes. CONCLUSION Osteocyte apoptosis due to increased ROS and resultant sclerostin and RANKL/OPG expression alteration was the main reason for bone loss in Hepcidin-/- mice. Osteocytes are the main targets for the prevention and treatment of iron overload-induced osteoporosis.
Collapse
Affiliation(s)
- Jiawei Ma
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Aifei Wang
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Hui Zhang
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Baoshan Liu
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Yu Geng
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Youjia Xu
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Guilai Zuo
- Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Orthopedic Department, China.
| | - Peng Jia
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China.
| |
Collapse
|
30
|
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 2022; 10:48. [PMID: 35851054 PMCID: PMC9293977 DOI: 10.1038/s41413-022-00219-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Simona Bolamperti
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Isabella Villa
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Alessandro Rubinacci
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy.
| |
Collapse
|
31
|
Allison H, O'Sullivan L, McNamara L. Temporal changes in cortical microporosity during estrogen deficiency associated with perilacunar resorption and osteocyte apoptosis: A pilot study. Bone Rep 2022; 16:101590. [PMID: 35663377 PMCID: PMC9156983 DOI: 10.1016/j.bonr.2022.101590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023] Open
Abstract
Osteocytes can actively regulate bone microporosity, through either perilacunar resorption or micropetrosis following apoptosis. Osteocyte apoptosis is more prevalent in estrogen deficiency and changes in the lacunar-canalicular network of osteocytes have been reported. Temporal changes in bone mineralisation and osteocytes cellular strains occur, which might be associated with osteocyte-driven microporosity changes, although time dependant changes in bone microporosity are not yet fully understood. In this pilot study we conducted micro-CT analysis, backscatter electron imaging and histological analysis of femoral cortical bone form an ovariectomized rat model of osteoporosis to investigate whether estrogen deficiency causes temporal changes in lacunar and vascular porosity. We also assessed MMP14 expression, lacunar occupancy and mineral infilling, as indicators of perilacunar resorption and micropetrosis. We report temporal changes in cortical microporosity in estrogen deficiency. Specifically, canalicular and vascular porosity initially increased (4 weeks post-OVX), coinciding with the period of rapid bone loss, whereas in the longer term (14 weeks post-OVX) lacunar and canalicular diameter decreased. Interestingly, these changes coincided with an increased prevalence of empty lacunae and osteocyte lacunae were observed to be more circular with a mineralised border around the lacunar space. In addition we report an increase in MMP14+ osteocytes, which also suggests active matrix degradation by these cells. Together these results provide an insight into the temporal changes in cortical microporosity during estrogen deficiency and suggest the likelihood of occurrence of both perilacunar resorption and osteocyte apoptosis leading to micropetrosis. We propose that microporosity changes arise due to processes driven by distinct populations of osteocytes, which are either actively resorbing their matrix or have undergone apoptosis and are infilling lacunae by micropetrosis.
Collapse
Key Words
- BMDD, Bone mineral density distribution
- BSEM
- BSEM, Backscattered scanning electron microscopy
- BV, Bone volume
- Dm, Diameter
- Estrogen deficiency
- Lacunar
- Lc, Lacunar
- MMP, Matrix metalloproteases
- Micro-CT, Micro computed tomography
- Microporosity
- OVX, Ovariectomized
- PLR, Perilacunar resorption
- Sp, spacing
- TRAP, Tartrate-resistant acid phosphatase
- TV, Total volume
- Tb, Trabecular
- Th, Thickness
- V Ca, Vascular canal
- Vascular canals
- micro-CT
- με, Microstrain (ε ×10−6)
Collapse
Affiliation(s)
- H. Allison
- Mechanobiology and Medical Devices Research Group (MMDRG), Centre for Biomechanics Research (BioMEC), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - L.M. O'Sullivan
- Mechanobiology and Medical Devices Research Group (MMDRG), Centre for Biomechanics Research (BioMEC), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - L.M. McNamara
- Mechanobiology and Medical Devices Research Group (MMDRG), Centre for Biomechanics Research (BioMEC), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
32
|
Moriishi T, Komori T. Osteocytes: Their Lacunocanalicular Structure and Mechanoresponses. Int J Mol Sci 2022; 23:ijms23084373. [PMID: 35457191 PMCID: PMC9032292 DOI: 10.3390/ijms23084373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Osteocytes connect with neighboring osteocytes and osteoblasts through their processes and form an osteocyte network. Shear stress on osteocytes, which is induced by fluid flow in the lacunae and canaliculi, has been proposed as an important mechanism for mechanoresponses. The lacunocanalicular structure is differentially developed in the compression and tension sides of femoral cortical bone and the compression side is more organized and has denser and thinner canaliculi. Mice with an impaired lacunocanalicular structure may be useful for evaluation of the relationship between lacunocanalicular structure and mechanoresponses, although their bone component cells are not normal. We show three examples of mice with an impaired lacunocanalicular structure. Ablation of osteocytes by diphtheria toxin caused massive osteocyte apoptosis, necrosis or secondary necrosis that occurred after apoptosis. Osteoblast-specific Bcl2 transgenic mice were found to have a reduced number of osteocyte processes and canaliculi, which caused massive osteocyte apoptosis and a completely interrupted lacunocanalicular network. Osteoblast-specific Sp7 transgenic mice were also revealed to have a reduced number of osteocyte processes and canaliculi, as well as an impaired, but functionally connected, lacunocanalicular network. Here, we show the phenotypes of these mice in physiological and unloaded conditions and deduce the relationship between lacunocanalicular structure and mechanoresponses.
Collapse
Affiliation(s)
- Takeshi Moriishi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan;
| | - Toshihisa Komori
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Correspondence: ; Tel.: +81-95-819-7637; Fax: +81-95-819-7638
| |
Collapse
|
33
|
Zhu H, Liu Q, Li W, Huang S, Zhang B, Wang Y. Biological Deciphering of the "Kidney Governing Bones" Theory in Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1685052. [PMID: 35392645 PMCID: PMC8983196 DOI: 10.1155/2022/1685052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
The description of the "kidney" was entirely different from modern medicine. In traditional Chinese medicine (TCM), the kidney was a functional concept regulating water metabolism, which was closely related to the urinary system, reproductive system, nervous system, endocrine, skeleton, hearing, metabolism, immunity, etc. In particular, the kidney in TCM plays an important regulatory role in the processes of growth, development, prime, aging, and reproduction. Hence, "Kidney Governing Bone" (KGB) was a classical theory in TCM, which hypothesized that the function of the kidney was responsible for bone health. However, the related modern physiological mechanisms of this TCM theory are unclear. This present paper proposed a new understanding and explored the biological basis of the KGB theory. After searching through plenty of reported literature, we discovered that the functions of the kidney in TCM were closely associated with the hypothalamic-pituitary-gonadal (HPG) axis in modern science. The physiological mechanism of the KGB was regulated by sex hormones and their receptors. This review deciphered the connotation of the KGB theory in modern medicine and further verified the scientificity of the basic TCM theory.
Collapse
Affiliation(s)
- Hanmin Zhu
- Hubei University of Arts and Science, HuBei, XiangYang 441053, China
| | - Qi Liu
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Wei Li
- Hubei University of Arts and Science, HuBei, XiangYang 441053, China
| | - Shuming Huang
- Heilongjiang University of Chinese Medicine, Heilongjiang, Harbin 150040, China
| | - Bo Zhang
- Heilongjiang University of Chinese Medicine, Heilongjiang, Harbin 150040, China
| | - Yumei Wang
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| |
Collapse
|
34
|
Yang Y, Lin Y, Wang M, Yuan K, Wang Q, Mu P, Du J, Yu Z, Yang S, Huang K, Wang Y, Li H, Tang T. Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res 2022; 10:26. [PMID: 35260560 PMCID: PMC8904790 DOI: 10.1038/s41413-022-00198-w] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic osteoporosis (DOP) is the leading complication continuously threatening the bone health of patients with diabetes. A key pathogenic factor in DOP is loss of osteocyte viability. However, the mechanism of osteocyte death remains unclear. Here, we identified ferroptosis, which is iron-dependent programmed cell death, as a critical mechanism of osteocyte death in murine models of DOP. The diabetic microenvironment significantly enhanced osteocyte ferroptosis in vitro, as shown by the substantial lipid peroxidation, iron overload, and aberrant activation of the ferroptosis pathway. RNA sequencing showed that heme oxygenase-1 (HO-1) expression was notably upregulated in ferroptotic osteocytes. Further findings revealed that HO-1 was essential for osteocyte ferroptosis in DOP and that its promoter activity was controlled by the interaction between the upstream NRF2 and c-JUN transcription factors. Targeting ferroptosis or HO-1 efficiently rescued osteocyte death in DOP by disrupting the vicious cycle between lipid peroxidation and HO-1 activation, eventually ameliorating trabecular deterioration. Our study provides insight into DOP pathogenesis, and our results provide a mechanism-based strategy for clinical DOP treatment.
Collapse
Affiliation(s)
- Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qishan Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Mu
- Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, China
| | - Jingke Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wang
- Department of Trauma Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
He B, Zhu Y, Cui H, Sun B, Su T, Wen P. Comparison of Necroptosis With Apoptosis for OVX-Induced Osteoporosis. Front Mol Biosci 2022; 8:790613. [PMID: 35004853 PMCID: PMC8740137 DOI: 10.3389/fmolb.2021.790613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
As one common kind of osteoporosis, postmenopausal osteoporosis (PMOP) is associated with the death and excessive loss of osteocytes. Estrogen deficiency of PMOP can cause osteocyte death by regulating necroptosis and apoptosis, but their roles in POMP have not been compared. In the present study, ovariectomy (OVX)-induced rat and murine long bone osteocyte Y4 (MLO-Y4) cells were used to compare the influence of necroptosis and apoptosis on osteocyte death and bone loss. Benzyloxycarbonyl-Val-Ala-Asp (zVAD) and necrostatin-1 (Nec-1) were used to specifically block cell apoptosis and necroptosis, respectively. OVX rats and MLO-Y4 cells were divided into zVAD group, Nec-1 group, zVAD + Nec-1 group, vehicle, and control group. The tibial plateaus of the rat model were harvested at 8 weeks after OVX and were analyzed by micro–computed tomography, transmission electron microscopy (TEM), the transferase dUTP nick end labeling assay, and western blot. The death of MLO-Y4 was stimulated by TNF-α and was measured by flow cytometry and TEM. The results found that necroptosis and apoptosis were both responsible for the death and excessive loss of osteocytes, as well as bone loss in OVX-induced osteoporosis, and furthermore necroptosis may generate greater impact on the death of osteocytes than apoptosis. Necroptotic death of osteocytes was mainly regulated by the receptor-interacting protein kinase 3 signaling pathway. Collectively, inhibition of necroptosis may produce better efficacy in reducing osteocyte loss than that of apoptosis, and combined blockade of necroptosis and apoptosis provide new insights into preventing and treating PMOP.
Collapse
Affiliation(s)
- Bin He
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjun Zhu
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hongwang Cui
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Sun
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tian Su
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Peng Wen
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
36
|
Yajima A, Tsuchiya K, Burr DB, Murata T, Nakamura M, Inaba M, Tominaga Y, Tanizawa T, Nakayama T, Ito A, Nitta K. Micropetrosis in hemodialysis patients. Bone Rep 2021; 15:101150. [PMID: 34926729 PMCID: PMC8649646 DOI: 10.1016/j.bonr.2021.101150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
Micropetrosis develops as a result of stagnation of calcium, phosphorus and bone fluid, which appears as highly mineralized bone area in the osteocytic perilacunar/canalicular system regardless of bone turnover of the patients. And microcracks are predisposed to increase in these areas, which leads to increased bone fragility. However, micropetrosis of hemodialysis (HD) patients has not been discussed at all. Micropetrosis area per bone area (Mp.Ar/B·Ar) and osteocyte number per micropetrosis area (Ot.N/Mp.Ar) were measured in nine HD patients with renal hyperparathyroidism (Group I), twelve patients with hypoparathyroidism within 1 year after the treatment of renal hyperparathyroidism (Group II) and seven patients suffering from hypoparathyroidism for over two years (Group III). And bone mineral density (BMD) and tissue mineral density (TMD) were calculated using μCT to evaluate bone mineral content of iliac bone of the patients. These parameters were compared among the three groups. Only Mp.Ar/B·Ar was statistically greater in Group II and III compared to Group I in the parameters of bone mineral content and micropetrosis. However, the other parameters were not statistically different among the three groups. In long-term HD patients, BMD and TMD may be modified by the causes of renal insufficiency and the treatment of renal bone disease. We concluded that Mp.Ar/B·Ar was greater in patients with long-term hypoparathyroidism than both those with short-term hypoparathyroidism and with renal hyperparathyroidism. Special attention should be paid to avoid long-term hypoparathyroidism of the patients from the view point of increased fracture risk caused by increased micropetrosis area.
Collapse
Affiliation(s)
- Aiji Yajima
- Department of Anatomy, Cell Biology and Physiology, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Urology, Tokyo Teishin Hospital, Tokyo, Japan.,Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - David B Burr
- Department of Anatomy, Cell Biology and Physiology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Taro Murata
- Department of Urology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Masaki Nakamura
- Department of Nephrology and Urology, NTT East Kanto Hospital, Tokyo, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Tominaga
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | | | | | - Akemi Ito
- Ito Bone Histomorphometry Institute, Niigata, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
37
|
Du J, He Z, Cui J, Li H, Xu M, Zhang S, Zhang S, Yan M, Qu X, Yu Z. Osteocyte Apoptosis Contributes to Cold Exposure-induced Bone Loss. Front Bioeng Biotechnol 2021; 9:733582. [PMID: 34858954 PMCID: PMC8632005 DOI: 10.3389/fbioe.2021.733582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence indicates that bone mass is regulated by systemic energy balance. Temperature variations have profound effects on energy metabolism in animals, which will affect bone remodeling. But the mechanism remains unclear. 2-month-old C57BL/6J male mice were exposed to cold (4°C) and normal (23°C) temperatures for 28 days and the effects of cold exposure on bone mass was investigated. Micro-computed tomography results showed that bone volume fraction was significantly reduced after 14 days of exposure to cold temperature, and it was recovered after 28 days. Ploton silver staining and immunohistochemical results further revealed that exposure to cold decreased canalicular length, number of E11-and MMP13-positive osteocytes after 14 days, but they returned to the baseline levels after 28 days, different from the normal temperature control group. In addition, change of Caspase-3 indicated that exposure to cold temperature augmented apoptosis of osteocytes. In vitro results confirmed the positive effect of brown adipocytes on osteocyte‘s dendrites and E11 expression. In conclusion, our findings indicate that cold exposure can influence bone mass in a time-dependent manner, with bone mass decreasing and recovering at 2 and 4 weeks respectively. The change of bone mass may be caused by the apoptosis osteocytes. Brown adipocyte tissue could influence bone remodeling through affecting osteocyte.
Collapse
Affiliation(s)
- Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihao He
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyan Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Jin S, Yang L, Meng C, He Y, Ma K, Huang W, Wang H. Sequential Epiphyseal Cartilage Changes of Femoral Heads in C57BL/6 Female Mice Treated with Excessive Glucocorticoids. Cartilage 2021; 13:453S-464S. [PMID: 33269610 PMCID: PMC8804793 DOI: 10.1177/1947603520978574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Excessive use of glucocorticoids (GCs) may cause adverse effects on the skeletal system in children. However, only a few studies have reported the effects of GCs on the epiphyseal cartilage. This study aimed to uncover the subsequent epiphyseal cartilage changes of immature femoral heads after excessive GC treatment in a mouse model and explain the pathological changes preliminarily. DESIGN Female C57BL/6 mice were divided into control and model (excessive GC treatment) groups. The structure of the femoral heads was evaluated by using micro-computed tomography, hematoxylin-eosin staining, and safranin staining analyses. Immunohistochemistry was used to detect angiogenesis and cartilage metabolism. Western blotting and TUNEL staining were used to examine epiphyseal cartilage chondrocyte apoptosis. Primary chondrocytes were isolated from the femoral heads of healthy mice for in vitro studies. The effects of GCs on chondrocyte apoptosis and metabolism were determined by flow cytometry and Western blotting. RESULTS The epiphyseal cartilage ossification had started at 4 weeks posttreatment in a portion of mice; the ossification presented as a sequential process in the model group, while the epiphyseal cartilage maintained an unossified state in the control group. Vascular invasion into the epiphyseal cartilage of the model mice was observed at 4 weeks posttreatment. GCs induced chondrocyte apoptosis and altered chondrocyte metabolism in the epiphyseal cartilage. CONCLUSIONS The epiphyseal cartilage ossification accelerated in the femoral heads of female C57BL/6 mice after excessive GC treatment. Increased chondrocyte apoptosis, altered chondrocyte metabolism, as well as increased vascular invasion, are the potential factors influencing epiphyseal cartilage ossification.
Collapse
Affiliation(s)
- Shengyang Jin
- Department of Orthopaedics, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
| | - Liang Yang
- Department of Orthopaedics, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
| | - Chunqing Meng
- Department of Orthopaedics, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
| | - Yu He
- Department of Orthopaedics, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
| | - Kaige Ma
- Department of Orthopaedics, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
| | - Wei Huang
- Department of Orthopaedics, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
| | - Hong Wang
- Department of Orthopaedics, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Postmenopausal osteoporosis reduces circulating estrogen levels, which leads to osteoclast resorption, bone loss, and fracture. This review addresses emerging evidence that osteoporosis is not simply a disease of bone loss but that mechanosensitive osteocytes that regulate both osteoclasts and osteoblasts are also impacted by estrogen deficiency. RECENT FINDINGS At the onset of estrogen deficiency, the osteocyte mechanical environment is altered, which coincides with temporal changes in bone tissue composition. The osteocyte microenvironment is also altered, apoptosis is more prevalent, and hypermineralization occurs. The mechanobiological responses of osteocytes are impaired under estrogen deficiency, which exacerbates osteocyte paracrine regulation of osteoclasts. Recent research reveals changes in osteocytes during estrogen deficiency that may play a critical role in the etiology of the disease. A paradigm change for osteoporosis therapy requires an advanced understanding of such changes to establish the efficacy of osteocyte-targeted therapies to inhibit resorption and secondary mineralization.
Collapse
Affiliation(s)
- Laoise M McNamara
- Mechanobiology and Medical Device Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
40
|
Aguirre JI, Castillo EJ, Kimmel DB. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116168. [PMID: 34487892 PMCID: PMC8478908 DOI: 10.1016/j.bone.2021.116168] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe, debilitating condition affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). Oral risk factors associated with the development of MRONJ include tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection). In bone tissues, osteocytes play a bidirectional role in which they not only act as the "receiver" of systemic signals from blood vessels, such as hormones and drugs, or local signals from the mineralized matrix as it is deformed, but they also play a critical role as "transmitter" of signals to the cells that execute bone modeling and remodeling (osteoclasts, osteoblasts and lining cells). When the survival capacity of osteocytes is overwhelmed, they can die. Osteocyte death has been associated with several pathological conditions. Whereas the causes and mechanisms of osteocyte death have been studied in conditions like osteonecrosis of the femoral head (ONFH), few studies of the causes and mechanisms of osteocyte death have been done in MRONJ. The three forms of cell death that affect most of the different cells in the body (apoptosis, autophagy, and necrosis) have been recognized in osteocytes. Notably, necroptosis, a form of regulated cell death with "a necrotic cell death phenotype," has also been identified as a form of cell death in osteocytes under certain pathologic conditions. Improving the understanding of osteocyte death in MRONJ may be critical for preventing disease and developing treatment approaches. In this review, we intend to provide insight into the biology of osteocytes, cell death, in general, and osteocyte death, in particular, and discuss hypothetical mechanisms involved in osteocyte death associated with MRONJ.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
41
|
Garg P, Strigini M, Peurière L, Vico L, Iandolo D. The Skeletal Cellular and Molecular Underpinning of the Murine Hindlimb Unloading Model. Front Physiol 2021; 12:749464. [PMID: 34737712 PMCID: PMC8562483 DOI: 10.3389/fphys.2021.749464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Bone adaptation to spaceflight results in bone loss at weight bearing sites following the absence of the stimulus represented by ground force. The rodent hindlimb unloading model was designed to mimic the loss of mechanical loading experienced by astronauts in spaceflight to better understand the mechanisms causing this disuse-induced bone loss. The model has also been largely adopted to study disuse osteopenia and therefore to test drugs for its treatment. Loss of trabecular and cortical bone is observed in long bones of hindlimbs in tail-suspended rodents. Over the years, osteocytes have been shown to play a key role in sensing mechanical stress/stimulus via the ECM-integrin-cytoskeletal axis and to respond to it by regulating different cytokines such as SOST and RANKL. Colder experimental environments (~20-22°C) below thermoneutral temperatures (~28-32°C) exacerbate bone loss. Hence, it is important to consider the role of environmental temperatures on the experimental outcomes. We provide insights into the cellular and molecular pathways that have been shown to play a role in the hindlimb unloading and recommendations to minimize the effects of conditions that we refer to as confounding factors.
Collapse
Affiliation(s)
- Priyanka Garg
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Maura Strigini
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laura Peurière
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laurence Vico
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| |
Collapse
|
42
|
The Effects of Osteoporotic and Non-osteoporotic Medications on Fracture Risk and Bone Mineral Density. Drugs 2021; 81:1831-1858. [PMID: 34724173 PMCID: PMC8578161 DOI: 10.1007/s40265-021-01625-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Osteoporosis is a highly prevalent bone disease affecting more than 37.5 million individuals in the European Union (EU) and the United States of America (USA). It is characterized by low bone mineral density (BMD), impaired bone quality, and loss of structural and biomechanical properties, resulting in reduced bone strength. An increase in morbidity and mortality is seen in patients with osteoporosis, caused by the approximately 3.5 million new osteoporotic fractures occurring every year in the EU. Currently, different medications are available for the treatment of osteoporosis, including anti-resorptive and osteoanabolic medications. Bisphosphonates, which belong to the anti-resorptive medications, are the standard treatment for osteoporosis based on their positive effects on bone, long-term experience, and low costs. However, not only medications used for the treatment of osteoporosis can affect bone: several other medications are suggested to have an effect on bone as well, especially on fracture risk and BMD. Knowledge about the positive and negative effects of different medications on both fracture risk and BMD is important, as it can contribute to an improvement in osteoporosis prevention and treatment in general, and, even more importantly, to the individual's health. In this review, we therefore discuss the effects of both osteoporotic and non-osteoporotic medications on fracture risk and BMD. In addition, we discuss the underlying mechanisms of action.
Collapse
|
43
|
Lewis KJ, Cabahug-Zuckerman P, Boorman-Padgett JF, Basta-Pljakic J, Louie J, Stephen S, Spray DC, Thi MM, Seref-Ferlengez Z, Majeska RJ, Weinbaum S, Schaffler MB. Estrogen depletion on In vivo osteocyte calcium signaling responses to mechanical loading. Bone 2021; 152:116072. [PMID: 34171514 PMCID: PMC8316427 DOI: 10.1016/j.bone.2021.116072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/27/2022]
Abstract
Microstructural adaptation of bone in response to mechanical stimuli is diminished with estrogen deprivation. Here we tested in vivo whether ovariectomy (OVX) alters the acute response of osteocytes, the principal mechanosensory cells of bone, to mechanical loading in mice. We also used super resolution microscopy (Structured Illumination microscopy or SIM) in conjunction with immunohistochemistry to assess changes in the number and organization of "osteocyte mechanosomes" - complexes of Panx1 channels, P2X7 receptors and CaV3 voltage-gated Ca2+ channels clustered around αvβ3 integrin foci on osteocyte processes. Third metatarsals bones of mice expressing an osteocyte-targeted genetically encoded Ca2+ indicator (DMP1-GCaMP3) were cyclically loaded in vivo to strains from 250 to 3000 με and osteocyte intracellular Ca2+ signaling responses were assessed in mid-diaphyses using multiphoton microscopy. The number of Ca2+ signaling osteocytes in control mice increase monotonically with applied strain magnitude for the physiological range of strains. The relationship between the number of Ca2+ signaling osteocytes and loading was unchanged at 2 days post-OVX. However, it was altered markedly at 28 days post-OVX. At loads up to 1000 με, there was a dramatic reduction in number of responding (i.e. Ca2+ signaling) osteocytes; however, at higher strains the numbers of Ca2+ signaling osteocytes were similar to control mice. OVX significantly altered the abundance, make-up and organization of osteocyte mechanosome complexes on dendritic processes. Numbers of αvβ3 foci also staining with either Panx 1, P2X7R or CaV3 declined by nearly half after OVX, pointing to a loss of osteocyte mechanosomes on the dendritic processes with estrogen depletion. At the same time, the areas of the remaining foci that stained for αvβ3 and channel proteins increased significantly, a redistribution of mechanosome components suggesting a potential compensatory response. These results demonstrate that the deleterious effects of estrogen depletion on skeletal mechanical adaptation appear at the level of mechanosensation; osteocytes lose the ability to sense small (physiological) mechanical stimuli. This decline may result at least partly from changes in the structure and organization of osteocyte mechanosomes, which contribute to the distinctive sensitivity of osteocytes (particularly their dendritic processes) to mechanical stimulation.
Collapse
Affiliation(s)
- Karl J Lewis
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Pamela Cabahug-Zuckerman
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - James F Boorman-Padgett
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Joyce Louie
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Samuel Stephen
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Mia M Thi
- Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, United States of America; Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Zeynep Seref-Ferlengez
- Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America.
| |
Collapse
|
44
|
Woźniczka M, Błaszczak-Świątkiewicz K. New Generation of Meso and Antiprogestins (SPRMs) into the Osteoporosis Approach. Molecules 2021; 26:6491. [PMID: 34770897 PMCID: PMC8588216 DOI: 10.3390/molecules26216491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
Receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) play key roles in bone metabolism and the immune system. The RANK/RANKL complex has also been shown to be critical in the formation of mammary epithelia cells. The female hormones estradiol and progesterone closely control the action of RANKL with RANK. Blood concentration of these sex hormones in the postmenopausal period leads to an increase in RANK/RANKL signaling and are a major cause of women's osteoporosis, characterized by altered bone mineralization. Knowledge of the biochemical relationships between hormones and RANK/RANKL signaling provides the opportunity to design novel therapeutic agents to inhibit bone loss, based on the anti-RANKL treatment and inhibition of its interaction with the RANK receptor. The new generation of both anti- and mesoprogestins that inhibit the NF-κB-cyclin D1 axis and blocks the binding of RANKL to RANK can be considered as a potential source of new RANK receptor ligands with anti-RANKL function, which may provide a new perspective into osteoporosis treatment itself as well as limit the osteoporosis rise during breast cancer metastasis to the bone.
Collapse
Affiliation(s)
| | - Katarzyna Błaszczak-Świątkiewicz
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
45
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
46
|
Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-Cell Mediated Inflammation in Postmenopausal Osteoporosis. Front Immunol 2021; 12:687551. [PMID: 34276675 PMCID: PMC8278518 DOI: 10.3389/fimmu.2021.687551] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is the most prevalent metabolic bone disease that affects half the women in the sixth and seventh decade of life. Osteoporosis is characterized by uncoupled bone resorption that leads to low bone mass, compromised microarchitecture and structural deterioration that increases the likelihood of fracture with minimal trauma, known as fragility fractures. Several factors contribute to osteoporosis in men and women. In women, menopause - the cessation of ovarian function, is one of the leading causes of primary osteoporosis. Over the past three decades there has been growing appreciation that the adaptive immune system plays a fundamental role in the development of postmenopausal osteoporosis, both in humans and in mouse models. In this review, we highlight recent data on the interactions between T cells and the skeletal system in the context of postmenopausal osteoporosis. Finally, we review recent studies on the interventions to ameliorate osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
47
|
Phlpp1 is induced by estrogen in osteoclasts and its loss in Ctsk-expressing cells does not protect against ovariectomy-induced bone loss. PLoS One 2021; 16:e0251732. [PMID: 34143773 PMCID: PMC8213150 DOI: 10.1371/journal.pone.0251732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Prior studies demonstrated that deletion of the protein phosphatase Phlpp1 in Ctsk-Cre expressing cells enhances bone mass, characterized by diminished osteoclast activity and increased coupling to bone formation. Due to non-specific expression of Ctsk-Cre, the definitive mechanism for this observation was unclear. To further define the role of bone resorbing osteoclasts, we performed ovariectomy (Ovx) and Sham surgeries on Phlpp1 cKOCtsk and WT mice. Micro-CT analyses confirmed enhanced bone mass of Phlpp1 cKOCtsk Sham females. In contrast, Ovx induced bone loss in both groups, with no difference between Phlpp1 cKOCtsk and WT mice. Histomorphometry demonstrated that Ovx mice lacked differences in osteoclasts per bone surface, suggesting that estradiol (E2) is required for Phlpp1 deficiency to have an effect. We performed high throughput unbiased transcriptional profiling of Phlpp1 cKOCtsk osteoclasts and identified 290 differentially expressed genes. By cross-referencing these differentially expressed genes with all estrogen response element (ERE) containing genes, we identified IGFBP4 as potential estrogen-dependent target of Phlpp1. E2 induced PHLPP1 expression, but reduced IGFBP4 levels. Moreover, genetic deletion or chemical inhibition of Phlpp1 was correlated with IGFBP4 levels. We then assessed IGFBP4 expression by osteoclasts in vivo within intact 12-week-old females. Modest IGFBP4 immunohistochemical staining of TRAP+ osteoclasts within WT females was observed. In contrast, TRAP+ bone lining cells within intact Phlpp1 cKOCtsk females robustly expressed IGFBP4, but levels were diminished within TRAP+ bone lining cells following Ovx. These results demonstrate that effects of Phlpp1 conditional deficiency are lost following Ovx, potentially due to estrogen-dependent regulation of IGFBP4.
Collapse
|
48
|
Vakili S, Zal F, Mostafavi-Pour Z, Savardashtaki A, Koohpeyma F. Quercetin and vitamin E alleviate ovariectomy-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J Cell Physiol 2021; 236:3495-3509. [PMID: 33030247 DOI: 10.1002/jcp.30087] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
Abstract
Osteoporosis is the most prevalent metabolic bone disease and one of the most important postmenopausal consequences. The aim of this study was to investigate the effects of quercetin (Q) and vitamin E (vitE) on ovariectomy-induced osteoporosis. Animals were ovariectomized and treated with Q (15 mg/kg/day), vitE (60 mg/kg/day), estradiol (10 µg/kg/day), and Q (7.5 mg/kg/day) + vitE (30 mg/kg/day) for 10 weeks by gavage, and osteoporosis markers and messenger RNA (mRNA) expression of autophagy and apoptosis-related genes were analyzed in serum and tibia of rats. Data indicated that ovariectomy resulted in development of osteoporosis as demonstrated by reduction in serum calcium, bone weight, bone volume, trabeculae volume, and the total number of osteocytes and osteoblasts, and increase in the total number of osteoclasts and serum osteocalcin. Total mRNA expressions of LC3, beclin1, and caspase 3 were also increased and bcl2 expression was decreased in the tibia. By reversing these changes, treatment with Q and vitE markedly improved osteoporosis. In conclusion, Q, and to a lesser extent, vitE, prevented osteoporosis by regulating the total number of bone cells, maybe through regulating autophagy and apoptosis.
Collapse
Affiliation(s)
- Sina Vakili
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Traditional Medicine and Medical History Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
49
|
Conditional deletion of E11/Podoplanin in bone protects against ovariectomy-induced increases in osteoclast formation and activity. Biosci Rep 2021; 40:221743. [PMID: 31894854 PMCID: PMC6954370 DOI: 10.1042/bsr20190329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022] Open
Abstract
E11/Podoplanin (Pdpn) is implicated in early osteocytogenesis and the formation of osteocyte dendrites. This dendritic network is critical for bone modelling/remodelling, through the production of receptor activator of nuclear factor κ B (RANK)-ligand (RANKL). Despite this, the role of Pdpn in the control of bone remodelling is yet to be established in vivo. Here we utilised bone-specific Pdpn conditional knockout mice (cKO) to examine the role of Pdpn in the bone loss associated with ovariectomy (OVX). MicroCT revealed that Pdpn deletion had no significant effect on OVX-induced changes in trabecular microarchitecture. Significant differences between genotypes were observed in the trabecular pattern factor (P<0.01) and structure model index (P<0.01). Phalloidin staining of F-actin revealed OVX to induce alterations in osteocyte morphology in both wild-type (WT) and cKO mice. Histological analysis revealed an expected significant increase in osteoclast number in WT mice (P<0.01, compared with sham). However, cKO mice were protected against such increases in osteoclast number. Consistent with this, serum levels of the bone resorption marker Ctx were significantly increased in WT mice following OVX (P<0.05), but were unmodified by OVX in cKO mice. Gene expression of the bone remodelling markers Rank, Rankl, Opg and Sost were unaffected by Pdpn deletion. Together, our data suggest that an intact osteocyte dendritic network is required for sustaining osteoclast formation and activity in the oestrogen-depleted state, through mechanisms potentially independent of RANKL expression. This work will enable a greater understanding of the role of osteocytes in bone loss induced by oestrogen deprivation.
Collapse
|
50
|
Coffman AA, Basta-Pljakic J, Guerra RM, Ebetino FH, Lundy MW, Majeska RJ, Schaffler MB. A Bisphosphonate With a Low Hydroxyapatite Binding Affinity Prevents Bone Loss in Mice After Ovariectomy and Reverses Rapidly With Treatment Cessation. JBMR Plus 2021; 5:e10476. [PMID: 33869992 PMCID: PMC8046044 DOI: 10.1002/jbm4.10476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long‐term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a “drug holiday” from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half‐lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition potentially offer an alternative approach; their antiresorptive effect should reverse rapidly when dosing is discontinued. This study tested this concept using NE‐58025, a BP with low HAP affinity and moderate osteoclast inhibition potential. Young adult female C57Bl/6 mice were ovariectomized (OVX) and treated with NE‐58025, risedronate, or PBS vehicle for 3 months to test effectiveness in preventing long‐term bone loss. Bone microarchitecture, histomorphometry, and whole‐bone mechanical properties were assessed. To test reversibility, OVX mice were similarly treated for 3 months, treatment was stopped, and bone was assessed up to 3 months post‐treatment. NE‐58025 and RIS inhibited long‐term OVX‐induced bone loss, but NE‐58025 antiresorptive effects were more pronounced. Withdrawing NE‐58025 treatment led to the rapid onset of trabecular resorption with a 200% increase in osteoclast surface and bone loss within 1 month. Cessation of risedronate treatment did not lead to increases in resorption indices or bone loss. These results show that NE‐58025 prevents OVX‐induced bone loss, and its effects reverse quickly following cessation treatment in vivo. Low‐HAP affinity BPs may have use as reversible, antiresorptive agents with a rapid on/off profile, which may be useful for maintaining bone health with long‐term BP treatment. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Abigail A Coffman
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Rosa M Guerra
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Frank H Ebetino
- Department of Chemistry University of Rochester Rochester NY USA.,BioVinc, LLC Pasadena CA USA
| | - Mark W Lundy
- BioVinc, LLC Pasadena CA USA.,Department of Anatomy and Cell Biology Indiana University Indianapolis IN USA
| | - Robert J Majeska
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering The City College of New York New York NY USA
| |
Collapse
|