1
|
Malvandi AM, Gerosa L, Banfi G, Lombardi G. The bone-muscle unit: from mechanical coupling to soluble factors-mediated signaling. Mol Aspects Med 2025; 103:101367. [PMID: 40339487 DOI: 10.1016/j.mam.2025.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Skeletal muscles (SKM) and bones form a morpho-functional unit, interconnected throughout life primarily through biomechanical coupling. This relationship serves as a key reciprocal stimulus, but they also interact via various hormones, such as sex steroids, growth hormone-insulin-like growth factor 1 (GH-IGF1) axis hormones, and adipokines like leptin and adiponectin. Additionally, myokines (released by muscles) and osteokines (released by bones) facilitate dense crosstalk, influencing each other's activity. Key myokines include interleukin (IL)-6, IL-7, IL-15, and myostatin, while osteocalcin (OC) and sclerostin are crucial bone-derived mediators affecting SKM cells. Moreover, miRNAs act as endocrine-like regulators, contributing to a complex network. This review covers the current understanding of bone-muscle crosstalk, which is essential for grasping the musculoskeletal apparatus's role in disease pathogenesis and may inform therapeutic development.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Laura Gerosa
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy; Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland.
| |
Collapse
|
2
|
Tsuboi E, Ono SF, Cordeiro IR, Yu R, Kawanishi T, Koizumi M, Shigenobu S, Sheng G, Okabe M, Tanaka M. Immobilization secondary to cell death of muscle precursors with a dual transcriptional signature contributes to the emu wing skeletal pattern. Nat Commun 2024; 15:8153. [PMID: 39300061 DOI: 10.1038/s41467-024-52203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Limb reduction has occurred multiple times in tetrapod history. Among ratites, wing reductions range from mild vestigialization to complete loss, with emus (Dromaius novaehollandiae) serving as a model for studying the genetic mechanisms behind limb reduction. Here, we explore the developmental mechanisms underlying wing reduction in emu. Our analyses reveal that immobilization resulting from the absence of distal muscles contributes to skeletal shortening, fusion and left-right intraindividual variation. Expression analysis and single cell-RNA sequencing identify muscle progenitors displaying a dual lateral plate mesodermal and myogenic signature. These cells aggregate at the proximal region of wing buds and undergo cell death. We propose that this cell death, linked to the lack of distal muscle masses, underlines the morphological features and variability in skeletal elements due to reduced mechanical loading. Our results demonstrate that differential mobility during embryonic development may drive morphological diversification in vestigial structures.
Collapse
Affiliation(s)
- Eriko Tsuboi
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Satomi F Ono
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Reiko Yu
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Toru Kawanishi
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Makoto Koizumi
- Laboratory Animal Facilities, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan.
| |
Collapse
|
3
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Thomas Kim JH, Ahmed S, Szeto GL, Qin L, Gottardi R, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulation in murine bone development. Dev Cell 2024; 59:211-227.e5. [PMID: 38141609 PMCID: PMC10843704 DOI: 10.1016/j.devcel.2023.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, UK
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Thomas Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ahmed S, Rogers AV, Nowlan NC. Mechanical loading due to muscle movement regulates establishment of the collagen network in the developing murine skeleton. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231023. [PMID: 37859832 PMCID: PMC10582611 DOI: 10.1098/rsos.231023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Mechanical loading is critical for collagen network maintenance and remodelling in adult skeletal tissues, but the role of loading in collagen network formation during development is poorly understood. We test the hypothesis that mechanical loading is necessary for the onset and maturation of spatial localization and structure of collagens in prenatal cartilage and bone, using in vivo and in vitro mouse models of altered loading. The majority of collagens studied was aberrant in structure or localization, or both, when skeletal muscle was absent in vivo. Using in vitro bioreactor culture system, we demonstrate that mechanical loading directly modulates the spatial localization and structure of collagens II and X. Furthermore, we show that mechanical loading in vitro rescues aspects of the development of collagens II and X from the effects of fetal immobility. In conclusion, our findings show that mechanical loading is a critical determinant of collagen network establishment during prenatal skeletal development.
Collapse
Affiliation(s)
- Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Wernlé KK, Sonnenfelt MA, Leek CC, Ganji E, Sullivan AL, Offutt C, Shuff J, Ornitz DM, Killian ML. Loss of Fgfr1 and Fgfr2 in Scleraxis-lineage cells leads to enlarged bone eminences and attachment cell death. Dev Dyn 2023; 252:1180-1188. [PMID: 37212424 PMCID: PMC10524747 DOI: 10.1002/dvdy.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Tendons and ligaments attach to bone are essential for joint mobility and stability in vertebrates. Tendon and ligament attachments (ie, entheses) are found at bony protrusions (ie, eminences), and the shape and size of these protrusions depend on both mechanical forces and cellular cues during growth. Tendon eminences also contribute to mechanical leverage for skeletal muscle. Fibroblast growth factor receptor (FGFR) signaling plays a critical role in bone development, and Fgfr1 and Fgfr2 are highly expressed in the perichondrium and periosteum of bone where entheses can be found. RESULTS AND CONCLUSIONS We used transgenic mice for combinatorial knockout of Fgfr1 and/or Fgfr2 in tendon/attachment progenitors (ScxCre) and measured eminence size and shape. Conditional deletion of both, but not individual, Fgfr1 and Fgfr2 in Scx progenitors led to enlarged eminences in the postnatal skeleton and shortening of long bones. In addition, Fgfr1/Fgfr2 double conditional knockout mice had more variation collagen fibril size in tendon, decreased tibial slope, and increased cell death at ligament attachments. These findings identify a role for FGFR signaling in regulating growth and maintenance of tendon/ligament attachments and the size and shape of bony eminences.
Collapse
Affiliation(s)
- Kendra K. Wernlé
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - Michael A. Sonnenfelt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Connor C. Leek
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| | - Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
- Department of Mechanical Engineering, University of Delaware, 130 Academy St, Newark, DE 19716
| | - Anna Lia Sullivan
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Claudia Offutt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri, 63110
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Khatib NS, Monsen J, Ahmed S, Huang Y, Hoey DA, Nowlan NC. Mechanoregulatory role of TRPV4 in prenatal skeletal development. SCIENCE ADVANCES 2023; 9:eade2155. [PMID: 36696489 PMCID: PMC9876556 DOI: 10.1126/sciadv.ade2155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Biophysical cues are essential for guiding skeletal development, but the mechanisms underlying the mechanical regulation of cartilage and bone formation are unknown. TRPV4 is a mechanically sensitive ion channel involved in cartilage and bone cell mechanosensing, mutations of which lead to skeletal developmental pathologies. We tested the hypothesis that loading-driven prenatal skeletal development is dependent on TRPV4 activity. We first establish that mechanically stimulating mouse embryo hindlimbs cultured ex vivo stimulates knee cartilage growth, morphogenesis, and expression of TRPV4, which localizes to areas of high biophysical stimuli. We then demonstrate that loading-driven joint cartilage growth and shape are dependent on TRPV4 activity, mediated via control of cell proliferation and matrix biosynthesis, indicating a mechanism by which mechanical loading could direct growth and morphogenesis during joint formation. We conclude that mechanoregulatory pathways initiated by TRPV4 guide skeletal development; therefore, TRPV4 is a valuable target for the development of skeletal regenerative and repair strategies.
Collapse
Affiliation(s)
- Nidal S. Khatib
- Department of Bioengineering, Imperial College London, London, UK
| | - James Monsen
- Department of Bioengineering, Imperial College London, London, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - Yuming Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - David A. Hoey
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
O'Mahoney TG, Lowe T, Chamberlain AT, Sellers WI. Endostructural and periosteal growth of the human humerus. Anat Rec (Hoboken) 2023; 306:60-78. [PMID: 36054304 PMCID: PMC10086792 DOI: 10.1002/ar.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 01/29/2023]
Abstract
The growth and development of long bones are of considerable interests in the fields of comparative anatomy and palaeoanthropology, as evolutionary changes and adaptations to specific physical activity patterns are expected to be revealed during bone ontogeny. Traditionally, the cross-sectional geometry of long bones has been examined at discrete locations usually placed at set intervals or fixed percentage distances along the midline axis of the bone shaft. More recently, the technique of morphometric mapping has enabled the continuous analysis of shape variation along the shaft. Here we extend this technique to the full sequence of late fetal and postnatal development of the humeral shaft in a modern human population sample, with the aim of establishing the shape changes during growth and their relationship with the development of the arm musculature and activity patterns. A sample of modern human humeri from individuals of age ranging from 24 weeks in utero to 18 years was imaged using microtomography at multiple resolutions and custom Matlab scripts. Standard biomechanical properties, cortical thickness, surface curvature, and pseudo-landmarks were extracted along radial vectors spaced at intervals of 1° at each 0.5% longitudinal increment measured along the shaft axis. Heat maps were also generated for cortical thickness and surface curvature. The results demonstrate that a whole bone approach to analysis of cross-sectional geometry is more desirable where possible, as there is a continuous pattern of variation along the shaft. It is also possible to discriminate very young individuals and adolescents from other groups by relative cortical thickness, and also by periosteal surface curvature.
Collapse
Affiliation(s)
- Thomas George O'Mahoney
- School of Life SciencesAnglia Ruskin UniversityCambridgeUK
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Tristan Lowe
- Henry Moseley X‐Ray Imaging FacilityUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
10
|
Murphy P, Rolfe RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:81-110. [PMID: 37955772 DOI: 10.1007/978-3-031-38215-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Rebecca A Rolfe
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
11
|
Kim M, Koyama E, Saunders CM, Querido W, Pleshko N, Pacifici M. Synovial joint cavitation initiates with microcavities in interzone and is coupled to skeletal flexion and elongation in developing mouse embryo limbs. Biol Open 2022; 11:bio059381. [PMID: 35608281 PMCID: PMC9212078 DOI: 10.1242/bio.059381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The synovial cavity and its fluid are essential for joint function and lubrication, but their developmental biology remains largely obscure. Here, we analyzed E12.5 to E18.5 mouse embryo hindlimbs and discovered that cavitation initiates around E15.0 with emergence of multiple, discrete, µm-wide tissue discontinuities we term microcavities in interzone, evolving into a single joint-wide cavity within 12 h in knees and within 72-84 h in interphalangeal joints. The microcavities were circumscribed by cells as revealed by mTmG imaging and exhibited a carbohydrate and protein content based on infrared spectral imaging at micro and nanoscale. Accounting for differing cavitation kinetics, we found that the growing femur and tibia anlagen progressively flexed at the knee over time, with peak angulation around E15.5 exactly when the full knee cavity consolidated; however, interphalangeal joint geometry changed minimally over time. Indeed, cavitating knee interzone cells were elongated along the flexion angle axis and displayed oblong nuclei, but these traits were marginal in interphalangeal cells. Conditional Gdf5Cre-driven ablation of Has2 - responsible for production of the joint fluid component hyaluronic acid (HA) - delayed the cavitation process. Our data reveal that cavitation is a stepwise process, brought about by sequential action of microcavities, skeletal flexion and elongation, and HA accumulation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Minwook Kim
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cheri M. Saunders
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Comellas E, Farkas JE, Kleinberg G, Lloyd K, Mueller T, Duerr TJ, Muñoz JJ, Monaghan JR, Shefelbine SJ. Local mechanical stimuli correlate with tissue growth in axolotl salamander joint morphogenesis. Proc Biol Sci 2022; 289:20220621. [PMID: 35582804 PMCID: PMC9114971 DOI: 10.1098/rspb.2022.0621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 01/04/2023] Open
Abstract
Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis.
Collapse
Affiliation(s)
- Ester Comellas
- Serra Húnter Fellow, Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
| | | | - Giona Kleinberg
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Katlyn Lloyd
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Thomas Mueller
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | | | - Jose J. Muñoz
- Department of Mathematics, Laboratori de Càlcul Numeric (LaCàN), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
- Department of Bioengineering, Northeastern University, Boston, MA USA
| |
Collapse
|
13
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
14
|
Shea CA, Murphy P. The Primary Cilium on Cells of Developing Skeletal Rudiments; Distribution, Characteristics and Response to Mechanical Stimulation. Front Cell Dev Biol 2021; 9:725018. [PMID: 34490272 PMCID: PMC8418538 DOI: 10.3389/fcell.2021.725018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Embryo movement is important for tissue differentiation and the formation of functional skeletal elements during embryonic development: reduced mechanical stimulation results in fused joints and misshapen skeletal rudiments with concomitant changes in the signaling environment and gene expression profiles in both mouse and chick immobile embryos. Despite the clear relationship between movement and skeletogenesis, the precise mechanisms by which mechanical stimuli influence gene regulatory processes are not clear. The primary cilium enables cells to sense mechanical stimuli in the cellular environment, playing a crucial mechanosensory role during kidney development and in articular cartilage and bone but little is known about cilia on developing skeletal tissues. Here, we examine the occurrence, length, position, and orientation of primary cilia across developing skeletal rudiments in mouse embryos during a period of pronounced mechanosensitivity and we report differences and similarities between wildtype and muscle-less mutant (Pax3Spd/Spd) rudiments. Strikingly, joint regions tend to have cilia positioned and oriented away from the joint, while there was a less obvious, but still significant, preferred position on the posterior aspect of cells within the proliferative and hypertrophic zones. Regions of the developing rudiments have characteristic proportions of ciliated cells, with more cilia in the resting and joint zones. Comparing wildtype to muscle-less mutant embryos, cilia are shorter in the mutant with no significant difference in the proportion of ciliated cells. Cilia at the mutant joint were also oriented away from the joint line.
Collapse
Affiliation(s)
- Claire A Shea
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Paula Murphy
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Huby A, Mansuit R, Herbin M, Herrel A. Revision of the muscular anatomy of the paired fins of the living coelacanth Latimeria chalumnae (Sarcopterygii: Actinistia). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
As a sarcopterygian fish, the extant coelacanth Latimeria has muscular paired fins, different in their skeletal and muscular anatomy from the paired fins of actinopterygians. Although the muscular anatomy of the pectoral and pelvic fins of Latimeria has been described by several studies, a detailed functional description of the muscles and their architecture has never been performed. Our detailed functional description of the muscles of the paired fins shows a more complex organization than previously described. The pectoral and pelvic fins have a different organization of their muscular anatomy, and the pelvic fin shows a more plesiomorphic configuration of the muscles since most of them are poly-articular and run from the pelvic girdle to the fin rays, an organization typical of actinopterygians. We found that the pectoral fins are stronger than the pelvic fins which is likely to be associated with the greater contribution of the pectoral fins to locomotion and manoeuvring. Finally, the study of the joint mobility of the paired fins showed that the pectoral fins show greater mobility than the pelvic fins. The reduced mobility of the pelvic fin is possibly a consequence of the morphology of the mesomeres and the large pre-axial radials.
Collapse
Affiliation(s)
- Alessia Huby
- Laboratory of Functional and Evolutionary Morphology, FOCUS Research Unit, Department of Biology, Ecology and Evolution, University of Liège, 4000 Liège, Belgium
| | - Rohan Mansuit
- UMR 7207 Centre de Recherche en Paléontologie, Paris, Département Orgines & Evolution, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 8 rue Buffon, CP38, Paris, France
- UMR 7179 Mécanismes Adaptatifs et Evolution, Département Adaptations du Vivant, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 57 rue Cuvier, CP55, Paris, France
| | - Marc Herbin
- UMR 7179 Mécanismes Adaptatifs et Evolution, Département Adaptations du Vivant, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 57 rue Cuvier, CP55, Paris, France
| | - Anthony Herrel
- UMR 7179 Mécanismes Adaptatifs et Evolution, Département Adaptations du Vivant, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 57 rue Cuvier, CP55, Paris, France
| |
Collapse
|
16
|
Pierantoni M, Le Cann S, Sotiriou V, Ahmed S, Bodey AJ, Jerjen I, Nowlan NC, Isaksson H. Muscular loading affects the 3D structure of both the mineralized rudiment and growth plate at early stages of bone formation. Bone 2021; 145:115849. [PMID: 33454374 DOI: 10.1016/j.bone.2021.115849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Fetal immobilization affects skeletal development and can lead to severe malformations. Still, how mechanical load affects embryonic bone formation is not fully elucidated. This study combines mechanobiology, image analysis and developmental biology, to investigate the structural effects of muscular loading on embryonic long bones. We present a novel approach involving a semi-automatic workflow, to study the spatial and temporal evolutions of both hard and soft tissues in 3D without any contrast agent at micrometrical resolution. Using high-resolution phase-contrast-enhanced X-ray synchrotron microtomography, we compare the humeri of Splotch-delayed embryonic mice lacking skeletal muscles with healthy littermates. The effects of skeletal muscles on bone formation was studied from the first stages of mineral deposition (Theiler Stages 23 and 24) to just before birth (Theiler Stage 27). The results show that muscle activity affects both growth plate and mineralized regions, especially during early embryonic development. When skeletal muscles were absent, there was reduced mineralization, altered tuberosity size and location, and, at early embryonic stages, decreased chondrocyte density, size and elongation compared to littermate controls. The proposed workflow enhances our understanding of mechanobiology of early bone formation and could be implemented for the study of other complex biological tissues.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | - Iwan Jerjen
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
17
|
Rolfe RA, Scanlon O'Callaghan D, Murphy P. Joint development recovery on resumption of embryonic movement following paralysis. Dis Model Mech 2021; 14:dmm048913. [PMID: 33771841 PMCID: PMC8084573 DOI: 10.1242/dmm.048913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Fetal activity in utero is a normal part of pregnancy and reduced or absent movement can lead to long-term skeletal defects, such as Fetal Akinesia Deformation Sequence, joint dysplasia and arthrogryposis. A variety of animal models with decreased or absent embryonic movements show a consistent set of developmental defects, providing insight into the aetiology of congenital skeletal abnormalities. At developing joints, defects include reduced joint interzones with frequent fusion of cartilaginous skeletal rudiments across the joint. At the spine, defects include shortening and a spectrum of curvature deformations. An important question, with relevance to possible therapeutic interventions for human conditions, is the capacity for recovery with resumption of movement following short-term immobilisation. Here, we use the well-established chick model to compare the effects of sustained immobilisation from embryonic day (E)4-10 to two different recovery scenarios: (1) natural recovery from E6 until E10 and (2) the addition of hyperactive movement stimulation during the recovery period. We demonstrate partial recovery of movement and partial recovery of joint development under both recovery conditions, but no improvement in spine defects. The joints examined (elbow, hip and knee) showed better recovery in hindlimb than forelimb, with hyperactive mobility leading to greater recovery in the knee and hip. The hip joint showed the best recovery with improved rudiment separation, tissue organisation and commencement of cavitation. This work demonstrates that movement post paralysis can partially recover specific aspects of joint development, which could inform therapeutic approaches to ameliorate the effects of human fetal immobility. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Department of Zoology, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
18
|
Zhou H. Embryonic movement stimulates joint formation and development: Implications in arthrogryposis multiplex congenita. Bioessays 2021; 43:e2000319. [PMID: 33634512 DOI: 10.1002/bies.202000319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Arthrogryposis multiplex congenita (AMC) is a heterogeneous syndrome where multiple joints have reduced range of motion due to contracture formation prior to birth. A common cause of AMC is reduced embryonic movement in utero. This reduction in embryonic movement can perturb molecular mechanisms and signaling pathways involved in the formation of joints during development. The absence of mechanical stimuli can impair joint cavitation, resulting in joint fusion, and ultimately eliminate function. In turn, mechanical stimuli are critical for proper joint formation during development and for mitigating AMC. Studies in experimental animal models have provided a greater understanding on the molecular pathophysiology of congenital contracture formation as a consequence of embryonic immobilization. Elucidation of how the mechanical signaling environment is transduced to initiate a biological response will be necessary to gain a deeper understanding of how mechanical stimuli are intertwined in the molecular regulation of joint development.
Collapse
Affiliation(s)
- Haodong Zhou
- Faculty of Science, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Silva Barreto I, Le Cann S, Ahmed S, Sotiriou V, Turunen MJ, Johansson U, Rodriguez‐Fernandez A, Grünewald TA, Liebi M, Nowlan NC, Isaksson H. Multiscale Characterization of Embryonic Long Bone Mineralization in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002524. [PMID: 33173750 PMCID: PMC7610310 DOI: 10.1002/advs.202002524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 06/01/2023]
Abstract
Long bone mineralization occurs through endochondral ossification, where a cartilage template mineralizes into bone-like tissue with a hierarchical organization from the whole bone-scale down to sub-nano scale. Whereas this process has been extensively studied at the larger length scales, it remains unexplored at some of the smaller length scales. In this study, the changes in morphology, composition, and structure during embryonic mineralization of murine humeri are investigated using a range of high-resolution synchrotron-based imaging techniques at several length scales. With micro- and nanometer spatial resolution, the deposition of elements and the shaping of mineral platelets are followed. Rapid mineralization of the humeri occurs over approximately four days, where mineral to matrix ratio and calcium content in the most mineralized zone reach adult values shortly before birth. Interestingly, zinc is consistently found to be localized at the sites of ongoing new mineralization. The mineral platelets in the most recently mineralized regions are thicker, longer, narrower, and less aligned compared to those further into the mineralized region. In summary, this study demonstrates a specific spatial distribution of zinc, with highest concentration where new mineral is being deposited and that the newly formed mineral platelets undergo slight reshaping and reorganization during embryonic development.
Collapse
Affiliation(s)
| | - Sophie Le Cann
- Department of Biomedical EngineeringLund UniversityLund22100Sweden
| | - Saima Ahmed
- Department of BioengineeringImperial College LondonLondonSW72AZUK
| | - Vivien Sotiriou
- Department of BioengineeringImperial College LondonLondonSW72AZUK
| | - Mikael J. Turunen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopio70211Finland
| | | | | | | | - Marianne Liebi
- Department of PhysicsChalmers University of TechnologyGothenburg41296Sweden
| | - Niamh C. Nowlan
- Department of BioengineeringImperial College LondonLondonSW72AZUK
| | - Hanna Isaksson
- Department of Biomedical EngineeringLund UniversityLund22100Sweden
| |
Collapse
|
20
|
Bridglal DL, Boyle CJ, Rolfe RA, Nowlan NC. Quantifying the tolerance of chick hip joint development to temporary paralysis and the potential for recovery. Dev Dyn 2020; 250:450-464. [PMID: 32776603 DOI: 10.1002/dvdy.236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Abnormal fetal movements are implicated in joint pathologies such as arthrogryposis and developmental dysplasia of the hip (DDH). Experimentally induced paralysis disrupts joint cavitation and morphogenesis leading to postnatal abnormalities. However, the developmental window(s) most sensitive to immobility-and therefore the best time for intervention-have never been identified. Here, we systematically vary the timing and duration of paralysis during early chick hip joint development. We then test whether external manipulation of immobilized limbs can mitigate the effects of immobility. RESULTS Timing of paralysis affected the level of disruption to joints, with paralysis periods between embryonic days 4 and 7 most detrimental. Longer paralysis periods produced greater disruption in terms of failed cavitation and abnormal femoral and acetabular geometry. External manipulation of an immobilized limb led to more normal morphogenesis and cavitation compared to un-manipulated limbs. CONCLUSIONS Temporary paralysis is detrimental to joint development, particularly during days 4 to 7. Developmental processes in the very early stages of joint development may be critical to DDH, arthrogryposis, and other joint pathologies. The developing limb has the potential to recover from periods of immobility, and external manipulation provides an innovative avenue for prevention and treatment of developmental joint pathologies.
Collapse
Affiliation(s)
- Devi L Bridglal
- Department of Bioengineering, Imperial College London, London, UK
| | - Colin J Boyle
- Department of Bioengineering, Imperial College London, London, UK
| | - Rebecca A Rolfe
- Department of Bioengineering, Imperial College London, London, UK.,Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
21
|
Invernizzi M, de Sire A, Carda S, Venetis K, Renò F, Cisari C, Fusco N. Bone Muscle Crosstalk in Spinal Cord Injuries: Pathophysiology and Implications for Patients' Quality of Life. Curr Osteoporos Rep 2020; 18:422-431. [PMID: 32519284 DOI: 10.1007/s11914-020-00601-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide a comprehensive overview of (i) bone and muscle tissue modifications pathophysiology in spinal cord injury (SCI), (ii) experimental data on the physiopathological mechanisms underpinning these modifications and their similarities with the aging process, and (iii) potential clinical implications in the management of the disabling sequelae of SCI. RECENT FINDINGS Several studies attempted to describe the biology underpinning the links between bone and muscle tissues in the setting of highly disabling conditions, such as osteoporosis, sarcopenia, and neurodegenerative disorders, although these bidirectional connections remain still unclear. SCI could be considered an in vivo paradigmatic model of the bone muscle interactions in unloading conditions that might be expanded in the field of neurodegenerative disorders or cancer studies. Future studies should take into consideration the newer insights into bone muscle crosstalk in order to develop multitargeted and therapeutic interventions.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rehabilitation Unit, "Mons. L. Novarese" Hospital, Moncrivello, Vercelli, Italy
| | - Stefano Carda
- Neuropsychology and Neurorehabilitation Service, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Konstantinos Venetis
- Ph.D. Program in Translational Medicine, University of Milan, Milan, Italy
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Physical Medicine and Rehabilitation Unit, University Hospital "Maggiore della Carità", Novara, Italy
| | - Nicola Fusco
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Du TY, Standen EM. Terrestrial acclimation and exercise lead to bone functional response in Polypterus senegalus pectoral fins. J Exp Biol 2020; 223:jeb217554. [PMID: 32414872 DOI: 10.1242/jeb.217554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/25/2020] [Indexed: 11/20/2022]
Abstract
The ability of bones to sense and respond to mechanical loading is a central feature of vertebrate skeletons. However, the functional demands imposed on terrestrial and aquatic animals differ vastly. The pectoral girdle of the basal actinopterygian fish Polypterus senegalus was previously shown to exhibit plasticity following terrestrial acclimation, but the pectoral fin itself has yet to be examined. We investigated skeletal plasticity in the pectoral fins of P. senegalus after exposure to terrestrial loading. Juvenile fish were divided into three groups: a control group was kept under aquatic conditions without intervention, an exercised group was also kept in water but received daily exercise on land, and a terrestrial group was kept in a chronic semi-terrestrial condition. After 5 weeks, the pectoral fins were cleared and stained with Alcian Blue and Alizarin Red to visualize cartilage and bone, allowing measurements of bone length, bone width, ossification and curvature to be taken for the endochondral radial bones. Polypterus senegalus fin bones responded most strongly to chronic loading in the terrestrial condition. Fish that were reared in a terrestrial environment had significantly longer bones compared with those of aquatic controls, wider propterygia and metapterygia, and more ossified metapterygia and medial radials, and they showed changes in propterygial curvature. Exercised fish also had longer and more ossified medial radials compared with those of controls. Polypterus senegalus fin bones exhibit plasticity in response to novel terrestrial loading. Such plasticity could be relevant for transitions between water and land on evolutionary scales, but key differences between fish and tetrapod bone make direct comparisons challenging.
Collapse
Affiliation(s)
- Trina Y Du
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | - Emily M Standen
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
23
|
Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong Q, Zhang X, Zhou Y, Yadav PS, Lin J, Wu N, Zhao L, Huang D, Zhou S, Su P, Yang Y. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. eLife 2020; 9:52779. [PMID: 32186512 PMCID: PMC7112954 DOI: 10.7554/elife.52779] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here, we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca2+ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and ß-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/ß-catenin complex formation. Yap1 and ß-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced ß-catenin activities.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fan
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Xiaolei Zhang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Prem S Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Jiachen Lin
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, United States
| | - Peiqiang Su
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| |
Collapse
|
24
|
Yamamoto M, Takada H, Ishizuka S, Kitamura K, Jeong J, Sato M, Hinata N, Abe S. Morphological association between the muscles and bones in the craniofacial region. PLoS One 2020; 15:e0227301. [PMID: 31923241 PMCID: PMC6953862 DOI: 10.1371/journal.pone.0227301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/16/2019] [Indexed: 01/02/2023] Open
Abstract
The strains of inbred laboratory mice are isogenic and homogeneous for over 98.6% of their genomes. However, geometric morphometric studies have demonstrated clear differences among the skull shapes of various mice strains. The question now arises: why are skull shapes different among the mice strains? Epigenetic processes, such as morphological interaction between the muscles and bones, may cause differences in the skull shapes among various mice strains. To test these predictions, the objective of this study is to examine the morphological association between a specific part of the skull and its adjacent muscle. We examined C57BL6J, BALB/cA, and ICR mice on embryonic days (E) 12.5 and 16.5 as well as on postnatal days (P) 0, 10, and 90. As a result, we found morphological differences between C57BL6J and BALB/cA mice with respect to the inferior spine of the hypophyseal cartilage or basisphenoid (SP) and the tensor veli palatini muscle (TVP) during the prenatal and postnatal periods. There was a morphological correlation between the SP and the TVP in the C57BL6J, BALB/cA, and ICR mice during E15 and P0. However, there were not correlation between the TVP and the SP during P10. After discectomy, bone deformation was associated with a change in the shape of the adjacent muscle. Therefore, epigenetic modifications linked to the interaction between the muscles and bones might occur easily during the prenatal period, and inflammation seems to allow epigenetic modifications between the two to occur.
Collapse
Affiliation(s)
- Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | | | - Satoshi Ishizuka
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | - Kei Kitamura
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States of America
| | - Masaki Sato
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Laboratory of Biology, Tokyo Dental College, Tokyo, Japan
| | - Nobuyuki Hinata
- Department of Urology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Carrera-Pinzón AF, Márquez-Flórez K, Kraft RH, Ramtani S, Garzón-Alvarado DA. Computational model of a synovial joint morphogenesis. Biomech Model Mechanobiol 2019; 19:1389-1402. [PMID: 31863216 DOI: 10.1007/s10237-019-01277-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022]
Abstract
Joints enable the relative movement between the connected bones. The shape of the joint is important for the joint movements since they facilitate and smooth the relative displacement of the joint's parts. The process of how the joints obtain their final shape is yet not well understood. Former models have been developed in order to understand the joint morphogenesis leaning only on the mechanical environment; however, the obtained final anatomical shape does not match entirely with a realistic geometry. In this study, a computational model was developed with the aim of explaining how the morphogenesis of joints and shaping of ossification structures are achieved. For this model, both the mechanical and biochemical environments were considered. It was assumed that cartilage growth was controlled by cyclic hydrostatic stress and inhibited by octahedral shear stress. In addition, molecules such as PTHrP and Wnt promote chondrocyte proliferation and therefore cartilage growth. Moreover, the appearance of the primary and secondary ossification centers was also modeled, for which the osteogenic index and PTHrP-Ihh concentrations were taken into account. The obtained results from this model show a coherent final shape of an interphalangeal joint, which suggest that the mechanical and biochemical environments are crucial for the joint morphogenesis process.
Collapse
Affiliation(s)
| | - Kalenia Márquez-Flórez
- Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá, Colombia. .,Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia. .,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Reuben H Kraft
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, USA.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA
| | - Salah Ramtani
- Laboratoire CSPBAT, équipe LBPS, CNRS (UMR 7244), Université Paris 13, Villetaneuse, France
| | - Diego Alexander Garzón-Alvarado
- Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá, Colombia.,Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
26
|
Shea CA, Rolfe RA, McNeill H, Murphy P. Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation. Dev Dyn 2019; 249:523-542. [PMID: 31747096 DOI: 10.1002/dvdy.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.
Collapse
Affiliation(s)
- Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Sotiriou V, Rolfe RA, Murphy P, Nowlan NC. Effects of Abnormal Muscle Forces on Prenatal Joint Morphogenesis in Mice. J Orthop Res 2019; 37:2287-2296. [PMID: 31297860 DOI: 10.1002/jor.24415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/02/2019] [Indexed: 02/04/2023]
Abstract
Fetal movements are essential for normal development of the human skeleton. When fetal movements are reduced or restricted, infants are at higher risk of developmental dysplasia of the hip and arthrogryposis (multiple joint contractures). Joint shape abnormalities have been reported in mouse models with abnormal or absent musculature, but the effects on joint shape in such models have not been quantified or characterized in detail. In this study, embryonic mouse forelimbs and hindlimbs at a single developmental stage (Theiler Stage 23) with normal, reduced, or absent muscle were imaged in three-dimensions. Skeletal rudiments were virtually segmented and rigid image registration was used to reliably align rudiments with each other, enabling repeatable assessment and measurement of joint shape differences between normal, reduced-muscle and absent-muscle groups. We demonstrate qualitatively and quantitatively that joint shapes are differentially affected by a lack of, or reduction in, skeletal muscle, with the elbow joint being the most affected of the major limb joints. Surprisingly, the effects of reduced muscle were often more pronounced than those of absent skeletal muscle, indicating a complex relationship between muscle mass and joint morphogenesis. These findings have relevance for human developmental disorders of the skeleton in which abnormal fetal movements are implicated, particularly developmental dysplasia of the hip and arthrogryposis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2287-2296, 2019.
Collapse
Affiliation(s)
- Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London, SW6 7NA, UK
| | - Rebecca A Rolfe
- Department of Bioengineering, Imperial College London, London, SW6 7NA, UK.,Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, SW6 7NA, UK
| |
Collapse
|
28
|
Jin J, Bakker AD, Wu G, Klein-Nulend J, Jaspers RT. Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Curr Osteoporos Rep 2019; 17:235-249. [PMID: 31428977 PMCID: PMC6817749 DOI: 10.1007/s11914-019-00522-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Bone and muscle mass increase in response to mechanical loading and biochemical cues. Bone-forming osteoblasts differentiate into early osteocytes which ultimately mature into late osteocytes encapsulated in stiff calcified matrix. Increased muscle mass originates from muscle stem cells (MuSCs) enclosed between their plasma membrane and basal lamina. Stem cell fate and function are strongly determined by physical and chemical properties of their microenvironment, i.e., the cell niche. RECENT FINDINGS The cellular niche is a three-dimensional structure consisting of extracellular matrix components, signaling molecules, and/or other cells. Via mechanical interaction with their niche, osteocytes and MuSCs are subjected to mechanical loads causing deformations of membrane, cytoskeleton, and/or nucleus, which elicit biochemical responses and secretion of signaling molecules into the niche. The latter may modulate metabolism, morphology, and mechanosensitivity of the secreting cells, or signal to neighboring cells and cells at a distance. Little is known about how mechanical loading of bone and muscle tissue affects osteocytes and MuSCs within their niches. This review provides an overview of physicochemical niche conditions of (early) osteocytes and MuSCs and how these are sensed and determine cell fate and function. Moreover, we discuss how state-of-the-art imaging techniques may enhance our understanding of these conditions and mechanisms.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Zimmermann EA, Riedel C, Schmidt FN, Stockhausen KE, Chushkin Y, Schaible E, Gludovatz B, Vettorazzi E, Zontone F, Püschel K, Amling M, Ritchie RO, Busse B. Mechanical Competence and Bone Quality Develop During Skeletal Growth. J Bone Miner Res 2019; 34:1461-1472. [PMID: 30913317 DOI: 10.1002/jbmr.3730] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 02/01/2023]
Abstract
Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Kilian E Stockhausen
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Yuriy Chushkin
- Beamline ID 10, European Synchrotron Radiation Facility, Grenoble, France
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center, Hamburg, Germany
| | - Federico Zontone
- Beamline ID 10, European Synchrotron Radiation Facility, Grenoble, France
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| |
Collapse
|
30
|
Filges I, Tercanli S, Hall JG. Fetal arthrogryposis: Challenges and perspectives for prenatal detection and management. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:327-336. [PMID: 31318155 DOI: 10.1002/ajmg.c.31723] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022]
Abstract
Antenatal identification of fetuses with multiple congenital contractures or arthrogryposis multiplex congenita (AMC) may be challenging. The first clinical sign is often reduced fetal movement and/or contractures, as seen on prenatal ultrasounds. This can be apparent at any point, from early to late pregnancy, may range from mild to severe involvement, with or without associated other structural anomalies. Possible etiologies and their prognosis need to be interpreted with respect to developmental timing. The etiology of AMC is highly heterogeneous and making the specific diagnosis will guide prognosis, counseling and prenatal and perinatal management. Current ultrasound practice identifies only approximately 25% of individuals with arthrogryposis prenatally before 24 weeks of pregnancy in a general obstetrics care population. There are currently no studies and guidelines that address the question of when and how to assess for fetal contractures and movements during pregnancy. The failure to identify fetuses with arthrogryposis before 24 weeks of pregnancy means that physicians and families are denied reproductive options and interventions that may improve outcome. We review current practice and recommend adjusting the current prenatal imaging and genetic diagnostic strategies to achieve early prenatal detection and etiologic diagnosis. We suggest exploring options for in utero therapy to increase fetal movement for ongoing pregnancies.
Collapse
Affiliation(s)
- Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Sevgi Tercanli
- Center for Prenatal Ultrasound, Basel and University of Basel, Basel, Switzerland
| | - Judith G Hall
- Department of Medical Genetics and Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Verbruggen SW, Kainz B, Shelmerdine SC, Hajnal JV, Rutherford MA, Arthurs OJ, Phillips ATM, Nowlan NC. Stresses and strains on the human fetal skeleton during development. J R Soc Interface 2019; 15:rsif.2017.0593. [PMID: 29367236 PMCID: PMC5805961 DOI: 10.1098/rsif.2017.0593] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/18/2017] [Indexed: 01/11/2023] Open
Abstract
Mechanical forces generated by fetal kicks and movements result in stimulation of the fetal skeleton in the form of stress and strain. This stimulation is known to be critical for prenatal musculoskeletal development; indeed, abnormal or absent movements have been implicated in multiple congenital disorders. However, the mechanical stress and strain experienced by the developing human skeleton in utero have never before been characterized. Here, we quantify the biomechanics of fetal movements during the second half of gestation by modelling fetal movements captured using novel cine-magnetic resonance imaging technology. By tracking these movements, quantifying fetal kick and muscle forces, and applying them to three-dimensional geometries of the fetal skeleton, we test the hypothesis that stress and strain change over ontogeny. We find that fetal kick force increases significantly from 20 to 30 weeks' gestation, before decreasing towards term. However, stress and strain in the fetal skeleton rises significantly over the latter half of gestation. This increasing trend with gestational age is important because changes in fetal movement patterns in late pregnancy have been linked to poor fetal outcomes and musculoskeletal malformations. This research represents the first quantification of kick force and mechanical stress and strain due to fetal movements in the human skeleton in utero, thus advancing our understanding of the biomechanical environment of the uterus. Further, by revealing a potential link between fetal biomechanics and skeletal malformations, our work will stimulate future research in tissue engineering and mechanobiology.
Collapse
Affiliation(s)
| | - Bernhard Kainz
- Department of Computing, Imperial College London, London, UK
| | | | - Joseph V Hajnal
- Department of Biomedical Engineering & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Mary A Rutherford
- Department of Perinatal Imaging and Health & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Owen J Arthurs
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
32
|
Normal trabecular vertebral bone is formed via rapid transformation of mineralized spicules: A high-resolution 3D ex-vivo murine study. Acta Biomater 2019; 86:429-440. [PMID: 30605771 DOI: 10.1016/j.actbio.2018.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
At birth, mouse vertebrae have a reticular fine spongy morphology, yet in the adult animal they exhibit elaborate trabecular architectures. Here, we characterize the physiological microstructural transformations in growing young female mice of the widely used C57BL/6 strain. Extensive architectural changes lead to the establishment of mature cancellous bone in the spine. Vertebrae were mapped in 3D by high resolution microcomputed tomography (µCT), backed by conventional histology. Three different phases are observed in the natural bony biomaterial: In a prenatal templating phase, early vertebrae are composed of foamy, loosely-packed mineralized spicules. During a consolidation phase in the first 7 days after birth, bone material condenses into struts and forms primitive trabeculae accompanied by a significant (>50%) reduction in bone volume/tissue volume ratio (BV/TV). After day 7, the trabeculae expand, reorient and increase in mineral density. Swift growth ensues such that by day 14 the young lumbar spine exhibits all morphological features observed in the mature animal. The greatly varied micro-morphologies of normal trabecular bone observed in 3D within a short timespan are typical for rodent and presumably for other mammalian forming spines. This suggests that fully structured cancellous bone emerges through rapid post-natal restructuring of a foamy mineralized scaffold. STATEMENT OF SIGNIFICANCE: Cancellous bone develops in stages that are not well documented. Using a mouse model, we provide an observer-independent quantification of normal bone formation in the spine. We find that within 14 days, the cancellous bone transforms in 3 phases from a scaffold of spicules into well organized, fully mineralized trabeculae in a functional spine. Detailed knowledge of the physiological restructuring of mineralized material may help to better understand bone formation and may serve as a blueprint for studies of pharmaceuticals effects, tissue healing and regeneration.
Collapse
|
33
|
Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn 2019; 248:233-246. [PMID: 30620790 DOI: 10.1002/dvdy.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bent bone dysplasia syndrome (BBDS), a congenital skeletal disorder caused by dominant mutations in fibroblast growth factor receptor 2 (FGFR2), is characterized by bowed long bones within the limbs. We previously showed that the FGFR2 mutations in BBDS enhance nuclear and nucleolar localization of the receptor; however, exactly how shifts in subcellular distribution of FGFR2 affect limb development remained unknown. RESULTS Targeted expression of the BBDS mutations in the lateral plate mesoderm of the developing chick induced angulated hindlimbs, a hallmark feature of the disease. Whole-mount analysis of the underlying skeleton revealed bent long bones with shortened bone collars and, in severe cases, dysmorphic epiphyses. Epiphyseal changes were also correlated with joint dislocations and contractures. Histological analysis revealed that bent long bones and joint defects were closely associated with irregularities in skeletal muscle patterning and tendon-to-bone attachment. The spectrum of limb phenotypes induced by the BBDS mutations were recapitulated by targeted expression of wild-type FGFR2 appended with nuclear and nucleolar localization signals. CONCLUSIONS Our results indicate that the bent long bones in BBDS arise from disruptions in musculoskeletal integration and that increased nuclear and nucleolar localization of FGFR2 plays a mechanistic role in the disease phenotype. 248:233-246, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan R Roberts
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Taylor S Stucky
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
34
|
Giorgi M, Sotiriou V, Fanchini N, Conigliaro S, Bignardi C, Nowlan NC, Dall’Ara E. Prenatal growth map of the mouse knee joint by means of deformable registration technique. PLoS One 2019; 14:e0197947. [PMID: 30605480 PMCID: PMC6317797 DOI: 10.1371/journal.pone.0197947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/09/2018] [Indexed: 11/24/2022] Open
Abstract
Joint morphogenesis is the process during which distinct and functional joint shapes emerge during pre- and post-natal joint development. In this study, a repeatable semi-automatic protocol capable of providing a 3D realistic developmental map of the prenatal mouse knee joint was designed by combining Optical Projection Tomography imaging (OPT) and a deformable registration algorithm (Sheffield Image Registration toolkit, ShIRT). Eleven left limbs of healthy murine embryos were scanned with OPT (voxel size: 14.63μm) at two different stages of development: Theiler stage (TS) 23 (approximately 14.5 embryonic days) and 24 (approximately 15.5 embryonic days). One TS23 limb was used to evaluate the precision of the displacement predictions for this specific case. The remaining limbs were then used to estimate Developmental Tibia and Femur Maps. Acceptable uncertainties of the displacement predictions computed from repeated images were found for both epiphyses (between 1.3μm and 1.4μm for the proximal tibia and between 0.7μm and 1.0μm for the femur, along all directions). The protocol was found to be reproducible with maximum Modified Housdorff Distance (MHD) differences equal to 1.9 μm and 1.5 μm for the tibial and femoral epiphyses respectively. The effect of the initial shape of the rudiment affected the developmental maps with MHD of 21.7 μm and 21.9 μm for the tibial and femoral epiphyses respectively, which correspond to 1.4 and 1.5 times the voxel size. To conclude, this study proposes a repeatable semi-automatic protocol capable of providing mean 3D realistic developmental map of a developing rudiment allowing researchers to study how growth and adaptation are directed by biological and mechanobiological factors.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kindom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kindom
- Certara QSP, Certara UK Limited, Simcyp Division, Sheffield, United Kindom
- * E-mail:
| | - Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London, United Kindom
| | | | | | | | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kindom
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kindom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kindom
| |
Collapse
|
35
|
Márquez-Flórez KM, Monaghan JR, Shefelbine SJ, Ramirez-Martínez A, Garzón-Alvarado DA. A computational model for the joint onset and development. J Theor Biol 2018; 454:345-356. [DOI: 10.1016/j.jtbi.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
|
36
|
Rolfe RA, Shea CA, Singh PNP, Bandyopadhyay A, Murphy P. Investigating the mechanistic basis of biomechanical input controlling skeletal development: exploring the interplay with Wnt signalling at the joint. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0329. [PMID: 30249778 DOI: 10.1098/rstb.2017.0329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 02/01/2023] Open
Abstract
Embryo movement is essential to the formation of a functional skeleton. Using mouse and chick models, we previously showed that mechanical forces influence gene regulation and tissue patterning, particularly at developing limb joints. However, the molecular mechanisms that underpin the influence of mechanical signals are poorly understood. Wnt signalling is required during skeletal development and is altered under reduced mechanical stimulation. Here, to explore Wnt signalling as a mediator of mechanical input, the expression of Wnt ligand and Fzd receptor genes in the developing skeletal rudiments was profiled. Canonical Wnt activity restricted to the developing joint was shown to be reduced under immobilization, while overexpression of activated β-catenin following electroporation of chick embryo limbs led to joint expansion, supporting the proposed role for Wnt signalling in mechanoresponsive joint patterning. Two key findings advance our understanding of the interplay between Wnt signalling and mechanical stimuli: first, loss of canonical Wnt activity at the joint shows reciprocal, coordinated misregulation of BMP signalling under altered mechanical influence. Second, this occurs simultaneously with increased expression of several Wnt pathway component genes in a territory peripheral to the joint, indicating the importance of mechanical stimulation for a population of potential joint progenitor cells.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.
Collapse
Affiliation(s)
- Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Pratik Narendra Pratap Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Parisi C, Chandaria VV, Nowlan NC. Blocking mechanosensitive ion channels eliminates the effects of applied mechanical loading on chick joint morphogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0317. [PMID: 30249769 PMCID: PMC6158207 DOI: 10.1098/rstb.2017.0317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
Abnormalities in joint shape are increasingly considered a critical risk factor for developing osteoarthritis in life. It has been shown that mechanical forces during prenatal development, particularly those due to fetal movements, play a fundamental role in joint morphogenesis. However, how mechanical stimuli are sensed or transduced in developing joint tissues is unclear. Stretch-activated and voltage-gated calcium ion channels have been shown to be involved in the mechanoregulation of chondrocytes in vitro. In this study, we analyse, for the first time, how blocking these ion channels influences the effects of mechanical loading on chick joint morphogenesis. Using in vitro culture of embryonic chick hindlimb explants in a mechanostimulation bioreactor, we block stretch-activated and voltage-gated ion channels using, respectively, gadolinium chloride and nifedipine. We find that the administration of high doses of either drug largely removed the effects of mechanical stimulation on growth and shape development in vitro, while neither drug had any effect in static cultures. This study demonstrates that, during joint morphogenesis, mechanical cues are transduced—at least in part—through mechanosensitive calcium ion channels, advancing our understanding of cartilage development and mechanotransduction. This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.
Collapse
Affiliation(s)
- Cristian Parisi
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vikesh V Chandaria
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
38
|
Verbruggen SW, Kainz B, Shelmerdine SC, Arthurs OJ, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC. Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors. J Biomech 2018; 78:1-9. [PMID: 30037582 PMCID: PMC6135936 DOI: 10.1016/j.jbiomech.2018.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/03/2022]
Abstract
Fetal kicking and movements generate biomechanical stimulation in the fetal skeleton, which is important for prenatal musculoskeletal development, particularly joint shape. Developmental dysplasia of the hip (DDH) is the most common joint shape abnormality at birth, with many risk factors for the condition being associated with restricted fetal movement. In this study, we investigate the biomechanics of fetal movements in such situations, namely fetal breech position, oligohydramnios and primiparity (firstborn pregnancy). We also investigate twin pregnancies, which are not at greater risk of DDH incidence, despite the more restricted intra-uterine environment. We track fetal movements for each of these situations using cine-MRI technology, quantify the kick and muscle forces, and characterise the resulting stress and strain in the hip joint, testing the hypothesis that altered biomechanical stimuli may explain the link between certain intra-uterine conditions and risk of DDH. Kick force, stress and strain were found to be significantly lower in cases of breech position and oligohydramnios. Similarly, firstborn fetuses were found to generate significantly lower kick forces than non-firstborns. Interestingly, no significant difference was observed in twins compared to singletons. This research represents the first evidence of a link between the biomechanics of fetal movements and the risk of DDH, potentially informing the development of future preventative measures and enhanced diagnosis. Our results emphasise the importance of ultrasound screening for breech position and oligohydramnios, particularly later in pregnancy, and suggest that earlier intervention to correct breech position through external cephalic version could reduce the risk of hip dysplasia.
Collapse
Affiliation(s)
| | - Bernhard Kainz
- Department of Computing, Imperial College London, London, UK
| | | | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK
| | - Joseph V Hajnal
- Department of Biomedical Engineering & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Mary A Rutherford
- Department of Perinatal Imaging and Health & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
39
|
Vera MC, Abdala V, Aráoz E, Ponssa ML. Movement and joints: effects of overuse on anuran knee tissues. PeerJ 2018; 6:e5546. [PMID: 30186699 PMCID: PMC6120441 DOI: 10.7717/peerj.5546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Movement plays a main role in the correct development of joint tissues. In tetrapods, changes in normal movements produce alterations of such tissues during the ontogeny and in adult stages. The knee-joint is ideal for observing the influence of movement disorders, due to biomechanical properties of its components, which are involved in load transmission. We analyze the reaction of knee tissues under extreme exercise in juveniles and adults of five species of anurans with different locomotor modes. We use anurans as the case study because they undergo great mechanical stress during locomotion. We predicted that (a) knee tissues subjected to overuse will suffer a structural disorganization process; (b) adults will experience deeper morphological changes than juveniles; and (c) morphological changes will be higher in jumpers compared to walkers. To address these questions, we stimulated specimens on a treadmill belt during 2 months. We performed histological analyses of the knee of both treated and control specimens. As we expected, overuse caused structural changes in knee tissues. These alterations were gradual and higher in adults, and similar between jumpers and walkers species. This study represents a first approach to the understanding of the dynamics of anuran knee tissues during the ontogeny, and in relation to locomotion. Interestingly, the alterations found were similar to those observed in anurans subjected to reduced mobility and also to those described in joint diseases (i.e., osteoarthritis and tendinosis) in mammals, suggesting that among tetrapods, changes in movement generate similar responses in the tissues involved.
Collapse
Affiliation(s)
- Miriam Corina Vera
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical (IBN), UNT-CONICET, San Miguel de Tucumán, Argentina
| | - Ezequiel Aráoz
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - María Laura Ponssa
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| |
Collapse
|
40
|
Tsutsumi R, Tran MP, Cooper KL. Changing While Staying the Same: Preservation of Structural Continuity During Limb Evolution by Developmental Integration. Integr Comp Biol 2018; 57:1269-1280. [PMID: 28992070 DOI: 10.1093/icb/icx092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 150 years since Charles Darwin published "On the Origin of Species", gradual evolution by natural selection is still not fully reconciled with the apparent sudden appearance of complex structures, such as the bat wing, with highly derived functions. This is in part because developmental genetics has not yet identified the number and types of mutations that accumulated to drive complex morphological evolution. Here, we consider the experimental manipulations in laboratory model systems that suggest tissue interdependence and mechanical responsiveness during limb development conceptually reduce the genetic complexity required to reshape the structure as a whole. It is an exciting time in the field of evolutionary developmental biology as emerging technical approaches in a variety of non-traditional laboratory species are on the verge of filling the gaps between theory and evidence to resolve this sesquicentennial debate.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Mai P Tran
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| |
Collapse
|
41
|
Singh PNP, Shea CA, Sonker SK, Rolfe RA, Ray A, Kumar S, Gupta P, Murphy P, Bandyopadhyay A. Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement. Development 2018; 145:dev.153460. [PMID: 29467244 DOI: 10.1242/dev.153460] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
Abstract
Dynamic mechanical loading of synovial joints is necessary for normal joint development, as evidenced in certain clinical conditions, congenital disorders and animal models where dynamic muscle contractions are reduced or absent. Although the importance of mechanical forces on joint development is unequivocal, little is known about the molecular mechanisms involved. Here, using chick and mouse embryos, we observed that molecular changes in expression of multiple genes analyzed in the absence of mechanical stimulation are consistent across species. Our results suggest that abnormal joint development in immobilized embryos involves inappropriate regulation of Wnt and BMP signaling during definition of the emerging joint territories, i.e. reduced β-catenin activation and concomitant upregulation of pSMAD1/5/8 signaling. Moreover, dynamic mechanical loading of the developing knee joint activates Smurf1 expression; our data suggest that Smurf1 insulates the joint region from pSMAD1/5/8 signaling and is essential for maintenance of joint progenitor cell fate.
Collapse
Affiliation(s)
- Pratik Narendra Pratap Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Shashank Kumar Sonker
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ayan Ray
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sandeep Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Pankaj Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
42
|
Ponssa ML, Fratani J, Abdala V. Phylogenetic patterns and correlation of key structures for jumping: bone crests and cross-sectional areas of muscles in Leptodactylus (Anura, Leptodactylidae). J Anat 2018. [PMID: 29520773 DOI: 10.1111/joa.12801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Anurans are characterized by their saltatory mode of locomotion, which is associated with a specific morphology. The coordinated action of the muscles and bones of the pelvic girdle is key to the transmission of the force of the hindlimbs to the axial skeleton during jumping. Two features are critical for optimal locomotory performance: the cross-sectional area of muscle and the bone crest attachment sites. The first character is a proxy of the force exerted by the muscle, whereas the crests are muscle attachments sites related to muscle force. The provisory relationship between these features has previously been identified and bone crest size can be used to infer the magnitude and, therefore, muscle force in fossils records. In this work, we explore the correlation between the cross-sectional area of essential muscles to the jumping mechanism (longissimus dorsi, extensor iliotibialis B, tenuissimus, puboischiofemoralis internus B, coccygeo-sacralis and coccygeo-iliacus) and the bone crests where these muscles are inserted (dorsal tubercle, dorsal crest and urostylar crest) in species of the genus Leptodactylus. This genus, along with other leptodactylids, exhibits a diversity of locomotor modes, including jumping, hopping, swimming and burrowing. We therefore analyzed the morphometric variation in the two features, cross-sectional area and bone crest area, expecting a correlation with different locomotor types. Our results showed: (i) a correlation between the urostylar crest and the cross-sectional area of the related muscles; (ii) that the bone crest surface area of urostyle and ilium and the cross-sectional area of the corresponding muscles can be utilized to infer locomotor faculties in leptodactylid frogs; and (iii) that the evolution of both characters demonstrates a general tendency from lower values in leptodactylid ancestors to higher values in the Leptodactylus genus. The results attest to the importance of the comparison of current ecological and phylogenetic analogues as they allow us to infer functionality and behavior in fossil and extant groups based on skeletal evidence. Phylogenetic patterns in character evolution and their correlation with locomotory types could imply that functional restrictions are also inherited in leptodactylid.
Collapse
Affiliation(s)
- María Laura Ponssa
- Unidad Ejecutora Lillo, UEL CONICET-FML, San Miguel de Tucumán, Argentina
| | - Jéssica Fratani
- Unidad Ejecutora Lillo, UEL CONICET-FML, San Miguel de Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, IBN CONICET-UNT, Facultad de Ciencias Naturales e IML, San Miguel de Tucumán, Argentina
| |
Collapse
|
43
|
Gorissen BMC, Wolschrijn CF, van Rietbergen B, Rieppo L, Saarakkala S, van Weeren PR. Trabecular and subchondral bone development of the talus and distal tibia from foal to adult in the warmblood horse. Anat Histol Embryol 2018; 47:206-215. [DOI: 10.1111/ahe.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/11/2018] [Indexed: 01/13/2023]
Affiliation(s)
- B. M. C. Gorissen
- Department of Pathobiology, Anatomy and Physiology Division; Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - C. F. Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division; Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - B. van Rietbergen
- Department of Biomedical Engineering; Orthopaedic Biomechanics Division; Eindhoven University of Technology; Eindhoven The Netherlands
| | - L. Rieppo
- Research Unit of Medical Imaging; Physics and Technology; Faculty of Medicine; University of Oulu; Oulu Finland
| | - S. Saarakkala
- Research Unit of Medical Imaging; Physics and Technology; Faculty of Medicine; University of Oulu; Oulu Finland
- Medical Research Center; University of Oulu; Oulu University Hospital; Oulu Finland
- Department of Diagnostic Radiology; Oulu University Hospital; Oulu Finland
| | - P. R. van Weeren
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
44
|
Orriss IR, Lanham S, Savery D, Greene NDE, Stanier P, Oreffo R, Copp AJ, Galea GL. Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice. Sci Rep 2018; 8:3325. [PMID: 29463853 PMCID: PMC5820290 DOI: 10.1038/s41598-018-21718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Dawn Savery
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Andrew J Copp
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
45
|
Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 2018; 65:1-20. [PMID: 29128537 DOI: 10.1016/j.actbio.2017.11.021] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Articular cartilage is commonly described as a tissue that is made of up to 80% water, is devoid of blood vessels, nerves, and lymphatics, and is populated by only one cell type, the chondrocyte. At first glance, an easy tissue for clinicians to repair and for scientists to reproduce in a laboratory. Yet, chondral and osteochondral defects currently remain an open challenge in orthopedics and tissue engineering of the musculoskeletal system, without considering osteoarthritis. Why do we fail in repairing and regenerating articular cartilage? Behind its simple and homogenous appearance, articular cartilage hides a heterogeneous composition, a high level of organisation and specific biomechanical properties that, taken together, make articular cartilage a unique material that we are not yet able to repair or reproduce with high fidelity. This review highlights the available therapies for cartilage repair and retraces the research on different biomaterials developed for tissue engineering strategies. Their potential to recreate the structure, including composition and organisation, as well as the function of articular cartilage, intended as cell microenvironment and mechanically competent replacement, is described. A perspective of the limitations of the current research is given in the light of the emerging technologies supporting tissue engineering of articular cartilage. STATEMENT OF SIGNIFICANCE The mechanical properties of articular tissue reflect its functionally organised composition and the recreation of its structure challenges the success of in vitro and in vivo reproduction of the native cartilage. Tissue engineering and biomaterials science have revolutionised the way scientists approach the challenge of articular cartilage repair and regeneration by introducing the concept of the interdisciplinary approach. The clinical translation of the current approaches are not yet fully successful, but promising results are expected from the emerging and developing new generation technologies.
Collapse
Affiliation(s)
- A R Armiento
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - M J Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland; University Medical Center, Albert-Ludwigs University, Freiburg, Germany.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| |
Collapse
|
46
|
Murphy C, Mobasheri A, Táncos Z, Kobolák J, Dinnyés A. The Potency of Induced Pluripotent Stem Cells in Cartilage Regeneration and Osteoarthritis Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:55-68. [DOI: 10.1007/5584_2017_141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
48
|
Rolfe RA, Bezer JH, Kim T, Zaidon AZ, Oyen ML, Iatridis JC, Nowlan NC. Abnormal fetal muscle forces result in defects in spinal curvature and alterations in vertebral segmentation and shape. J Orthop Res 2017; 35:2135-2144. [PMID: 28079273 PMCID: PMC5523455 DOI: 10.1002/jor.23518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/06/2017] [Indexed: 02/04/2023]
Abstract
The incidence of congenital spine deformities, including congenital scoliosis, kyphosis, and lordosis, may be influenced by the in utero mechanical environment, and particularly by fetal movements at critical time-points. There is a limited understanding of the influence of fetal movements on spinal development, despite the fact that mechanical forces have been shown to play an essential role in skeletal development of the limb. This study investigates the effects of muscle forces on spinal curvature, vertebral segmentation, and vertebral shape by inducing rigid or flaccid paralysis in the embryonic chick. The critical time-points for the influence of fetal movements on spinal development were identified by varying the time of onset of paralysis. Prolonged rigid paralysis induced severe defects in the spine, including curvature abnormalities, posterior and anterior vertebral fusions, and altered vertebral shape, while flaccid paralysis did not affect spinal curvature or vertebral segmentation. Early rigid paralysis resulted in more severe abnormalities in the spine than later rigid paralysis. The findings of this study support the hypothesis that the timing and nature of fetal muscle activity are critical influences on the normal development of the spine, with implications for the understanding of congenital spine deformities. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2135-2144, 2017.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - James H. Bezer
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - Tyler Kim
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - Ahmed Z. Zaidon
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - Michelle L. Oyen
- Engineering Department, University of Cambridge, Cambridge, United
Kingdom
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai,
New York, NY 10029
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London,
United Kingdom,Correspondence: Dr Niamh Nowlan, Phone: +44 (0)
20 759 45189,
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This review assembles recent understanding of the profound loss of muscle and bone in spinal cord injury (SCI). It is important to try to understand these changes, and the context in which they occur, because of their impact on the wellbeing of SC-injured individuals, and the urgent need for viable preventative therapies. RECENT FINDINGS Recent research provides new understanding of the effects of age and systemic factors on the response of bone to loading, of relevance to attempts to provide load therapy for bone in SCI. The rapidly growing dataset describing the biochemical crosstalk between bone and muscle, and the cell and molecular biology of myokines signalling to bone and osteokines regulating muscle metabolism and mass, is reviewed. The ways in which this crosstalk may be altered in SCI is summarised. Therapeutic approaches to the catabolic changes in muscle and bone in SCI require a holistic understanding of their unique mechanical and biochemical context.
Collapse
Affiliation(s)
- Jillian M Clark
- Discipline of Orthopaedics and Trauma, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
50
|
Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409:18-32. [PMID: 28833194 DOI: 10.1111/nyas.13427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
While there has been considerable progress in identifying molecular regulators of musculoskeletal development, the role of physical forces in regulating induction, differentiation, and patterning events is less well understood. Here, we highlight recent findings in this area, focusing primarily on model systems that test the mechanical regulation of skeletal and tendon development in the limb. We also discuss a few of the key signaling pathways and mechanisms that have been implicated in mechanotransduction and highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|